From 7c547095950c69b221d9b5e2a46cea0e51ecd467 Mon Sep 17 00:00:00 2001 From: Ulrich <ulrich.kerzel@rwth-aachen.de> Date: Mon, 8 May 2023 09:41:16 +0200 Subject: [PATCH] change url to PDF for census data --- datascienceintro/Classification_DecisionTree.ipynb | 2 +- datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb | 3 ++- datascienceintro/cluster.ipynb | 2 +- datascienceintro/index.ipynb | 2 +- 4 files changed, 5 insertions(+), 4 deletions(-) diff --git a/datascienceintro/Classification_DecisionTree.ipynb b/datascienceintro/Classification_DecisionTree.ipynb index 7505fde..1401a85 100644 --- a/datascienceintro/Classification_DecisionTree.ipynb +++ b/datascienceintro/Classification_DecisionTree.ipynb @@ -11,7 +11,7 @@ "\n", "In this example, we look at the performance of a simple [decision tree](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html) from the Scikit-Learn package.\n", "\n", - "We will use the [adult dataset](https://archive.ics.uci.edu/ml/datasets/adult) that focuses on a (binary) classification task whether or not a person makes more than 50k USD per year. The data are taken from a 1994 census and were first discussed in the paper [Ron Kohavi, \"Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid\", Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996](https://www.academia.edu/download/40088603/Scaling_Up_the_Accuracy_of_Naive-Bayes_C20151116-5477-1fw84ob.pdf)\n", + "We will use the [adult dataset](https://archive.ics.uci.edu/ml/datasets/adult) that focuses on a (binary) classification task whether or not a person makes more than 50k USD per year. The data are taken from a 1994 census and were first discussed in the paper [Ron Kohavi, \"Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid\", Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996](https://staff.icar.cnr.it/manco/Teaching/2005/datamining/articoli/nbtree.pdf)\n", "\n", "The data have a number of categorial and numerical features.\n", "We can access the data directly from the archive (or use a local copy)." diff --git a/datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb b/datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb index ecd8719..662f2e9 100644 --- a/datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb +++ b/datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb @@ -307,7 +307,8 @@ "name": "python3" }, "language_info": { - "name": "python" + "name": "python", + "version": "3.10.6" } }, "nbformat": 4, diff --git a/datascienceintro/cluster.ipynb b/datascienceintro/cluster.ipynb index 60d546f..d18c2cb 100644 --- a/datascienceintro/cluster.ipynb +++ b/datascienceintro/cluster.ipynb @@ -707,7 +707,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]" + "version": "3.10.6" }, "orig_nbformat": 4, "vscode": { diff --git a/datascienceintro/index.ipynb b/datascienceintro/index.ipynb index 49e0b58..ae1958a 100644 --- a/datascienceintro/index.ipynb +++ b/datascienceintro/index.ipynb @@ -21,7 +21,7 @@ }, "language_info": { "name": "python", - "version": "3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]" + "version": "3.10.6" }, "orig_nbformat": 4, "vscode": { -- GitLab