diff --git a/datascienceintro/Classification_DecisionTree.ipynb b/datascienceintro/Classification_DecisionTree.ipynb index 7505fde4fd24aa7e0c93016434c5b409c3c8781e..1401a85592d94a124ecd82d9957a9c8840594ef4 100644 --- a/datascienceintro/Classification_DecisionTree.ipynb +++ b/datascienceintro/Classification_DecisionTree.ipynb @@ -11,7 +11,7 @@ "\n", "In this example, we look at the performance of a simple [decision tree](https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html) from the Scikit-Learn package.\n", "\n", - "We will use the [adult dataset](https://archive.ics.uci.edu/ml/datasets/adult) that focuses on a (binary) classification task whether or not a person makes more than 50k USD per year. The data are taken from a 1994 census and were first discussed in the paper [Ron Kohavi, \"Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid\", Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996](https://www.academia.edu/download/40088603/Scaling_Up_the_Accuracy_of_Naive-Bayes_C20151116-5477-1fw84ob.pdf)\n", + "We will use the [adult dataset](https://archive.ics.uci.edu/ml/datasets/adult) that focuses on a (binary) classification task whether or not a person makes more than 50k USD per year. The data are taken from a 1994 census and were first discussed in the paper [Ron Kohavi, \"Scaling Up the Accuracy of Naive-Bayes Classifiers: a Decision-Tree Hybrid\", Proceedings of the Second International Conference on Knowledge Discovery and Data Mining, 1996](https://staff.icar.cnr.it/manco/Teaching/2005/datamining/articoli/nbtree.pdf)\n", "\n", "The data have a number of categorial and numerical features.\n", "We can access the data directly from the archive (or use a local copy)." diff --git a/datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb b/datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb index ecd87192a72b3f9cdfd9ca39def25e1f8828f332..662f2e9941bd1e813c405a35d89219ae237ee430 100644 --- a/datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb +++ b/datascienceintro/DataScience_Stats_Correlation_2Dice.ipynb @@ -307,7 +307,8 @@ "name": "python3" }, "language_info": { - "name": "python" + "name": "python", + "version": "3.10.6" } }, "nbformat": 4, diff --git a/datascienceintro/cluster.ipynb b/datascienceintro/cluster.ipynb index 60d546f6c53d3dedd5457803c98fd2ffc6bf3467..d18c2cb4e8199214734bd8f38cee47f408109928 100644 --- a/datascienceintro/cluster.ipynb +++ b/datascienceintro/cluster.ipynb @@ -707,7 +707,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]" + "version": "3.10.6" }, "orig_nbformat": 4, "vscode": { diff --git a/datascienceintro/index.ipynb b/datascienceintro/index.ipynb index 49e0b58a2ada5efffc6e0f258254c4507d592bf8..ae1958ad1b83965eb685232e4b052733ba0d09da 100644 --- a/datascienceintro/index.ipynb +++ b/datascienceintro/index.ipynb @@ -21,7 +21,7 @@ }, "language_info": { "name": "python", - "version": "3.10.6 (main, Nov 14 2022, 16:10:14) [GCC 11.3.0]" + "version": "3.10.6" }, "orig_nbformat": 4, "vscode": {