diff --git a/datascienceintro/DBScanFromScratch.ipynb b/datascienceintro/DBScanFromScratch.ipynb index 08f395a4ec7bba6b7060f48b52ab500c67cc0de5..f76cbeefc1cab7ccb21f5924549d3809707e6f4b 100644 --- a/datascienceintro/DBScanFromScratch.ipynb +++ b/datascienceintro/DBScanFromScratch.ipynb @@ -1,21 +1,10 @@ { - "nbformat": 4, - "nbformat_minor": 0, - "metadata": { - "colab": { - "provenance": [] - }, - "kernelspec": { - "name": "python3", - "display_name": "Python 3" - }, - "language_info": { - "name": "python" - } - }, "cells": [ { "cell_type": "markdown", + "metadata": { + "id": "bW3_JY4qt_qt" + }, "source": [ "# Introduction to DBSCAN\n", "\n", @@ -104,13 +93,15 @@ "\n", "\n", "\n" - ], - "metadata": { - "id": "bW3_JY4qt_qt" - } + ] }, { "cell_type": "code", + "execution_count": 2, + "metadata": { + "id": "nMXVgVVtoWJd" + }, + "outputs": [], "source": [ "# imports\n", "# for generation of test data\n", @@ -126,15 +117,15 @@ "# a deque is a built-in collection type, optimised for fast append and pop\n", "# https://docs.python.org/3/library/collections.html#collections.deque\n", "from collections import deque" - ], - "metadata": { - "id": "nMXVgVVtoWJd" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "code", + "execution_count": 5, + "metadata": { + "id": "yf98YWRs-EsO" + }, + "outputs": [], "source": [ "###\n", "### DBSCAN implementation\n", @@ -260,26 +251,42 @@ " self.labels_[point_index] = -1 # mark as noise\n", "\n", " return self.labels_\n" - ], - "metadata": { - "id": "yf98YWRs-EsO" - }, - "execution_count": null, - "outputs": [] + ] }, { "cell_type": "markdown", + "metadata": { + "id": "hN5SNevlFFVH" + }, "source": [ "## Test the code\n", "\n", "To test the code, we first generate a synthetic datset. Here, we use the functionality from [scikit-learn](https://scikit-learn.org/stable/) to generate spherical \"blobs\" - but you can also experiment with concentric circles or half-moon shape clusters." - ], - "metadata": { - "id": "hN5SNevlFFVH" - } + ] }, { "cell_type": "code", + "execution_count": 6, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 487 + }, + "id": "n8h-JNoVGHPP", + "outputId": "072e04af-c9cf-490f-e3ae-a082293a3bd4" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hkZZm+75MrV1d3V+c4kZwEWePiGhDzuooBsxgQBAHFRQxgAHENwIpiwCyGNeesi781oRhAYPL09HTOlevE3x+nuqarq6rDTE/o4buvay7oc06dcyrM1NPv977PI3me5yEQCAQCgUAgWPfIR/sGBAKBQCAQCARrgxB2AoFAIBAIBMcJQtgJBAKBQCAQHCcIYScQCAQCgUBwnCCEnUAgEAgEAsFxghB2AoFAIBAIBMcJQtgJBAKBQCAQHCcIYScQCAQCgUBwnCCEnUAgEAgEAsFxghB2AoFAcJiQJInrr7/+aN/GkrziFa8gEokc7dsQCARrhBB2AoHgqLJnzx4uu+wytmzZQigUIhQKcdJJJ3HppZfyj3/842jf3mHlvPPOQ5KkZf8cqjjM5XJcf/31/OY3v1mT+xYIBMcu6tG+AYFA8PDlBz/4AS94wQtQVZWLLrqI008/HVmWeeihh/jWt77Fxz/+cfbs2UNvb+/RvtXDwnXXXcfFF19c/vmee+7htttu421vexsnnnhieftpp512SNfJ5XLccMMNgC8mBQLB8YsQdgKB4Kiwa9cuXvjCF9Lb28svf/lL2tvbK/bffPPNfOxjH0OWl15YyGazhMPhw3mrh40nP/nJFT8HAgFuu+02nvzkJy8pwNbzcxYIBIcXsRQrEAiOCh/4wAfIZrN89rOfrRJ1AKqqcvnll9Pd3V3eNt8PtmvXLp72tKcRjUa56KKLAF/sXH311XR3d2MYBlu3buWDH/wgnueVH793714kSeJzn/tc1fUWL3lef/31SJLEzp07ecUrXkFDQwPxeJxXvvKV5HK5iscWi0WuvPJKkskk0WiUZz3rWezfv/8QX6HK+3jggQd48YtfTCKR4LGPfSzgV99qCcBXvOIV9PX1lZ9zMpkE4IYbbqi7vDs0NMRznvMcIpEIyWSSN7/5zTiOsybPQSAQHDlExU4gEBwVfvCDH7Bp0ybOPffcVT3Otm3OP/98HvvYx/LBD36QUCiE53k861nP4te//jWvfvWrOeOMM/jpT3/KW97yFoaGhvjIRz5y0Pd54YUX0t/fz0033cS9997Lpz/9aVpaWrj55pvLx1x88cV86Utf4sUvfjGPfvSj+dWvfsXTn/70g75mLZ7//OezefNmbrzxxgqxuhzJZJKPf/zjXHLJJfz7v/87z33uc4HK5V3HcTj//PM599xz+eAHP8gvfvELPvShD7Fx40YuueSSNX0eAoHg8CKEnUAgOOKkUimGh4d5znOeU7VvdnYW27bLP4fDYYLBYPnnYrHI85//fG666abytu9+97v86le/4r3vfS/XXXcdAJdeeinPf/7zufXWW7nsssvYuHHjQd3rmWeeyZ133ln+eWpqijvvvLMs7P7+97/zpS99iTe84Q3cfvvt5WtfdNFFazr8cfrpp3PXXXet+nHhcJjnPe95XHLJJZx22mm85CUvqTqmUCjwghe8gHe84x0AvP71r+ess87izjvvFMJOIFhniKVYgUBwxEmlUgA1bTbOO+88kslk+c+8WFrIYrHxox/9CEVRuPzyyyu2X3311Xiex49//OODvtfXv/71FT8/7nGPY2pqqvwcfvSjHwFUXftNb3rTQV9zJfex1tR6nrt37z6s1xQIBGuPqNgJBIIjTjQaBSCTyVTt+8QnPkE6nWZsbKxmdUlVVbq6uiq2DQwM0NHRUT7vPPOTpQMDAwd9rz09PRU/JxIJAGZmZojFYgwMDCDLclVFcOvWrQd9zVr09/ev6fkWEggEyn148yQSCWZmZg7bNQUCweFBCDuBQHDEicfjtLe3c//991ftm++527t3b83HGoax7KRsPSRJqrl9qSEBRVFqbl9Nn9tasHA5eh5Jkmrex2qHHuo9R4FAsP4QS7ECgeCo8PSnP52dO3fypz/96ZDP1dvby/DwMOl0umL7Qw89VN4PB6pts7OzFccdSkWvt7cX13XZtWtXxfZt27Yd9DlXSiKRqHouUP186glagUBw/CGEnUAgOCpcc801hEIhXvWqVzE2Nla1fzUVsac97Wk4jsNHP/rRiu0f+chHkCSJCy64AIBYLEZzczN33313xXEf+9jHDuIZ+Myf+7bbbqvYfssttxz0OVfKxo0beeihh5iYmChv+/vf/87//d//VRwXCoWAakErEAiOP8RSrEAgOCps3ryZu+66ixe96EVs3bq1nDzheR579uzhrrvuQpblqn66Wjzzmc/kCU94Atdddx179+7l9NNP52c/+xnf/e53edOb3lTR/3bxxRfz/ve/n4svvpizzz6bu+++m+3btx/08zjjjDN40YtexMc+9jHm5uZ49KMfzS9/+Ut27tx50OdcKa961av48Ic/zPnnn8+rX/1qxsfHueOOOzj55JPLwx3gL+OedNJJfO1rX2PLli00NjZyyimncMoppxz2exQIBEcWUbETCARHjWc/+9ncd999vPjFL+ZnP/sZV1xxBVdeeSXf/e53efrTn869997LC1/4wmXPI8sy3/ve93jTm97ED37wA970pjfxwAMP8F//9V98+MMfrjj2ne98J69+9av5xje+wTXXXIPjOIc0NQvwmc98hssvv5yf/OQnXHPNNViWxQ9/+MNDOudKOPHEE/nCF77A3NwcV111Fd/73vf44he/yFlnnVV17Kc//Wk6Ozu58soredGLXsQ3vvGNw35/AoHgyCN5R7oDWCAQCAQCgUBwWBAVO4FAIBAIBILjBCHsBAKBQCAQCI4ThLATCAQCgUAgOE4Qwk4gEAgEAoHgOEEIO4FAIBAIBILjBCHsBAKBQCAQCI4THlYGxa7rMjw8TDQaFRE7AoFAIBAI1gWe55FOp+no6Fg2K/thJeyGh4fp7u4+2rchEAgEAoFAsGoGBweXTeN5WAm7aDQK+C9MLBY7yncjEAgEAoFAsDypVIru7u6yjlmKh5Wwm19+jcViQtgJBAKBQCBYV6ykjUwMTwgEAoFAIBAcJwhhJxAIBAKBQHCcIISdQCAQCAQCwXHCw6rHTiAQCAQCwfrEcRwsyzrat3FY0DQNRVHW5FxC2AkEAoFAIDhm8TyP0dFRZmdnj/atHFYaGhpoa2s7ZJ9dIewEAoFAIBAcs8yLupaWFkKh0HEXMOB5HrlcjvHxcQDa29sP6XxC2AkEAoFAIDgmcRynLOqampqO9u0cNoLBIADj4+O0tLQc0rKsGJ4QCAQCgUBwTDLfUxcKhY7ynRx+5p/jofYRCmEnEAgEAoHgmOZ4W36txVo9RyHsBAKBQCAQCI4T1pWwGxoa4iUveQlNTU0Eg0FOPfVU/vznPx/t2xIIBII1w3NdHMvEMYu4jn20b0cgEKwz1o2wm5mZ4TGPeQyapvHjH/+YBx54gA996EMkEomjfWsCgUCwJjhmkdzIIHMP3c/cQ/eRHdiDXcjhee7RvjWBQHAQ3H777fT19REIBDj33HP505/+dNivuW6mYm+++Wa6u7v57Gc/W97W399/FO9IIBAI1g7HNEnv3o5rFsvbrMwc1o4Usc0noQaCR/HuBIL1j+d52Nk0rmUhaxpqOHpYe/e+9rWvcdVVV3HHHXdw7rnncsstt3D++eezbds2WlpaDtt1103F7nvf+x5nn302z3/+82lpaeHMM8/kU5/61JKPKRaLpFKpij8CgUBwLGLnMhWiroznkR8bxnWcI39TAsFxgjk3w+xD/yC9ezvZwT2kd29n9qF/YM7NHLZrfvjDH+Y1r3kNr3zlKznppJO44447CIVCfOYznzls14R1JOx2797Nxz/+cTZv3sxPf/pTLrnkEi6//HI+//nP133MTTfdRDweL//p7u4+gncsEAgEK8PzPMzZ6br77XQKhLATCA4Kc26GzMAuvEU2Ip5lkRnYdVjEnWma/OUvf+FJT3pSeZssyzzpSU/i97///ZpfbyHrRti5rstZZ53FjTfeyJlnnslrX/taXvOa13DHHXfUfcy1117L3Nxc+c/g4OARvGOBQCBYOZJavzNGUhS849/tQSBYczzPIzu8b8ljssP78DxvTa87OTmJ4zi0trZWbG9tbWV0dHRNr7WYdSPs2tvbOemkkyq2nXjiiezbV/8NMwyDWCxW8UcgEAiONSRJItCYrLvfaGpBVrVlz+OYpl+dGNxLbmwYp5DHdUWlT/Dwxc6mqyp1i/EsCzubPkJ3dPhZN8MTj3nMY9i2bVvFtu3bt9Pb23uU7kggEAjWDlk3CLS0UxgfqdiuhiIYicZlm7wds0h69zZc0yxvK4wNE+7pR482IB1CRJFAsF5xV5jisNLjVkpzczOKojA2NlaxfWxsjLa2tjW91mLWTcXuyiuv5A9/+AM33ngjO3fu5K677uKTn/wkl1566dG+NYFAIDhkZFUl0NxKbPNJBFraMJqSRDdsJdy7EVnTl3ys6zjkRvZXiLp5svv24Npr+6UlEKwXZG35Svdqjlspuq7ziEc8gl/+8pflba7r8stf/pJHPepRa3qtxaybit0555zDt7/9ba699lre/e5309/fzy233MJFF110tG9NIBAI1gRZVZFVFTW4ulxMz7GxlmgAt7MZFCNwqLcnEKw71HAUSdOWXI6VStYna81VV13Fy1/+cs4++2we+chHcsstt5DNZnnlK1+55tdayLoRdgDPeMYzeMYznnG0b0MgEAiOLZZp/BYJFoKHK5IkEe7oITOwq+4x4Y6ew+Jn94IXvICJiQne+c53Mjo6yhlnnMFPfvKTqoGKtWZdCTuBQCAQVCPJCrIRwC0Wau7XDkM1QiBYL+jxBJHejf7064LKnaRphDt60OOHL8Hqsssu47LLLjts56+FEHYCgeCo4bkunmPjeb6lhywa/A8KWdMId/aQ3r29ap8aiS3boycQHO/o8QRarOGIJk8cLYSwEwgERwXHNClOj1OcmsBzXbRojGBbF4puIMnrZq7rmEEJholuPIH8yCB2LotUGsbQE01r3hguEKxHJElCixz/tmdC2AkEgiOOa5lk9u7AKeTL26zUHFZa5KIeLLKiIIcjKH2b8FwXSZKQVG1NKhKe4+DaFnY+h+c6qKEIsqohL2GqLBAIjg7ib6VAIDji2Plchagr43nkR4cId/eLZdmDZCVGxqvBdRysuRmy+weAA0MaeqKZUFunqAYKBMcYYr1DIBAccZbKZrTSc3gryEV1bRvHLOKYRTzXXcvbA/woIte2H/YTpa5lkt2/l4WiDsCcmcRKzx2VexIIBPURFTuBQHDEkZQlclFlhaUWDz3HwS7kyQ3vw8nnQJIwEs0EWtpQdGNN7s8xi5hzM5iz00iyTKCpBTUcOSJDCK5l4do2uA6SqiKp2lGtXhanJuruy0+MokXjomonEBxDCGEnEAiOOEaiieLkWO19TUkkrf4/TU6xQHrXQwc2eB7F6QmsbJrohi0ohyi+HLNIetc2XOtAikMmm0GLxgl39S4p7lzLxCkWKc5MgixjNDShGMaKl0edYoHMwK6KZWo90VRa8jzyk62e61a8DlX7bWtZD71jFdeyypVhSVGEOBUcNwhhJxAIjjiyphNo7aAwNlyxXQkEMRqTSFLtLhHXtskND9beVyzg5HOHJOw816UwOV5TzFjpOZxioa7Aci2TzOBe7EyqvM2cmkBvaCLU3rWscHAtk/Tu7VXXNmemkFWVYGvnEZ8WlmQZLRrDSs3W3K8Ew6Csr44ez3Nx8nmy+/eWBbQSCBLu6kMJBMVEtmDdIz7BAoHgiCOrKoGmFj8XtWTJEenfTLR/M4peX5h5roudy9Tdb6YOrefLdWzMmam6+4tTE3h1KlRWOlUh6sr3NDuFU8gte22nWKxbHStMTuAUC0cl81WLxusunYfaO5GXWFY/FnFNk9Suhyqqok4hT2rXQ0tWJwWC9YIQdgKB4Kgwn4ka6ugm0t2PHo0vv9wo+ctmdc95lJbTXNuiMDVed39hchzXXXogxDGL9Xd6Lm6xQGbf7iMuPhTdILZxa0WWpmwE/GVvfX3lz85XZGsuH3sehcnxwzKIIxAcSYSwEwgE6wZZVTGaWuruNw4xGkhWVPREY/3zNyZr+8J5LDnJ67nO4qHSKhRjicEPScYD7Eya4vRk3arhcriWiZ3PYmXSfgVwhRO/SiBIpHcj8a2nEN9yMrENW9AisSVF9rGI5zrY2XTd/XY27b9XAsEacPfdd/PMZz6Tjo4OJEniO9/5zhG5rhB2AoFg3SBJMoGmJGooUrUv1NWLdIgDBpIsE2huRapR+VOjMZRA7QqVpChosYa659XjjctOtiq6gVxnqtdobC5bxBQmxyvyLleKXciR2vkQqR0Pkt69jblt95MbHly2Aui6TvkYxQigBILrN6JMkpe8d1nToE5/p2D947ou49sG2XfPQ4xvG8Q9zNXZbDbL6aefzu23335Yr7OY9dUcIRAIHvbImk6kdwOOWcRKp5AUFT0WXzNbEH/p8QTM2emS3YmC0dyCtoTdybwlijkzWVW5kzUdLRZf0fOK9m+uORWrhkJkB/cC+Nm6y5X/FjA/2ZretR1vUYXOnJlC1nSCLe1VQwOe6+KYRQrjo9i5DLKqEWhtRw2G1twE+UghKwqBlray/54aiWI0NCHJMq7joARCwhj7OGX/X3fy16/9hvzsgR7dYEOEM19wHl1nbjos17zgggu44IILDsu5l0IIO4FAsO6QNd0XTAv6vtYSRTcIJNswGpsBaUXRWbKuE9t0IvnxEczZGSRJQk80Ekiu3F9PMQJE+7fgmqVBClnGSs2VRR2AGoogycuLD8/zcM0ixekJZCNYJermKU6OYzQ2V92jnc+R3r2t3I/mmkUye3YQSLYRaGlftwJIMYIE2zqRVQ2nWCA3sh/PsZE1jUBrJ4qhr1vhKqjN/r/u5Hef+EHV9vxsht994gc8+nXPOGzi7mgghJ1AIHhY47oO2A6e5MdxzffQzWetrhRJklCMAKHOHoKtnYDfE7i4EuY6TrmqV2u/rGl4nkducA9ujYGKYEf3ioSmUyyQ2vkgim6gLbG86Pf/eX5lz7ZwTRPPc5EAPZ7AnJ2uOL4wMeoL3nUq7GRVRU80kR8dxpyZLG93LYvc/r147V0EmlqE7clxguu6/PVrv1nymL9+/Td0nL4B+Th5z4WwEwgED0v8ilaB/NiIvzQnywQaWzAamw6ph0yWFdCrRc98BS03OoyVmgEkjERTzcQMRdeJbtjii4+5afA8lECQUGcPqrH8JKpr2+SG9oHr4lrWkhVD38pEwsqkyOzbDeW+I4lAspVgawf5RX6Ddi6LsoL7OGZx3QpRt5D82DB6PLFmKSaCo8vkjqGK5dda5GcyTO4YomVr9xG6q8OLEHYCgeBhiVssMLfzwQNCxnHIjw1hpmaI9m1a8wEB1yyS2vnggh68UmJGepboxhNqiDuDUFcPwbYO8Dw/HWGFFcSF05+eY4MkIWt6zUGJQEsbnueS2btz8VkoTIwS7uqrfmytyeB1RK1K6IGdbmnZWgi744FCKrumx60Hjo+6o0AgEKwC13HIjY0sqE4dwMnnsPPLGwqvBs91KUxN1LREcS0LKzVb08JElhUU3UAxAofU95Uf3U+4qxclGDqwUZIIJNvQG5owp2tXrwAKUxPoiaaKberC86xDlsoq9g8QX43HC4FYeE2PWw+Iip1AIHjY4TkOVnq27n5zdtpPXFijypTnODVjufSGRvR4AiQJp5BHVrU1MVmWFBUtFscqJXG4lkVmcA+B5laU1g4kRUXWtLJYdIqFuudyzWKFqAx19Kyq9/BYRFI1JFXzs24XoQRDK+phFKwPmjd3EmyILLkcG0xEaN7cuebXzmQy7Nx5oBK+Z88e/va3v9HY2EhPT8+aX28e8WuJQCB42CFJLN0cLytrJupc28Ixi1VmvqGObiRFJbNvN5m9O0nteID0nu04xXydMy1x/mKhwnBYVhRC7d0V1/Rsm/zoEFY27fvR6Yb/GkgSSqh+tUIJBvE8D72hkdimE9ETy3vyHevImka0bxMs+gxIqkakZ4OYij2OkGWZM19w3pLHnHnheYdlcOLPf/4zZ555JmeeeSYAV111FWeeeSbvfOc71/xaCxG/lggEgocdkqpiNCYpjI/U3B9obF6T67iOQ2FyHGtuBqOxmVxpiVeNRHFtm+KiGDI/s3Q7sU0nLpmZC6Xc3HyO3NBA2fdOjcQId/SgBALIukFs80mYs9NYqVkkRfWtVwLBioqUJEkYDY0UxkfBq16aDrZ2ogQCSFLyuJkUlSQJJRgivuVk7GwWp5hHDYVRAsGDHprwXNefMJbkdS98jze6ztzEo1/3jGofu0SEMy88fD5255133kGnxBwKQtgJBIKHHZIkYzQmseZmqpYhjeYW5GVE1UrxbMsXTHhIiooaiWFnUhgNTeRG9td9jFPMLyvsnGKB9K5tLMwqszMpUrseIrb5RL83b96PrynpD1DU8b+TdYPoxi1k9x2wWJFUlVBnry8Sl+tJW4dIkoSsqKjhMLKu+RmxnofrOnVfp1p4rotrFilMjWPnsr7hc7IN+Th93dYrXWduouP0DUzuGKKQyhKIhWne3HncWJwsRHzqBALBwxJF14n0b8HJZynOTpfSI5LIurFmS3H+JKkvvLJDA4TaujAam5EVta5hMICTz0O0flqF6zglC5LqaoDn2FipWZTmVqDkx7eEwHBtCyuTxpydIpBsQ9Z1ZEXxkzw0fc2WpI81XMfGnJ0mNzxYNmEGiVBHF3pD04r77BYbOTv5HFZqllBHN3pj86pEouDwIsvycWNpshRC2AkEgoctiq6j6Ho553WtRYy0cLrS88iNDCIpCuHufiRFqTklC9TNpC2fynGwc/Wbwa10CqNx+aVT17bJjw1TnJrwH1catgCJ6MYtR8XLzXMdXNvGyefxPBc1GEJS1TWvfrnFou/1V3l1csODpQGK5VNNXMsiu3/vAmF4gNzwfrRoHAwh7ARHluOvBikQCASrRJKkw1KZkjStamjCcxyKU+MYjcnaj1FUlMDSdiKSLC1ZVZRUDSQJ13VwLBO3xvQn+Mu+86Ju0R5y+wdwrdqPO1w4loVTKODksniOTWFijLlt95MfG17Te3Fdh/xE7f5KgML4KG4d0V1xHsfGrTtR7OEU6k8bCwSHC1GxEwgEgsOErOlEejeS3rOjoqpjZ7ME27pwbQtzZurA8bpBpG/Tsv11sqoRSLaRHdxTc38g2YpTLFAYH8HKpJFVlUBzK1o0VmG8bC1R9XOKBX+5eA3sV+rhWiZOIY+ZmsNINJIfG8ZKpwBfnAZb2nFCIYqT46ihCEZD4xpd2MM1q82aF94XrrsGsWm1G+ddx/EHVWRZLNUK1hwh7AQCgeAwIUkSaihCfMvJFOdmcPM5lGAIJRgiPzFGoDlJMNmG69hIsoKkqigrTLzQIjHfXHh2qmJ7qLMXPJfUzocO9H3Z/pKhFk8Q7uwpV/ukZYx4PUnCMYs4hTyuZaEGQ34P3hr0ILqWSXrvTpx8jnB3P5l9uyvElmdb5Ib3Ee7qwzLSFMZH0CLRNbm2JMuowTBOHSNqJRiuqrTWQlYUZCNQt2qnBIIVP/sVviL58RHcYgE5ECTY0o5sGELgCdYMIewEAoFgEY5ZxM5msLIZFCOAHov7gwQHMUEnyTKKESDU0u5PUDo2nmliJJrKYk5bJABWgqxphDq6CCTbsLIpJFlGC0dBlskO7K7Z92XNzeAm28riSF3Cv05PNONZFqm9OyoSOtRQlEhv/6oi13yvvWJJhEoYjc2YqVmcfM5fNvbcuhW0/MQogcYk+fERPM/DMU3cYgG7mEc1gshGYNkK52IkWSbQ3EJxZrL6dZL8jNyVvNeyphPu6qsYnpgn2N5VYeTsuS5Waq6iyuoUC1hzM0T6Nq2pIbbg4Y0QdgKBQLAA30tuW8XUan50P9H+zajhyLJVrnp4roOVSZMZ2FUhAtRojHBX34ordQuRVT89Qg0eEIZOsbjsYMW8oJM0jVBnT9UQgaQoBJKtpHY8WOVtZ+fS5MdHCbV3rUj8uJZJdv8AVnquvE0JBMq9fYoRWDLCzS0WkDUNNRLDcxzSe7bjLei3kzWd6IYtKMbSAyeLkXWD6IYtZAf3li1eZN3w34tVDI2owRCxzSdRmBzDKdmdBFraUIxghZ+da1tkhwZqniM7uLdsUSMQHCpC2AkEAkEJ17bJDO6ttiLxPDJ7dxHbctJBf/m6lkVm7y4W913Z6RTFqUmCre11Kzau4+C5DpIkL2/DsVzRRz5wgCwr6A1NqKEIhclxXMv0l3jjCex8tqZhMUBxepJAsnVFr4WVSVeIOvCXgD3XH07wHHvJ6p+kKHieS7C1nczArgpRB75wzAzsItq/ZVVxbPMVztjGreVBCUlRUVbZUyjJMmogSLijx59ylmsbFHuWVTObGPzXwLNtEMJOsAYIYScQCAQlPNvCyWdr75RKma/ZDE4+h6zpKMHgir3efHFTu5m+ODWG0dhctaToOQ6OWSQ/NoyTn68GtaOGInUFnqSoaPEGrLnZmvv1Rf54sqIgB0OEu3rwPA9JkpEkCTM1U//JeG7Npd7FuLZNYXK8arudz6JFYlipWZxC3p8ClqSa5zQSzchGwDcPrtPL5hSLuK6DV3TwXBdJUZBVbcXLqfIazIdIsnxoyRxiGVawRgi7E4FAIChRN/5Hkgl3byA7uIf0rofIDe8jM7CT1PYHsPO5FcUGOUtMYfp+dtXnsPNZUjsewErN4loWdi5LZu9OCpNj5VzYxciKQqitsr9rnmBrB1Kd6pgk+ROa8yJVDdbvv5M1vSpntfYT88qVuYUUZ6YINCWhtKxdmBgl3NVX/nkeLRrHaG5BC0XqVrskWSHSu4H8yH7mtt1PascDzG3/J4WJsbo2L0cDSdOQ6gxISKq6pIm0YH1y0003cc455xCNRmlpaeE5z3kO27ZtO+zXFcJOIBAISkiKUvML1mhsojg9Uc5kncdzHTJ7tpcSJpZGi9Q3vFUCwarePafUm1aLwviIv3RX94QqsY1bCXX0+EuriSZim07EaGpZcY6pYhh1+9aC7Z0r6gmUFAW9ZP5cgeuSHxsmumELWqwBO5ehODNJdMNmIr0bCXf1Edt8EuHuA/1uUp0KZbCtw7dJSc0uOv8QxelJPyrsGEBWNULdvTX3hbv7V7WMLDg4HMfhnt//lR999xfc8/u/4qzAq/BQ+N///V8uvfRS/vCHP/Dzn/8cy7J4ylOeQjZbZ1VgjRC/IggEAkEJWdMJtXf5aQIL0CIxf+ihBp7jlPNmvXnbEkWtWipVgiFk3Sg36i8k2N5d9cXuOU7NY+dx8vkq4eU5viGxNTeLmZpFCQYJtLQh66ufHJU1nUj/ZnIj+7Hm/GVZSdUItXWiRerHnS1EkmWMpiTF6YmqlA3HNP3J3s4eXMvELRYpTIziFAoEkq3lwZDyuVQNo9E/14GNErKm17UtKYyPojc0HhNDCZIso0Xi/qDFxJifBxwMEWhuRTmOo9uOFX7x47u5+YbbGBs58PlpbU/y1nddzpMuePxhueZPfvKTip8/97nP0dLSwl/+8hce//jDc00Qwk4gEAjKSJKEFmsg0reZ/MggTrGApGrLLpPNx1PNCzE1EiPc1VshKJTS9GZueLBcXZJ1nVBHD2qoOmli2a95ufoIxzLJ7N1Zvg8nn8WcnkQNRwl39fniQfJF0kqEhFKaEvXaOv3+t/netVWIEFnTiW06kfzYMObcDCChJxoJJtuRVZX8xBiFseGKx+SG9uHk8wTbu8oVRllR/KVkVaUwOQZAoKllyYQIz3WOmYodLOxn7PV7AQ+1L0+wIn7x47u5+pJ3VLVwjo9OcPUl7+BDH3/PYRN3C5mb84eIGhvXyGi7DkLYCQQCwQJkVUWPxVGDIb93TgI8D0lRq6dl5x+jaRXLsXYmRWbvTqL9mysmPhXdINzdj2dbZaFUb0nTjxYLVi3/+julKvNbx7YwpydrVvnsbBqnkCM3NgyuS6C5BT2eWJEXnawoK0pgcG279DopFWJFkiTfx6+zl2Bbl39OVUWSZRyzSGF8tOb5itMTBJKtFdeWNT+NQm9sBschPzFW9TpUIh2TwkkIuiOH4zjcfMNtNWd9PM+fWfnADf/NE57yGJRDThqpj+u6vOlNb+Ixj3kMp5xyymG7DogeO4FAIKiJrGkouu4LL0km0NJe8zg1FMExi1UTnfNpDVXnVRQUI4ASCC7ZpyZrGuHu/ppDCuHOXuRFVUTPdkoVsdoUZybRojFcs0hueJDM4N41yV91bQszPUdm705Sux4iOzSAXchXVcpkRfFfz9KSsGMW/evXsVQBavYuSrIMrp+sYZVSN+r13+kNjWIo4WHOvX/6R8Xy62I8D0ZHxrn3T/84rPdx6aWXcv/99/PVr371sF4H1pGwu/7668tB3fN/TjjhhKN9WwKB4DjHdRwKEyPgOgTbug6ICElCTzQRbO8kPzpc87HOEj1yK0EJBIlvPolAawdqJIre2Exs80lo8YYVRV5V4FVGiNmZFK51aPfnOjaFiTEye3Zg5zK4ZhFzZorUjgfqmg67lkV+fIS5bf/0K5dLUGuK1HUc8qNDZUGYHx8h3NVfNQWshiIE2zpXPCyyFJ7nZ8s6pulXJgXrhonxqeUPWsVxB8Nll13GD37wA37961/T1dV12K4zz7r6Vebkk0/mF7/4RflndTmjToFAIFgBnuv61hhuKZh9gQeaZ1sUJycADzUU8a1ESvvM1Kw/FFCn6rSa2K1azC9jBlva8dxW/5faOkt4kiKjxRMUS/1ni9HjCVhUvTJTs6ihSPlnz/NwLQvXMvEcB8UwkFS1qjpYPt62KUzUWEr1PHJDA1WmwZ7rUpiepDA+AviRWkowVHP4QdK0mpOinuNgpVPln91igdzIPkLtXSWvQRc1FPaHL9Zg0tS1TIozUxQmxvAcGyUYItTe7Q/DHMalO8HakGxpWtPjVoPnebzxjW/k29/+Nr/5zW/o7+9f82vUYl0pI1VVaWtrO9q3IRAIjiNcy6QwOU5harws7ALNrQSaksiaXrIV8ZdZ7VymKq5Lb6jdCC1retUkqmsdqPjIqrriIQZJkpav0HlgNDb7ebCLljDVUAQPD8lzkVS1bJWysCLmeV7ZJ29hL6GRaPYrXzVE0lLRZU4h74veBY9zbYviAiFYmBwj3N1PdnBvRfVOUhSifZtqevFJ+MuxnnNATLvFop/BKssEmlpQm5J172s1uLZVFYfm5HOkd28j0r+5yux5LXFtG8+2yobLkqoJIXkQnPXI02htTzI+OlGzz06SoLWthbMeedqaX/vSSy/lrrvu4rvf/S7RaJTRUf+zH4/HCQZXnw+9UtaVsNuxYwcdHR0EAgEe9ahHcdNNN9HT03O0b0sgEKxTXMchNzqEObNgGcZ1fZ84PALNrTWnTxciaxpqNIa9oIok6wbRvk3lip3nuti5LNnBPWXRJWsa4a5+1FB49cuqte5DVbHyJqHOHuxc1p+8lWSMhgSSqpHdP4AeT6CGIuWp3IUec65lkt69var6WJyZRA4ECDS31hChS702Eh4exdlpJFlBCQTwXLfCsNizbXL7Bwh1dPv2LpaJGgiihMJ1Ez0kVcVobK5dKXRdvzK5RriWVRWHNk9uaB/KxhOYF/2SoiDXMSBeLY5ZJLtvT4Vw1hPNhNo6DrkK/HBDURTe+q7LufqSd1SFm8x/vK551xsPy+DExz/+cQDOO++8iu2f/exnecUrXrHm15tn3Qi7c889l8997nNs3bqVkZERbrjhBh73uMdx//33E43WNv4sFosUiwd6SFKpVM3jBALBwxPPtipFXYlgayeyrpMb3Ive0FTXf042AsiqRqR7A57tL2FKioqkaRWDEY5ZJL1ne8W3imtZpPdsJ7blZFTl0H579zwPz7aRFZX0nh0owSBarAE8j+L0ZNlnT5IlPMe/h2BbZ0UKhZ1J111SLkyMYsQbkRZVINVQ7XQKozGJHm/AnJ3Gc2zUcBQrnUINR6qiw1zLJLtvN5KqEe3bVPec8/jeeC1+HNmiiLFAsg15DT3r7GztiqSkKIQ6uilOjlOcmcBzXbRogy+8dOOQPOnckmXN4mloc2YSSZYJtXeJidpV8qQLHs+HPv6eah+7thauedcbD5vVyUoSaQ4H60bYXXDBBeX/P+200zj33HPp7e3l61//Oq9+9atrPuamm27ihhtuOFK3KBA87HBty4+6ymaQFMWvPq2jJaNajfCBZBuuVSQ/NgT4S4qhzl6yg3sqliglVSXSu/FABUVVa1pveK5LcXK8brZqYXyUcFfvQX9Zu5aFOTdDfnwYLRpHTzRSnJqoKUq0WANmOkVs04nIulHxPtW0VZl/DraNVyPyTFI1Qh3d5IYHy9uMphYkWSa9Z0d5W3FqAjUcQTEC6A1NmDOTNa9Tb7p1MYquE+nfgpPP+hVBRSXQ2Ow/pxWcw7Xt8ns5nyu7mvsJdfSQH9lfISytuWnm0rPEN59UN7FjJbiWVfe9KE5PEGhuOaTzP1x50gWP5wlPeQz3/ukfTIxPkWxp4qxHnnZYLU6OFutG2C2moaGBLVu2sHPnzrrHXHvttVx11VXln1OpFN3d3Ufi9gSC4x7XssiODGLNTldsD3X1occb6jbcH0tUiSlJQg1HyOw98O+Ka5nkRvYR7uzBc12c+eXCQAjFWL465Lkudr5+hJCTz+K5zkEJO9dxKEyOUZgYAzzMmSkifZux0qmqCqPRmEQNhdGi8ZoVJTUcgTqDF/WqULKioCeaUEMR8hOjeLaNHm/wl3QXYWczWJkUgZZ2XMvEzixYutY0Iv1bVpUQMW+dosUaVlwh8zwPp1ggNzRQFr5qKEyos7cU61Z5HjUYrqowyrqB5zpV1ULAjzIbHyHceShCfYl4Os87pgyX1xuKonDOo8482rdx2Dn2/+WtQyaTYdeuXbz0pS+te4xhGBgr+IdXIBCsHjM1WyXqAHL796KGTj6mhN18hcZzHD/yS/Ujv2RVRTYCuKUvaTUY9pckS8hGAMUI4Nk2mX27kTSNSHc/mcE9KHqAUEcXihGoG+4OvniUdaNu7JWsB0A6GFFn41oWihEg0rsBz3HIT4yS3b+HcEcPjmX6fX+KQqCpBSUQqFuZAj/ybOFgxUL84YnavV2yoiKHVCLd/XieR35kf91rmDNT6PEEwdZ2vOZWXKuIrKh+BNtBVk5Ws+zpmkXSOx+q6POzc1lSOx8ivqW60iZrKpGeDRVxcmooXDGVuxgrNYvX2lm1bL1Slu6hk5b8rAkEsI6E3Zvf/Gae+cxn0tvby/DwMO9617tQFIUXvehFR/vWBIKHHa5l1W5eL2FOT6J2HBvVcccyyQ3tqwiJV8PRcsB8tHcj6T3by2a9Hn5VJtTehWsWsfM5lHCEQEs7xalxf1nSsrAti9SOh4htOmHJvjBJlgkm28p5q4sJtLStWtS4lkVudH9Ff6CkaoS7esmPDpHZtxslECTcswFFNyqqR57r4loWnueL3HlrF0U3iG3YSmZwT1mESrJCsK0TLRJb9p4kWQbPw62TzgG+GEWSSO/a5j9GUX2R5Xmo4SiRng1rYlFSC89zKc5MVoi6AztdCpNjhNq7K1MzZAUtEiO+9RTMuRkc08RINFKcrr2UPP8Y7xBiXyVNq/hlYyF6onHFy9WChy/r5hOyf/9+XvSiFzE1NUUymeSxj30sf/jDH0gm12asXSAQrBwPz/d9q4NjFvE876gHm7uOXSXqwI/Yyg7uIdK7CVk3Sv1aOVzTRA1H0aIxv6duYfVqYpRwdz9ORVqDR254kEjfpiV7u2TDz1zNDu07MKAgSYQ6elACq+uX8jyXwvRE1dCHZ1tkB/cQ7uojM7DL79PyvAqh4lom+fFRitMT5Twloynp57ZqGkogSLR/c0U8mKxpFcbGSyFJEnq8oa6I1cLRiv6xhT2LdjaNa5mHT9g5LlY6XXe/lUnXXBKXFAVFUQguSB6RJKnm0A2A0ZRcsjK6HIqmE+3bdOA9LKHFGgitkeGy4Phm3Qi7IxHDIRAIVoYky6ihSEWf1EL0VfQ9HU48264SdfPY2YzvEybLvsnt8D4kVUUJhihMjNRckszu30ukZ2PleXKZUhVoCWGnqOgNCdRItNz75g8vqKu2OnEtq64JsW8ZYvnLebJUITZdxyE3MoQ5u0CQeB7FyXE8xyHU0eOH1KtaXWHi2na54lVv+VQNRWtOEUuK6g8djA7Vzd21C7llp2IPmtLrUaNe5+9WtQP+F8udSg9gNLVQnBqv2K4EQxgNTYf82VeMANH+LaXX2/arqoq6osGQ4xX3YdBbuFbP8eH7KREIBAeNrKiE2jtJ7agWdpKqoUZqWxAdaTyn3te4j+vYuPn5ZnUJt1gEz61rc4HnVyorhIkks7Sf2/xhCoqulAcE/LQLGxzbr4yttCfR85Z8Xq5VRDYChDq6K/q1PNuqFHULMGem/IpUHZHpua4/dDC8r/zaaPEEwdYOP9B+wf0ruk50wxby4yN+VcvzCHX5y975iZFSpbIbz7HJjeyvHEw4hErXcsiyQiDZVteXzl8Sr34P5tM45g2UJVVF1jSCre0YiUYK05PgOP4QSTC0Zj5zcp3kjYcbuq4jyzLDw8Mkk0l0vba/4XrG8zxM02RiYgJZltEPsj9zHiHsBOuamalZRobH+L///RNGwOCx551LS0sTkVhk+QcLlmU+assfOpAr4qUUPUB0w1ZyQwPlCUEtEifU2b2q6cbDyXLVMElRca0MVmqWUHsX2f1769qSlCkt13klbaUnmlY9AemYRQrjoxRnJv3+skiMUHsXSiCw7LKnJMlIqlY3Z1UNRTCaWqreg1oVyIr9S/TGOWaR1M4HK14ba24GO5sh3NVLcXKC4PwgiSSh6Abhjh6CLR1+vNjYELkFgzbm7BRqJEq4s9d/zQFkuaZdzGL8RAa/cugnMtSPPFuMEggQaGkvR5rNYzS3oAZDVcd7joOVy5Ddt6fCHiXU2YsWjaOGIkRCkWOi7eB4RZZl+vv7GRkZYXi4dibz8UIoFKKnpwf5EH0KhbATrFsmJ6a48R238osf/2952wffczuXX/MaLnzJs4nFj42q0XrFtSzyEyMUpybKX+harMHvC9N1JEVBi0SJbth6YHluFV+yhwvPdf0vWllGUlS0WBwrVV2lUUMRZFX1rTpGh5A0nUjfJsBvYPes2sJJNoIH0iOMAHqsAaeYR1ZX9nlzzCLp3dsrlirtTIrUzgeJbT4JNRDEdRxfSMz3uS2oZEmlalFuaF/1vWkaSjBcFWUG1K3GAaiRKJKsUJgcxzGLaOEoSjCEouu4ruMLoRqC17MtvzfRsUjtfLDCw80fyNAx03M1p6ftTBo9GkcxAjimSbR/87LVLsc0ye7fW9ECoMUbCHf0rKhSJqsagWQrRkMjVmn6WYtEfe/FGsucjmWSWeDHB77Yy+7b7XsBlpaNhag7vOi6Tk9PD7Zt4yxThV+vKIqCqqpr8lkSwk6wbvntr/9YIermue0Dn+JRjzuHk0/behTuav3iWiZOoYCZ9oPh7WymqofISs2Sta3SsIAvNvzloqO/ZOQ6Nq5pUpgaxzWLqOEoRkMjoY4esu5AhRhQQxHCPf3+czA8lEAQa24GKzWH0dxCqL2b7L7dVdfQG5rwPBe9oQk1HEGSZbKDu1GMIMoyAxTz2NlMzRQLPI/82DCh9i5yI0OlAQT/3kKdPaiBkF+hkiT0eMK3NxkbKQ9jKMEwkZ7+2qIOf/lcCQSrzG/VcASjMcncjgfK4q04OYas6UT6N/tVq0z9oQM7m0ENhnDyOQoTY4Q6DkyWuo5DcaJ2PyBAcXaaUFdfedlx/kvNK/m1SZJ04Fy2TXZwd9UyuTU3SxaJcFffigYLZEUFpbaZ9EI815+UrUd+fIRwd78YZjhCSJKEpmloYnl6WYSwE6xLpiZn+MInv1Z3/9e++B3e9f43r5mruOu6TE5M4zgOAcMg0dSwJuc9VnBMk8zAzrLNhdYb9Scna2Dnsn6D/mHsh1otnuP4X/Dzy3r4FaHCxCixjScQ6fEjvzzHORCoXhJhsqYT6dtMfmwIc3baD6lvbiXSv4X86BBOPous6RhNLWjRGObsFJ5rUxgfKVfu7HxuRcaxnudi1pkY9e855Rv5zh2ocDmFPOld24htOrE8WCCrGoHmVvSGRr+yJ8klX77674msaUR6N5Les6NCWAaS7b5P26KKnGuZ5IcHMZpa/KGDOku/kqqWe/6s9Bye044kz4vLpQ11PddB0Y2KXjLHLGLOzWDNzSIpCoFkK0ogiGfbdXsfrbkZvLbOJauS9XBdBzyqBJrnurhLpHE4hTy47kFdUyA4nAhhJ1iXOLbN7Gx9k9DJiSls214TYTc5Mc0Pv/1zPvuJrzA9OcMJJ2/m6re/gZNP3Uokepgm+I4gfuTVWKWBruct2WvmWibU6Ek6WriOTXZooMYOl+zgHqIbtixZoVF0nVBnD8FWvycMWUbRdNRgqOSzBnahQGrnQzXzVOU6Dd1+hqt1wD5EVVFC4bqTupKs1O2Fy40M+vYsJUE67z0Hq0hrMAJEN2zBcxwcq4jkUXp+tcWXlUlhNLeiJ5rqGg8bjc1kSq+9pCgVk6WSrKA3JCrC7BeixxIVfZBOsUBq10MVr4GVnsNoasFobFryuS03KLMY17KwCzl/Kth10Rsa0aLxcsVTkmXkQBBytVNDlEAARGar4BhEfCoF65JILMK5jz6r7v5/e8rj1iR1ZHZmjpuvv40Pve9jTE/6lZaH/rmD17zoSv70u3sP+fzHAq5tU1hcnVumz+NYqtYBZc+2evuWGxwAf2pS0Q0UI4BS6teSVbW0zUA1jLoCKNjSXjXB6Ln+dO3czgdJ7XiAVOm/iqajJ2qLFL2xuW5Fz85mDilOyrEsirNTZAZ2kxnYhZ1KIWl62Zi5Lq6DrCho0XjVrkCy1ff+M4Kln9sq+wElCS3WULP/TVJUjMZkxbJtbnS45ntVnBr3naMXfC7VcNTvl2tMIqmrs42Zj8PL7NmBlZ7DzqbJDQ2Q3r0Np1TNlGSZQHNL3XMEW9rFMqzgmEQIO8G6JBQK8po3vhTdqP7CSLY08Zh/feSaXGdyYpqf/uDXNfe9//rbGB+t70C/fvD8JaUFWJk0Wqyh5tGybiAda30urp9cUE9ELDPnuiJkTfOHKxZNrRrN/hJt1S2ZJuk92yuGMDzHITu4B72hEWnRkIkajqJFYti5jD8x2rOBSM8GIr0bCXf1ooQjK7VZq74X2yI3vI/svj04+SyuWaQ4PUFmzw60cP0JcknT8FyX7P59qOEIkd6NBJpbCbZ2EO3f4ovXXAY8Fy3WgFbD5kbRDaIbt2I0tfhxWLKMnmgitumEiqxdz7HrGhuDH2GnJ5qQDYNI32Y/2iubwbVMQh09q4plc4qFmgMdrlmkODVRFtCKZhDp21QpGmXZ760zVmcsLRAcKcRSrGDd0tvXxZe+/THef/1t3Punf6AoCk+64PFcfs1rae9sXZNrPHBfdZj5PKPD42QyWVpoXpNrHS0kWfGHJRYslxWnJ/38Uduu2C7rBtH+zeWK1pHGdR08yy4nBEiqBnjIhuH3YTk2gZY2JFkhNzyI57nlqpDrOIdUYfGngGPEt56MWyzgua4fHF9jEtjzvLKVSS0KE2NEN55Q6tdz0OMJFN3AcxyMxiSKESC3f6A8bSxrOqGuXqiTE1qeoqW2cbBrmlipOWRN92O9SsLFc2ycQh4t2oCVnq06b7ClncLUBOCRHx0CSUYNBgm2dpAe2AmuS3TDFj+aTNeRVQ3XccB1/V7GUjVO0Q1C7Z0EWtr8fjZVrWMRs4QE9zyCrR24xSKZgV3l5+swv1ybJNjauewAS/m9qUNxehKjuQVFLk1+R+PENp9UqiR6pf5MbdUWNwLBkUIIO8G6RdVUTjh5M7d+6n2kU1lkWaIhEScUXt4La6VEl/DD86e01v9fIVlVCXV0+z5l83gumX27CbV3EersKQ1LqEiadvRE3eI4LCDY3umLuAXWH+bstC9AN27Fc2wKk+Nk9uxADgT86CwjcPCB86W+tuV8+vxKVu3eLAC3mEdSZEJtnQce43l4nofRlMRKzyGpCrKsIykqTrFAZu9O4ltOrmrWd4oFcqND5WqXFosTbPM95TzHAcmvFEa6+3DmI7tcfwLXtUyyQwPENp2IEgz6WbiOg2IECLZ1YmVSOPkFz8NzQVawS4MDgWQbSiCErKq4to2VSftDJbaFGooQSLYga/NZtZKftFFHEC1lTQOgxxMlS5axmp57xakJjMbkytIZllzS9pAW6Mt5Xz6OEW9GgWA51v+3kuBhT7whRrxh+ZDyg2HLCRswDJ1i0aza96jHnU1DorrvaD2iBALENp1IbnjQr9DJMkZjM1q0wW8mX6VWdi0L1ypiZTPIqoYajixb5VjK5NV1HfLjJU89AElCjzWghWOVgnT+eLNIYWIUPK8seJxiAWtulnDPBj/ybI0rLvODEp7ngeSb7drZ2jYhsl5pROxYJsXpSYqTY3ilFINIz0asTBrXKvrh75JMcW6GYLKt/Dr5xsEPVaRgaNEGcB2K05OYc9MEWzvJDe8rm0jDgQpgbv9eXKs02KFpRPq3IMkydi6HY5ro8QSuaWJnM0iqitGULFvDRHo3ogRLos6xKU5P+FW9+edUyFOcmSS6cSt4+NYhjoPe0IgaiVXZssiKQrCty7dWWSS8tFgCWdf95do6gyfgL9fWMhpeiCRJGEv0MurxRqSDjO5ybbvCyPhY60UVPDwQwk4gWIJkaxMfvuM9XPGat2HbB6buWtuTvO29Vy5Z0VtP+MuxYSJ9G8v9RQe73ORYJpm9uyorPZJEpG8TWjhacU4/29SkODPlG+NGYmjRWHVqgmVRnJ70+7iicdRgGDM1i7nUl/zsNOHufsxFvVS5/QOoW8Jrmo7hWhbm3Az58RE820I2gkS6+6p8AOcJtnaUK0uubZHbP1COulLDEbRIjNSuhyrjtnSdcFc/rm2WBIOEOTtdUb2KdPfhei75sWGsdIpASzv50f0Vos6/X5Pc0D4CLe3YmTTF6QmK0/7ypKQoRPo24xRdnGIRWdcJxrvAcTEzKb8S6bq+B13I//x7tl0h6mTdQA1HmV/C1aLxssC2Mqly6gSS7E+fll4LxQgQ33wShalxrEy6PMCghWPIqlYebKjLcqkh8/cXCKKGo1XCW1JUAsnWg/vcFwtkhwawS55/ihEg1NWLGgz5vYUCwRFCCDuBYAl0XeecR5/Jd375Bf73F79j394hzn3MWZxy+om0ddSfmFuvHGqFwXNdCuOjlaIOwPPKS4nzyQSe62BmUmQHdpUPs+ZmkBSV6MatqAvsSTzXJdK3qextlhnc7RvuhpaoznhezQRXz3X8fqk1EnauY5MfGyoLI/CXWvPjI0R6N5Ldv/eAFYckE+roqrBecS2rIr800NxKZt+eal8506QwMepbchgB5ECwonqlhiPYhQJKwMBK+1ZAaihcFZ914HxF35+vsZn03gPvgZ+ssKtkHKzjmEVyQ4OVE8EloW7OTqFFGw6837JMuLPX9xVMz4EkYTQ0oQSC5CXJ75Nr85fPM3t34pimb8Dc3ulX/xQVSdUINLWgReJIkoRsGOXhBUlRfZG4KO9VMQJImo4eTyzzbpWO13TCPf3Y6ZS/tOu66PFEqb9x9Z+LqsopvtBL79rmp4kcQ9ZAguMfIewEgmUIBAx6+rp46cUXHu1bqUsmnWV6apahwRFC4SCt7UlaWpsPOXNwtbi2VSFwKvA87GymLOxcy66Z7uA5Nrn9A6V0iwOebbn9vleaEgz5wwuygtHcQpHaVTElFK6qVK0lfmapheu6NZ+zlZrFcx1im07Ecxw8z/MTFlS1ooKzsBdPKvWq1fWVS8+VhNgO4ptPrpis1eMJ7HwO11pQ1VqBPUp2eF/V9VzLAtfFLRZwLZPohi1k9+/FLRbQIjGM5lYKYyPYuQxKIFQWNJGuPvIToxWeiFZqFi0aJ9TejZ33za2LUwuWbPNZ0ru3E+7uRw37xtgVYlSWiXRvQItE/eXa9q6S9YuDEgwTbG3HKeRLySl5JEVZUTVW0XSUxma0WBw8KoY9VotvzFzbUic/NkS4e4OwRhEcMYSwEwjWOdOTM3zqo1/iK5//Fm7pizzRGOfWT9/IKaefgHqQ/UIHhefVFSVAhWfaUt5zdi7jf1GqKp7nYc7N4FomWixeTh/wK29W1UTvPMFkmy9aFjEfHF9xX44Nrm9MvJIvYNe2yI+PYs5MEmzrWnByueL525k0nuuWEyNqMe8Rp8cbQPYjw5Dl+qKsZB5tZeYItLYfqF7NP2ahOJEk/0/dJUoJt1h7edNzXex8Fs+2yQzsItq/GadYwMllyQ7uLlchnVwWNRQuC+kKo+sSVnoOPZ5Ab2isyl6dJze8j2j/luoKo+uSGShVe5UgihEgtvlEirMzqMEgmX27y69VcWqiZsV3KdaiSl1v4APAzmb96WYh7ARHCCHsBIIjRGouzfTULBNjk0RjEZqSjSRblnbTXw7P8/jFT+7my5/9RsX2mek5Xvviq/jWzz9HV0/HIV1jVUhSOV9UkmWcfJ7CxGjZtkNd4JnmeUsnBXglMeI5drnR3XNdZO3AF2RuZIhIdx92PkxxZgrPtkvGtW3geRUecvOES9mk4As6p5D3J0SLRRQjSLBtfnK2/j+Pdj5HcXLMj/LSdKIbtgASrm0hyQp2LlMe3ljOfE4JhpCzaXIjQ3iuixaLE+3dSG50qEok+b5yJUFVLKInmjCakhSnJnByWTxJQo/GMWemAH+YwEg01awoatGGCkEsaRpqKFISjSkkxY8KkyQJz7awUrOYqbnqZXY8zEyKYNLv56uHOTdDoLm+DZHfb1nfLLlYEtGSJKEYAYxEoz84s0gAe45NdmAX0Y1bj8zwgiQh18nnhZK1S82mAIHg8CCEnUBwBJgYm+LmG27jZz/8TXlbT18nt3zyvbR3thGOHFwPzuT4NJ/67y/W3FcoFPnDb//M8y561orONbx/lL/88e/84f/+Qt+Gbp7ytPNo62xZcYKHY5pkB/dWNKSroQjhng1k9+1G1vWK/iU1UP85y5q+oHImlSdI7WyGQHPrgaGEki2LGokSbOtEDUWwMmmyg3t8Q92+zZizUzjFAooRJJBs9Xu2JNnv8ZudIbcgisy1TKydc/7kbDxRc0rXdRxftEkS4e4+ZFUlM7i7ovKlRmJEejaQnxhbUlw4lkl6707cBUvG1twMVnqOaO9Gv/dtQQXwgK8caOEIsqISbO3EaExipmYJRGLY2QxarMEXYjNThLv8IYXi9KR/LklCb2jESDRhpdN+X1xHt3/tdAoUxc/W9Vy0SIzc8KC/L5tGDYaqhJ0SDJEf2IXWGymL8Vp4pWsvTf3HO4VChVD2bLtuoohTLODaRybP2J+yTR6Y2F5EINlWlUoiEBxOhLATCA4zqbk0n/roFytEHcC+vUNc8rJreMdNV9PS2kzfxm4CgdW52du2zdho7S8UgJ3b96zoPHt37eMVF15ejk0D+NiHP8utn3ov//K4s9GXqEiA32+W3b+3asrQzmUojI/404GhcEUqhKRqGI3NNatJoY4ePEoVOlXFaG7B3pfxq0mpWYKtHeTHhg9cJ5PGc1z0aByjIYEWCmGlU7hmgWBbp19VWeSh5tp2WbQsJjc0gBqKVFly+A908WybUFsnkiSR2bcbd9G0pp1JYapqWfi5ji9CnHweZMk3NpYV7GymQtQtvEZxeopAe6cfDyT71hlWehYnn0NSNZTS8q6sqsiq6ufaep5vs2EYaLE45uw0hSnfcDfW2OzfpyQhqSrZfXsxmpqJbdhKdmigojpozkz51cCGpgrj48WRZnpDk7807nkUpybQovG6k8B6rAHPc/08XLe6WisbgSUj09RwpHKiern+QXct8kZWhqzrhDp7K35JAP/1qRXFJhAcToSwEwgOM+Ojk3z7az+suW9sdIJ0KsN1V97IrZ9+H2edc9qqzq3rGr39XQzsqb0EdvpZJy97jrnZFNe/9b8qRB2A4zi8+Q3X8+1ffJ7O7vYlz+HZFnYmVXOfncsQCvRWNbTLql9tUkMR8vOmtsEQgeZWzLlpzMHdBJKtBBpb0MJR1EgMO5OiOD2Jnmgm0rfJb6L3PPRYA7JhlIWjrJaWFZe6Z8uq2w/oOQ6eYwG1Mk4V1GgMSdPB86pE3Tzm7AzB1k5c26IwMeZX+conkYj0bqqyYinvVjX0xibsTJrCrL+sqsUSvlAoxabVstCQJAk1EERSFDzHRdYM7Mwc5tQEuYXLropKuKu3PBFaqy/OnJlCi8bLQizQlKQ4O+NfW9UwGpvA9ciNlCp66Tki/Zsx52bw7MolVcUIoEUb8GSJSO8G0nt3VvT9SbJCuKvvwPTwYmQZPVY58bpkFUyWD9qLDvzKrWv7CR2SpvnpIktYlsiKip5oRItEsXNZv6+y5N24IsNkgWANEZ84geAwkppLMzI8VtPgeJ7J8Sli8Sjve/tH+NRdH6axaWWWDQBNyUaueOtruer176zal2iMc8bZpyx7jtnpOe695x819xUKRXbvHFhe2C1TPVn8he1aFh4ekqxgNDajRqI4hTx2NkN2aKC8xFYYGwHXj5KKdPfjFHIUpifB9Xu/AsnWg19uW3ZZsPZ+SZYJNLVSnBxH1pe6tofnOjjFfKWoA7/CNT1R198s3NVLbv8ArnXgc1OcGsdKzRLq7CG1/Z+o4Qih9u5S9a9ymtM1iziFPIXx0YpzlC/v2LiWhd7QWH1vC/AnWmNIuo4SCBJsMXAb/Qg9c26G4iKx6tk2kd4NWHOzfl9kyQxYb2gqVz8dD2KbT8Kcm8Ep5FGDYZRAACuT8lNQOnvJjw2VPwOyESDc1Yu0qHoqqSpGc6vf67iIUGvnQX0uPM/DKeTI7N114HWTJALJNgJNLUuKSVlWwFDKU98CwdFCCDuB4DCSzxUo5AuEwkFy2XzNY/o29DA1OU0umyedyqxK2AGc86gzue69V3HrzZ8gk/b7n7acuJGb//udtHe2Lft4q06f0jzZTHU1ZzHSMhN/8/1yrmVipVPkJ0ZLgw4Rgm0dSEhk9u6s+djC5JifeKAbyFocNRLF77s7tIZ0SVVLla3qKpG0TKVF1jSQvIql5eqTSEiyTH6sto+clUkR6dmAWarIzeNP+WZrCjLXMrFzWYId3Siq5tu5KArqAjHhOjZmahY9lsBobsFKzdVMwHCKedRwZElR7rkuwfZuZEXBc2xSu7aVq3FGcyuRvs1+2gb+e1yYmsDJ54htOZFA0h+UkFQNSZJwS7nDnuP7CLqWWd4nSb7ZcqDJz/UNdfT4slpWfIsYXa+y7pEVlWCyDUU3yE+M4FkWsm4QbOtEi0QPyrrEtUzSu7ZXLhV7HoXxEWRdJ9CYXPU5BYIjjRB2gnWJaVrkc3kCAQMjcOxmOGqayp//8Hee9+Jn8oVPfb1qf9+GbmzHIZfN+9N+B2GJEG+I8R8vfDqP+7dzSc2m0XSNRGN8xQIxFovQ2pas26u39aRNy55DUtVyw/5i1HAUSdVwbYvs8GA5gQD8ipCVniPav8UPqK8hZvC8CvG1MIprKVynFJUl1/YnkzWNcHd/taCUJCI9/UhLVHwkSUKPN/o+bsFQzaXMQFMLyHLt5wS+T5xllada51HDkSoD3oXMB97PD1EouSxSsrW81O3ZvnVLdt9uf1AiniCQbCU7uLfCa00JhkHyrVbmp2gXozc0ohoGrm2R2be7Yom1ODlGcXIMORAimGwlM7ALWdeJ9G3EnJtDj8b8ZduSALdzGdxiESs9h7Vg2d6klHbRs4H03l1okQjB1g48j5J9ShYtnsDPmq38+yFrGkZTEi3eULKB8SuqB5v0MO+PV4vC2IhvDn2UspIFgpUihJ1gXWGaJvv3jXDXZ7/J/X9/iN7+Ll7+2hfQ09dFJFrfK+xQyWayTE5M84ff/plsNs+/PPZs2jtbSDQ2LPm4xuYEZ55zKtlMjgtf8my+/fUfYZn+l+MZZ5/CO268mte/9C0APO4J5x509qyqqXR0ttGxggrdYpKtzVz77it402vfXrXv31/wdBqbGpY9h6yohDp7yEGFuNMicUJdvciqip3PVYi6Mp7fp2U0JsmPDVXvh1VVX1zbws7nKIyP+j530Zi/jKYbFVU+SZLRwlFiW06mODWOUyigBIMEGpMVx7qO75fn5PMg4S99lqpIzqxJsLWTwuRoOUpqfvnRSLaWo9oqBK8ko8fipR4wD8UIEund6Jvcui5aPFH26qv5Wkgyim6gBAJIiooailCYHCOYbMPzPFK7t1XYvBQmRpFTAcKdPb7nG5T8+lQKU2OEO3qw5marBI1sBMoJGa5t1xSvAG4hh6zpRPo2+b1pjkNxYpT8yCDRDVvRwhFcyyQ/Nkwg2VYh6ubxHIfizBTRDX5WbXrP9oqJ1/zYMOHufj/jd5G4kyTfTMRMzfpit/QaBppaVp0iYVdZuSx4npa54sgygeBoInlLzacfZ6RSKeLxOHNzc8Rihyc0XnB4+fMf/8ZrL7oa26pcPnzvh9/G+c94Aoax9r9NZ1IZvv+tn3HTu26t2P5vT3ksb3/fVTQv40U3PTXLZz72ZWZn5njiUx+PbdvohkEkEuLbX/8h3/vGT2lKNvLl73wcI2BgWzaBYIB4Q3TNn0s9MpkcD/1zOx+58Q4evH87LW1JLr70JTzhKY+lqbl+5c/zPL9fzrbwPBdZ9QcKPNfxK2WliU2A/MQo+ZH6PmeR3o1kFsSLzaNGokR6Nq6oCd21bfJjw9WTmbJMbOMJdaOdPNf1J0plqaIi6No2xelx8qPDFceHOrrRE03geTiFPE6xWK6YSapKcWaylPkaxzWLpHY8AICeaEKPJzBnfcNlNRxGDUfJj48QaGxBb/AtVoqzU2T31Z5oDnX0UJgar5imDXV0o4aivrgZH675uGBHN1ZqFqdQINzVS35sGEmSCbZ3getQnJ7ETM8hyTJ6vBEtGqM4OU64ZwOuVSS148G6r3u4q4/skJ9goQRD6PEE+dEhZE0ntukEPNclNzyIpGqYM3WSSSSJ6Iat5MeG6wziSMS3nlzVw+aWLGOqPP8UldjmE1eVCVycmSI7WPt1lzWd6KYTRMVOcFRYjX4RFTvBumF8bJLrrryxStQBvPdtH+IRjzxt2Sb/g2F4aKxK1AH86mf/j8f86yN5/kueveTjG5saeN0VL2d6apad23YTDAXp6GrjD//vL2TSOa6/+RrOfcxZ/O0v9/OJ277A6PA4J5y0iSve+lq2nLSJyEF63K2GSCTE2eeewe2fu5lCoYiqKMsKVs91sLNZMvt2LchClQi2dWIkmquE2HJLqLIR8A14F1SblEDQNxRe4WSha1u17TZcl9zwPiK9m2qeS5LlmqMSTiFXJeoAcsODqMGwv2xqp7FzGZxCDjuXK/u8FSfH/bQE3SDSvwVzdhI1EKpY+rWzaZDGifRu8CuBpSqhf+7qkHo17PeOLbZIyQ0PlgYSak/ZAlhzs34/oySTHd6Hk88R2bAVKzVLYXIcvSFBuKMHr2QpM3+fnuv40WUL0jDKfXOlZWZJ1coTxk4+h5L0K8fz06V+xVVaZl7Fr7wZiXkLlcW9fx52Llsl7Ox8rmY10XNsChOjhNq7V1zxVcORun2XwdYOIeoE6wIh7ARHlOmpWUaHx/jrPffRkIhx+iNOobmlicAK+uRmZ1KMDFVPwIE/vTm0f3TNhZ3neXzzK9+vu/9zn/waTzj/cTQnG5c8TzQWIRqL0Nt/IH5qw6ZeLnzJsynk89xx6+crevD++uf7eMXz38iH73gPT3zq48pf+I7jMD42ST6bRzcMmpoTBENrN4W3mqVg17RI79lBhams55Ef2Y9iBNFjlefSovV/y5y38IhtPBHXLOJaxVKwu4GyCnNXK13bcgVK/VOlmLKV4DoO+fH6E6P5yTFCml5KraidSVucmSTU3u33m+k6qe3/rDpGDYX9il9p2dMxTVK7txNsacdINGGWlnH1RBOebZNd5JU2j5VOoQSCde9FkiTMmWmsTIpQZw92NoMaCOLkfBFlzkxhzk6jxxNo0RhqOFK6tuRb07R0YOcyGI3NuKaJ57koRhDXNrEycwsvVGUz7BTyyLqGFo7WzRLWGxJ+JdI0CXd2k91f/TwXD3p4Xu2c3nnMuRkCLe0o8soEmZ8ispXMwK4DNjaSRKCl3c+UXSGe5+Haft4ukoSsanXFZbnqXZr0lhRVWKQIDgnx6REcMSbGp3jH1Tfxu7vvKW9TVYX/uv16HvOv5xIILifulukaOAxdBY7jMjpS3wB4dmYOx146GmspVFVhanKWL376f2ruv+mdt3DqGSfS2p5kZnqWH3/vV3z8I59lbjaFqipc8OwncflbXkNr+5Gd1vM8j+LMJPXek/zYMGooVGE5IakqoY7uKlNgSdUItXf5jfGKUrLFOFzL0KuYpPXc2oMPkoyRaESNxPA8t2Zs2TxOseib8kqyn0yx0LtN0wh39mJnM5gzk/5UaHMrkizjWSa5oQEkTUMLx8p3Xk/UgV+h0hsaa/cxAlo8QWF8BNcyKU5PEursQVZV9FgD+dEhlECQUHsXxZlp8hOjvhVNorn0lGX0hkYkRSGzdxcL33e9KYmqH/jlQm9oLPcUSqXs28zAbiJ9G8sWK4v9+yRNw2hoLPvb6YmmmsM0aiiEY5m+UJIklpuOXu3ktCRJqMEQ0Y0n+IMinldqJ6gvzBbj2jZmaob86LB/Dlkm0JjESLZWVfxcx8ZKp8gND5YHU9RQhHB330HbpswLxfmUkYUDLIKHB6ufBxcIDgLHcfjWV35QIeoAbNvh6kvetWR6wjwNDbG6AkY39MOyDKuqCk88/3F195/9L2cc8lLpnp0DdaOYJsanSM2lcByHH333F7z/XbcyN+tXpWzb4fvf/CnXXHYDU5O1v8wPG6Xesnq4ZqHqOfkmrk3ENp+E3tiMFo0T6uwltumENfP+0peoCqqR6LK2LAvxBx8qTY6VQJBo30ZcxyG7fy/mzBRKnb498KuUnutXbyRF8Y1zFRU1HCXS3U9uaB+FiVG/Ty+fpTg1VpHf6lkW5uyUH4tWKCx7LTUQqnmMGvFfl3mhZM3NHlhW1TRCnT2E2rtID+zCnJ3Csyy/KmdbuGahZFNilZIVKt9Xc2rCn75NNGE0JtEbmsrZvsHOXuxCHvD8wQ3PK9mkbPLvNxQh0NJOuLPXr9CVPjNWarZka7Pg+cUTmHOzpHY8iDk77S/xShJGU0vd10RPJA/Kz07RNNRgCDUURtGNFYs6r1T5zO0fODBB7LoUJsfIDQ34pscLsHNZsoumje1chtSubTh1jK+XwrUtipPjpHY8wNy2+0nteIDCxOiSGbyC4w8h7ARHhMmJab54Z+2qlOu6/O8vfrfsOZKtzbzng/9Z0xLkP69/47LLoQfLOY86k9a2akGpqgqXXvUqwquYxh0dGeeP/3cv3/jK9/nLn/7B+NgkDY1xznnUmZx25klVXl0AiqoyPjrJxz/yuZrn/Ouf72Nsiari4UCS5XKkVS0UI1izp05W/OircGcvkd6NBEr+dGt2X5pGIFk9GSzJCqGOnlUtcUmy7HuxzVc7JLksfqy5mVLs1wSB5trCQk80owRDZPfvJbVrG4XJMaJ9mwn39KPFGzBTc1UVKdey6prgFqcnCNZ4buDntXquS3pgJ8GWdv8a0RhaNE64qw893kBueN+CR3hlESUrKlosUTJ+dsvPNdK7AadYIL17O/nx0bpZqPP3psUa8DwPz7YId/cT3bAFfWGTd6nPMb17m19JCoRQQmHsTIrM3p2Vr4UEsh7wp3dL3nR6NEZhfATPtsgO7sHK+r/gKEYAraH6775sBDAam49otcq1rIqou4VYqTl/eXb+WNuqO0zk2RZ2rv6Ebs3HuC6FiXFyI4NlWxvPcciPDvntAvVSPQTHHWIpVnBEcB2X1Fy1Seo8I8O1e+cWIkkSZ559Kv/z4zv57Ce+woP3bae7t4NXveEiNmzqO2x+du2drXzm67dyy82f5Fc/+S2O43DK6Sdw7buvoG9j94rPs3vHXl7z4quYGPc9w4KhIG9/75W0tCXZuKWPcDjE6654OT/9/q/43jd/CsCJp2wm0RhnanJmyddv1449nHTqlkN7oqvEaGikMD5aM5Yr2Na5pIiSJGkFyQ+rR1ZUAsk2tGiMwsQYrm2jRWP+MMcyebe1UHSD6IatZPfvRQ2F/X6uBX1enm1jzs0Q7urzvzxL4kRLNKNFo6R3PlQ+1i0WsOZm/CVQRaU4V/2Zdy2zHBe22H7EtUxczyW6cSu54UF/YECWMRLNaNGYXxFzXd9PrjR0UpwaJzc2VLVcLBuBSq+30sDEPMGWNgqTY2ULF0lRl6z6uJblVxdnJjFnJlFDYcK9G8tCvvJgl+LEGEowSKFGagSAHkvg2haxTSdiZ9IUZyarBiTyw/v9PF9NJ9zRjZNopjA1jue6GIkm1HC0dtbvYcRznLo+eOB/Bij1Unru0lVvK5PCqCFY657bsihM1u4JLU5P+L+kHIRPpmD9IYSdYFWkUxmmJmeYnpwhEgvT2JRYUaUsEDQ46dStPHDftpr7H/XYs1d0fSNgsGlrP++88WqyWd+gOBQOVhwzOTHF8P4xdm3bQ1tnK/0be2htTx7Sb+7dvZ28+7/eytVvuwTHcYnGwlWDBpMT08zOzGHbDg0NMZKtTeXq4sT4JJe96tqyqJNlmZtuuY47P/Zl7vvbARuJOz/2ZS5/y2t4zoVP45c/uZv3fvhtJBobyGZyKIqCU+e37mRL80E/N4BMOsvU5DR/+ePfsW2Xs889neaWRmLx+r1usq4T3bCF7L7dB6YjZYVQRzdKMFj3cYcbWVWRIzHfgNfzkBR5xabGi5FkGS0cIbZhayl54aGqY2TdQNYNwt395bQJSZbr2oPkR4eI9G2ue8382DDh3g2+ofCCCo+RaEaPxJE1jWj/ZjzH9VMRpsaqTJbdQh4nm/aXU2sIslBbJ67n4hUL/sQr+EK7VMVTgqGKypNbzKNGYnWNk9VQyE/BKGHnspiz0xhNSSRVJdDSTmH8QAKHlUlhNLcgz81WZe2q4Sie55EfHcJKzflxczWmXl3LBNfFKcWngUSooxtkGeVgY+YOkeWWbMuvNYDk95cuztWdRzFW93fIKxly18O1LRF39jBBCDvBipkYm+TmG/6bn/3wN+VtGzf3ccun3ktv/9KVq0RjA29+xxt41YVXVO3r7u1k68nLpxssxKiTODEyNMblF7+NbQ8c+KJLNMb55Jc/zJYTNx6SuAuHQ4TD1f1LjuOw/cFd/OcV72XPzoHyNa9995t47HnnEomGmZqYYf++A1+Uj/7Xc/jzH/9eIermue2/PsWXv/txXnf5y+no8mOZGpsSPPlp/8pPvv+rquMbEnF6N3RVbV8pc7Mp/ufL3+O2D3yqYvtLXv18Lr7sJTTWMWH2DX4jxDad4PcOzTeaa9pBC6mDZaGfHhJIila6j7WpCsqahoPnDzYsENfhrl7MdKpCtCBJRPu31K3ceI6D53no8UTNitV8FSe6cSuebeO5DrKm+9FaZREm45h5JAmKU7WnQnOjQ8Q2nkBxdhpzZhLPcVCCId8kOJtGLhTIjw2hBEOEuzdgJJr85VZJqrL7sHNZAi3tda1AjKaWKv+34tQEWiQKsoJkBAh391GcnsK1TdRgGGSZaN9mzPQc5tx0Oc1DkiXfEw+/32w+mmwh/jJrE1Y2TW5oX4WgCbZ1YjQml6wYe66Da1lYmTSubaKFYyiGsXRE3AqQFBU1Ej1gVr1on7yg7UBWNYItbVXDRP7BUtVU+fIXX0ZUHmQah2D9IXrsBCuikC/yidu+UCHqAHbt2MvrX/oWxsfqWw7Mc+IpW7jjix+kb4MvAhVF4anP/Dc++eUP1exhWy2ZdJab3nVrhagDmJme4/UvewvjKxjQOBhGhsZ45YWXl0Xd/DWvueyG8r2kU5VJAk952hP43jd+Uvecv/31H+nsbisLk1A4yFVvu4RTTj+h4rh4Q4w7vvhB2trrN5Avx55d+6pEHcCX7vwf/vm36grVYmRNr2w0P8KiznUcrNQsqR3/JLXzQVI7HiS14wGsdKqmCDlYZFXDWJAVqgTDuJZdPYXqeRXRXTVxbNRItOKLfh41EvPTF3Y8SHrXQ2QGdlOYGMOzHexspuzbZqVmsbIZIn0bMRprVGw9DzubxrUsQh3dRHo2oMcS5Ef2Y2fSeAt859K7HyLQ3OovV3tezSGT/Mh+wt0bUBf0Vsq6Qbinn+L0ZNVr7TkOTj6PnUkhex5mOo0aDGE0+Pea2bOD3NgQSiBAMNnmL99rGmY6VXcAXo1EifRtwkg04zn+tHG4s7fifvOjQziF+vnGnutgpdPMbfsnuaEBCmMjpHdvI71nB45ZJ/5thciq6vsuLnpfJVkh2r+5on9yXsjqiUV+kbJMpG/TqkWmrKply5yqfbpeSjoRPBwQ77RgRUxNTvPtr/+o5r6hwRFG9o/S0rr0cmA4HOLRjz+Hz3ztVn9pUVVpbGqoWko9WKanZuoOYUxNTDM0OErrIQigevzqp/+PXLZ2r8xtH/gUt915I8lFr00gaJBJ12+OnhivFsptHS3892duYmR4nJ0P7aG5pZHWtiS7dwyQy+Xo6eta9j1YTLFQ5Iufrs6wnefOj32ZM84+hWgsUveYo41rFqoSKzzHJrN3B7EtJ6Mqa/P5si0bJdqAkprFyecwEo0UJmr3iHmeW7e6JSmKn8QwMki4sxenkPcTH0qTpYoeIL17O+B712mlpcnC9IRvTTIyWFURCiTbMJpaKs2ZJQnZCGKN7McpZMvn8TwPo6EJc/ZAPqxn25iZNNENW33RV6ruLVwCdYoFsvv3EGzrItTVhwTl6eBa3nlaJIqVTaPHGsgM7CK6YUv5eZVxXSRZIT824k8Dl6xkIn0byQ7uQZIVZMMfnrDSKYxEs/9eL6jQyUaAcM8G34alJFbz4yMowXBVtiz4vWj+56VSPTqFPIXxEUIdKzc0roWiG8Q2bsUpFrHzWT/+LRiqaTsiaxqh9m6CyTbsQh5ZUZCNwKrsVRaeK9KzgdTu7RXLu5KiEunbJMyVH0YIYSdYEblcvpxxWovh/aOc/ohTVnSu5pamZVMNDoZioVjXNgQ4LJYgjuNw7z3/qLt/x7bdFPJFGpsSXPDsJ/Hj7/4CgIf+uYOzHnkaf/7D32o+7hHnnM7g3iG6ejsqvgyamhtpam4kGovwpovfxq4dB6qEnd3tfPLLH6K7t3PF92+a1pLV1qnJacxDrGIcTlx3aRPhwqSfhbqqrNmSWawfDCvjOS7DIxN89Qvf4W9/uY+3vv0NbOzrQTGMiinHhRQnJwh19NSMpwq1d1GcGsezbTIDu9DjCUJtnZipWWRVI713h18J6+j2I66G9yFJMkayFSeXrbnMV5gYJdK7keL0JHpDAj3ux8BJkuQPIBTyWLPTIEu+Z6BuVOXy2qlZAokmjMZmPNdFDYXJDOyqaPBX9ABaJHZgKMGsk58qyxiNzaT37kSPNQC+gfLCNA1JUTGaWkjv2kZZZJUMh+1shlC7X9nP7tvjeyB29vjRbIuu5xYLFKcnMRKNZbPi+f67WsMCVjZNvZJgcWaSQEvbIU9q+0vnur8UvdyxqgpLVNtWgxIIEtt0Ik4hh1PIoxhBlGBwTSfPBcc+YilWsCJCoeCS6RCrEROHi3AkTHgJT7lD6UOrh6IobD5hQ939HV1taLpGLB7hLW9/Ay97zYUEAgbf+fqPeMVrX1jTumXD5l484EXPeh3D+6tFy8T4FG942TUVog78yul/Xv4eZqdrN7jXIhQO8ujHP7Lu/nMedSaRyMrtXI44rrvkZKGTz1elFdTDcxysTJr07m3MbbufuW33kR8aZM+e/Vz4tIv50p3/w/1/e4iXPu9yrnjj+xiemPNFTjCE3tCIFo2XJ33tXKaUVXqSX4ULhtATTUQ3nYBdLPhWFpKMnmhGTzSRGdhFcXLcFyOuR7ijm8y+3b6Rr+viOTayJFOYqj89bqbmiPRuQFJUMnt3kdm7k/Se7aT37ECWZTzXxUrNkR3c41em2iv/Psi6TqGUF+s5NooRILphC7HNJxHt30Jsy8lE+jZWTJoquk60f7O/FCzLIElosQaivRvJjQ6Vpnv91981ixV9b0ZjM4WJUWqJLKdYQFIU7HwWp5DHLRZLMWO1BZk1N+u//iXUYKSuZ6FXI5LwwE5vyQGE9YCi6+ixBoIt7ejxBiHqHoYIYSdYEcnWJl748n+vuW/j5j7aOtZ+iXO1JFubeM1lL625718edzbJw1AlBHj6s5+Eqtb+ErnkTa+gsakB8CuVl1/zGr7zyy/wma/fxpYTN/CFb93OGWf7lc5AwOA5Fz6Nq697Ax+44b9JzaX5/jd/WjUJOzU5w+DA0OJLAXDf3x5kenp2xfeuKArPfO5TiNTw4jMMnZddfOFhs5FZEyR5yUk/xQisuFrne7Ztq5juzJkOH7jho+Wl9nMffSbf+OEneM97LiOChdHUUq4syZpGpHcjeqIJSdVQAoGyZ1+0fwuhtk7sdBpJUohtOtEXRIkmcF2CrR3IRsAXRvEGzLmZ6mVcRcZbIuVEkmVc26Y4OcZCseQ5NpnBPQRaDhh4W+k5PxViwfSoFmsgP7qfzJ4dpHdvxzGLyKpv1OubHwdrmv1KqooajRHu6CHc3YesaeQnxwk0tRDp2wSShBoKo0ZivpfafB5uJFaVhbsQMzWLa85PW8t1p0dLz3KBIJMItLTVfd/VSP22giobGIFgHSKEnWBF6LrOy17zAl7wsudUiJgzzz6Vj372/YdlaXW1aJrGcy58Gm95x2Vlmw5N13juC5/Bez94LYk6052HSntXG7fdeVOFOFIUhddf8XIe8cjTK47VdZ2OrjY2bOqlraOVzp52nvK08/jQx2/ghv96K/lcnitec105XeK3v/4DEwuWSudmU0jAh+94N298y8U1kzgK+dpZofXo6GrjC9+8nbP/5YzytlPPOJHPf/N2uno6VnWuI42sKARb6ieOBJKtKxJ2rm2Tq2EWm/dk/vi7ewF4xLmn8Z4b30SzlyWQn0PKzJDZu4Ps/r3oiSaKs9Nk9u5ECYaIbdxarpRIsuxbsGg6emOTn6ggyxQmx0jv3kZm324KUxMEW9pxHRs91lAz89bJ55YUJXopMqwmnoedy/gWMCXM1Iyf3ytJhLp6cS2LSM8GAsk2nGKBwvjostVOxyz6yQbFIpKiUpwcRwmFUYMhciODpHc9RH5ijGB7N7JuoDc0lqp/p6AY+pJJIJKilq/vmOaSS5WypuM6DrJuEN2wZUn/OlkP1E3wCHX01DWIFgjWC5K3VFPScUYqlSIejzM3N0csVj96SFCfXC7P1MQ0qdk0oXCQRFPDqoLjjwSO4zA+OonneSiKQjwRW3IZ+VCYnppl/74h7r3nPk45/QQcx8WxbLr7OmlKNhIKLd03k0pluOLV1/KXP9Xu03vsE87lcU/4F572rCcxPjbJe6/7MH/9830AnHTqVl53+cv43Ce+Wt6m6Rrf/eUXDkqQzc2mSM2l8TyIxiIkGo+t97Ueft7mnB9JNR+TpSiEu/pQozHkFVRgHNNkbtv9VWbL6UCCKy99D5Ik8Z6b30ybWqxpyKzF4siaXk5niG89paqS6No22aG9BFs6yAzsLFejFhLp2YCsB8iNDeEWC5Ueb7JMpHej71m3OK5N04n0bya1/Z91n6Pe0Fhajp317zkSI9DSjuc6FKcmyh51eqIJJRAkPzpMfMtJdSuiTrFIateDeKWYLC0WJ9DaRXFqDLPU6yYbAULtXWT37y0fB/gGxj0bKE5P+CbXNYj0barIpQ11dGPOzlRErs0T7tmAEgz5iSgrGBJwTJPCxKjfk+e5KEaAUEcPSih0wFJGIDiGWI1+Wbef4Pe///1ce+21XHHFFdxyyy1H+3YeNoRCQUK9ndB7tO+kPrZlk8/l+eZXfsDO7Xs49cyTeOZzz6ezuw11DUf+pyZn+K93f5QflQYiwM+sffLT/pWrr3vDsqIOIBaL8IrXv6iusLvgWU/iIzfdwbmPeQQv+49LyWYOTCk+cN823nLZDdz6qfdx+cVvwzItLnrlf9CcPLjqabwhRrxh/f3CIysqeiyBuiVSWq6TVuWn53keSH7W6sL0BaMxSSTeyCc/+S4c1yWWiJPfv7fmOazUnD+8UBJ2VjbjG+UuEBmeY6GFY9j5XE1RhyThOg4SHlo4ApEoihGgOD2BlZrzM0fHR4hu2Ep+dL/fcyZJ6PEERmMSK51CCQTr9hwqgaDfs1dCTzSRG9mPk6+czjZnpgh19SKrKq5pIilK1RKsH181WiHWrNQcgea2sqgDCLa2+0bLi+xf7FyW3Mh+Qh1dOKaJnZ6rWHoOtnaU3osDAtZ1HMI9GyhMjlGcngDXRdYNQh3dqOHIqgSZouuE2rt8jzyvVFUVlTrBccK6FHb33HMPn/jEJzjttNOO9q0IjjFs2+aPv7uXy1/9NtxS9eb3v/0zn//EV/n0Vz6y4sndlfDPvz9YIeoAzKLJD7/9c5701MfzxKc+fkXnOfWME/n3Fzydb3/thxXb/+NFz2RkaJStJ27ke9/4SYWoW3i9H3/3FzzjOU+mq7eD577wGQSCx3BP3CqZNx7Gdfzc0Do2EJIs+0ufq2gU9xzfpLY4M4lTyKOGwhiNSfJjQ2iRGHgemT3bkAFVN8CuP5hTutkD/+s6FCbHCTa3lP3IXNtGCYXqZq6Gu/owZ6fIDS0civHTFCRJxpybQdZ07FwONRwl2NoBpeix9J7tyJpOsKXNr1xWvT5KhehTAkEkRa0SdfOYM1MYzS2lIRC5WtiVotQqLyJV5L1KsuK3vtXw9FNDEYxEE3YmgxoIEkg04eEPu/gCe6484YokE2xpQ29opDAxgmvbhDv7kFUVSddL3omrN6Iuf2YEguOMdSfsMpkMF110EZ/61Kd473vfe7RvR3CMMTE2xX9e/p6yqJunWDT5zyvew+e/efuqvd5qkc1k+cIS/m9f+NTXOefRZxFbgf9bY1OCl7/2BTzhyY/hr/fchyRLnHnOqfzlj3/nox+8k5e95kL+/Me/1338P/72IB/73M20dbTWHeJYjnyuwNTkDMVikVAoSEtbc82J3UMln8vjeR6hGgkei3FtC3NuhvzosC8OSj5vodaOVZu3+gLRLBn8ZlHDUSRJqojistJz5eVOPK9in2uZSw5pSKpWkTSh6P7QhlMolO9VUlScYgFZ1VBCYQKNSZAV7EwKp5jHKRZq9NZ55Ib3Ed24FS2ewC0WyY/sQw1H0SJRZE2jMD4FnodrFnGKRYJtneTHR8rL0rJhEO7sJT82gqwbGE1J9HiCzODe+q+XbaOGImT27cKxLSKhys+xV0tHeV6F6JYUpaYdjBqKYDS3VPnRKYGg77emG8i6jt6QwHPdch9eete2snCcN4WWFH8QRURlCQQHWHfC7tJLL+XpT386T3rSk5YVdsVikWLxQI9KKlXdkCw4dKYmZ9i3dz8//PbPkWWZZzz3KXT1dJSnQY8k46MTdY1/hwZHmZ2eWxNhZ9sO2Ux9m41MJotjL2GrsPDYdJb/+/UfuedPf2NqfBrP8/jCp7+OXbJlyGbzJFvq5/E2JxuJN8QOWtSNjUzw0Q/dyQ+/83NsyyYWj/L6K17O0/79yXXjxFbLxNgk9/3tQb76he/geS7PfeEzeMQjT6elrRm3FJsFkl+FkWU8z8Ocna6MW/I8zOlJXLPo96KtIg/UKRZI73qovNynhSJkanjM4bp+zFRx0XvreTjFQoUP20KCLe0UStFeekMjdtZPWSjODyjgLxm7SOiJZrRYA1ZqFtcyy0InW2eZF+Y94GJIikWkbxNOIU96z07iW09GWrCEWJgYRYvGiHT1+RskCTkQQtE0Ij39/qbS66aFIzh1plLVSBQrk/JzZmsMUMiKipFoqopE8xwHSdPwLMvPJq1REQskW8ns21PVJ+gU8uRGhgh39frLqguWVgtT4xXVwIXXK0xNEGrrPCRTYYHgeGJdCbuvfvWr3Hvvvdxzzz0rOv6mm27ihhtuOMx39fBmcnya9739w/zyp78tb/vqF77N0//9ybz57ZfS1Jyo+9hMOsvM9ByO4xCNhWlqri9eFjM2OsHe3YNsf2AnnT0dbNzcRzgcxLKWjpBynJV5mi1HJBrmSRc8nn/+o3bk1pMu+NfyZG4tZqZmmZ6epZAvEIlGyOcLvOCiZ/Put32IkaEDX5aKovDIfzmTeCLGL3/y25rnetUlLz7oZIjpqRn+84r38JcFFcHUXJoPvPujuJ7Hi1/xHwctGOeZr6Les8CM+Y//dy8vfvlzueqaV1EYG8bOppFkBaMpidHkW+csDKFfiJ3xY7JWKuxcyyI7sOtAD5ck+Z1bdSY+Jc/zs28XkR8bJtKzASsQoDgzVe7xCra0YxfzeK5DsL2rtFyaxXXcir4vWdOQAwGcXJbs4F7m+8fM2WkkRSXc0092cE9F31r5OZgmxcI4di5T2u8/1rNtjFgDhdED9jdWOlWu/BlNLYSicSRZRpIrq5x+Nux4ta2KLKPHEqT37CgdV/2LkCTLGM0tmHMzBwSXLGPlc0R6NpDZu9Nf6jZNlGC4vOQraZpfxasxgAJ+Jc5r66wwFnYdB3O2vrm4lZrFS7ZWPT+B4OHKuhF2g4ODXHHFFfz85z8nEFhZ2f3aa6/lqquuKv+cSqXo7l46rF6wclJzae75w18rRN08P/z2z3n6s5/MY59wbs3H7ts7xAfe/d/89ld/wPM8+jf1ct173sSpZ5xIcJmhg8GBIV570VUMDR6YpovFo9x0y9tJNDWg6VrNlIyGRHzNJj39nNsn8qXPfIOpiemKfY1NDTz7eU+tu5Q5ODDEW9/4bu7/uy8KNV3jwpc8m+npOa689vWkZtM8cP82mpKNnPGIU5gYn2JuT4rLrn41t3/4MxXpGi9/7Qs5+bStB/08xkcnK0TdQj5x6+d58gX/SntndQj7avjrn++rEHUAicY4L33Fc8js2V6u3HiuQ2FiFCs9R7i7f8mcV6eYR61jWbEY17Z9w1tZwWhuQQ2FkUpLrmZqFnNmquJ4p5BHC0dxcosqv55HZmAXwfZu4ptPxvNcnJxfmVX0AEpzEFnXcXIZPNvClWV/EtXzDvSAuS7ZoQEWm/J6jk1hbJhAU0tNQauGwhQmx6q83CRZRtI0Qh095Ib3VexTjACBZH0/N1k3iG48gdzwIHbGF4JqOEog2UZudD/goUZidZc5ldLjrfSsH0EWCGHOTlGYmiTStxnXKuIU8oS7/GVgKzXjGxYvWcn2qkSfJElLVuOkkjGyQCDwWTfC7i9/+Qvj4+OcddZZ5W2O43D33Xfz0Y9+lGKxWPVFahgGhiGaYw8H05Mz/OH//Zm7Pv/tusd88c6vc9YjT63qpxoZGuNVF15eEWW1Z+cAr73oar70nY9xyukn1j3n7Mwc77j6/RWiDnyRef1bP8B7PvifvPaNL+X2D32m6rFvf99VJFvXzm+vs9v3f7vzY1/iR9/5BZ7n8eznXcDLX/dCpqdm+d1v76GltZlNW/tpbUuiKArjo5O89qKrGRo84DdmmRZf/sw3ePUbLmL7Q7vYtX0vGzb1suOh3Xz/Gz/l7TdexXVX3sjXfvRpzn/mE/jrPffhOA5nPfJ0mpKNK+rjq8eendWN9vOkUxkymfp5tishm8nxtS9+p2r7S175H4SdHG4Nt6WlkiTmkZVVTDB6brkiVhgfOeD1JkkYiSZCXb3kFgwc2PkcwfYuilMTFX1z/mNk9FgcpfTviiRJmEP7MM0iofYuMgM7KyqBhYkxohu2oIbC/nJuoVC3UmjnsgSSbdXPVfMD3CusTwAtGsfMpDHiDeiJRrRIlOLsNK5toccTvqHwEr2IkiShBoJEejf4xseei1MolKPGwl19aNHYktOiiq4jJZowp6fI7N1R3m7NTiEbASLd/WT2D6AFQ+XeRWmJSqukaVUGwZIsE2huLduxLCbQ3OoPbtgWkqIe1CCFQHA8sW6E3ROf+ETuu+++im2vfOUrOeGEE3jrW996WBq9jydSKb+XJhZbPrtwJfz9r/9kYM9+cjUmNefJpLPYNZzy//Knf9TMJ3Vdl1tu+gQf/sR76i5jzkzP1c1mnRifIpvNUSyYfOxzN/Opj36J/fuG2XzCBi658pVs2tK/5p+T7t4Orr3hCi550yvwkPBclzdfej33/fWB8jHhSIg7vvhBTjn9BPYN7K8QdQD9m3p54cueQ0trM+c/4wn8/v/9me9/86ecefapvOGqV3HjO27hw3e8m9bSQENv/9pVnZuXELqyLB+y/5/neTg1PgOPeOSpuHUmMgHsfL7ch7YYSfGD4VeKpKr+QMHwYEWqBJ7nZ4zKcsW1gm0d5MdHfWuNidFyT50aCvsGtgsjtYwA4d4NfrD8nh3Vos1zyQzsIrb5RGRFrRaKVfeqIRsB3NJ9arEG/95HK5NGtGgMo7GZzL7d4HkEmluQAyqhtspoP28+IkuS6gqehf1ssm6ghiMgseKlbs+yqqqF4Ge4Zof2YcQT5Ef3+xYlQKi9GzUU9mPVFhFq68LFQ3LdiiqdEgiiJ5oxZyr/3VBLkW6ZvTvxXBc9nkBvaBTTroKHNetG2EWjUU45pdKqIhwO09TUVLVdcIDx0Qn+8H/38o27vgfA8178LM59zFm0tlUnFqyUdCrD5+74KuFoiHMfcxY7t9doQgee8vTzakZV3f3L39c999/v/Sf5XL6usCsWijW3l+8tneWrX/g2nV1t3HbnjRSLJsFQgGj04Ktay2EEDFrbW8jnC9z4jlsqRB34VavXv/TNfPNnn2X3onzXJzzlsTz1Gf/Gp2//IqeccSKP+ddz2XLCBj708Xfz4D+3s+2BnXz8Cx+gvaP1oERpIV9kanKafXt9YdDT10lTc2PZEqW7t5PGpgamp2arHvukCx5PY1P9HsmVEImGec6FF1SJ8UKhiBQJ1BU6TjFPsK3Tn/RcUMGTZIVo/5ZVTcXKqoaiG5WibgHF6Uki3f14jk2wpYPi7BTW3DR2JoXR2Eyg2e/5kxTFN8FdJJBkxfd7q2rul2T0eAOybpSGCnS/cleH+cnaQGMS2TCQdcOfCh4bQW9o9PNYXRdkGTubKYu64uQYekOiwjPPsW0828KzLDzPw3Md1GAIeRlrEL8XbwXef65b7kN0LMtfCq1Vfc1n0br6cG3Ln2Qt9TeGuzdQmBylOD0Fnous6QRa2rDzWbJDAwSaWnyxWnpOsqYRau8k0NRMcWYKz3UxGppwXYfUzgfL187ncxQmx4ltPKFcVQW/T4/ShK0YshAc76wbYSdYPWOjk1xx8XU8cN+28ra//fl+Tjp1K7d++n0HLe5M02R2NsXf7/0nF73yefzou79gZlHwfLKliSc/7TzkGv+IdvXWj4BqSjYiLyFgYvEowVCQfK72cl2ypYlsJocRMI642e705Aw//M7Pa+7LZnLs3LaHjZv7ytuisQjPfeHTed91H+Fd738z3/76j/nPK96DbdmcdtbJXPPOy3jSUx+PvkQ80lKkUxl++oNfc9O7bi33HGq6xrU3XMFTn/kEItEIrW1J7vjiB3ndS66ueA9PPu0E3vz2SwlHVtbHthSPetw5bNrSX/ELwNfv+iFvf+srkLOzNR+jhSOkd28j3NWPpMg4+TyyrqOUlhdXs9wmybLvhVcP1/XzTkMRzNlp1GAYc2ba73ub8Jf8tXiCcEdP/esuEjVaLI7R2II5O4WVmsUp5Ai2dCApKnpDE+bsVNUpQqXBC1nTcc0i6T3b8Sx/WdWcmylbfJSeFXq8AS2e8O/Jdcu9fI5pUpga8/3ySkLQaEyC66K47op7E+vhFAvkx0f8gQbJjzKL9m0iu3+g5uSqJEGorRM32YqEL2AlSSLU3k2guRXXMnGKBYpTE2URX5gYxXVsQu3d5X8PZFXzs2tL1itWJkN2YHvV9TzbojAxSqij2++DLPjxaK5VRAmGCCTb/CVkkQkrOE5Z18LuN7/5zdG+hWOa39/9pwpRN88D923j93ffw3MufNpBnTcWi/Lox5/Dnp0DvP9dt3LTre/ge9/4Cb/8yd3Issz5z/w3XvvGl9LRVd0vBPCM5zyFO2//MrXS7F75+hfRnFzC2qOlidde9hJu/cCnqvY98amP4y9//DuKItPZ084D922js7v9iAm8YtEsW5TUYnR4nMc94V948Sv/g2/e9X2e+dzz+doXv8Nb3nlp1TTsP+79J694/hv56g8+yZYTNh7U/ezdtY93X/vBim2WafHuaz/I1pM2cuoZJyFJEltP2sRXf/gpBnbvZ3RknE1b+2lvb6FpifdhNbS2J/nYFz7Az3/0v3zrKz/AcV1OPeNEom3tFIaKVT1186kDnm2T2buD2JaTy1Wzg0U2lhDHkoRnLxBxdpxI38aySPGFhIdTyON5bsmSZVEfmKqCJPvxVIEgeryxoufMKeSxUnOEuvoItnX4RsUTY74/XjBEqK0TJRhGVlWcYrHC4811HALJVhQjgJ3LYGcz/nRueo7s4J5S35pKsLUDLdZAfny4Iv0B16U4OYbX2IxsBPxBElVb8heoejhmkdTOhw6YDnu+mbGVThHu6q3w/vNf94Df9ybLKIumVucrZ+nd1eIMwJyeJJhsq5iQXUhxprbRM/iTxoHWNqzUHLmhA8vETiGPOTNNdMNm34RaIDgOETXp45TUbJpv3PX9uvv/58vfKwfNrxZN13jRy59LKBxkYM9+rrj4baiayrtufgvXf+Aa3nDlK5fMKm3rbOHGW66rWlo8/xlP4IlPffyS1Rhd13jui57Bde+5ksaSlUooHOSiV/4HT37aeXz5M9/gbe+5kk/f/iVe+IzX8uXPfIPUXG2vrsV4nsfY6AQP/XMHD96/ndGR8Sqj46UIh0NLiqFEYwPPf9qryaQy3P75D3DKGSeQTecYHR6vEHXz2JbN7R/8DNlFvnye55HNZCs8GheTzxW484676u7/zB1fIZ/zlyYlSaK9o5Wz/+UMnvUf53PKaSesmaibp629hZe86nnc+bVb+OzXb+UVr3shRjhMtH8zkb7N6IlmAs2tRPo24VrmgdQBqNs0vxpk3ai7fKs3NIKi+r1lpetl9u5EDUWQFIXUrodI7XiQ9J7tzG27H3NuFndRmoKs+kuF4Dfz50b217zWvMgINrcS3XgC8RNOJdq/GS0aRy7F3XmuU+6LC3X2oscaKIyNYKVmUYMhYhtPoDA1Xso5PWB7khvahzk7jVcrrgxfKHmOzdy2+8nu34tjLt3WsBiv1JNYK0nCsy3sbAY1vLCFQvI96ZYYvqh1rtXsX/Kxrlfpg3hgD9nBvTWriwLB8cC6rtgJ6uPhLSlKXLe6WrYaOrvb+NJ3Ps4H33M7v//tn/nBt35Gai7NVde+ntb2pZd4Q6Eg/3b+4/j+b07m7/f+k0w6y1nnnEaytYmGxPJ2JInGBp7/kmdx3pMfQyaTwbYc/n7vP9m7a5CPfPK9fP1L3+W3v/oDAHfc+vllPeXAr7b97c/3cd2VN5YHOxqbGrj+A9fwyEeftaLc12RrE5df8xre9Zabq/addOpWJsanSM2m+d43f8rvfnsPn/nabezYtoe//vm+Gmfz+dPv7yWTyREu9SqOjoyz7YGdPHDfdsZGxnnmc89n45a+qtetUCiyf6C2DxzA0L4RCoUiwVCAsZEJ/n7vP/nRd39BvCHK8178LLp7O1b0XqwGSZKqevZkTUdxPTzbxDZdCpPjLLYCWQsrC0XTifZvJr13Z8V0qRaNo8cayA7sItjWiaxq2Lksoa4+X0DvW9Q/6nlkB/f4wxBBFddx/F4210WLxon06qUKYJ2lX8/1vd10A6XOEvt8JSvU1oWVmq0Qtk6hgBqOYWdq/LIiSdjZLIGWdpCk2oK49G+CNTdDupAntmHl/YqebdccZpnHyqTQG5pwzSJKKEKwtb3ucyyzXL/bElm/RqK5yqpmHj3h30etvj/wk0Rc2151golAsB4Qwu44Jd4Q47kvfHrZK20x//Gipx/SEqWiKGza0s8Hbn8X6bkMkiQRb4gSjtRvDl9IMBigq6djycreUsiyTGt7klaSTIxN8dtf/4GJsSk+cdvnq5Z4f/L9X7HlxKWXM4cGR7jkZW+pmOKdnprliouv467vfYItJ2xA05eeEpRlmX97ymMBuPXmTzI9OYOqqTzpqY/n6f/+ZP7z8veUj50cn+a3v/o9Fzz7iXzt89+pe86GRAxF8b/c9g0M8dc//YP//eXvkCSZf33io9j24C7u/vXvedXrX1zxfobCQU45/US2P7ir5nlPOf0EwpEgo8PjvO6lb66wPfn2137EK173Ql79houOyDK2pCh4nueH2tdAX6MlMyUQJLpxq/+lXiwgKRp27sAQQm5ogNimE/0Kk6z4y6F1KExOEGzVyI0MLuh9kzCSLRjxRdVOSUJvaESP+kJZkmWsTBrZMCoGHsqHqxpaQyOSqlaJM9/2pHoIZL6nz0rNkB8fRjECRPo3U5gYK3vUARVCyi0WcIrFlYsbSVqyL02SFfSGBEZDAmRlRUu9kqxWZNguRAkE6woz8CeSa01OS6rm9+6tsiIpEBwvCGG3DjFNC7M07bnUpOTjnvAoNp+wgR0P7a7YvnnrBh73hEetyb3EYtE1s1A5WBzH4be/+kPdCmU6VVswzGOZFl/53LdqWrN4nscn//sLPPlp53HWOafW7RucJ94Q49nPeyqPftw5pObSjAyN8cuf3s3Vl7wLs1i59POLH9/NU5/5bzzt2U/km1/xl80j0TDPf/GzOOPsU7Btm9a2JPFEnNHhcd71lpsrzIR//qPf8OjHn8MTn/p4xscmK0SYYei87OLn871v/Ljqeamaykte/XwkSeIrn/tmTS+7z33iq1zwrCceEWEnqyqhjp6KyK95Asn2isisQ0WSFQrjo34yQ430g8LkOOGu3lJqQn1hoAZD5PYPYGUWCi+P4sQYWjhWjtWSFJVwdz/mzKQfYeZ5vnFwazvF2WmCLW1V1hyyohBq7yY/Wr2c67kOklL5z7YaCqPHEhU9fXYmTXF60jd6ti2cQt4XUIsmg+1sBi2y/N9ft1SVNJpbsPfV/vsUSLbWFKrLEWrvqhq8kDWdUHsXxenJupPEsqYR6uzBKUWbVdmdSNSd1p33BhQIjkdEj906IpPJ8eD9O3jPtR/kslf+Jx/90GfYt3c/dh0n99b2JB/73M1c976rOPGULZx4ymaue99VfOwLH1h2uXQ9EYmG6yZcADz56ect+fh8vsCD99du4AbfxHdkaJSXP++ymr1wi5mvJiZbm7jj1s/x7a/9qErUgT/hG41F6NvYwxXXvJbGpgb+66Pv4sF/7uCK11zH1Ze8i0tefg1f+dy3GB0er5kQ8bu778HzPO75/d+q9nX1dvDJuz5MZ/cBMdrZ3c4nv/whunramZ6a5Rtf+UHd5/G9b/502ee6VihGgNimEwm0dKCGwmjRONENWwkkWypiuRbjuS6OZeJYJl6dmKpFD/A94uoc6xTzeK4LioyyxPSoEgwuEnUHyI/uJ9zVB0iEOrrJjezDnJspCwynWCC7bw96JEp+bMS34lh8/npi1nVBokLcGc0t5EZq9JJ5fo9ZoLm1LJTmB0TmkZdYKnUdB8csYhdyZIf2MffQfXiOgxatXqLX4gnU4Mqq9RVIkB3ZT7C1g3B3P8G2Tv+/rR1+du4yy/CKpqPHE0T6NhHt31yaeC0JZUUm1NFT45oS4e7+gxKhAsF6QPzKsk4oFor88sf/yzve/P7ytnvv+QdfvvN/+MzXb+OU00+o+bjW9hZe8JJnc35J3Kx139SxQCQa5k1vfR1//H9/obhIQJ11zqls2FjjH/cFBIIG/Zt6+cci/7l5uno7GB+bZGxkgl/+5G4uetXzVmS30ZCI87LXXMg1l7275v6LXvU8AsEAU1MzDO0f4ZNf/jBvfsO72Lv7wJd0OpXhg++9nauvu4Szzjmtpjnzz374a1708udWbdd1nbPPPYPPf/N25mZTSPjL5clWP/vT87yq12shmfShpU6sBkmSUIwARnMSo6GxLF7kJaoqTrFIYXLUF02ShJFoxmhMLt3XJcvINSpX8yiBUNnLLdjSvshipHyzSy4ROoU8sqoR23ISTj6HW2fIJT8xih5r8PvxalTe6/WQFcZG/DzWgV3lCl6wpaM8pGCmU5iz0+C5eLaFbATKQqkizkuSygMjC/FcF8cskB8tZfgqKkaiye9F3D9AsK0DPdGElUn5r3tDE4puLDkkUQ9Z1dDjCbL79yLJCpKq4tl22d/QaKzOqa15nkXi3zFN8mNDSJJEpHcjxZmp8gRyoLlVGBgLjmtExW6dMDk+zbvf9qGq7YVCkXe++f1MTdYPyQZfZByPom6evo3dfuTWM55AJBqmtT3Jlde+ng/cfj3NLUvHiOm6zkuWEGv/fuHT+P/snXd0k/Xbh6/s3ZHuQaFsBAQURECGyhAQUBAVRAQBRZQhS9kgW1ABQUCGKDgYCoLsLbKnbCijjO7dJs1O3j/ShoYkBRTX7811jufI831WnrTNnXt8PlvW7wJg8/qdFOSVXtotSd36dWjeuqnH9o6vtKVMOWd/oUFvZNvGPSRcuuYW1JXkq4U/+JSnMRrNxJcSvIZHhFKpSnkqVol3BXXg1NFr2ryhz+PavtDc59rDxuFwYDUUok+8St7ls+RdOosu8QpWQ6FXWRyb2UT+1QtO2y+rFYfFgjE9hYLrl7D7mAoFEApFKMJ96yjKQ8NdwwsiqQz1XWLIQqkMTfnKHuXQuxEIhIjlCq/uCq7XYCh0+rD6CBKLe8iKkQQEoYotizw8GoFIhCq2LOqyFcHhwJidge7mNWe5125DXbaC6x4FgCk3y13LTyh0Cj17cZewGQ3kJ1xwSs4UlaQNacmYcrKcrhwptylMuoFYpUEVHYdEpf5DQZ3zOQmQB4ciUihx2J3XKg7q5BHRf2i4wW6xoL95DXNOFqbsTPS3EhGIREjUAUg0Tjs4v0ixn/9l/Bm7/wjXrt7wamwPcOXydfJy8ggJ/XMuAf9W7Ha7V6HjrIxscrLzMJvNBAUHEhsXzfiPh6PL1yMWiwkOCfR63N3k5eaTmpzOmCmD+WTyfPRFNmkKhZx+g3ty6LfjLmkYhVKOSHz/+l+h4Vo+HN+fl7t1YMfmvQhFQuo3fJyL5xIY2Gskn305ibTUDCpUKsf1q562TMVkZ+agUnufzH26RaM/JE+iUil5b/Cb/Lb7sIfg86OPVad8xbIPfM4/it1sIv/qRTdLLmuhjvyrFwms9IibEb3DbncFdB7nMZmwFDlG+EIolaEuWwH97RsuOQ1nL1w5t0yOQCRCqglAXLGq02VBIEAgEiOSSLBbLIgUSmwGT0s9sUrj6t8SljJwUzw0cne2zm6/45KgiimLVRuKQCjCnJtNYcptHHYHkoBA5CFh2O129CW14xwOzHk5WI0GlNGxFCbfQiCRoC5THrvFjNVQ6HTiUCgQSiQI7po6tVutTokQL8GmVZePXBsKQiEOmw1zdpazP89mczpriMQIxKVnWb0hlErRlKuIzWjElJeDUCxCGhiCUCJ54HM5X4MFa+GdL18Ou82V+RQIRYgrP+LP2Pn5n8Yf2P1H8Oa3WRJvZur/ZQrydSTfTmXtqk1kpGXy7HNNeKzeo0RGh+NwOLh6OZGh745zWXQplAqGjupHo6efICs9m1s3k4mKiSAmNpLwezhsnDx6hgG9R1KvQR2mzxmLRCohLzcfiUTCjz9s4Lfdh137vvbmSw/sxlBYaGRw3zHUrF0Nu93Oz6s2YzAYGTK6Hx8OmEiQNpDGzzxZ6qCCQiFHrpB7bI8pE0Wr55/+w0MOAYEavlg2nR++WcvBfcdQqZU8/2ILqteq6gpw/2ocdjvGYpeEuylaU0bGuLIsDpvVWX71gSknC0lgsM+pTKFIhCQgiIBKKmcZVAACkaQo0PHM2ha7Qbhvk6COq4DuxhW3iU6RQoWqTDlXQCINCMaQ4u7zWow0OLQoEHIGf3abFbvJhCEjBbvJhEiucPaMyRQUXL/sNsxhycvBWpCPulwFr6VhZx8hKGPLupw6hBJJqZZm4AyCSgZFd2M1FLp8XhWRUehvXnd56QJI1IEoY8veW+bkLoqfsUTj/ee4pKyMQCgsVWDZZvLuSgPO1+d4AG1KP37+i/gDu/8IFSqXQygUep38dLor/LOTqQ8TXYGedas3M+Ojua5t2zftJTo2kiU/zEIoFNDz5QFuAssSiZjoMpH0e2O4mx9rTJlIFnwzk7Lly3i9VnZmDrOnfwnA0YMnOXrwJNM+H8OFMwkcP3yK6Ngops8Zi1giwmQ0U+ux6g/8evbvPYKuQM/Bfcdc28QSMXFlYzhz6gIATZ5pQIVK5dAEqL1O8bbr1ApNgJqPZnzAnBmLEAqEPNf+GZ5u8RR6nZ7rV28SEqYlIODBPHGvXbnBuz0+4Ln2zzLow7cxGU3s2PIri+au4JlWTzH501Go1Ery8wpcQs8BgZpSdQEdDgd2i9mVUROIxV6zQ6797TZ3SY67sOrycdgj75TPSjG0hyK/03v0QAoEAmfw8Qft2gBEMhma+MrYrRbsFktRhkniVpYUiCWo4sqjv+k+mS5WqpFpQxEW2Ws57HYs+UVOEkXYjAbMudmo4soXlVXde/UcdhumnCyn5Vhutsf92YwG5BHRD2S/VnTXeGgJupYEKMKjsRbqMKQkeQSBFl0ehck3UMXG/6FsmzdsFjOGtGTM2Vmu+5IGhaCMivFaqvVWXnZ/CX9eF9GPn38z/kaD/wja0GDeHfKmx3aRSMT46cMJC7+/JuP/AhnpWW5BXTHJt1OZP2sZSbdSPVwzuvXqzMI5X7sFdQBJt1IZ+NYoMjM8P/gAzBaLqwQaEKjhoxkfYrPYsNvttG7fnG69XmLX1n0MeWccP3yzlts3kjEaHkwfS1fgGagFBgWQlnrHEmny6M/4dddB5i6dRrDWvReyUdMneKLhY/TsPACBUMjwcf3p9e5rJF69Ra9XB3Hx3BXefGUgX875mpzs3Ae6t60b92A0mli3ahMfjZjJ9Amfu6Zvf915kPy8AhIuXWPw22No07gLbRp3Ycg747hy+brXLxl2uw1Lfh75CefJv3LB+V/Cecz5uV6nPwEQODMwvhCIJW5CtUKxBFkpFmOyEn1yfzVCiQSxQok0IBCxQunRayYUiZBqAgmsUgNlbFnkkTFoKlRBVSYesVzhCn7sVgv6JE/ZGYDC5Js+LdUsBfk+s3ACifSBbcMEYjGSQN8tHWKlCkN6ChJNoM/MniU/7085RpTEbrNhSLldZJF2J9g052ahT7rpLJHfhVAq99kDKQkMLvVn7Z/GbrViM5ucU97+zKKfP4g/Y/cX4Ksn7M+gUil5uVsHatZ+hC8//4aUpDRq1q5G73e7UTY+9qFe659m366DPtc2/byDF1/xHCKoVr0SX3y61Osx1xJukJ2Z49WDViwWExsXRUpyOlNnj+azKQvczOqFQiEjJw7CZDKxZ8cBund6j29+msejdR5xO09udh45OXlYrVYCAjSER4a6MgMNmzzBorkraN66CdVqVKZQV8iubb95uDAsnf8dB389ysIVn3D9yk3y8vKJiongwpnLjBg0CZvNxvzPvqJXv9eYOna267gLZxMoV74M3yxaxRMNH6PJM06NwqzMbMxmC2KxmDAfAyRKpWd5txiJVIrZYqF7x3fdyrKH9x/n9Rf7sWrTYsqUjXE7xm4yobvh7hfqsNnQ37iGunwVpF4004QiEYqwSAp8ZO0U4ZEeAYokIAhRTha2u4YTJAHBiOV/zuT+YSMQiRCJRG59gnfjsFi8l6JxOj74ClQFIiEIRChjyrqCRJvJiCkrA2nAgw9LCYUilJExFBTqPCy35OFRWPJzndlVgQBV2fLYDM6s4t2af3frEf5RHFaL12wkgCU/1yk2bTEjFItd2TuhRIKmfCUKriW4BZgihRJlVOwf8sj9q3HY7dhMBgqTbztL20IhMm0o8tDIBy5r+/HjD+weEgX5OlKS0vhp5UYy0jJp3ropderWJDL6z5mXlyQwKIAnn3qcRx6tjNlkQaVSoijlg/m/Smm9XVaLFbncs/G5NNkOgOSkNKRSCVGxkchKGMKHhmnp9/6b/LbnMFvW73IL6sAZpE8dO5s5S6awZ8cB7HY7MybO5fMlUwkKDsThcHDtyg1GD57KudNOlw/nwMRAGjaph1qjIqZMFAuXz+TH73/h+2U/ERikocNLzxEZHU5MmUiSbt3RFjOazPy66yBLvvgOpUpBbnYethIfksm3UwkKdu9DCgkLJv+Qs0y6aO5yqlavxJmT55k9/UsSr90iKiaCvgPfoGnzRmhDgtyObfNCc5Yt/MHrM3vxlTacOnra6/uh1xXy4w+/8N7gXoglxR6ndowZvnX+CtNSMJhtBGqDPNZECiXysEgPnTV5WCQiL4GaSCJFU7YCVkMhpuxMBAIBspBwRDL5H57Q/CuwWczgwNXj5g27xYLDV+nzHiginV/qDMm3XIGYSK4oUb59cJwl5kpYCvKw6HUIRGKkAYFYikSPwTnsYi3IdwbSKjV2o9FNS0/wkIKnewWITk3AawhlctRlKyCWK5xldrmSgErVnO4aFoszOyqR/GstxGwmI/lXLt7plbTbMWWmYy3IR/MAtm9+/IC/FPtQ0BXoWbdqMy899ybfffUj2zft5YP+H9Hz5f4k30699wkekIAADaFh2n9VUKfXFXIzMYm9Ow9y6LdjJN9OxVyK7ERpNGrmW2y4Tt2aBAUHorjLu1UqlSAuZVpVJBLSsWUPThw57SHo3KBJXV7u1p6tG3d7PdZms3Hp3BUqVCoHwO/Hz2EodOqgpSSl0eOl/qQkp9GuYys6vtoWTYCGof3GcfGc0wkgKzObfm8M55e120i+ncqFswl8/NFcNvy0lblLpxNT5o78RqG+kNAwLYZCA1kZ2W5BHTgziMIStk5isYjK1Sq43EXKxpdhx+a9vP/2GJd0SkpSGuOGf8yyhd+j17sHaVHREbz5TleP1xxXLoZub77Ed8vW+nymB389ik53J2PmsNtKbVwXWM1cOHsJk9GzlC0Ui5GHRxJYuTrK6DiU0XEEVq6OPDzSZ6+WUCJFGhCEumx5VHHlkag1/5qgzm6xYMrOpODKRfIunib/2iVMedlupUO7zYZFV0DB9cvOjJ2vrJxYDF6svMRqDSKJFP2Nq27ZNZvR4DznnyyHmrIzEQiFOGxWdDevY8pK91jXJSZgLcgHkRB5mFMIWxIQ9NBcHe5VUi9et5uMFFy/jK3ob46zh1KGRBOIXBuKWKn61wZHdqvVGRR7k/UxGbF6mbz246c0/Bm7h0BGehYzJnr2hCXdSmX+Z8sYOWkQCi8Tjf9lzGYLmRnZWMxmJBIJP/3wC4vnfevqu5LLZUydPZqGTZ944NceWyaKRs3qs3/PYbftYomY4eP6ExEVxuLvP2Ngn5FkpjvLNHt3HuDFl9uw+rsNHud7uuVTHDt0CqvVxgf9P2LVpsVumdRgbRD5eTqv7hDF5OXlo1Q5g0mlSoFA6CyzHt5/gt7vvoY2VMvOLb9izjbTuWs7QsK0LJ63grj4WGZ8NA+DwVMQd+U363i5Wwe++XEuaakZZGXmEhMbgUQiQSaTes1CNnnmSQ7tdw5hSGVSxk4ZwvfLfnKtt+/UioF9Rnl9DcsXr6bzax1Qqe5kwAKDAujx9qs0b92EVSvWk5uTR5sOzaldtwaaAHWp07bB2iA3/1yBUIRIpvAqAQJgF0nYs/MQcRXKEh3jac0mFIlB5PQOfRB8DWX8U9htNoyZaW7ZR7vJiP7GNZTRZZBpwxAIhc4A7NolAIzZGSgjnfIkkoBAxAqVU6YjLwdldBmEEinq+MqY87LBbkcaHIIAAYa0ZB83Ycecl408zPmlwW61OIdZHA7nRKmPCeBiBGIxAonEaxlUogl08/U1ZqahLlcRoViCxBiIMjquVLeQYhwOh3PKVSDwXWoWSxAr1V77+UQKJTbjnd8rh8WC3WT8z5UuHXY7Vl2Bz3VzXg7SEnqGfvzcC39g9xD4dWcpPWHrd9BvcE8UMf87gV1GWiZfL1rJ6hXrCYsIoWffrnz5+XK3fYxGE0PeGcdP276ifFGm637RhgYzccYHbNu4h+VLVpGbk0+9BnV4b2gvypUvg1gspkatqny//ksyM7IxGoyER4YilUnRBGj4btmPGI0mJFIJbTo056lm9RkxaBIAuTl5ZGZke5TI1RolFSvHe5Rii6n+aFV++mEjAJ27tndpBqrUSn7bc5jtm/a49v1tz2HKVyrL+yPewWgwcui3O9OwAoGAxk8/SesOzyKVSsjPK6B8xbJuwsEZqZmMmz6MscOmY7XcybqUKRtD/2F9OH74FB9OGEhMbCQrlq7m8P4TAEikEuQKuc9Sts1mIyU5jTJlo922F4tXP1KzCnab3VVaBejZ91W3+y9Jj7e7uAWJAqEQeVgE5lxPtwSAQqGMdas389qbnb2u/6/gsFp8lqQLU5OcGS2B0K10adUVuMqHpqwMTLmZCEViFJExCIQi8i+fBaEQiUoDAgGW/DwkgUGlZnMsOh0yrRWb0YDu5nWntAvOMqkypiwSTWAp/WYCVDFlKUy66XSYKEKiCUQWEobuhvuUr6UgH4lag6rMvadhbWYTVkMh1kIdIokMkVwOIhEiiczjWKFYjCouHl3iXbIyMjnKyBh0N91/X20mo0/JlH8rAkGRpqGPsvO9pnz9+Lkbf2D3ENDrfKvLW8wWn+b0/0VysnOZ8OFMft11EG1IEC91bc+qFeu87mu32/lp5UaGjOr3wBIDoeEhdOnRkRZtmmK321GrVag0d6b/BAIBEVFhHp63/Yb0pF2nVly7kohAIGD3tv2MGDgRawkdQG/eulKplP7DejPordEeTgc1a1cjLzefgnwd1WpUomHTJ7h84SpVqlVErpC5BXXFXEu4wfFDJ6lSrQIikQibzYZQKGTCx8O5cvk6k0d/hq5AT7A2kD7vvU6bF5q7hikCtQHk5OQx68tJXDp/hcyMbKpWr4RYLOa9nh8yfe4YAoMCGT/8Y04eOwNA5WoVGDt1qEeJ+m5Ky546y7zumZOq1SvRvffLfLN4ldv27n1epsojFTzPIZUhjymHKfWW64NKIBJhVgaxaP5KYuOifQot+8JqsZKRnkV2Vi4ikZDgkCAUChkZadncupFEcEgQkVHh/xr/Y6fDg4+eObvd6YzhcLgNfghEIiSaADeRZjsmrDevIQkIQhlTFoFIhABAIMButSIQCBFKpNis3oXLhVIpDpudgmsJbvfjsNnQ37xGQMVqCO+aqLVbnYGgIS0Zu8WMPCwSRVQsDrsdh82KVa9zBnV3ee067DYQCO8d1BkN5F+77AoywZnpVcXFY9LpnBIwdwWbIukdWRmb2YQAsFvMGLMyigJfZ/bTlJ3pDBL/YwjEYmQh4RjTU7yuS4NLd87x4+du/IHdQ+CpZvVZMPtrr2t16tZErfkD5tj/UrIyspHJZcz9ahqpyelUqlqepfO/87n/9as3sVisSEtR4PeFQCBwy2TdD1KpFKVKwfgPZnjVg5PJpB4Tonm5+Xw+cwnNWjRk+udjWTr/Oy6eS0CpUvBS1/a0ev5pNm/YyZRZozAaTLz/9mhsVhsb9n7L5p93+ryXzet30bVnJ555rjHbN+7h1e4vcmj/cTau3e7aJyc7j48/mktuTj593uuGTC5DKpXS7NmGdG3fl/DIUAKDAti+aQ+Z6dlUrlaBqOhIIqLCmL14Mnm5BTgcDgICNSgUcrKzcqhQqRxXExI97kcbEkR4xIN9SARrg+jT/3VeeLkNh347hkAo4MlGdQkLDyHAi3aiUCTCIpSQZpOjVDiHXDIzc5n30SyOHf6dJT/M8pgGLg1dgZ49O/Yzdexs1/sZHhHKqEnv892yH13ZyrDwEOZ/8zGVqlb4R3TK7MXiuUXuFKXhsFmLnBruZGmkwaGYMtK8TsZa8nORh0agu3nNFRAJJVKUseWQh4a7ad+VRB4SjjErDV9BpiE9GVWZ8q5AymG3Od0tku84oBQWSbCoK1TBlJmBRZfn9VwSlQaRrHQ3B7vF4vYainHYbehv30AZGYPDYgaRZ+DvHHyQIJLJMWSkIpLJnf+flozDZkWsVDuzhdL/YGAnECILCcNSkOfRxlBchvfj50H4dzWn/EeJiYumYdMnPLaLJWI+GN//D7sC/BvJz9NRtXpFBvUZxaRRn7Jr6z6vmZti6j5Z+w8FdX+GsIhQPpww0Ova+yP6esieZKZns2r5OnKz81i14mdatm3GzC8m8Mn8j4gpE8n08XO4dO4KMz6ay0cjZlKoN2AymTm07xhGo3czeQCz2YxQKGTQB28REqalUbMn2LRuh9d9l335AynJ6Vw8l8DZ3y8iEolYtWkxjz3xKNeu3EAikdB/WG/mfTXdlZkKCg6kbHwsceViyM8rYMKHM3in+zCGjO7nISAsl8uYvWjyAwXKZrOZxGu3+PrLlXwy5QsEQgFPN29EmXLRXoO6YgKDA9GGh7Fu3U5effE9erz6PgaDkWVrPueRmlXu+/oACZeuMXLQZLcgPT0tk6HvjqfHW6+6MowZ6Vn06TqY1JR0X6f6S7DbbFj0OnSJV8i7eIa8y+cx5+egLlvkCHEXQpkcu8WMOTcbWfCd90KiVLmVPO/GnJ/rFjjZLWZ0iQmIFApkIXdN3gsEqMrEIxBLsBX6LtXajAaw38lku5r4vVB48zqKqBivr0mkUCKUye45MGG3Wd3KqSVxWC0IRCIspfSagbPcLwsKwZSVgTEj1RkkOhxY9QXoEhM8JFr+K4gkTls1TfnKyELDkUdEE1i5OtKgkH+lPIuffzf+jN1DICQ0mIkzP2TrL7tZsWQ1uTl5PNHwMfoP7U3Z8v9bGnMOh4PPZyx2/Xv9mi2MnTqMIwdOepQwVWolLVo3/VvvLSszB7vNxlPNnmDZms+Z98lSrl6+Tly5WN55vwfVa1ZFdpdcyoVzlwGYOekLJn8ygpUrfmbuzCW8+U5X9u89zIWzCV6vt2XDLl55/QV2btnndb3l808TGByITCbl25/nc/XSda+G9gBmk5kb127Rv9cIwDmgMWzse/R7/036vPc6YpEIiVTsce8At2+m0LX92+gK9EWvYx4TZ35I0q0UEq/dpHK1ijRsUo/I6PD71ld0OBycPnGet7oNcfX57d9zhE8mz2f+1x9Tr0GdUs8VHhlKv0E9eaXbC9jtduQKuYfw8r3Izy/gi0+/8rpmMVvYt/swDRrXZf/eI4Az+3n9yk2ioiN8ntNitpCRkY3ZZEYulxEeGfqnNCdthkLXAAQ4s3HGtGTEKo1zGOIuCRBlVCyFSTexW8zItKGIVWq3QQRfCMAz8eZwYM7JdnrBlquE3WxCIBIiVqqLpoMFiNRqpIFBrqyPuSDPORDhcDizWyWmbe0Wi9fJTOeaM2AKqFQNQ2oyloJ8BCIhsuBQZNpQBCLxvQcm7tGS4rDb70uU12GzuNmYlaQw+Saa+Er/yb40l62a+n8nEeDnn8Ef2D0kwsJDeK1nJ1o9/zR2mw21RoVK/b9TggUwGkx8//VPbttysvPYvnkP4z8ezryZS0hPc+pcVapansmfjiQ61nP68a8gIz2LnVt+5dulaygo0PNUs/q8PaA7n8yfgNlkRiaX+7Rd02icNlzZmTkMfmcc7Tu14odfvsRoNHH54lWfgZ1AKKRqjUrUrPMIZ06ed1sLCg6ke+9XXJp50TGR5OWUno0I0gbSs28XvlrwPYV6AxM+mEGlKvFoQ4JZ9/MODu47RkRUON16diIuPpaAQA0mo4llX37vCurA2d83sM8o4iuWZdTEQTzR8LF7Pr+c7Fxys/Ox2W0EBGoQCYUM7z/BbXgDnP1uHwyYyMpfviQiqnSNRrFE/Kf63owGE9e8lJSLuX71BtGxUW7bSpMXykjP4tsla/j+m7UYCg1oQ4J4Z1APWrRuQmCg2mnv9QBBnt1icStblsSqL0ARGYMypixWg94ptyGWYEhNcgVJulvXUUbGIg8Jx4FTJsSSn+v1fGK1BmOWZzbSZjQgEEsozMpAHhGFRB3gCuLsNhsSlQZD8i1sJiMIBEXyMBXR37qOIiLaLRt0PwVssVyJqkx8UQnZURTQ3V9GSSAWOx1EHN6DN4FIjOQ+JqItBb4zmzZDIQ6b/W/9ZLNbLc7nIRA47fO8SNP48fN34g/sHiICgcCnwv//AiaTyesH56Z1O0i8eouhY9+lXHwZpFIJQdrAB+ql+jNkZWQz8v3JHP7tuGvb+jVb2L5xD99vWHjPqdyKVeJd8iKGQgMrl68jtmw0+3YdotOrz/ucen6zbxeioiP4bMFEtm/aw8rl6zAYjLRo04yuPTq66dMBBASqWbB8BrqCQmRyKQkXrrHsyx/IzyugWo1KHDt0CpVayfBx7xETG4Xd7kAmk7H62/V899WPLvmTTeu2M2zMe3Ts0ha9rpC92w94vb/rV26w7MsfqPV4dWQ++p/sdjtXL19n9JBpXDjrzFxGxUQwcuIgGjSui1QqI65cDDnZuWz+eSdpqRlkZ+aQlZlzz8DuzyKXy4iLjyUj3fuUbVy5WJKT3H8eK1aO97pvXm4B08fPYdvGPa5t2Vm5TB4zC12Bjhdb1UeuVCALi0B0nz1NDrvNZ2kRwKrXoQiPBMKKypy3kQQEIQ0MxqIrwKovcGb0hEICKlRFGRVLvl7noT8n04Y6s3pesmkieVEpNjLa5TtbjM1QiO56iS8lDgfmvBysxkJnVuuunwmBROJzOlMokboyckKRCP5AeVAolqCIiMKQmuSxJg0OwW4xI1be2zWk1B5GgeD+ItSHgMNmw2o0UJh809kbJxAgDdSiiIxGJC2939CPn78Sf4+dn/tGKpNQu24Nr2vnz1zi4K9Hia8QR/lK5f62oA4g8dott6CuGIPByJwZi0qdWgYIiwjhkwUfuQkcf7/sJ4aO7kds2WiWrfmcjq+0dTleCAQC3h74BuXKlwGcZceuPTvx1ao5fPfzAt7/8G1i49zN15NupzJlzCz6vj6Mof3G0f/NEezZeYDpc8ZQsUo8gz54mx++/onqj1YlNCyEa1dusG7VJl59/i2uX73JjHnj3SZaP5n8BVkZ2QiFQpe+njfUajV7tu1nz479pCZ7ZnxSktLo0XmAK6gr3jag10he6tIes9nMqhXrOHPyPAOG9+GtAd0BsNn++knvgEAN/d7v6XVNLBbRtHlDDuw96tpWvlJZYuKivO6fnZXjFtSVZNG8b9HZRRgz0yhMuoHdx5SpBwIBpUURghI/Tw6HHbFSiSU/F3NuNmKlCnW5ii6dNqHYORgQUKkaisgYxEo1Ek2gs+dKG+bhyFF0BaTBIYikUkQSqdvPm91q8dkvZzeZsFstHqVToUSCqoyXwLioZ0/4J/XhBEU2WcrYci4haYFIjDwiCnlIONKAoPsqoZYmZyIN0j40ceR7YTMZKbh68c7Ag8OBOTeLgmt3hJL9+Pkn8Gfs/NwXZrOZE4dP81Sz+qxesd5DPFcsEfNGn1e89oD91Rw7fIoPxg8gIjIUBAKSb6fy/bIfSbqVyt4dBynI15daFpdKpdRv9Djrdn7D7u37MRYaafJsAxbMWsaeHQcQCgW0avc03//yJRaTGQQCdm3bx43EJNcwgkAgIMSLFy045XA+nfwF+3Yfctt++sQ55n6yhKmzRrNnx34mfzaKhIvX+HnNFgyFBho0qcfcr6Yxbdxsvv1qDT3efpX5s5YBzkzbqePnaNexJV17dGLquNlergxPt2zExFGfkp9XQFh4CEtWzqJc+TjX+o7Nv3qdHnY4HCyc8zVDRr2DodDImVPnGTV4Cj37dqFTl+ddOn5/NVUeqciYKUOYOfGOyHNQcCDjpw9jzXcbXM4cDZvUY8yUIT4z5rdueGaJiinUG9DpDahFRQb2Vit4CTAcDgd2ixmrXofNaEASEIgkMAhLXo7X80pUztK/3WrBqstHIBQh0QRiysnEmJGKMFeKJt4p7Fsc6IikMuRhkUgDtdgtZkzZmUgCg1BExjjFiIuydgKRCGV0HIa0ZJRRsR4ZIofd7lMoGsCiy/cQvRUInDp5AZWrY8rKwGY0IFaqnBIkD2kyUyiWINeGOoOz4n46kRjRAwRjArEEZUxZ18Su69xSmbO8/DeUQoszsF7XzCZsBv1/TijZz/8O/sDOz32RkZbFwLdGU+PRqkybM5a5Mxe7JDXKlS/DuOnDiImLJvl2KkcPnuTM7xeo+kglnnyqLpHRYYj/om/RZrOZGrWqMX3C5yRedfY7Vawcz7Ax7/H1lyudmaj7KM3IZFLiysXyRp9XuHUjiVfa9nH1rdntsHHtDg7vP8H46cOZNm4Ovfq9xtlTF6hUJf6eU89ZmTk+ByzOnb5Eako6z7RszPTxczhy8KRr7cb122zdsIups8fQv9cIuvd5xe1Yq8WKQCDg2dZN2LpxNyeOnHZbb//Sc9y6kUR+nrO3LyM9iw/6T2TB8hkEa4Mwmy0cOXjC531Xqloeq8VGsxYNadq8IcHaQH75aRs93n6V0L+p5SAgUEP7l56jUdMnyEjLQOhwEBSoQi0VUnFoT97u1wWZXEqAUoo22nc/X9A93iOZXAYWZ+BoM5m8ul8UO0UUlypN2Vmo4ysgkiuxFeqwFNyRAlGViUcgEmMzm7Dk52HMTMVusSBWqlDFlMWcm405LwdzXi6KCHfBaLvZTMG1S65ePKFEggNQl63gklRxOOwYM9KxGfRYNUGItHd/oRKULnrrI1ATiESIRQpE0bE47A4EQuFfIh9zv+VubwhFIqRBTo9ac04WdqsFaUAQIoXqbwumHHZ7qUMv5vxcpIH39+XH+YXBgsNixm6zIZJKne4gf1Pm0c//Hv6fHD/3xbnTlzCbzJw4epr0tEy6vPEiUbGR4HCQkZ5FbJkoEq/e5M1XBrplgBRKBYu//4watapis9pIS83g5LEzpNxOo9bj1YmvEPfAWnUlyUjPYt3qzaSVKDNeuXydD/p/xOzFU9i78wDBXkzn78Ze9IFpsVj5ftlPbsMIxWSmZ3P65HnCwkOY8OEMxk4ditVSukk5OH10SxOpNhiMZKRlugV1xeRk57Fx7XZatGlKXm4+UpnUZX1Wp15NAERCIeOnD8diNnNo/wluJt6mfsPHuHzhKvM+Wep2vgtnL5OTlUuwNgixWESnLs/z4sttAPj9xDnWrtxEfl4BA4b1ISMji1ee7+M6ViQS8e7gN7GYLX+rhI1MJiU6NpLICC0F1xOwGXJwGEANqIWAxUhAWLVSpzIjosIJCw8hJzuXgKAA9AV6V9a5XoPaqMVAUQVW4MVz2GYxo7txxRUoyUMjEClVGNOLAjaVCk14VWzGQmemTijEoi/AnJvtltGz6nXo9DpUZeKxGQ2Yc7ORh4QjKMrY2e02DGlJbrIdIrkC/e1ETF7LsWApyEWmdQ+0hZJ7iN7ew6JKIBAi+BfPAAiLpnDFUf+M6oBA4Pw5cXgROwffgfPdOBwObMZCCq5fcdP3kwRpUUWV+dd4H/v5b+EP7PzcFzlZua7/v30zmRkT57mt12tQhyHvjPUo6xkKDbz/1mi+/2UhN67d5p3uw9zKuOUqxLFg+Qyv3qGlkXw7lb07D/DrzoNoQ4KZMms0Rw6ecPmmmkxmdm3dx1v9u7smU72RnpbJhTOXWf/jVpQqBa/37syvu3xbxB09cJJHalbm5LEzLJ63goZN6t3zXlVqJUKh0GdwF1c2lpXf/OR1DWDPjv0MGd0PTYDaFdS93qszmgAVv+05zIyJ87h+5QZKlYKXu3Xg9Tc783qnd93es5KYTGasFisJl66xdP73nD5xDoFAQP1GjzN9zhi+WvgD2rBg5sxY5HaczWZjzoxFfPPTPK/nvRfZWTmYTRZEIiGh4SEPnAkSSqSoy1XCmJmGKTsD7HanrEh0GUSy0oVpwyNDWfzDZ9y4nkRqchrakGD0+kKnXM/EgUjNeThwTm4KJZ7tBA6r1ekYAUiDQkAoRH/zjq2WzaDHlJVJQMWqIBRRcP0yyqhYn2VaQ1oy8tAIjJnuAsIOqxXzXcc4bFaEYolPjTZvorwCgRB5SBhWvc5DGkQVV/4/KQdyv9itFuxmE+b8PAQiIVJN0EPPgAnEEuShEV4HQQBkQd7bMjzu1WKm4Oplp3NHCSy52RilMhThUQ80qe3HD/gDOz/3yWP1HyUoOJDcHE/l+ZgyUYhEIm4mev8jl56WSUGennd7fujRm5d49SYzPprHpE9HuPmOlsaN67d546X3yM688wG44aetvD3gDdq/9Bzr12wBnAMdMrnvoC4tNYOBvUdx/swdHbLwyFA0Ab7FdwMCNa5er+TbqZjN9260DwnV0vL5ZmxZv8tj7dE6j5B0K5madR5h7arNXo8XiUQolXIy0rOo9Xh1evV7jcfq1eT4kTMM7D3StV+h3sCyhT9w9tQFevd7zSP4Bmd/WrA2iMRrt+je8V3X++FwODj02zEunL3MF19/zMcffe7z9az+dj3Va1ZBcp9Zu/x8HadPnOOzqQtIuHiNiKgw+rz3Os8+1+SBevWsVisZmTlkZ+hxOBRoQ4IIDdMivo++zrSUDCZ8MIMTR8+4tkXHRvL54ikEYcRW5AShia/kPUtSQqJDGqRFl+hFAsdhR387EWVMnNMyrJSJWbvZhFAsdmrA3R1k3TX9asrJRqYNw5DmI4gI9h5ECCVS1HHlsVtMWHQFCMUSxKoiWZeHJHprt1iwW0yYC/IQCMVIAwKcQdS9NO3+IuwWM7pbiVhLiD0bUpJQRMYiCwl9aPclEDgHVyy6fKx3iSorY8shuM+Mnc1Q6BHUFWPKTEemDfVP2Pp5YPyBnZ9SycstICsjm8sXrjJ83HsoFApWLFnF8RL9XB+M61/qlGRImJakpBRkMimGQs8Pu93bfiMnKxezyULS7RQ2/LgVk9FE2xdaEF+xrJtThK5Az4yJ89yCumK+/Pwb5n41jQ0/bsXhcBAVE1GqzMfGtdvdgjqA7Zv28srrL3Du9EWvx7Vq9zQziwImsUSMRHLvXyGFUk7nru0xmyzs3vabS6T48fq16NXvNSaO/IRZCyf5PL7l882o9XhNpFIJLVo3JTAogIz0LD6eMMfr/scO/07vd7uhUCrcnrdCqWDB8hns2vYbp0+e8wiywWmvdnj/CSIifferpSSlkZGehVwhu+f0s81m49edBxg5aLJrW1pKBpNGfcrlC1cZ+OFbLh3B0jAYjBzef4LRg6e4egbVGhVjpgyhWfOGSEVCbAY9DrsdsVLllqHRF+j5+KO5bkEdOAPz/r1H8tX3nxISHo1IoUB413RpMQKRBASCUjNnUKyjZgOH/d6ZFqEQaZB75lIgdAoMWwvvZL5tBj3CkDAvOncCVHHlEJTSV1ZsxSVW3vsZPyg2ixn9retugY0hBZTRcUiDtAjFYuw2Gw6rxfnMBMKi+/H+jP8sjmI5Fy8OHobU20g0AQgVD+8jT1QcOJtNWAoKXH6/zsD2/gJnm8m3c43DbvMpGO3HT2n4Azs/PsnMyGbmxHls+vmODZZCIWfstKFIZVLSUzMZNvZdHq1Tnfy8AhQKuSubVUyXHh15ukUj0lMzGfjBW4SEBvPDN2s58OsdmQq73Y6h0MiyhT+wasXPru0//bCRJxrWYeqsMYQVeZzm5uazz0ep1OFwcP7MJSpUKseVy9fp8faryBXeA7uszBy3axWTePUmwcGBPPtcY4+Bhw6dW5OalE52UYmzdftn0d5HxkkgELBlwy5i46KYs2QKZpMZqUzKud8vMvy9CSiVCnT6Qq/XjCkTxRt9XiEq2l0zTq8rJOmWbzHe61dvMmLCAD6dsoDcnDwiosKYMXc8MyfNo8kzDTh17KzPYw/8eoTW7Z7xKQ/ySM3KjBv+MdmZOXwwvj81aldDqfQuuZKRlsWMj+Z6XVv97Xpe7935vgK72zeSGdRnlFs5W1eg59C+ozRtWJO8lFtuH4LS4FCUkTEIJRKysnLZtdX78Ery7VQysvKIiosp9foCiRh5WITTncGH96prX4EAu8WCUCpzNmN5+XAWqzWI5AqPZn+hWIIypgz5Vy66Hae/nYgytiyKyBjsFgsCodA5TSsWI/gHBHEdRa4Xd2erwOn+IFZrwOHAmJWOMT2V4mcmEIlQxVVAolI/9BKjw2opKm17x5SdgTim7EO9pvM9+OOBs1jhu0ohEEsQCPxlWD8Pjj+w8+MVu93OpnXb3YI6cGZOxgydxo9blhIQpCEk1JlNk8qkvDvkTWZO+sK177Ax73It4QZvvTbEtU0qkzJ87HuoNWq2bdwN4JKo8BZoHTlwkr079/NS1/YAOGx2n7ZcAGazBalMyogJAylbQtbjbhx2O0aD57fl519siQMHDRrXo02H5hw5eBK5XEbz1k05+OtRPp/ptFOrXK0C/Yf2dtOW84XVauXVN15k07odzJw4jxvX3WUSXurajiXzVtChc2s6dWnH98t+orDQQJsOzWn89JNERnsKAUskYsRiEVar9zJOaJiW5m2a0qBxPSwW5zPJzc7j2KHfqVPvUbQhQT5dGoK1QVR/tKrX86vUSho8VZfli1fjcDjo03UwS1bOom792l7PlZdXQEG+juatm1C5WkX0Oj3bNu4hJSkNh8PB9au3KBtfptTnZzabWbF0jUePolgi5s23Xsboxf3BnJOJRKVGpg3FaDCWOrySmZFd6vUBhEIR8tAIbGYTDh/PHJyDDsUCuqasDJRRZTzcKQRiCaqYsj5LbCKZwmXdZdUVIBCLkYdHIVGpMefnYc7LdvbQhYaDUo3oH/AStVstGLN8B1HmnEzEmkCP4Q2HzYYuMYHAytXv2Rf5wDgo9b2xWyw4HI6/JFv4RxHKnVlib1lgRUS0a6jGj58HwR/Y+fFKZkY2Xy38weua1WLlwL5jvNazk2ubVCqh/UvPERkdweczFiEWi5FIJfz4wy9ux5pNZqaMmcXnS6eya+uvWK02Bo96h83rd/q8lxVL1/B0y8aEhAajCVBT/dGqPkulTZ9pwIsvt0EbGuwziwQQEBRAsxZP8VOJ+ytTNoannq7PhwMmAk6/1pq1q2Gz2Tl26BSjJw9BKpNS6/EaxJWLuafLiMPhIOlWCqu/Xc+eHQfQaFR06dEJiUTM1LGzsFptVHmkIk81e5I6dWtSo3Y1wsJDqFu/FjabzaW9Z7FYyM/TIRaLXNIq2pBgWj3/NBvX7fC4rlQmpUbtaohEIjdLr7OnLgCwdcMuXu/9Mmd/9/4Mu735ElK5lPnfzGDK2Nlcv+LUC6v+aFX6DnqDOTMWuYJrh8PBxxPmsmD5DK9lWaVSwdyvprN94x42r9+JVhvI2wO6o9MV8smkL1Cp791XaSg0knDxqsf2+g0fQy30/UFuyEhFoglEpVYil8swGk1e94st413U+G6EYgkOqxVjfmaJwYcSCAQoo52TjLLQcEyZ6QiEQtTlKmHR5eGwWBBrApCoA0rtmxIIhS7rLmw2EDifc8HVS24BgE5fgCQgEFVMOY++QIfd7rS6slqLSsjiO1ZjFotzwMBidvbbSSQPLj/iwOdEKDglW3zZo+FwYMrJQhlZepb0gRGJEKs1Pq8rDQz+VwV14CznaspXRn8r8U75XShEER6NNDDoX3e/fv4b+AM7P16xWW1klZLJuHHdU9U+KDiQlm2b8dgTj2I0mBhQZGh/N3a7nV93HaTNCy1o2rwhjz/xKOvXbKFsfCwvdW1HdGwkRoOJTT/v4MCvRynUG7AX9fAFaQMZPfl9Xu/4roeP6fMdWxIXH0tQ8L3N5vNzC2jXsSXbN+1xTfJ2fq0dS+Z969qnUG/g8P4TJf5dyJvvdL3nuYu5mXibru37uk0Knz55nqdbPMXUWWOwWC3UfrwGIaHBKEoEofKiLGDJwHD39v2o1Upe7/0y9Z6sTWh4CAOGv8WFswlcu3JHqFUsETN70SRX6bokxQLKNxOTsFpttHmhOZvuCgwHDO9DhUrlCAjSULFyPEt/mEV+XgHZ2XkcP3yKiSM+cfkBF3PxXAKGQiN4iXMLCw0M7juGQr2z1+86cPzIadp1bMXbA9+4r6BKoVRQ5ZGKHoFosDYIqUiAr/EVu8WMAwdhESF06/USi0u8t8U89sSjD6bJJxRiyslGHhaBqkw8ppxMp9yJQuUcYhA4S6SK8ChkQSGYcjIx52UjDwlDKJU90DRqsXWXw25385gtiSU/D2tIIWKUruDOXjRZa0i57WrMF8pkqOMqgEhE4c1rWAvvyPkIpTI08ZUeKIMmEAkRqzRe+9nA6Xtr8CHPAk5NwIedPROKRCgio516gndl9YUSKWKV76GofxKRTI66XAUcNptTp1AkemDfYj9+SuIP7Px4RSaXUqlqeRIuXvO6Xu/JOj6PDQ3TkpaaQVpqhs990lIymPDxcJfGXM++XUhPzeSrBd9zNSGRgEANL7zcmvYvPcfpE+cJDL7zR7lS1fKs2rSYL+d8w7HDpwjWBvFm3648+dTj9xXUAZw8doYv53zDjHnjWf/jFn7bfZi4cmVIuOT99QIcOXCCeg18v+6S6Ap0fD5jsVdXh93bf+Ol19rx6eRldO7Wni5vdPR6jluJSXTt0Nc1LADwQf+PaNW2Ge+PfIcDe4/Qd1APrBYrly9eJa5sDPWfepyIqDCkXhrqI6PDiYwOJzMjm7079tO63bO069iK30+cRS6X06xFI8LCQ9AE3OkXCgnTEhKm5cBXPzJ35hKv96lUKbyWA/PzCpgx4XNXUFeSDT9t5bv1C70GoHcjlUro9uZLrF25ya2kejXhOnoL+Mo1iZUqBAIhUomY1958CYAVS9ZgNJoQCoU8+1xjho19D21I0D3voRihWII8NAxjegoCsQRpUDASlQabyYju9g0CKlR17ScQipCHOQNXgUh03w31d2O3WTHnevfLBTBnZ2JVqpAHhSCUSLAW6j1cGewmEwVXL6EuV8EtqAPnhG5B4hU05asgus/Sn1AkdnrbJlzg7p5DoVSKSKEsNTBxvjd/gfCxVE5AxaoUJt1yZsAEAqRBWhQR0f9qJwihWOLV7cSPnz+CP7Dz4xVtSDBDRr1D39eHeayFR4RSs3a1Uo9XKhVUq1GZIwe8Oxs0eKqum3Bwfr6O0UOm3vl3XgHfLFpFg8Z1nSXQEn+UpVIpFSvHM/7j4egK9IjF4gf6cC7UF7Lmu/UkXLrGwN4jafX807w/oi+xcVFeB0CKeRAh5fS0LJ8N+wB7dxwgLCKUxfNW0Lx1U8LvOreh0Mj8WV+5BXXF1H+qLhM++JjQ8FC0oUFkZ+WScjuVE0dOU69hHa9BHUBEZBhffvspt28mc2DvEU4cO0OTZxvQ/LmmiERCAoMC3IK6kjR+uj4zPvKuxdf5tQ6EhHmWYfPzdF5Fl4s5dugUNWpV9blekpgy0Xy+dCqjB08hJ9spuXP7Zgry4GAcZh0Om2dZUBkZ65qMDQnV0ndQDzp1aYdOV4hSIUcbGnxfpeCSCITCol47C5a8bEyZTmFsV9ar6NnbzKYivb1MsDuQBASiiIxBJJP/sYDmHsOR9kI9NqUKBM4JUK+nsNuw6nWIFEoPuzG7yegUyH2Ani6RTEZAxarok29iK9TfCaLCo7HbLMhDwtEXXvc8UChErC7dCeSPIhAKESucPrzF2UqBWPy32Iz58fNvwZ/r9eOTmrUfYca88W69ZE80fIylq2Z7begviSZAzcAP+nj9EAsI1NDk2Qauf6enZrokRO7m4L5jFOq9e14qlQrCI0IfKKhLTU7nyuVE179NJjPrf9zK9PFz0OsLaftiC6/HiUQinnzq8fu6Rm52HrduJJWasdAEqmnRpikjJgzEWGjEaHDv/8rLy2fbpr0ex4WGa4mNi+KV7i9iMpk5efQMUqmUXv1eQyqTsmDWMmdZ1Au6Aj37dh+i3xvDWbF0DT+v3syQvmP5oP9HJN1OZVi/caSleM+yhkWEMmPeOI/M3KN1qvN6r5eQeAkIBAJKDWJEovv/8yNXyGjYpB4rNy5m5cZF/PDLl6zZuhR1UCABFaogVt0JSIVSGer4ygjvKi1KpVJiykRRpVoFypSLeeCgznV+iRRVTByBVWqgKV+FgEqPoKlQBXGRDZnNbKbg2mVn0Ge3Aw4s+bnkJ1woVd7C5/VEYqQ+tOoAJJpALHodpqwMHHZHqdewmYw+XRGKnQ9sFjM2k9E5KFLK0IlAKEKsVKEpV4nAKjUJrFIDZUwcIpkMgVCE3WJGGV3GTTPPWRIu/5dP8grFYkRSGSKpzB/U+fl/hz9j58cnmgA1Lds2o3bdGhTk6ZBIJQRrAwkIvL9elQqV45n31XQmjvqElCRno3mNWlX5aMaHRMfecZrQ6fSklrAEu5vzpy9R5ZGK93VNh8NRJIisQywRExQc4CrP3ky8zYBeI2n7YksGDO9DSlI6+XkF/PTDLzzX7hkcdgfPd2xJizZN2bvjID9+vwGTyYxYLGL05CHI70MIF5yToDu37OPZVo3ZssFTlLjuk7Vp+mxDZk1dyImjp5FIJbTp0Jy+g3oQ43ouAkRCoUf/2Cuvv8j1KzeZOm62a9vpk+fZ8NNWps0ezYLZXzulZ5Se/VLpqRlepUeuJiSye9t+grSBfD5zEe8O7kVIWLBb5s9QaKRGrWr8svdbjh/+ndSUdOo1qEOZuGifPWoBQQE0avoEv+05TM3a1ShfqRz5eQXs33sEs8lMw6ZP3PthlkAkErnKyW6IxajLVnRm7RwOEIn+lBfp/SAUi0Es9tqXZi3UYTd7GdRw2DGkpaCKLftAZdniLKE5N8fNdgpArNLgcNhxWC3OIEwgQCiVYfcR3AmlMp99cQKJDFNO1p1+PqEQeUg4stDwUp9n8bMoiUgixaHWYEhJQhkThwABCATYLWasej3yv0BXz48fP078gZ2fUhEIBEREhnkVrM1Iz+LG9VucPHqGyOhw6tStSXhkqCsgUCoVPPV0fZav/YL8vAJEIhFBwQEe3q0SiaRUy61A7f31zel1hVxNSORaQiKZ6dls+nkHSrWSCR8PJzwilDkfL2LY2PdYvngVc2cuxuFwEBsXzSfzJ/D912uZNW0hVqsNoVBI8+easGTlbE4cPU35imX58ftf7jsQEQgFbFm/k8++nMTRQ6fchlDUGhXvvN+TXq8OwlLkWmExW/h59WaOHTrJV6s/JzIqnKDgANq+2IIfv3efKn6sXk3eeWO4xzXNJjNbNuxi/PRhZKRnkp2VQ3BIEOERoQiLMofbN//q8543rdvO2GlDGTN0Gk2bN0KjUVG3fm3y83UcO3SShXO+ISMti+qPVqH/sN60aNPUbeDDGxqNipEfDeT6tVucPXWBs6cvEhqmZea88ej1hfecKn4QvAUX/wQOhx1zru+hI6suzznp+oD9diKpjIAKVTFlZziHAwRCZEFaBCIR+qJ+Opk2FJFEgiIi2s3uzIVAgEQT4NU/VhoSjlVf4N6bZ7djzEjFZjSgKhPvYclVbF5vN5uctmcy+R1tPZEIkVyBMiYOY2YaVn0BQpEEeVikS7zYjx8/fw3/md+u+fPnM3/+fBITEwGoXr06Y8eOpXXr1v/sjf0/JSU5jfd6fug2XCGRSpi7dBp169dys5sKjwj16CErSbA2kCbPNmDP9v0eazKZlCrVKnhsNxlNOMCVRTOZzCReu8niucs5ffI8IaFaXnylDTKZjF6vDGLZ6jk0b92Uj0bMdGUPARo1fYKvF610mw612+1s27QHnU7HU82e5L2eH/Lsc03QBKju69kEBmp4pGYVJo36lAkfD+f0ifMcPnAcjUZNz75dWLF4lSuoK0nSrVROHj1D6/bPIpfL6NWvG/t2HXJNoWoC1CQnpbr8YkvSsu3TNGxaj35vfOCyfdOGBDHxkxHUe7IOcoWM/FzvmRpw6hNKJBKsFisOu4OBfUazdvsyVixdw4olq1377d97hIP7jjH/mxk0aFz3ns/CYrEy6v0pblZ0a1duYty0Yffl2vHfQ1CqXZdAKII/ODMgksmQhYQhEIlw2GwYszNcmTmRQuUSu5WoNcjDo+4SBhajLlsBoUSGLCTc6bVbNDkqCQxGERruFEX2gqUgzym4XCIYc5nXX0tw62+UaAKdGUmJFKFQhFCuQBUd53TjKJJd8ePHz1/Lf+a3LDY2lmnTplGpUiUcDgdff/01HTp04OTJk1SvXv2fvr3/VxgKjXz+8WKPiVmL2cKAXiNYt/MbYu5TGwycWawPxvUn4eI1km7dySaIJWJmLZrsFhRmZ+WQnppFZkYWYrEYpVJOTFw0NxNv0+uVgS5B3eysXGZMnEfLtk/TqUtbjh48SUBQgFtQB/BUs/oMemu01/s68OsxXnuzM3K5jPeG9Lqnl21GehZJt1K4fTOJYWPfo3eXQcz7ZAk9+3alUbP6SKUSFAoZRw+d8nmO7Zv2YDQY0QRoqFG7Kt+un8/2Tb+ybeNunz62SpWCdp1aMqDXSDfx5uysXPq/OYLVW5ZQqUp5mrZoxPISQVpJ6j5ZmwtnL6MNCcJoMGIymsjPK3AL6oqx2+1MHPkJX/84t9SsW15uPpNGf+bVX3jSqE95vH4tdDo9ybdSiIqJJDI6/KFm8f4JBAIB8pBwzDnep1hloeGe3rA4hXvtVgtWvQ67zYpEpXEGR3f1LgolUqRBWqeGnt2OUCZHHhKGNDDY1TsnFDszY7LgEKdLhUCIQCJ2WXkpo2KRh0XgsNkQCIUIimzSvA2gFGMzFSJW3MnQ2i3OPkKH7S7z+oI8DBmpKCNjXT2mAqHQL93hx8/fyH8msGvXrp3bvydPnsz8+fM5dOiQP7D7m8nOymHLBu+CwiaTmfNnLj1QYAdO66xlaz7n8vmrHDt8ipgyUTRoXI+IqFBX9i8lOY29Ow6wYPbXZGfmIBAIaNT0Cd4f8TZTxszy6sKwbeNuPl8ylc3rd1L3ydpe79dm8y1yazKZ+WHjIuLKlS6mmp6WyaXzV0hNTic1OQ2xWML36xdy6sRZPp+xmLTUDKrVqMSoiYMIDNKgK9B7PU9gYAC7tv7G3p0HiIgKY+nK2XR8tS1tX2iBXCEjKyPbwxGiRZtmrF+zxasjh91uZ/ni1Qz68C2iYyKoWacaZ05ecNtHLBHzRp9XGDd8Oq/3fpl1qzcTFhHCxXNejO6LuH0zmfy8gnsEdgUc9TEVa7PZOLD3CMuXrHJZo5UrX4Z5y6ZTpuxDFq79mxFKZcjDIjHepeMmVqqd5dO7BkrsNhuWgjy38qkBEKsDUJUp59bfJhAIEEllKCNjcYRFAgIEYrHHOYs18Lz1AAqEQg+BZIe19DSiUOQeYNqMBo+grhhTllPA2W9e78fPP8N/JrAric1mY/Xq1ej1eho0aHDvA/w8VCxmi08rK4DM9HtbNJXEYDCSlZGNXldIhUplqdugtlerrpNHzzBlzCzXvx0OB7/tOczL3Tpw6fwVn+e/cPYytevW9OpJKpOV3mQfVy6G8hWd/pL5+ToKiuRHAgI1LmkQQ6GR61duMmLgJDd5kti4aEZPHkxebj5mk5nfj59jytjZvNytA59NXej1ek2ebcDw9yYATq2/KWNm0fjpJzn42zFe6/kSceVi6NP/deZ/tsx1THRMBNu9TNAWc+n8FTb8uI1lC79nyqxRHDv0O6u/XU9Bvo56DerQrddL/PTDRrq92RmLxcqxQ6cICdOi1pReer6XlZXd7vtnBJzixSWnaROv3WJw37EsXD7zvjx4/60IxWJXL5k5Nwu7zY4sKNjZg+ZlCMFhtXjtibPq8jHnZCIPi/II3JxZsIc3ICIQi5GoA7HoPLOrAqEIocw9SLN5Gw4pxmEHu9+83o+ff4r/VGB35swZGjRogNFoRK1Ws3btWh555BGf+5tMJkymO3+A8vN99xj5uX9UaiXRsZE+vUar1qhEdmbOfX04Z6ZnsfDzb/jx+1+wWqyIRCJatm3G4FHvuA1spCan+RTItdpsCAQCnx6yUpmUhk3qkpOd55HtOn3yHPUbPc7h/ceRSCV07dGReg3qYDSYUKuVaDRq7HY716/eZMZHc7mZmESwNpComEj6De5JufJlyEjPZMSgiR6ac7dvJrNo7nJe6f4Ciz5fDsCpY2fp3vsVnnzqcQ79dtxt/z7vdePQ/uOYSvTQHfj1KJ1fa8/eHQfYu+MAX377KYV6A9PnjGXd6k2kJKcTHBJEuQpluHLZi2YYzuD00vkrZGXm0Pf1YTRsUo+5X00jJDQYk8nMjWu3ePa5Jvy8ehNHDjgzbHWfrE3lahWQSCVe+wEfrfMIQcGla5FpAtSUr1SWawk3vK5XrlaB2zeT3bZdOn+F7KzcvyWws5nN2Ax6zAV5iKQyZzlTLCm1R640iocJHDYrAqEQoUSKMqp0H1wAc16OzzVjRjqy4FAEf/WUr0iMMjaOgmuX3Sd6hULU8ZU8AtJSzetFYvCXXv34+cf4TwV2VapU4dSpU+Tl5bFmzRreeOMN9u7d6zO4mzp1KhMmTPib7/J/n7CIUIaOeZfBb4/xWHv0seqcP32JqWNn8+mCj4iNi3Zbz83JIyMtk7O/XyS+UjnWrdzk5tdqs9nYvH4nBQU6ps4ajc1mIz9Ph8PhoH7Dx8jKyPYQEP79+FmefOpxDu475nE/QqGQJ596nMSrN9n6yx7GTRvGpFGfuoKn75b9xLxl0zFbLHTr2YmN63bwzaJVriDxkZpVmDZ7NF98upRXu7/I7ZvJZKRlUbFqec6fvoREIiEzI9tnlvL44d/p3vtlt20fDpzIstWf06lLCr+fOEdwSBBVqlVg97b9/Pj9Brd9HQ6Hq1T8yusvoFQp+PrLlWhDgniu3bM8Xr8WVy4n0r7Tc+zwMvUqEAh4vmNLhr87wXW+/XuP8PuJc/y49SvCwkNIvp3KV/O/48rl6wRrA3nj7Vdp37EV6gA1E2d+yIiBk9yCZk2AmvHTh9/T5SMkVMvYKUPp9eogj3J32xdbcPzw714zv3qd9zL1w8RmMlFwzd171ZCahKpseaTqwAcO7lw2Xqm3XSVKsUqNKrbcPa26Sst+OWxWn19YHjbOydsq2IxGrIV6hDIZYqXK1Zt3975CmdyrrIoiItqjN9CPHz9/HwLH3/VX4y+gefPmVKhQgYULvZe1vGXsypQpQ15eHgEBf43y+f8XCvJ1HD/8OzMmzuPWjSTkchltX2hBk2cb8OGAiRgMRipVKc/Cbz8htMijNDM9i6nj5rB90x4A5iyewvtvj/Ha41aufBk+WziRLz5bxu5tTgeHp1s+Racu7Zg6dhY3rt9R1w8I1LBwxSe822M42Vm5bucZPvY99LpCRGIRv6zdRlh4CF17dCIjLYv8/AIqVSnP1YREatetwc+rN7N25SaPe3mu3TO80Lk1g94a7WYkX65CHFNnjSI7K5d3e3zg81nN/GICQ/uNc9s268tJjB4ylSrVKjBu+jBebN7D63OIiongrf7d2bZxN42a1UckErFy+ToSr95026/9S89R49GqzP74S/Q6p6CzWqNi0Idvc+LIaTb9vMPj3D/88iWP1KwCQFZmNlarDZPRhK6gEInU6eahVClJupnCTyt/4VZiMvWfepynWzQiOjbyvhwUjEYTiVdvMnfmEs7+foGQMC3d+7yCQW9g6rjZHkGLQCBg/a7llC1/70zXH8Vus6G/dd2HWbyAwCrVH8g3FcCUm+21nCqUSNFUqFqqnZU5Lwfdjate10RFAsD/xmlSm9mE/vYNly6eQChCHhGFLDjkgTxx/fjxc2/y8/MJDAy8r/jl3/fX4gGw2+1ugdvdyGQyZDJ/A+9fgSZATbMWjShfqSyXzl/FarWyc8s+hrwz1pWFSbh0jcz0LELDtNjtdjb9vMMV1AGYzRavwYxAIOCDcf3p+fJAt4nK7Zv2cuzQKSZ/Nop3e3zgCgpMRhNBwQF8t2Ehe7cf4Le9h9GGBPPsc03Yt+sgq79dT41aVXmu3bN88elSDu8/QWi4FoVCQUpyGlaLlTVblrLhx61eX2vL559m8Dtj3YI6gMSrN1k4+2uGjO7n8zkpVXcmCcMjQnmpaztq1q6GSqNiwAdvERIajM1qY/JnI/ls6gIP54e3+ndn1Yp19H63G2OHTXdZvX04YKLb/Wz4cSvPv9iSNVuXugZLlEoFk0Z/xjEfU7jiEsGCWCxmx+Z9zJq2AL2ukKbPNqRzt/YEBGpQqZS82bcrgcEBXh0mSmIymbGYLChUckQiEXK5jKrVK9H2xRY0eaYBeXn5pCancf3qTa+ZqFbPP01waFCp1/izOKxWH0EdgANrof6BAjubxYwhxbuNl91ixmYsLDWwEylUTlFhL5k7ZVSZf2VQB86snTquvDOr+B80r7fbbTisTlHr4tK5Hz//C/w7/2J4YcSIEbRu3Zq4uDgKCgr47rvv2LNnD1u3ev8w9vP3YLPZuZl4myuXr7Nnx36P0lpmkThvZkY2Xy38wW3N1+BCg8Z12f/rUa8yGTnZeZw8epoWbZux7ZfdqNRK5iyeQkRkGGKJmBZtmnLhXAIF+QUMf3e8K/g5+/tFuvd5hVqPV+f34+fcSqftO7XCarF6LQtqQ4LIz833amQP8OuuQwz88G1atG7K9s2eAwyv9ezEL2u38UzLp+jRtysF+QXodIXs3XUQq9XGMy2f4s1XBhIdG8XEmR/y0w+/sGXDbqpWr0SPt1/l8P7jXDjrnE7V6wrR6wpZuuB7PvtyEvv3HiHh4lWiYiLp/Fp7bHYbarWKmFjnRHJqcjpXffTdxcZFE1zCiu3E0dNMHv0p4Oz1k0ilDHt3AoZC5+suV74MM74YT6Uq5V2CxyXJzysg8epNvlmymozUTBo0rsvzHVsSHRuJUCikctUKdGzZA4fDgUgkYvJnI1HI5WxYuw2zyYxEKuGFzq3pO/ANArxIujxcSi9S+Jr29Ind4VbSvRtroR5pQJDPdZFUiqZ8ZQpTbmPJywUciGRypz2XonQR6H+af4sw9INiM5sxpCZhzssGhwOhRIoiKhaJOuChBtLGgkJwOJCq5A/kNuLHz5/hP/MbmZ6eTvfu3UlJSSEwMJBHH32UrVu30qKFd29PP38t2Vm5nD55jiVffEt2Zi6PPvYIsxdNZtHnyzlx9LRrv2INOrvN5ubAAPD7iTuDCyWpXqsqv+486PPav+05zJTPRvPya+2JjYsmPDLUlX1yAId+O+bVomzcsOks/v4z8vN1/Lx6MzK5lI6vPk9ImJbEqzcRS8RYLe5aXkqVktwc30M3drsds8lCi7bNCI0I4efVmynUG9CGBtPz7Vdp2rwRB/cdpW792iyYvYzd234DoMmzDen8WntWLFnN8HH9GTFwEu90H86KdV8weFQ/LGYrQ94Z65IcKZkFSb6dwu/Hz/FMy6ecgezZyzgcDvKy87loSCBYG4g2VEtYRAifzP+It18f6jYAoVAqmDFvnEuqJCszh9nTvwQgvmJZIqMjmDjyE7fXmXjtFm++PJBv183n/NnLgNMeLiRUiwP46Ydf+HTKAtf+J4+d4ZvFq/j6x7lUqlKeqJhwpswaxZih07AWiRa36dCcBctnolIp0QSoCQkL9joN/bARCIU+M2SAm+/s/Z1Q4BIN9sb9ZP9EUhmq2HI4ooozSCJ/n9pfhN1iRpeYgM1ocNumv3kNVdkKyAL//OCOIVdH6rlEEnb/js1iJfaxSpR/qjqqkPtz0fHj58/wnwnslizxPhHp5+8nLzefhbOX8f3Xa13bbt1IYsemvcyYN57bN5NJT8ukZu1qhIY7++tkchmP1KzC+TOXXMd8//VPzJg3Hl2BnnOn76jeyxXyUqU21Bo1W37ZxUtd2hER5W51FhYewjuDejJu+HTPAwUCtKHB1KzzCA0a10UgEJCfm0+/Hh9QoXI8bTo0Z/2aLW6HpKdlUqlqeZ/3EhKmJT8vnw8HTKRZi0aMmzoMsUSEXmcgvmIZXn+xH19++wm9uwwiJ/tOBnLX1n0cP/w702aPJjkpzTVlPOfjRcyYNwFNpIpPF3zEqhU/O4ciHA5CwrRUrBxP1x4dWbrgOxbMXuYUcV44ic0/72Tl8rWurGN8xbJ8tnAitR6rztrty9i2cQ8XziZQu24Nnm7RiKiYCNe9WCwW1+Rqx1fbsmLpGq+vtSBfx65tv7Fx7XYSLl1DKBQy8IO3aN66iVf5Fl2BniljZjHry0kEBgXwbKsm1HqsOhfOJlBYaHD+fIRqCQi6k6EzmcxIJGKvWcGHhVAiRRkTh+66p06fRBP4wAGVUCJBFhqBMS3Zc1EgRHyfvqjF2nN+/lpsZpNbUFcSQ/ItxErVn/IaNuTpOLhkM5kJSa5tFzYf4fr+szwz/BXUof7gzs9fy38msPPz7yEzPdstqCvGZDKzaO5yXurajmOHTzFx5gi0Ic5vv8HaIIaO6cebLw907a/XFfJB/48Y+MFbjJkyhIy0TMIiQoiICqdS5XiOH/7d6/XbdGjOwjlfU7d+bY/ADqBp84a82a8r33y50hXohIWHMHvxZJeBfHHgkJ2Vy5lTF7hw9jJTZo3GZDSxfdNel29ttRqVKF8hjgaN63qduh0wrA9bN+7Gbreza+s+dm11DnrUb/QY1WpUplqNyuzaus8tqCsmLzef3/YcJjwyjM6vtSczPYu01EwKCwsJCFQTGxdN/2G96d7nFcRiER/PHYfRYGRgn1GuzGK9J2vz+4mzfPuVezB2/coNencZxHc/LySuXCy93+2G3W73GjCJRCJiykSRdCuFqOgIrl/xLk8CcO3KDaJiIki4dA273c5nUxdQ5ZGKBARqyPNiWXb88O/k5RYQGBSAXCEjNi7aY1La4XCQdDuV3Vv3cWj/cWLKRNG5a3uiy0Te0+2jGIvZQnp6FtcSEinI11H1kUqEhAUTGOS9yVisVKOpUIXC5NvYDHoEYjHy0Aivjf9Wi5Xs7FxwOAjSBrq8kIsRCATItWHYjAYsJaRLBCIR6nIVEUr9mbd/E1a976lru8UMPjyr75fcW5luQV0xxvxCEnad5NEXGyOS+AN4P38d/sDOzwNz9JB3NwGAM6cuMHryYELDtC4B32KqVa/E50unMm3cbJJupSIQCKj1WHUaNK7rdBuoWdm1b8061Wj7QnM2rnOf5mzZ9mmMRpOrf6x+o8c87kEbEsRb/bvzUpd2pKdlIpfLCAnVEh4Z6jHJaTA4y3FWq42RgybxyusvMHvxZExGMzKZlKiYCGLiopn0yQiWfbmSNd9twFBoIDo2kgHD+lCvUR1OHjvjcQ/xFcty7vQlatauxr7dh30+ryMHT/Le0F4kXr3FxXMJxFcsiy5fjznEglQqQSKRuKaK4yvEMf6Dj93Kxc+/2JKPP5rr9dyZ6dlcuXzdI5i9G2eWswejh0wlIz2L2LhoD325YmLjokm46D7B+f3XP9GiTVPWfLfB6zEOR+kflFcTEnmj03sU5Otc21Z+s47Jn42k+XNNkStKH4AymcwcOXCCIX3dB1zavtiCIaP6uZ5fSYQiEUKVBk18JWfjvwAEYonHz0dqcjqrv13PulWbsFqttHr+Gbr3edkjOE1Ny+LUiStUr14REXYQCrHYBWCwEqzy/twdDvsdD1WR+59im8WMzVCIVa9DKJU6e78k0v/MYMK/mVIzsgKB878/iN1u5/qBsz7Xbx69TJWWdVEGPWC534+fB8Af2Pl5YETi0r9tJt1OZc33v9Cq3TNu21VqFU2fbUi1GpXRF+gRS8QEaYPQeCm7hoRqeW9ob5q3buoU8hVA/UaPcy0hkRlFgUzZCr4lMZRKBco4BWqNCrPJgkzuqcUFEBikQSqTYjaZsVptfPvVjxw/chpNgJob126xZOUsACRSCa90f4Hn2j2DQACaAA0KhYwt63fR5oXm/Lx6s9uUZ15OPmHhIRgNJo8AtyQBAWrCwkMY0tc5TXz8yGnWrdrE/G9m8kTDOm73bLPaOHrwlNvxMrnMa6asmMsXrlCzdjUsFitXLl1j47odKJVy2r30HLFlolxadI2ffpI3+3Vlw49b6fLGi8yYOM/jXAqFnEdqVuaLT5e6bU9PzaRi5Xiv169WozIBgb6HIXJz8hj/wQy3oA6cWbyxw6ZT+/GaxMaVbk+XlpLOwN4jPYZfNq7dTo1a1ejao6NPaZbSGuVTk9Pp3WUQNxPvZF9++GYt2zbu5tufF7hs87Iys3n/7dFcOJuAUCgkSBuI0WCkUG+gU5fnGT62PwrlnT47h8OB3WzGlJOBJT8PgUiMPCzCqRknljg19q7fJRQsEKApVxGxSuMP7v4kYpXaGbx5mcqWBYf+aakWgcj3+yMQCvjjYaMfP/eH/y+EnwemXv3avtca1MGgN/DBuP58teB7Rg6axLaNe9yGGcIjQomvWJYyZWO8BnWu/SJDuZqQSOK1WyRevcWo96cwd+YS7HY7oeFaKlQs5/PY4jJnvzeG06lVTwb2HsWxQ6c8AojQMC3d+zgFhJ96uj7zlk3nmZZPUb5SWQaPegeJVEJ2Zg4zPprL80268lqHvnRt35cXnu3O5g27uHzhKj+v3syIjwaiUN6ZYDyw7ygvvdaOnVt/pXWHZ33eZ+duHdi2cY9bUFKcPUxPy3TbVygUEhjkHiSZTGaf5UaAIG0QY4ZOIzM9i8Rrt6j6SEVCw0MoyC0g6WYKZ06eZ+2qTZw4eprn2j3D4FHv8PgTtej17muISwTwIWFaJs8axaK5yz2uUbd+La/Bl1QmZezUIQRrg3zeX15OPqdPnPO6ZrVYuXThCvl5Om7fTHb5097N7m2/+bS4+2r+d2SmZ/m8fmkc3HfULagrJjsrlzVFTikAGWlZrsllu91OdmaOa4r65zVbXJPhxdjNRvKvnMeYnorNaMCqL0CXeIXClCRsFjOFKTc9BzscDgoSr2K3erqA+HkwhGIJmvhKIHD/+BMpVMjDo/5U4CwUCqnQ+FGf6/ENH0Gm+XdPOvv57+PP2Pl5YELDQ+g/rDefz1jstl0ToGbA8N6cOnaOUYOnuLb/snY7MWUiWfz9LFeW436QSCR0fPV5UpLSWLtyk6vvLa5cDJ8umIhK7f0PpNFg4uc1W5hZIut04uhp3nxlIJM+HUmbDs1dQYtMLqPbm52pWDkei8XilvlZ+c064srF8MmCjzxcHWw2G59M+oLPl05lcN+xZGXkMPmzkVjMFoK1gZQpG4NKreSt/q8TGKihXadWHjp5bTo0R61WsewuGRhw2m3pCvQc2neM9LRMHq9fizJlY3izbxemjJ3t2m/j2m283K09i+auAJxBc8OmTyASCrmSkEhgUAAvd+vAutWb2b39N4aNfpcjB08xoPdITCZnubldp1Y8Xr8Wg/uO5ZMvJtDvjeE0fqYB3/68gNs3kxGJRMTGRTNm2DQunLnsdp9yuYyXX38BTaCasIhQFs9bgUQspkuPjpSvWBa5Qu66jje86RiWpFBXyMSRM9n6y24AnnyqLh+M6098xThXaTnxuncNOXAOv9zrGt7Q6wrZuG67z/Vtv+zmtZ6dCA3TknqX9mBJrBYrhfpC17/tNhuFKUleJ2idvrARWPI9+zEBcNixGQyIpH5tzj+DQOgcaAmsUh1boR6b1YJEqUIokT2USeSASC0xdSqSdNLdv1odFkj5xo/6ZU/8/OX8p50nHpQHUW72Uzp5ufkkXr3F8iWryEzP5tHHHqF+o8dRqZW80ek9r+KzbTo0Z9y0YW5lqftBX6AnLS2T61dvIhIKSUvNYOn876hUtQJjpgx285QFSLqVQodnu2M2eWqLaQLUrNm6lKjoCLftt28m0+HZ7l59UZs/14QgbaDXHrKXurYjLTWDfbsOAc4s1dyl03jyqcdd97Js4Q9ERodT6/Ea7Nn+GxaLlScbPY7JZCYgUMMXny7l9MnzrnM2avoErZ5/ho9GznTrp3ukZhU+mT+ByaM/47c9h3miYR0aNK5HnXo12b5pL2XjY5HL5eza+isWi5W2L7agavVKDO03jmsJN+jaoxM52blsXr/T43W06dCcwOAAbt9IpkPn1gztN46IyDD6De7J+A9mUKduTbr3eZn5s5Zx6bzzA6tajUqMmzacytXKu+RmsrNyuHblBjM+msuFswnIZFJeeKUNvd55zdXrV5KM9Cx6vNSfWzc8M2MA87+Zwbs9PnAF9eB01Fi1abGrz23LL7tclml3U61GJRZ8M9NNs+9+MBpNDOk7ln27D3ldr1S1PIu++wxtSBAXzl7mlbZ9vO4nEolYv3sFZco679VmNpF30bMnsxhN+coUXLvsc10ZWw65NvQBXsmfw261YrdYsBn1CERiRHLFf0qE+J/CmK8n52Y6CbtOYTVbKfdkVSIfKYdS+1drNPr5X+X/jfOEn3+OwKAAaj1enao1RqIvKMRqs4ED9mzf79PbctvG3fQf3ocYZeQDXctkMjPq/SlcOHvZ7QM+JSmNGR9JGT99uJs8SnpaptegDpySHTlZeURFR2A2m7FabChVCs6dvuQ1qAPYvX0/M74Y7zWwy8rMceshM5vMLlHf1OR03nptCLduJDFkdD++/vIHDIUGBAIB61ZtxlBoQC6X8cmCjxg5aLKrV65Lj44Memu0h6be+TOXWPblD0z6dCR5ufls/nkH61Zt4ufVm5k2ZwwL53zj0skD2L/3CFUeqch7Q3sz+O0xNGhSl4G9R3l9jVs27GL24skM6DWS/sN6IxaLSEvNQBOgxuFwcOLoaYxGE58unIjVYkUgEBAYpPEos964fpterwy64wpiMrPym3WcOHKa+d/McOkaFhMWHsLYqUN4u9tQt/cW4OVuHfht9yGP7boCPetWbabvoB6IxSJqP1adsPAQMryUXAeP6vfAQR04M5Fde3byGdh1eaMj2qLzhkWEUrFyPFe8iEG3fbEFoWH3r4vmAAQSCQ6L959FseL+poQfBnaLBX3SDXeXDoGwqNdP7Q/uSkEeoCKqRjxhlWKx2+1I7zEA5MfPw8T/m+nnTyGTydCGBhMeEUp4ZCi6UgzcrVYb9j9QFsvKzOHc6YseH/AAOzb/SnZWjts28T2U45VKOSeO/M6IgZMZ0HsEK5evo0zZaK8ZJXCWC6Oiwhk16X2Paciatatx9XKi699CoZAKRYMEp06c5daNJNQaFZFR4ezdcYAjB05yeP8JV/BnNJpYvng1L7zcGnBO0165dN0jqCtm3cpNFOTr6P/mhyyY/TU3rt/GUGjk0oWrbkFdMZfOX+HSuSvUrlsDs8ns9RlCkT2f0YzD4UCvLyQ61hl8S2VSKlQqR9+Bb/DJ/AmUiYsmvkIc5cqX8QjqcrPzmD7+c6+BfcLFa1y9dN3r2qOPVef7DQtp8mwDtCFBVHmkIjPmjaN6rap8+9WPXu93/94j6It+1iKjI1i6ag5PNKjjWo+IDOOzhROpXuSF+0eoWr2ixwAQwGNPPEqTZxu4/h0apmXOkilUq1HZbb/mrZsyYHgft95LgUiMpBQXCqFYgjLK+1DQH9HY+6M4HA6MORme1msOOwWJCaU6bfi5g1gm8Qd1fv52/Bk7Pw+VJ7zIjxRTrUalUoWHfZGVme1zzW63oytwDybDwkMIDArwOi068IO3+GH5Or4rETAcOXCSiKgwxk8fzsA+ozyyfbFx0Zw9fZFvFq3ig3H9+XzmYi5fuEpImJZaj1Vn7sw74tk9+3ZBGxqEzWZjy/pdRa+7spsbx90c3n+cnn1fZcfmX2nUtB4mo2//Y5PJTF5OvltTf8Om9di1ZZ/PY7Zu3E37Tq3u6fNaLO8iFAixWKxEx0ZSsXI8i3+YRVBwAKJ79AYVFhrcBKjvZte234gtG+MqSxajUMipVqMy02aPoVBfiEQiQSqXMqDXSJ/nCgkNRlpCH65sfCyfLpxITnYeVqsVjUZFWISnvM2DEBKqZcT4Abz6+gus+W4DZrOFjq+0ofIjFV2uHcXExkUz/5uPyc7KRV+gJzA4kJDQYI+JaKFIhDIqlnx9gUefnUwbilAsRqgJQF2uIoUpt7GbjAiEImSh4chCwv70xOb9YrdYMGWkeV90OLDo8h/IT9ePHz9/H/7Azs9DJTomgkbN6rN/j7t2m1AoZMSEQaVOSPoiNCzE55pQKPQIFkPDtcyYN45+PT5wy3wFBgVQr0Edur3wjsd50lIy2LhuOy3bNOOXtdvc1vr0f50VS1Zz60YSIwZNYspno/hu2U/0ePtVTp04x8dzx7Js4Q/0ercbj9WriVqtwmqxuqRErBarWxByN2KJGKlUysvdOqDTFVKjdjWf+5arEEdeXj4ikcg1FCASibD4KN0BWMxmxGIRMrmMqtUruWzKSlKtRiWuXblBn/dex4GDjPQsFq6Y6crc3Q9CkRClSuHTVzcwOIBp42YzdupQr8LSao3K7b3s2bcLRw9610x84+1X3TJhAAGBmlKlVf4I2tBgtKHB1KlX0+Vz63PfkGCXIHdpCKUyAio+giknE0tBHgKRCHlYJGK50hW4SQOCECtURRqAAoQSMQLB31lgcZTqmWs3+f7y4cePn38WfynWz0NFGxLMhI+HM2RUP8IjQpFIJTz5VF2+W7+AajUq/bFzhgVT67HqXtdat3+GkLsEaMViMY898Sg/bfuKPv1fp+mzDXlvaG9+3LbUa7mymG0b99D5tfauLEulKuWZMmsUJ46cJuHiNcDZ35WenknDpvUY/t4EPv94EVt/2c2sLyfxbKvGrsD18oUrNH66PgBhESE8/2JLPpk/gTmLp/DOoB6uoA/guXbPEBYRSv1Gj1GpSjwmo8nns3pn4BucP3OJz5dOpX4j54DG8SOnafz0kz5fV7MWT3H+zGWna8UHbxFXLsZtPa5cDGMmD+GRR6sQHhlKwoWr/Lj1K5/P3BchIcF0fq2D17ViMerf9hwmNcXTx9cb1R+twmtvvuSxvVe/16hUxbtu3l+FUCi8Z8byfhEIBIhkMhQR0WjiK6EuWxGplzKrUCJBJJUhkkr/5qAOBAIhwlIycmL1/8YQgMPuwFxowuqjv9aPn/8i/oydnz+F2WwmLSWDQ78dJ/l2CrUeq4FUKsFoMDJn8RQ0gWoCgwLcMilWixW7w1FqFqskWm0QH88dx5ghUzlSlMERCAS0aNuM90e+49V2SiqVUq58HO8N6YWlRMbM11AFOAWAY+Oi+G79AvJy8kEg4Lc9h9m+aY/bfmdPXSQzI8ulqbZ9017eHdKL4g69rMxsRg2eSuNnnmTesmkcO/g73Tu+i8FgBKB23RpMnT2asUOnIRKLeL1XZ1atWEe3Xp15rcM7KJRyps4ezY7Nv7Jl/U5MJjPlKsTRu99rHPztOOtWbUIilTD505FkZ+WQcPEawSFBVKpa3hWAFhMWHkKXNzpSkF/A8sWrOXrwJO8OeROVWkVqSjqRUeHodXqmjJ3FlM9GodaoePKpuvf93pREIpXQrddLHD98irO/3/H+FQqFDBv7HutWOUWcs7Ny7+t8wdog+g58g5e6tuPQb8cQCIQ8+dTjhIZpH3pm7p9AIBAg+JtKqw+KUOLs9dMlemZ3hRIpIvnfN8TxV6HPyuf2iQRun7qCVCmn8rN1CIwJQ+7XmfPzH8cvd+LnD2M2mzl68CT9e410K3mWjY/lwwkDGdx3LOXKl2HOkilERIaRnZXD1YREVi3/GUOhkfYvPUftx6sTHulZlismKzOH7KwcDIVGNBoVYqkEs8mMSqlAFaBCo3kwa55Tx8/SveO7XtfGTh2KXCHjsykLyEjPQigU0uSZJ3nl9RcY+f5kl9/rgOF92FIkTlzM7EWTebrlU4DTT/WFZ7vzRMM6NGzyBLOmLfS4VkyZKKbOHk1WRg5pKRn8sHwtny+ewmfTFrBr62+IJWJatG7KG2+9SkpSGilJqaz+boObj2tEZBj9hrzJuGHT0QSomfnFeM6fvsS61ZuxWKw81/4ZOndtT0yZKKxWK0PeGefKWCoUcoK0geRm52EwGAnWBrJq8xIP6Zg/wu2byZz5/QKnj58jIFBDjdrVWLdqE9s37QVg7favqVC53J++jp+/FrvNiqUgn8LkWziKhJHF6gBUMXH/+f46XUYeu2asxJhf6La9fOOaVGzq1JqTaRTIfGhl+vHzd+OXO/Hzt5CRlsXAPp6yHDeu32b1t+tp17Elq1b8zNYNu2n7YnNmTvqCjWvviL7+uusglatVYN5XzsAkP78AoUCANiQYsUTMjeu3GNx3rCsLJRQKaftCCxo1e4LbN1No16kVJoMZTYAKmfzek2fJt1Ox2Ww0avYE+/cccVur9Xh1AgLVDO033rXNbrezZ8cBEq/dYsiofoweMhWFUkGlquWZ8/Eit+NLuj8Uf1dq3+k5Ppn8hdd7SbqVQkG+jh+/30CnLu1IuZ2KrkDPgOFvcei34xTqDWzZsIsWbZvxQf+PaNG6Ke07tUJXoGfLhl0k3UohLTXDKUjcpB5tX2iB0WiiVt0adHi5DQ6Hg+DgQMQS56+4WCymXceWrsDOYDBiSDK67ufplk8RVIqDxYMQHhlGxtZ9nD9zGYPByILZX7ueSeNnniTkAeQ//PxzCEVipIHBSFRql6etQCz28LX9O7HbbDisFqe/r1CEQCJGKHywErnVZOHs+gMeQR3AtX1niKpejkNLNhFaMYZ63VugDP7vZ4f9/P/CH9j5+cOcP3PZZ2lz744DzPhiPKtW/MyWDTupWr2iW1BXzOULV1n/4xYsFitfzf8OuUJOxy7P81KX53m721CSb6e69rXb7Wz4aSsBgWpSU9I5efQ0TZ5twPkzl+nZtwtl4qKReCkhZqZnkZebT68u75OfV8C4qUN5stHjbPhpG7oCPY2ffpJuvTrzTvdhXl9L4rVbCAQCKletwLtD3mTh7K/d1oOCA92GDAIDNZQrXwaVWunK8nnj9xPnePHVtghFAkwmM0q1krhyMazcuJivv/yB/XuOEBCgZs7iKWxat4OffthIcEgQPft2wWg08cmkL1CqFLza/UW2b95Dx1eep2KVeJ8WYzXrPEKlKuVJuORerlVrVLz5Ttf7Co7vB6lUwvMdW+JwOPjy8+U4HA6kMikvdG7NW/27u/UX+vl3IxAIEEik8C+oGNstZgpTkzHnZFGk+IdUG4IiIhqRxLuziTfMeiO3T3iWmItJv3wLbXwUaRducnLlHp54oyUSv2SJn/8Q/sDuf5jCQgNZGdmcPX0Jq9lCzdrVCAnTlmpK/yDkZOf6XLPZbNhtTs20GrWqsvrb9T73/emHX+jaoxMmkxmTycyab9fzSI3KbkFdSdau2sT46cMZ/t4EXu7WgU8nz2fTzzv4es3n1Kh1Z6LUaDRx+sQ5jhw4waXzV8nOdOrdjRk6jUpVy9OiTTMUChnPPtcUh8PO7ZvJPu/x1s1k5i2bxughU936x5QqBfOWTSc88o7wbmh4CFNnj0YsEZc6JRoVHcHUsbP4cPxAWj3/DNqQYEQiEWXjY/lgXH90g3WkpmTS46X3MBUF0LduJHH6xDmef7ElfQe+QUZaJgtmfc0rr79AVEyEK6jLTM8iLTWT5NupRMVEEBEVRkRkGPO+ns5P3//Cmu83YDKaeaZlY3q/181Dn+/Pog0J5rU3O9Oy7dMYDEZkMikhYVrkPoJHk9FETk4eOJzuICr1f7+H69+ExWDCXGhCIACJUo5Efv+B0L8Bu82KPvkWlrySmpUOzNmZOGx2VLFxD5RJdNh9dyA57A6XTE7S71cxFhj8gZ2f/xT3/ZuQnJxMdPTD/ePv56+jIF/HL2u3M338HDdR2jfeepU33+lKsPbPZ01qliLLER0b6dKRe7ROdbZt3O1zX5PJ7CoZglOj7Mb1Wz73L9QbXD6hly5cJbpMFNev3GDiyE9YsHymazL11o0k3u42lBnzxrF43rdu50i4eM1V4hWLxTzTqnGpQVhAgJrU5AwmfTKSa1ducPb3C8SVi6Vm7WpERIW57qcYbUgw8z/7ihc6t+G7ZZ4iu4FBAWgC1GSmZ7Ni6Wo+mvEhhfpCAgLVCAQCZHIZBoOR6ePnuIK6kvyydhvf/DSPuTOXcOXydSaP+YyeSV3o0qMjRoOJwW+PcXNCiK9YlnlfTSM2Lpq3BrzBS6+1x2F3EBCkwWa1kZWRjUwue6hDCWKxiKiYiHvul3QrhSXzv2XDmq1YrTaatmjIwGF9iIuPfWiTqP9fcdgdFKTncHrtflJOXwMBxNapSI0ODdGE/7tK4g67HYfNCgKBh16fw2q9K6i7gyUvG0dkNNxnYCdRyIiuVZ6kU1e9rodXjiXxYJHFnwOsRu9VCYfdgSFPhz4zD2OBgYBILfIApb8vz88/zn3P0FevXp3vvvvur7wXPw+RWzeSmDp2lofTwNdf/sCZU+d9HOWO3W4nLSWDhIvXSLx2y0PwNyIqnAaN63o9ts97r7P62/VoQ4J4/MladOjc2ud1Gj/9JMcP3xHwzcrMIaZMlM/9lSqFS8MtIFDjcnG4cDbBNalqNJj4av73rv18OS6AM7MXGqbllddf8Louk0kpUzaGHp37k5ebT4PGdenz3uu0ev5pomMjvQYfF85dZv2PW3n0sUdo3rqJ21pEZBhzlkxh/mdfAc5y9JmT5+ncupfbVGtBvo5Tx8/6vO8jB064Xi/A11+uJCcrj9GDp3jYW12/coMh74wlOzMHsVhEeEQo6gAVVy5dZ/h7E+javi8Deo/k8P4T5OcW3H2pB8Jstrie+71ITU7jzVcGsubbDZhMZmw2G7u27KNL+7e5fTPlT92HH9Bn5bFz+kqSf7+Kw+HAYXdw63gCuz5ehT7Td5vA34nD4cBmMqJPukn+lYsUXLuMKScLewltRofVuxOLa91W+npJJAopNV9o5DULF/1oeQrSc7GanNcWCAVIFJ7ZTYfdQc6tdLZP/o7dn6zh4Jcb2frRco58vQ1Dru6+78WPn7+C+w7sJk+ezNtvv03nzp3JzvbtBODnn8dstrBi6Rqf64vmLvfqylCSgnwd2zftpUv7t+jUqiftn+7GwN6jSLx2J5OmDQli0icj6NP/dZewbPlKZZkyaxSJV29S98narFg3n6joCGrUrka16p7abEHBgbR6/hl2bdvndm27ze5THLfjK23ZtnE3EqmE+PJlSE2+o4tWXELR6ws5V+SCcPH8FerUrenztT7VrD4SqYTX3nyJhk3qua0plAomfjKCH75ZS99Bb5CXm8/pk+e5cf02BQXe/4DbrDZOHTuL3W5n9OAplCkbwxdff8xHMz7k04UTeXdILwr1hVxNSAQgJjaKtNQM8vMKeP/tMWSmZ5GanH7P98hus2Oz2ShXvgydXn2e9i89h8Nh5/RJ74H7hbMJLqkRm83GwV+P8VqHvvy25zBpqRmcOHKaPl3fZ8NPW9EX6ElLySA1Od3D2cMXybdT+fH7X3j/7dFMGv0Zly9ccQXdvjjw6zFSkjwdDgr1Br5e9EOpLhx+SsdmtXFl72ksBs9naNIZuHnscqlfeP4ubEYDeZfPY87JxG4xYzMa0N+6jj75JvaiaVzukbkVPOAAhSY8mBYju1C5+WNoIoLRxkdS59VmRNUox9n1B1z7la1fDZnGsy2gMLeAvbN+wqRz//lOOXOdS9uPY7M8uHWiHz8PiweSO7l+/Tq9evXi/PnzLFq0iHbt2v2V9/bQ+f8id6LXFfLemx9y/PDvXtejYyNZvvYLD1ukkhzcd5S3uw312B4SpuW7nxe4ldisFiuZmdnYrDZkMikikRCL1UZQcKCbHlpaagabft7B6hXrMZvMNG/jnPT8cMBEt4ARICIqjC++/pgRAye5ZEVEIhFtX2xBvSdrM+HDmUz85EOEQgFSqYyZk+YSERnO7MWTCQwKQK8rZOi749m/5zAhYVrGTx/G0HfGeZQ123RozgfjB7hK0+lpmSRcvMbFcwkEBQcSGBzAmm/X83qvziz8/BtOHXNm0AQCAa2ef5qhY971MLa/cf0WRw6cZOLIT9y2q9RKTEYTmgA17494h7HDpgEwatL7fPvVjyRevQnAyl8WMfidsbRo05QLZxM4vP+41/foi68/Jj+vgJzsPH7bfQiJREzHLs+TkpTGjInzvPrNLl/7BbUeq05qcjqvtO3tdbhDKpOy+PvPeKf7MIwGE42a1WfQh29RrnwZnz68NxOT6Nm5PxnpWYjFIgaN6EtomJYDe48AAjp0fo7yFcu6iUkbCo28//ZoDvx61Os5IyLD+G79AsLuer7/JvJy88nKzOFmYhJBwQFERYcTHhn2p6zMHhbG/EL2fLaG/BTvX8S18ZE07v8CMuU/J11it1rR3byKVec9S6ypWBWRVA44KLiegM3gOckqUqrQlKv4h+zWbFYblkIjNouV85uOcH3/OcD5+x1XvyqPvtAIRdCdnmRjvh6T3ojVZCHrWgpXdp9Cl+H+OySSinluXHdUIX/NZ4xJZ8CkM2AzW5Gq5MgDlIgk/nb5/3X+MrmT+Ph4du3axdy5c+nYsSPVqlXz+EN/4sSJB79jPw8VuULGk0/V9RnY1albA3UpzenZWTl8OmWB17WsjGx+P37WLbATS8RERoV73b8kEZFhvNHnFZ5/0TkxGRTs1FErX6kcOdl5bhmqVu2eISIyjC9XfEJ2Vi66Ah1ypYIrF69yMzGZOUum8MPXa/l110FCw7VM/nQU4ZGhruEBlVpJn3e7sX/PYbIysln6xXfMWjSZn1dv5uSxMwQFB9KzbxfqN3zMrd8wODiQnVt+5fD+E+j1hWRn5jBszLvMmbGIC2fvTNI5HA62bNiFVCZl5EeDUKqcfTX5eQXs33uUilXikctlGEtknPQ654dS9z6vUL5iHA2b1KNc+TgK9QZXUAeQnZ1L0q0U1q7cxLTZo7lw9rJbyRXg9d4vo1IrmTVtoZue3p4dB3jq6foMHf0u08bNdjtGIBAQFOx8Prk5eT4nds0mM8m3U7FYrNhsNn7deYDDvx1j5cZFlK9UzmN/va6QT6fOJyM9C4APxw9k3+5D7N15J/Ox/sctNH6mAeOnD3N9oRCLRaX29Kk1KoT/4h67jLQspoz5jJ1b72SbQ8K0fLFsOlUeqejRd/l3IxQJkSh9N/3LVPI//HwdDnuR5ZgAoY9g/77OY7f5DOoAzLk5OGxWZMGhqOPKo0u8gs10R6ZHJFegjiv/hz10RWIRogBntaFWp8ZUbVkXi9GMRCFDHqB0DZnYrDZyb6ZzdPl2V6AcEKXl0Y6NSdh9iozLt13ntJmt2K1/TcZOl5HL4WVbybrqbFMQScVUa1WP8k1qIveSWfTz/5MH/stz48YNfvrpJ4KDg+nQoYPHf37+eUQiEW1faO7hoQrOIKz3u697+GyWxGyycOn8FZ/rR3z4d94PQqGQsPAQwiNC0ev05OTk8kzLRkyc+SFLfpjF+yPeZuXGRfR5txsBgRq0ocFUrBJP7bo1CQzUsGn9TlKT0zhz8jzVH61C7bo1yEzPZtmXnWHujgAAzYtJREFU33tkICtWiWf4uP6IxSJOHjvD+2+NRqlS8PHcccz7ahptOjT3sCOTSCW8/PoL3LqRRHZmDkKhkNi4aLegriQb124nK/NORsRQaCA2Loo5Hy9iyuzRHtIjrds/S90na/Pl3OUMGNaHRk3rcfTgSVeGRyKVuPrT8nLzmTnpC6bNGUPPt7vwWL1Hefa5xixdOZv4CnH8tuewW1BXzG+7D6NUKjyeR6vnn3Z5mQpFpf/qi0QitzKdyWRm3mdfodd7Zkxyc/LYs20/ADFlIhGKhG5BXTH7dh3k+JE7XzYkUgld3ujo8x5e7/0yIaH/rgb/YsxmC8uXrHIL6sD5xadP18GkpWT8Q3d2B6lKTpUWj/tcr9z8MSSyP5DlMpswpCVTcPUSBdcTivrhfDu63Bvf2U2BQIDdZKTg2iWsRgPq8pUJqFgNddmKBFSshia+EiLpQ5LpUcqdZdmyEWjCg9wmh/WZeez+1D37mZ+SzaElm6nWqh5C8Z0AWR6gRCR9+Bm0wlwde2f/5ArqwBlEnt1wkFtHL/0ryup+/h080E/fokWLGDJkCM2bN+fcuXOEhf15lXo/fw3RsZF8vWYuE0bM5PQJZ3mhYuV4xk0bSplypU83C0VCwiNCSU/L9LoeFhFCVmbOn/rQTU/LZOzQaW5lOLVGxbxl06lUtbzXkt+FM5fo9Go7Lp1PYMeWXwF4tlVjerz1KhM+nElebr5bBiggUEOnV5+nWfOGJF67hVAopGx8LKFh2lI128rERTPpkxFMGDETuVxWqgWWzWZDryvEZDKTmZbF2dMXCQ3XcvrEORZ9/g0jPxoEAqfHbGR0OMcOncJut9OgcV0+GvkJRqORho3r8VrPTkwZO5s2HZ5l55Y7wcLVhET6vTGcJxrW4ZGalSkbX4Y69WoSHhnGez0/8Hlfu7b+SpNnG/Dj978gloh5oXNr3hnUwyV1E1ykvedNUkatUSEQCDxKufv3HEaXr/ewcLPbHa4PlabPNmLLhp0+72vFkjU0bFzP9T7FV4zj9V6dWb5ktdt+jZrVp/Ezvv1v/2kyM7JZufxnr2v5eQVcvnD1viaC/2pCK0QT90RVbh656La9QtNHCYp58L/fNpOR/CsX3YYV9LeuI9EEooot5+F3ey8EIjGSwCCfE69ilRpjprMHszDpBgEVH0Gs9PzC+ldis9hI2H3KaxbObrVx89glomuV5/Zx55e/Gu0boAh8OJJSJdGl5aDP9N53e37TEWJqV0Sp9Ysp+3mAwO65557jyJEjzJ07l+7du/+V9+TnISAUCqlUtTxzl04jLzcfu91OQKDmvoKxsPAQer37GlPHzvZYE0vE1KhVjXmfLGH4uP4+dclKw2y28M2ilR69VboCPX27DeWn7cu8TsVGxUYyYtAkriXcsdVKuHiN+IplGTNlMFYvf3gVSjmxcdH3rdNmNlvISM8iLDKUr9fMJT0tHW2I1uf+IpEIhVLOgV+PMLTfeCxmC8PHvkd8xbJcOJvABwM+Qi6XIZVJKcjXMeKjgSyYtYyD+465znEt4Qab1u9k4fKZhIRpmffJEo/rHDlwkiMHTvLlt5+4rmmx+DYuN5stdOryPJ1fa+9838O0KBR3eqnCIkKZ/Nko3u42xE1kWigUMuHjD9i59VePc6rVKgRCz+yKJkBFzdrVOHPqAnKFjLLxZZBKpVw8n0Bmunt/l6HQgK3E+xQUHMhbA7rTrlMrtmzYhdFgpNXzzxAXH0NIqO/n/k9jNplLHQy5eSPpb7wb38g1Suq83JTKzeuQdPIqAqGgKABQI1M9mCyHw27HkJ7idQLVUpCHzWR84MBOKBKhjIwhX1/gMfkqCwnHosuHojZwh9VadG33KVVjQSGGXB26jDwUgSqUWs1DdYuwmsxkXfM9oZ1zM52YWuWRKGRUf74+MbUrev09+bPkJnn/og3Ovjubl55aP/8/ue/Azmazcfr0aWJjY//K+/HzkAkKDnD1Vd0vAoGAlm2ace73i6z/catru0KpYMyUwXy7dA3HDv9O73e7+ZxcLY3MjGxWr/AuWGwwGDl3+qLXwO7U8bNuQV0x16/cIPHaLerWr/XA91ISs9nCyaOnGdBrJAaDs48nKDiQkR8NpGr1Slw851mObd3+WcRiMYPfHusqoa5a8TPvvN+TEQMnYbfbMRpNGI0mQsK0aLVBbkFdMdmZOaz5dj1Dx77Hm+90ZdfWfR49cE80rEPFyvGAM+PW6vlnWDrfuwRR2xdbEBkVQWi47+DIbDIze9Fk9u06xNWE68SWieaZ5xqzdcNuWrZpxqZ1O9z279Kjo9sXA5PJhMVsJSBQw8iJg1i3ajNPNnqcg/uPE2a18ly7Z7DZ7Xw84XNXf2HLtk8TEOT+oRsYFEBgUABVvUxN/1tRKORoQ4Ndotd3420C/J9CpnZ6nmrjPDOIVrMFQ66e9Eu3MOkMhFeJRR0aiDzAMytmt1ox+8isAZhyMpGoHzygEsnkBFSshiU/F3N+LoIiKzOb0YAx3T2gunsopTCngIOLN7mVJxVBapoMeJHAaN/DYQ+CUCJGGawh95b38royREPZJ6sR/1QNFIF/XV+oOizI55pYJnErB/v5/819B3bbt3vaQfn53yUkTEvrDs1p1e4ZbiYmoVYrUWlUrFi8mhNHnZpzlj/4DdFqsbgCJ28k3fIsD+bl5rOhRJB5Nzu37KPjq21d/7bZbA8sbptyO9UtqANn/9jkMbP4fOlUZk76wlXWBmjeuimDPnybzRt2uum2JV67xbaNu/ls4US+W/YTp0+cQxsazOCRfdm19Tef19+0fie9+79OmbIxfLd+IatW/MyOzb+iUMp5rWcnnmpWn9DiwQOJmM7dOrD+xy0eWbHK1SrwRMPHSg3qsjKzmT5hDolXb9GgcV3iysWSkZ7FwD6jsFqsVKpWnnIV4lxDHbUeq067jq0QiUTk5uRx7coNvl26huzMHJo0b0iLNs2IKRPFW92GuK6xduUmqtWoxNRZoxn01mi0oUG069jS6/tiKHSKTj8sW7O/mrCIEN4Z1JPJoz/1WIsrF0Nc/L//C7DVZCHl7HUOLd5MSXGEkArRNOzTxm0a9L74E5PAIqkMYUg4koAgDGnJFN6+gcPunoEXKZQISgxJWIxmTq3Z5xbUARhydfz6+VqeHf7KQ8ncSWQSqraqS/Lpa17Xq7Wq97eIPQfFhCBVyTHrPf92VmxWC3ng31ui9vPvxT8j7ccnKrWSHi/1JyQ0GKPRREH+Hd226NhIFH9QJkEulxMZHe6mP1eSGrWremwTICh1ylAkElKQr8NoMHLjehKnjp8lPDyEOk88SlhECBpN6R9ShXoD+kIDkz4dgcMBWzbsZMdmZzkyPCKUq5cTGT99GCKREJvNgUQsQhsajCZAza1Ez7Lbzi37OHn0DO8N7c2A4b05feI8Z05dKK1P3C3giSkTxXtDe/F6r5cRiYQEhwR57B8TG8nytfNZ/e3PbFm/C6lUQqeu7Xju+aeJiCy9f8pitrqyn/v3HvFYv3HtFj37duHsqQu0bPs05SuVJSw8hPy8Ar7+ciVLvrjj5HH61AUqVo7n0ynzPc5z4WwChw+c4IMJ/Wnc7EmPDG9qSjpHD5xkw0/bkMuldOnRicrVKvxrhyaKEQqFtGzbFEOhgYVzvnZlJJ9o+Bjjpw/zkMD5N2LI03kEdQBZV5NJ2HOK6u0auP1MCsViZEEhmLK9Z65kwX/uNQuKHCekQVrMOe5fVgQiMaoy8W4TuKaCQpJ8eL4acnQUZhc8tJJsQJSW2p2b8PuP+1x2ZAKhgEc7NiYg6u9pGVAEa2j2fif2zf3ZTQS5TN3KVHqmDiJ/xs5PEf7Azo9PYuOiqFq9EueLhH5LMmR0vz/84RUeGcqgD9/mwwETPdbKVYijbHwZj+0BQRo6d2vvU3y3eesm/Lx6CyKRiIVzvnZtl8qkfPLFBB5/8lHUau/BXVpKBp9NXcDWX3Zjs9lQKBV0fq0doycNJuHSNarVrMySed9y60YSMpmUF19pS69+r7kGEZ58qi6rVng20mdn5bLmuw28NeB1QsK0HD14ktYdmrNxrffsd5sXmmOz2tDr9KjUKiQSSalZt8z0LC5fuIJQIKDf4DeJjo2kXHysK6tXGiKxqNTgulz5OF58uQ0vvtzGbXt6WqZbUAfwWL2a7N/jGRwWs+HHrazZspTIaHdJnNTkdN7qNsRN6mXPjgO0avcMI8YPQPsvD+6CtUG89mYnWrZthq5Ah1QmI1gb6DEJ/W8l5cx1j6CumCt7TlOxaS23wEggFCIPj8RckIvjrv5OSZD2oUynCoRCJCo1gVWqY87LwWY0IFEHIFZrPM5vNVt93j+AIe/+hLXvB6lSTvn/Y++8w6Oq0zZ8T+8zyaRXUklIgITQe68iduy9rW3XVbfoVle/Lbq67tq7a127IiAovfdOCJDee5ne5/tjyJBhZgABBXTu6/LyyjlnzpyZCTnPvL/3fZ6xA0kenEVPQwdevESlxCLXKBH/QLm7AoGAqNQ4pv7mKmwGEw6zHZVeg0yrRHoWvQgjnHucXaOlCOc0sXExPPPq41xy5RwkR4yGk1MT+ecLjzJyTMlpnXvsxBE8+uRv0B+pRAmFQibPGMdLbz8ZVjCOGF1C4eDgal7h4Hxy87P5dvEqpMfYNzjsDh68+0+0tYQ2ae3q7OZ3v/w/Fn+5zL+carVYefvVj6irbWDStDH8+ddPUHekGd5ud/C/tz/nobv/REeb75wDi/LDTkDedOdV/OPPz7J/TxlTZ09EHxPF1Fnjg45LSklgxgWTOHyokhXfrGfhZ99QVVEb5F/XS3tbJ3/+zZP84rbf8drz7/H7B/7KLfN/zk1X3BdWrPUlNk7PHfeFHoKSyaRMnDo6aHtHexed7d3Mu2wmMpm0z/EyTKbwN9HealZf3G43n3+4KEDU9bL0qxVUVgT3Up6LSCQSklMT6T8gh4ystPNG1AGYO8P7x7lsDn9lqi8iqQxtdj6KpDTEShVitRZ1Rg6qpLTvPDgRDoFQhEgmRxGfhDo9C5k+NqRolMiliI9j13K8nrRTQSyXoo6LIqU4m9TiHNRxUT+YqOuLMlqNvl8iiQX90CTqI6IuQhCRil2E45KYFM/Dj97PnT+/EafDiUKpID7x9JeZdFFaLrp8FqPHD8NssiCVStDHRKFSh+8TkSmkPP70w2zZsINvF6/G6/UydeZ49DHRdHZ0M2nGOLpCWJM47A52b99PZnZ60L721s6wvnwfvfMlQ0eEHsjYvWM/DfXNxMTpSUyO57UPnuEfjz7L2hUbUaoU/ObPP6dwcB52q53xk0cxbFQx99/+ewQCeOgP9zJ+ymiWfrUCq9XGmAkjmD5nIvt2HeAvjzyF03G0GjL/uou4+4Gb/f5zvRwuq2TNio1B19XW0sHKb9cx/7qLjttjKBAImDJzHBWHqvngv5/57Up0UVqeeeVxUtKPDq+0t3awZsUm3nntI4wGE8NGFfPv1/7Kc/98jX27yzhYWs5dD9zMgk+WhHyuUeOGojrGELuzvYvPPlwU9vo+fncBQ4YN+s59khFOnoS8NA4vD/27H50ejyCM16FIKkMeG48sOgYEgrNmIi3XqsibPpT9CzcF7YvNSUYRFek5i/DTJCLsIhwXl9NFZ0cXBw9U0N7aQeHgPERi0Sn3QHV2dNHZ0Y2xx0SUXoc+JvqkUisAWpt8y4CHD1YyetwwAD754CsqD9cgloh5/8uXuevGX4V8bFsYT7762sawz2e12nA4wluK7N6xn8FDCgBI65fM3//9e8xmCxaThXff+IRn/v4yYpGICy6eTr/MVPSxUbS1dPD3P/2bxOR4Jk4dg0QqYd3KTQwbVcQff/WPoKWlj979kuJhA5l7yQz/NpfTxUfvfhFwnEqt5Oe/vp3YOD211Q2sX72F3LwsEpLiwvYm6mOiuefBW7j6pkuor21CqVKQmBRPXEKMX1B1tHfx6G//GWA4vPjLZaz8Zh1PvfQXfvvzx2hpbkMkFNJ/QHaQYbJYIub+397pX7buxev1hrSn6cVudxx3me2nhNfjweNy4nE4wOtBKJUjEItPW1CJpGK0SfrgyDEB5M8cdtxZCIFAgOA7JE44LHZsBjPtFU0IRQJispKQa1UBJsDfFZFERPbEwQAc/HY7LrvTZ+cyJJfiy8dHkhgi/GSJCLsIYXE5Xezavo97bvpNwKTosJFF/P0/f/zOlbuGuiYeuvvP7N9z1Cx1/JRR/PFvD52w2d9ud9Dd1cOyr9fgdruDbE9cThelew+G9dUrHj4w5PaYuPACVSgU+pegQ3FssoNao6KttZ2br/xFgA3Gmy9/wPKla/jXy49z3cV3Ab7+sg/f+cJ/jNfjDStkXn3uXUaPH+b3dfN6vbjdR13mZTIp/3j2j7zw9JsB/ZAarZqX3vknhYPzwoo7tUaFWqMiPSP0FGdDXWPIFAmr1cZ7b3zCxfNn8/arH/HsP1/njQ+f4dP3v+Kj9xZgMVsZPX4Yv3z4Z2TmBFdKo/Q6ZsyZxAf//Szk81565ZywubQ/JbxuN06zEVNtJfiTBQTIE5KQx8SfVpxX2+EGii6bQM2WMup3HMbjcqNLiWXArOE07q0iJivYcuhUsJuslC3dysFv+8RNCmDwJePIGjfwtJYS5Rol+bOGkzF6AE6bE7FUjEyjPC3BGOH8xuv1nhNZzWeTSI9dhLC0NLdx942/DrIm2bZ5N2+89D4Ox8nHCHW0d/HLO/8QIOoA1q7YxJOPPY/5OD1acFTM9LUVORZDjxFliKi0AQNzSUiI43///ZwvPlpMS1MrzU2tNNY3o4/RBzX19zJp+tiwPW5SmZRBxQMCtvX0GPjo3QUhvc1qqxs4WFrO4JLCoH3ZuRl0dYXObQVftdHlPPq6JVIJl1891//z3EtnsuCTpUFDLkaDiZ9d/9BpxVv1TcE4lg1rtjJsZDFXXn8xr//vGZJTE7n3V7fxxbK3WbrhQ558/s/kFeQglQbfZKVSKdffdoW/x7Ivg4cUMmBg3ilf848Jj9OBqbq8j6gD8GJracRlNoV93MmQUpzN+pe+QiAQMPLmmYy+4wIyRg1g34INyFRyZGeo4tVZ3Rwo6gC8ULFmD5au8H1+J4tILEIVoyMqJRZ1XFRE1P0EcbvcGFu7KF28hY2vLubwyl2Y2ntC9on+FIgIuwhh2bOzNCDEvi+ffbCQ9rbwZqXH0tHeGdLgF2DZ4tV0hDF67UUulxEVrSWtX0rYY4aOKuLuB24iJc1nqSGRSph3+Sz+8uRvuefm35KUkkBPj5FFXyzjxX+9ScXharZs2M4/X/gzCUmBFcPBQwr47Z9/zqixQ8kryAnYN3X2BN7/8iWMRhM1VXV+G5ieLgNrQ/S99bLkqxXMvXh6wLb4hFge/ssvaG0OL74GFg1AcUxKwICB/SkZ4VuGGjtpBCtCJEWAT9xVhRhQOFmOlywilojJ7p/BQ3+4h36ZqYjFYiQSCQlJcSQmJwQtvx5Lanoy737xEjffeRUpaYlk5fbjkcfu5+mX/kJcwpkxlz2f8Xq92Ls6wu63tjbicYVvFTgRKr2G/lOHULP5ABtfXczGVxax+9O1IBCQO7XkjNhnOCx2DiwJTJiJz0tl3N3zyJ1cTMPOCtorGrEZztwE67mAtdtE26F6KtbsoflA7RkRsBFC43F7aC9vYOmj77BvwQbqdxxm54er+Obx9+iuP/uZzWeDyFrHD0x7awcGgxGhUIQuSkO0PupsX1JYmhpbwu6z2ey4jhNpdSwdxxGBHo8n5OTksSQmJ3DXL2/ikfv/L2jfyHFDSUiMY8OqLfzxbw8dGcLwsmrZBq656Gc4HU4qy6sRiUQcOlDBwKJ8fn7rI7jdblLTk7n3wVvRRmmwWe1kZKURnxjn7yN84b++qdhd2/YxbFQxWzbs4IbL7sFi9kVKjZ04kj/89QGfwa4svBCSK2RMmz2BfllpVJbXkJXTj8TkeP71t5e47Kq5REXr6D6mcicQCPj5r29De4xIikuI5Yln/8SGNVuQSCTH7VdrCSMaPR4PPd0Gn41CtC7kMdNmT+TFZ94KuW/ORdOIi48NmJD9rqSmJ3Hvr27j+tvmIxAK0cdE/eSXUfx4vbht4WPLPA77aVUkpCoFeTOGkTokl4q1e3CYbaQPzyMmK+mM+b+5XS5shqP/tuPzUskYXciGVxb5s1f3L9yEPjORMXfMRRl95jNWf2hMbd2s/vfnmNuP/luWa5VM/OVl6JIiX1jONLYeMxtfWYTH7QnY7rI52PT610x+8PKQSSo/ZiLC7gfCZrOzb/cBHv3Nk9RU1QM+m45Hn/g1OXmZxzXfPVsUDQleNuwlJS0xIHv0RMQdx49NJBKh1pz4H15MbDRDRxbxn9f+ynNPvc6hAxVotGquuuESrrzhYgA+fPcLnn/6jZCP37JhJylpScy5eBr33fKwv6etvraRPzz0dxRKBb999D7yC3MDxEVcfAxx8TEUlRTywX8/5z9PvBpw3vWrN3P3Tb/mzQ//w4WXzQxp1Asw/7qLiY2PITY+htHjh/m3P/rEr7GYrbz6wb/46+//xc5tewGfSfEf/vogWbkZIc8XnxjLxfPnUF/bSLReFxRB1kvegOygbc2NrSxduIKvPvsGsVjM/OsuYtzkkUFWMwlJcdx6z7W8/vx7Qdvv/MWNyBWn713m8+uL3PCORSAUIlapcRpDf64iuQLBaf7dkKnkyFRyotOn4fV6EYaZhD0ZbEYLxpYu6nccRiAUkjY0F0WUmricFEyt3QD0n1oSIOp6UcfpMLf3ULVhH9YuE0mDMolOjz+jma8/BJYuI5veWBIg6gBsBgvrnl/AlF9dgUJ3/ovXcwlLlxGHJfTKkrGlC7vRGhF2Eb4faqvquf3qBwJ6xPbvKePGy+/l469fP+mQ+h+S9IwUcvOyOHwwOErnlw/fRdx3MCjWx0ZTVFLI7j6RXL3MuWjaSZvRJiUnkJgUT15BDk6nE6lUSmx8DGKxiM6OLqKjo4IitnqJidMTGx/DxjVbQw4qWC1WXvzXW4ybNCpoMAJ8ViIv//u/QdsBKg/XUF1Vx+QZY1m2ZE1A9BjAlJnjySsIFljgM7rtrdz+5/W/0t3Vg8vlRqvTBF2H1+ultbmd1pZ2jAYTKamJxMRFc++Dt/LY74LjrYpKCkk4Zuq4qaGFW6+6P2Ai+M+/eYJBxQP418uPBwzFaHUabrrjKiZNG8v/3v6cro5uZlwwmdHjh4X17otw5pDqorG2Nh3TY+dDkZh6WsMTfREIBQiOF4tyAqw9Zra/v4LG3Uenog8t20HG6AIGzBpOzZYylHoNxpauIFGXOjSX6PQEVj79MRz5Z1m5bh/q+Cgm/uJSVDHnhzegx+3B0mWisyo4EhHA3N6DzWCJCLszjPs4qxVAUCXvp0BE2P0AWMxWXn727ZCN/2aThcVfLue2e64956p2cQmxPPfm33nm7y/zzaJVuN1uEhLjeOB3dzFq3NDvdC59TDRPPP8n/vjQP9i8fjvgmzqddeEUfvHbO1CpTr5RWyAQhBQV+phobrrzKn73wF9DPu6SK+fw8bsL/J5toejs6MYTZkDDarHS020I+9jtm3ezc9s+fv/4L6mpqmfpwhWIxWIunj+HrJz0k7J10UVpw5rcejweDpaWc+/Nv6Wt9Wjv1bzLZ3HPg7fwx789yHP/fJ3Ojm7EEjFzLprGvQ/dGmBN43a7+eqzpSFtXvbuOsCu7fuYccGkoGsqKimkcHAeLpf7uH13Ec4sQqkMbXYeptoqPHbfEJNALEaZnI5Ifu4Y07aW1QWIul6qN5aSOiSHKb++kkPLtmM3HrO0LIDM0YWsff4Lv6jrxdTazf6Fmyi5ejLi40ynnyvYeszYuo8/0OK0nvzAWYSTQ6XXIhAK8Yb4uy5VypCpgwfqfuycN8Lub3/7G5999hllZWUoFArGjBnDP/7xD/Lyzv3pObPJElTB6cvWjTu47pbLUarOvV/ApJQE/vT3X3Hfr27H6XSiUimIS4g96T6ojvZOnE4XUomEpOQE/vnCn+ns6MZsMqPVaoiJiw5rSmyz2unpNiAUCtDHRp+UWe2YCcOZPW8qXy9YHrD9tnuuw+lw0dHeyYQpo1ny1YqQjy8uKUQRYrIWfJOwMpkUuz30H+fYuBj27z7A/Dm3MW7yKKbMGIvVasNqtZGYfPrVrZamVm67+pcBmb0ACz5ZQlp6MjffdQ3jJo/CYrIilUuJiYkKei3dnT189enSsM/x6QdfMX7KqJDL7GKxOGJB8gMjEAgQK1Ros/LwuF3g9SIQiRFKJOdML6LdZOXQitBGxwAVa/cy7LppFF8xCUNjO2XfbPPv0yXH0lXTEiTqeqndUkbh3FGIY75/YedyuhAAIokYp82B02oHBMg0ipMaJHHa7AiEQoRiUVBVEgABKHQ/rSXBHwKZVsmA2cMpXbQ5aF/x/InIf4Lv+XnzV3r16tXcc889DB8+HJfLxSOPPMKMGTMoLS1FpTq3PzipTEJCYlxY24nk1KSgKKxzCaVK8Z1FZ3dnD5vWb+eFp9+gtrqBjOw07vvV7QwbWRQyAaIvHo+H+ppGXn/xPVZ+sx65QsYV185j3uWzTuh3FxOn57eP/oKbf3Y1G9duQyaXMmT4YJYtXs1jjzzFb/50Hy63y/d5HDNUIBQKuf/hn6HVhe7riY3Tc8lVF/C//34etC8qWodaq6LzSPLFupWbWLfS54hfMnwwI8YMQaM5vSWY/XsOBYm6Xt5+7SMuumJ2WOsWPwLBcfuyzrWqcQQfQonkjEV2nWk8Hs8RERQap9WO2+VCHaPDm6gnKi2O7jrfv71eERX23G5PyErMmcTabaKjsonK9ftRJ+jIHFXIgSVbadpbiUgiJmNMIf1G5GFqNxCdHo8iSoUoxBcckURM/c7DZI0bSPmq3UH704flIdOce1/ez3ckMgm5k4vRpcSy/6uNmDsM6JJjGHTxWKLTE06rb/R85bwRdkuWBMYVvfXWW8THx7N9+3YmTJhwlq7q5NBFabn9vuu575aHQ+6/+qZLfxSVEIPBiEgoQiQS8tF7X/LcP1/376s8XMMv7/g9v/7jvcy//mKkx1laqatp5OoL78BkPGKB0AXPPvkayxav5tk3/x42S9aP10u0XsfFV8wm+ohPWnx8DBfPn41UJsHj9vLcm3/nuadeZ+2KTXg8HrJzM3jk8V+S3T8j7Gllchk33XkVdTWNrF919NthbLyex/75MHK5DLFYdNwJ1dOhujK8bYnRYAqIIgtHtF7HJfPn8K+/vRRy//zrLvpOQzERIkiVcpIGZnB4xa6Q++Pz0hBJfH/fFDoV4+6ex/6Fm6jZXIahuZP8mcNCPg4gKi3ue81jtXSZ2PDSV3TWtCCSiOk/dQgrn/oYl933b8ntdHNo2Q6a9lVReMEolvz5bcbfexGxOclB4k6mUeCyOYjJSiZ/5nAq1uzBabUjlknIGF1A3rSSSK7r94RMrSCtJJe43BQ8LjciifgnuQTby3mrJnp6fFNHen34actzicFDCrjlrmt486UP/I37YrGIP/z1QVLTzozD+9miubGV1cs3sPDzb5BKpfzqj/fy8n/eDnnss0++xpSZ40lOTQy532q18dpz7x4VdX04sP8wB/YeCivseroN7N11gGeffJWq8lr6ZaVx74O3UjxsIDFxevqOISSlJPD3Z35PV1cPbrcbtUZ9UjFpPV0GikoKueqGi2lpbEMbpcHpcPKPR59l6IgiJk0fy7KvAz3lLr923mlX6wDyC3PD7ouLj0F6EjdAoVDI7HlT+eLjr6kqD0zvGD6qmMLBeTQ1tGC1WJHJZcTG6ZFFeup+dNiMFhxmGx63B6lSjiJKdcpLuyKxiOyJRVRvOoDzmOlEuU5FSnF2QLyXMlrDkCsnUTBnJB6XG6FYRHxeGq0H6wIeKxAIKLly8vcaDda4t5LOGp+tU/rw/lSt3+8XdX0xNndhN1tR6jWse/5LZv7pBtSxgRZBErmM4vmTWPvClyijNZRcPdlXLRII0CbpUerPjyGQ85lIjJyP81LYeTwe7r//fsaOHcvAgaGjogDsdjt2+9E/NAZD+Mb375tofRS33XMtl1w5h9K9h5BKJeQV5BATpz+vKyTHTlgKBAJqKuvCVo+sVhudHd1hhZ2h28jKb9eFfb4Fny5l/JRRQUuGDoeTrxcs569/eMa/7WBpOffd+jAP/f5urrzh4iCPOZVGheokbFaOff733vgEoVCILkqDxWz199y1t3bw2z//PEDYFQ7OZ8ToId/pOcKRm5dJQlLoJf27Hrj5xJXMIyQmx/PKu/9k3aotfPHxYsRiMVfdeAmDigaweMEKXn32bYwGE1KZlEuvuoDb7rku7Lk7O7qoq2lkwSdL8Hg8XHjpTPplpfrjz06Frs4eujq7sZit6KI0xMTqz8n+0/MRr9dLT2MHW95a6l8OletUlFw1mYQB6aec2qCJj2LKQ1ewb8FGGvdUIRAKSB2SQ/9pJSijtUGiUSyVBPTNjbx5JlUb9nN4xS7sZiux2SkUXTYeXfL3Z4NjN1qpWL3H/7M+I4m9X64Pe3zLgTr0GYnUtnbTVdPqF3YuhxObwYK124RYKmbcz+Zh7THRXdeGMkZLVEosimg1AuG50RMZ4cfPeSns7rnnHvbt28e6deEFAPgGLh599NEf6KpOjFqjRq1R0y8z7WxfyhnB5XLz+YeLAiYsvV4vEsnxf62OtwwrEAqOa3ir1iiDbhId7Z30dBuIidVz4aUzWbJwRYCwfPbJ1xg3eRRqjeqkxU84bBbfZKLH4wnyjXM4nGTlZjCwKB+hUMj86y5i1Lih3zlTNxwJSfG89sEzPHL/4+zddQAAhVLBnT+/gakzJ3yniktCUjyXXT2X6RdMRCgQIpVJeO3593ipjxmxw+7gf//9nObGVh7752+DpnU72jt58i/Ps/jLZf5tn36wkMnTx/KHvz54St509XVNPPKLx9m1fR/g8zi89OoLuOv+m4mNOz+q8+cylk4DK5/6OKCyZusxs+HlhUx5aD6xOadmuyQQCNAlx1Jy9RQGXewArweRXIpcrfAvwx4PRZSa/JnDyRxTiNfjRSSTIFOF/sLr9Xh9gwoiIZLTMMf2ej0BQw5ulwuxTILDbAt5vEQuweVwoYrVItcqMLZ2A14MTZ1s/e83fi81mVrBmJ/NJWv8oDOS3hEhwnflvOsqvPfee1m4cCErV64kNTV0cHkvDz/8MD09Pf7/6urqjnt8hO9GV0cXX36yJGi70WAK6QMHPtPd6BD5oL3ExEZzxXUXhd1/2dUX+gWM2Wxh49pt3HLl/Vw89UZ++4vH8Hq9PPPK4wFxVna7g/KDVVx/yd1s2bAj7FRrKNpaOyjbf5itm3ZSXVnHVTdegjjMjWrKjHFk5/bjX688zuNPPcyQ4YPO+DJmv8xUnnvzH3yx/G0+XPQqn3/7FtffegXR+tDJESdCq9Wg1qhoa+ngrZc+CHnMqm/Xh4x8K91zKEDU9bLy2/Vs2xLcPH4i2ls7uPfm3/hFHfjsWT5+dwH/feXD75RNfL7hMNswtfdg7jB8r5YYjXuqgpZLe9nzxbqwouZkUehUaBOj0SbFoIrWnJSo60UoEqKIUqPUa8KKOnOHgUPLd7Dm2S/Y8NJCmvZWBSRbfBekKgXpI/L9PzfsLKffyPywxycXZSNVyhh6zRT2LdzM1398iyV/fpuqDaWMvHU2iijf3xy7ycrqZz7D0hmJEYtwdjhvhJ3X6+Xee+/l888/Z8WKFWRmZp7wMTKZDK1WG/BfhDNLKE+4/77yIY889sugJWaVWslTL/4lrOgDX4Xmkvlz6B8iLWH+9RcFZMXu21XGndc96O8VczqcLPz8G57528s89Id7gs7b1NDCz65/KKDC6PF4sNsdIQ2LqypqufmK+5g/5zZuvfJ+5k2+jteef5dnX/9bkPWKSq3kvl/dRk1VPQ/+7I/Mm3I9F0y4hl/c9jsOl1Ue1zvvuxKt15GV048BA/uTnJqI5Ax4fBmN5rC5wAANdU0BP1vMFt55/eOwx7/72sfH9fwLRVNjK5WHa0Lu+/Dtz2lrCZ+ber7icbvprm9j/Utfsfj3b7L492+y5b9LMbacfA7zST+XxxPUx9aX7ro2XCcxgHO2MLX3sPyJD9n96Vo6q5ppOVDL2ue/ZNcnq7Ed6493EghFQjJGDUBxJMas7XAD0Wnx6DOC20Typg9FrlWSOiSX9vJG0of1Z/QdF6BJ1NO4u4Lt7y6n+IqjQ3wel5v6HaGzsSNE+L45b5Zi77nnHt5//32+/PJLNBoNzc0+d2+dTodCEem/ORtE66O44JLpvPHC+wHbyw9V8ebLH/DO5y+wfctuSvceYlDxAMZOHHFSaQUJSXE8/9Y/2L/nIF99ugSVWsUV184jPSPVX5nqbO/iib88G/Lxhw9WIhaL0cdE0dnRTWy8HrPJN4zhcrl557WPePD3d9PW3M5nHy6isryGoSOKmDl3MkkpCYhEIlqaWrnjmgeCLFGWLlxJbJyef7/2f/zzsecxmyxMnD6Gm26/Co/Hww2X3hMgkHZs3cMNl93DR4tfCxCl5xqKE1QWj60IulweLObwlRKL2Yr7Ozq+19c0hN1ns9mxWr77zftcx9TWw/J/fIjb6QJ8X2AbdlXQXtHItN9efUZTF4RCIdokPQ27go2EAZR6DcKT8Io8GazdZjxuN0Kx8IwkLbgcLsqWbsPWEzxUVbvlILmTi5GfgpWIKkbLlIfmU7luH7Vbyti/aBMlV0/BZXdSu+0QEpmEpEGZyFRyNr3+Naa2o+0XUqWMETfNZPenazG2dGHtMaNJiPaL8q7aVrweb6S3LsIPznkj7F580Ze/OWnSpIDtb775JjfddNMPf0EREEvEXHndxSz6/Nughn6JRER0TBRX33jpKZ07ITGOhMQ4JkwZjVAoCBqWsFhsHC4LjjrrZf/uMjKy0jGbLDz86C8CpnQ9Hi9bN+zkgZ/90V9JW7dyM688+w5vfvQfCgb1p7amIUjU9fLJ+19x3a1X8OZH/8Ht8aDTaRAIBfzzsRdCVr3MJguffbiYex64BfE52nMTHRPFqHHD2LRuW9C+xOR4f2+i1+ultaUdu83O1NkT2LOzNOT5ps4aH9YPMBxJYQZqACRSSVjj6PMVl8PFwW+3+0VdX+xGK/W7yuk/ZcgZNSLuN3IAZUu34fUEV6gL5oxErj29qUK7yUrTvmr2fbURS4cBpV7D0GunoE2MQSyVnLKPm8NspXZLWdj9NZsOEJN5au4CqhgthXNHkjOpCPBNVgqEApIKMwBfFunmN5cGiDoAh8XOtneXMfiScWz57zd0VDajS4n1C7uY7KQzLursZhs2gxlDYydSlQx1fBQKnfon6dUWITznjbALtVQW4eyTlJLA258+z6IvvuXrL5cjlUm5+qZLGTVu6HGXXE+WcEJILBahUCrCVnHiE2NJ65fMbfdex+vPv8uhA0erFHMvmc59tz4StDxqtVh55JeP8/r/nqG+tunYU/qx2x3YbXZS+tjUdHZ0sWXjjrCP2bxuGzffcRXaqHMz1Fyr0/Cnvz/EvTf/lorD1f7tMXF6XnjrCeIT4zCZLGxZv52//uEZWlvaefaNvxGfEEtrS3vAufQxUVw8f853FrHJKYmkpieHjDu7ZP6cH93whNNqo+VAeG/Cpj2VZI0deMqTqqFQ6jWM/dmFbHxtMW7HEUEpgLxpJcTnn95Ql8vhomLNHvYt2Aj4BFPJ1VNo3l/Dro/WIBSLyJlURPKgTH8/2nchlBjtxXOa9wehSBQ2FcLlcNF2qD7kPpvBgkgqRigWodSrSRqUSWpJLpVr95BSFDob+lSx9ZjZ+fFq6rYd8m+TyKWMu2ce+sykyKBGBD/njbCLcO6SlJLAzT+7msuumotAKCAq+tQa+b8LMbHRXHHthbz96kdB+0QiEZOmjeHR3/6Tndv2BuxTKBW4XK6wgrDycA3dnQYyssLf5FRqZVD1SCqVEhunD9sjFhcfe0Z64U4Ws8mMyWRBIhajPwl/PvANtrzy/tM01jdTeaia5LQk+mWm+tMsDpWWc/8dv/cf/9c/PMOjT/6GJQtX8O2iVXg9XmbNm8Jt91wXIHpPlvjEWF58+0l+ecfvKT9U5d8+a+4U7vz5jT86Pz2hSIRMrQjbZC/XqhCKz2wlRiyVkFDQj1l/ugFTWzcuuxNtUgxyjQKJQua37vC43JjbDTSX1iDXKEkZko0iSn1ckWkzmCldvAXwTbcPvWYquz5dg8fpwtptwu10s/295VRnJTHmjgu+k7iTquSkDetP9cbQFeKMkQO+2xuBT5S5XS6EQiFyrSpsdc0vgMPgtNoRS8XE5aSw+l+fIZZLGHHjjDOaMuFxe6jasD9A1AE4bQ7W/OfzkL56EX66RIRdhDOCSCQ67rTrmUYilXD9bfPZvX0/u/vk8IrFIv75wqPoY/VcPH82+/cexHFkClYqk/LbP993wt4vt9tNSloSGVlpVFcGN5tff9t8YuMDq0dqjYpb7rqGLRtCZ2beeMd8FD+A67zNZqOmsp7nnnqdXdv2ERun59a7r2X0hOEnZcAcFx9DXHwMRSWFAdu7u3p4+pi0iqaGFn5+2yNMmzWBV9//F/EJsURFawMEmNVqo721g51b92IwmBg6YjAJSfHow/yu9MtM5dUPnqa9tRODwYhOp0WpUiBX/LhEHfhsMfJmDGXTa1+H3J8zuThkdNXpIhKLUMVog/r3bD1mSr/eQmJhBnu/WE9Pw9FK7N4v1zPsummkDesfVtw5TFa/fUjulCGIpCL6TxmC3WRFkxiNua2HfQs20lHZRFdd63cSdmKphII5I2jaW4XdFPilLLkoC3Vc1Emfy2G20V7RyJ7P12Fo6kSuVZI/azjpw/oj1wZX7aRKGWKZJKRxMYBcp2bA7BHUbT+M1+PBabGz4eWFzPzj9UgSz0yV2WYwc3BZ6BUBt9NN68G6iLCL4Cci7CKctyQkxvGvVx6noa6JrRt3ERuvZ+iIwcQlxCCXy5l90TSKSgZyYP8hPB4varWSzz9cxNU3XopIJMLtDo7+io3Xo4vWEp8Qywv/fYLf/fKv/qqfRCrhmhsv5crrLkISIrezYGAeN915FW+9/L+A7Xf/8may+594ivtMULr3ELdeeb//tfV0G3jkl//HJfPn8MDv7gryojtZbDY7ZfuDp/ycR4yhvV544rk/BuyzWKysXraBR+7/v4D3esKU0fzpH78Ku1Tvcrl54V9vsmb5Rv/jJk4bw+8ff4CEpONnBZ9vxPdPI31EflD/WOEFI9EknFyl9UzgtDnYu2ADDoudxj2VAaKul23vLiM2JzmsWBEeWQrUZySSWNiPdc8vCMiBjc1JZtRts9n4yiIq1+0jcUA//2NOBnVcFNN+exWV6/fTsLsCiUxK/2lDiMtJOeneQI/HQ+OeSrb89xv/NpvBwq6PVtPT0E7RZeODYr/kOhUDZo9g7xfB5sXJxdnItUqqN5VSv/3ovw+vx0vl2r0Mvmz8Gclf9ro9x7WiMbV2n/ZzRPjxEBF2Ec44dpudjo4u3C4PKrUCfcz3d4OKjdMTG6cPqjCBT9Tced2DGAwmAP/yq1an4Ybb5/NmCN+23z/+gH9QIDU9mX+/9n90dnRjs9rQ6jTExsUEVY88Hg/tbZ143B6uveVyrrhmHps2bEcoFDJ0RBGxsdGotac/GXgiOtq7eOzhp0IK1s8/WswNt195ysJOLBaRmBRHbXXoydXs3H5B21qa2vjtzx8L6o9ds2Ijiz7/lhtunx900zP0GHn8d0+zetmGgO2rl23A7XLzt3//Ad052qd4Ksi1SobMn0je9KE0769GKBaRVJiBXKdCqvzhqpR2o4XqjaWMuGkm299bHva4ht0VaMMIO5lGgSpWx4BZw9nw0sKgCld7eSOa+GhShuTi9XjgFIZCVLE6CueOJHdKMUKhEGkYv7tw2LrN7PpkTch9Vev3kz9jWJCwE4lFZI0tRCyTULp4M3ajFbFMQtb4QSTkp7PiiQ/xhFgF6Gns8EWmSU9f2AklYtTxUWEFXEz2qRlLR/hxEhF2Ec4oTY0tvPTMWyz8/FucDie5eVn89tGfU1iUj/IHnmpsbW4POdm64NOl3P3ALTzz6uO88p93aGpoJr8wl3sevJXs/hkIBALcbjcdbV14vV4Sk+LDRlq1t3WydOFK3njhPdpaO8gryOGBR+5i9twpP4iY64vRYAoYfDiWndv2kt0/45TOHRsXw+33Xs8fHvp70D6RSMSsC6cEbf9m4cqwQ09vv/Yhcy6aFpTK0dnRFSTqelm3ajOdHV3fm7DzeDzYus3YjBbwgkyrQKFTnTELkHDI1ApkagXRaWevGumw2PF6vAhFwrBLjuCb1g2HQqdm3N3zaDtcH/YctVvLGHHTTKQq+SlPcgpFolPOBHVY7MetfBmaO0NWSmUaJTkTi0gpzsZpcyAUi5AqZWx6fUlIUQe+yuWZWkpX6FQMvnQcG15aGLRPGa05q787Ec49IsIuwmljNlmwWW24PR4euutP/rgr8HnK3Xb1L3nz4/9QMnzwD3pdxzPIfeHpN/j827d48e0ncTocKJQKf1pFS1Mbn/1vIR+++yVWs5VxU0Zxzy9vJj0zFXGfP9Q93Qae+dtLLPh0qX/bwdJy7rzuQZ58/s/MuGDSGbWqOBGiE9woFafZpzZ+yiiuuuES/vf2533OKefJ5/9EYkp80PGNDc1hz9XZ3h3StNloCPYpC9xv+g5XfPK4HE7aDjew5c2l/h4uiULG0GunkDQw84xOpp6LiGW+1oKexg5ispLoqAw9FZ406PgtBdokPc2l1WH3u51uJArZCTNgHVY7dqMFa5cJiUKKXKs6qZ48t9OFrceMtceMQChEoVMh16n8IvJES7+S4/wbEQgFKKMDv1QUzh1FS2nwwJRQLCJj9ICQAxkOsw2nzYFAIECqViCWHv2b4vF4wi7dxvVPZcSNM9j92Vq/wI7vn8qw66YFXVeEnzYRYRfhlDEaTFQeruGVZ9+mtrqe3Pwsbr/3ehZ/uYwlX63wH+f1enni0ed48e0niNZH/WDXd7zJTIVCjkKpCDLebWtp5+e3PsyBPv1k3y5axdrlG/nfolfJyjm65NjR3hUg6vryxKPPUjxsIAmJP9w36ahoXVgvOpFIxOCSgad1fn1MNPf96jauveUyDpdVolQpychKIzZej1QaLHzGTx7F5x8uDnmuopLCkMMkak1oy4mT3X+qmNsNrHv+ywBLDafVzqbXvmbaw1ej73diY+3zGZlGSXxeGlXr91Fy1RQ2vLIwyF4kOj0+7DJsLwKBIGRyQy+KKDXqOB0uu4v2ikZEEjEyjRJFlMr/JcjaY2bvF+up3lSKSCIma+xAEgv6Ye02I9MokOtUIa09HBYbNZvL2PPZWtxOXzuCVCVn1K2zictN8T2XWo4+K5HOyuAvHRKFDFVs+FYF+5HhELFc6hf6uiQ9o2+bzfYPVvorgUq9hlG3zEZ5zHCK2+XG0NTBro/X0HaoHpFERL9RBQyYPRy3w0X1xlKMrd0k5KeTVNgPZYw24IuhTCknfWQ+8XlpOKx2RBIRMpXiOy9HR/jxExF2PzFcThcisei0K0l2u4NlX6/mT79+wr+tpqqe5UvW8qe/P0RjfXOAeW3p3oNYLTaif0ArMn1MFDMvmMzSRSuD9t12z3UhQ+rL9pcHiLpebDY7zz/9Bo89+RuUKt8yUF9vvGNpa+3AaDD9oMJOo1XzyGO/4MbL7qWrM9BM9Q9/ffC4U7E93QYMPUZAgC5KE9ZcWKNVo9Gq6Zd5Ys+zgUUDSE5NpLE+8CYqEAjCDnLoj2OUPHz0kO+lX9PjcnN45a6wPmkHFm9hxM0zf9RVO5lKzvAbprPhlYVUrtvLmDvmUvbtNjoqmhDLJGRPHEzu5CFhvd76oo6LQpcSQ09DcATcoIvH0nygll0frvIvYSqi1Iz52Vyi0+Pxer1Urt1D9cZSJAoZo26dRfnqPax7YQFerxexTEL+zOFkjR+IXKPE6/Vi7TZjN1lw2Z3ItUpispL90WkOs421z33JzD9dhypGh0AkZNQts1nx5EcBKRZCsYixd10YMiXDZrTQXt7Iga+34Ha6yJ3qG9gQyyQootSkDMklJisZu8mKQChAplaErC4aW7pY/o8P/ZPDbqcbc3sPLaW1bH9vub9toWFnOVKVnEkPXE5USmCrglAoRKnXoCRSoYsQnoiw+4nQWN/M2pWbWL9qMynpyVx21QUkpSaiUp1ar0p7ayd/++O/g7Z7vV7+88SrPPj7ewKEnVqj+sHd0XVRWn795/tISk3gw3e+xGqxEq3XccfPb2D2vGlIQ/jKfb0gONS+l7XLN2IwmPzCTnOCHrq+k7Mmk4WOtk52b9+Hx+OheOhAYuL0JzzHdyUjK50PFr7C2hWbWLdyM0mpCVx+zYUkpyYF9Al2dnTR1tJBR0cXWq2GJ//ynH/6d9ioYh7+yy/Izs04rYm+xOR4XvvfM/zrby+xYsla3G432bkZPPzY/fTPzwr5GF2Ulr88+Rt+/8Bf2bLxqHVMyYjBPP7Uw0RFn/m8Z5fDSU998BRoLz1NHbgczh+1sAOfofD4ey7G2mPGbjQz7LppCMUiRGIRMo3ypA1wFToV4+65iN2frqNh52G8Hi8yjZLBl4xFGaNl1VOBGcPWbhOr//UpM/5wHUKhgEPLfJ/7wHmj2bdgI121rf5jXXYn+xZsQCAUkDulmM7qFja9/rVfpEnkUgrnjUYdp6Ny3T4AssYWYu0yUbp4C5YOA/H9U5n0y8uwdBpp2lOJJklPYkE/FNGaoL9RDoudA19v4fCKXSQWZpAzqYjDK3ex66PVyDRK8qaVkFqS6xNb+vBiy2mzs+/L9X5R10vOpCI2vro4qBfVYbax7d1ljL59Dir995Nx7vV6sfaYsfWYcdkcKKM1SDUKpD9Ca6GfGhFh9xOgqryGm664L6CK894bn/D4048wfc5EFIrvXspvbWkLGxrf2dEd1M915fUXExv7wycHxMXHcN9Dt3HVjZfisNmRK+XExccgCtMQrz3O1KhSpUAoOPqHPzM7HYVCjtUa3Iw9bFSx36jZ0GPk0w8W8szfXw74A37zXddw8x1XEaU/s/5TySmJXHn9xVx65QWIxKIgcdbc1Mpv73uMPTv389yb/+DWK38R8Bq2bdrFDZeemXzb1LQk/vLkb3jg4Z/hcrlRa5TEnOD3IDE5nn+++Cid7V309BjR6jTExEZ/b8bXYqkEXUoMHVWh+8q0iXrEP6C59NlErlUesQ45vUqzSCKmYM4IciYOxuP2oNAqkajkrHr6k5DHu+xOWsvqiMtNwWlzIJL4kiD6irq+lC3ZSkpxNmv+/VnA8ILT5mDXR6sZffscGnZXEJebijJGy+pnPvMf017eyKHlO5n84BUMuWrycV+HzWDm8IpdKKM1ZI0fyPoXv/JN9AKWDgM7P1xFc2kNQ66ahFyjDPt74rQ6aD0YmF4hUyuwGy1BYq+XzqpmTG09SBVyJIoz+6XC6/HSXd/GuhcWYO329a0KBAKyxg+kcO6okH5+Ec4fIgFzP3J6uo08/vt/BS3NAfz51/+go63zlM57wkpOn6XekuGDuPrGSxFLzs73CIlUQnJKAhnZ6SQmxYcVdQAXXT4r7L4rrp0XkOIQFx/Dv155LOh1xcXH8Ke/P+Sf3qwqr+Fff3sp6Fv5my++z/69B0/lJZ0UEqkk6HMymyw89X8vsmPrHiZNH8u3i1aFFKa9+bauEDmm3xWVSknKkRSLE4m6XqKidWTlZjBk2CCyczO+1zQToVhE7nEyWQvmjPjRV+tOhNvlxtJtwtJlwh1GiPRiM5jZ+eEqvnnsXVY9/Qlr/v0ZSx97l+3vLSd/xtCwjzO29SAQCRlz51yGXjvtuM/jtDmw9pjDTqRWrNlLv5EDyBhd4I8464vL7mTrO99iO86UL0Bnta+NIGvCIA4s3uIXdX1p2ltFd10buz5Zg7GtO+QkuEAgCBrMEIqFuE6UamG2+aa0zzCWLiOr/vWpX9SBr4JXsWYv1RsPhBxsinD+EBF2P3IM3Qa2bgydhuByudm/59SERVx8DCp16GXchMQ44hNiue9Xt/HO5y/w1It/CbK1OFdJTk3k1nuuDdqeV5DD5dfMC8g/lUglDBtVzBfL3uZXf7iXK66dx5PP/5l3v3zR34Nms9p5+7Xg2LNe3njx/e9t0jMUnR1dfLtoFQA5/TMDlsuPZeOarZjNZ/6mci6iitUy9u55AY3oErmUkbfM+kGNgs9FzJ0G9i3YwLK/vs+3//ceez5dg6k9+ItiL501LUHRV+ATQB63B3V8VNC+1JIckgf2Y8ubS9n46iL2fLYWS4eBkbfMCtnCIRAK8R4nQcbY0okmMRpLhyGkGAPormvDYQ4t7GwGC5YuI+q4KGQaBZr4qKDqoVynoujyCYy960LEEjFpQ3IpX7Ubc3vwNL5cqyJ3cnHgc/RY0IR4L3pR6jU4LDZcfUyezxSd1S04raFXXMq+2RbQfxjh/COyFPsjxxXCrLYv4TJTT0R8QiyP/fNhHrzrjwHfUMViEf/3r0cYVDyAwUMKTuncZxNdlJab7riKGXMm8cVHizH0mJg9byr5hbkhxalUKiU9I4Xrb7si5PkcDgctzeH7tywWKw67g55uA0qVImSixZnEZrX7v42bjGb0sVEQRtvHxulD9iH+GBFLJSQW9GPG76494mPnRaZV+iYwv2cfu3MZS6eRVU99grnjqFg5vHI3ddsPM/U3VwXFkjmtDn+PXChqNpeRWpxD2TdHh2PU8VGklvRn5dOfwJE/JTaDhb1fbiChoB+FF44OSn1IH5F33EqWOj4au8FyXPsSAI6prtmMFpr3VXNgyVasPWai0+MZeu1UpAoZAqHAP2CjjNYw7Lpp7P5srT+lQyAU0G/kACydBhTR6oCeRN++fJr3V9N6qP7IU3tpLq0la/wgKtcGZloDFF4wivJVuxl1+4kHlb4rhubgwZZeHGZb2OXhCOcHEWH3I0ejVYfNPAUYPCQ4seFkEEvEjJk4nE+WvMF7b35KxeEqCgflceX1F5OSnvyD+redaXRRWnRRWgYM7H/a51KplYwaO5Q9ffJse7n25ssYO2kkj//hXzTVt1AyfJDv/UtL+t6WrVVqJQqlAqvFyjeLVnHfr25j8/rQGZQ33nElih/YVPpsIhQJT9gE/1OjcW9lgKjrxWawUL1hPwPmjAyoqHk9nuMaHLtsDuLz0zi8chfuI8v8+TOGUrpok1/U9aWltIbcSUWIJGL/8XH9Uxl00VgcFpuvcheiIlcwZwRyjRKBUAgCQp5bkxCNpI/ljt1iY99XG6lcc1RktR2qp+1wPWPunMuEn1+CqbWbloN1JA/KYtu7y7B0Gfu8di/VG0uRquRokmJQ9Ik5s5usOKx2iq+chMNso2lfFVKFnOTiLMRSMbrkGMpX78baZSI6PZ7cqUOo334YTZL+pOPSvgvRacG+k70oolQIz1LbTIQzQ+TT+5ETG6fn9399kDuueSCob+Kyq+cSG3fqAw1KpYLc/Cweeex+bDYbCoX8e684nW+IRCIuumIW777xMZY+yz6z501FF6Xl7ht/7d9WuvcgH7+3gDc++g+Digd8L9cTFx/DTXdexYv/epPWlnZaW9q54tp5fPzegoDjbr/3OnLDTK5G+HFiM5ixdJmwdBpRRquR61TUbgnfqlG34zDZE4sChIdEISNtaK6/N+1YUktyic1JZtafb8BusiIUiRCIBBjeDR9jZmjqYMzP5uKyOdAkRKPQqRErJDTsKmfEjdPZ+dFqv4ecSCqm8IJRCMUidCmxOK12CuaMpHTR5oBzCoRChl03LcC+xdZtDhB1fryw+5M1FMwZyb6vNpI2tD8ytSJA1PWlct0+sicOBnzvi7nTwObXl9Be0eh7j5QyX//ftAIUR4YUUofmEpOVBF4vNqMVt8NJv1EDiE6N+176O6NS45BrldgMwVXPwrmjT8rWJsK5S0TY/QQYXFzAB1+9zHP/fI3dO0qJi4/htnuuZfT44WjPQDyTVCr5ySzZnQrJqYm8/enzPPa7p9i93Ve5u/TKC/jZDb8KOtZud/CnX/2DVz94+qQHDb4LEqmEK6+7CIC3Xv4fzz75GtfdegWvf/hvyg9WIhKJGD56CLHfgxVLhHMXc3sP6178yr+sCFB4wUhE0vC3CJFEHJSsIBAKSC3J5dDyHVi7A/u0ZBoFGaMGIJZKEMdI/Mu4pvaegGXOIAQCOiobyZ85wp/SYO02cWDJVpTRaoZcOQmRVIzX7UEgElK1bh9t5Q3oMxKQKGTkTi4mNjuJ0q+3Yu0yEZOZyIDZI1DH+QZyXA4ndqMlbNqG7/0xIJZLsRuttB6sO24VzWVz+Pv/7CYrW976xi/qAJwWO+Urd2FoaGf0nXORqeS4rA42vLwQS+dRsajUa5j4i0uRfw8iS6nXMOmBy9n0+td01/liF3snmVOKss/rFZcIEWH3k0CukDFgYH/+8eyfMJstiMXi45rVRjiziEQi+g/I5rk3/k5PtwGBQMDB0grcYfofyw9V0dNt/F6EHYA+Nprb7r6WeZfPxGyyoFDI0cdEM3xU8Wmd12Q009XZg8vlQqNRhTSAjnDuYTdZ2fzfpQGiDqBqYymFF4yi5UBtyMflTilGpg5eqlfFaJn80HwOfrud2s1leL1e0obnMWDmcFSxwdPNMrWC5KJsGnaWB+0TCAVEpcSijo8KiN4SCASIJGI6q1vY/MaSoMelDs1FgMB//sSCDPQZSbidLiRyKWKZ5EgSRCcHlmyhp7GDnIlFx32fekWsrceM8jjecmKZBNGRpUy7yUrbofqQx7UeqsdpteOy2YNEHfj6Gze8ssgn7r6H5Vhtop6JP78Em8mK2+FCppYj16r81x7h/CXyCf6EUGtU31skU4QT09u7B3DwOKkVPwQSqYSU1PCRa9+VuppGnvjLs6xZvtF3I++XwiOP3c+QYQP9hs59MZss2Gx2lEpFyGixCD8cdpOV9sONQdstnUbcThcpxdk07Ar8fY3PSyVhQL+gx/SijtVRfPkEBswaDoBUFZiJ2heJXErRZePpqm3F0refTwBDr5mKJiE6SBDKNEqyJwxiz2frQp4zd2JRQC6s02rHYbHh9XoRioSIZRIMjR0sf+JoEoRcq0QoFoUcHIjJTqL7yFSsw+KbJlVEq7F2BU+0504d4q+yhZs8BV8fYEdlI1KlnJ7G0MMMPQ3t2I2WIGHnsNpxWR0g8FVCReJTvJULBLhsTqrW78flcJIxagC6lNjIUux5TkTYRYhwFsgbkI1QKAzpF5WZ0y9spNe5SHNjK7de9QuaG4/aQdTVNHDXDb/irU+epWT4YP92o8FMxeEqXnvuXWprGsgvyOHWu68lPTP1lIyyI5w+x7PT2PnRamb8/hpypwyhct1evG4vmWMLT+rmL5KITzqcXh2rY8qDV9BZ3Uzj3ipUMRpSS/qjiNYgDWHOKxAKSB+eT1dtK6bWbnoaO/yCrN+oAWiSjla7jS1d7PxoNc2l1eAFfUYCQ66cTPWm0gARV75mD8VXTGTH/1YEDFvI1AoKZo9ky3+P5kLvW7CBETfNZOeHqzAcEWUCoYCM0YW+YY8jolIS5ktL4sAMhCIRm99Yyug7Ljjue+NyHB1G8bjdGFu62P3Zelr2VyMUi8gcW0je9KFBE8onwm60su+rjVSs2ePfVruljJisRMbcMTdkLFqE84OIsIsQ4SwQE6vnF7+5g3/97aWA7RKphL888evTGmr5odm7qzRA1PXl6f97kefe/DtR0TrsdjtLF67gLw//07+/uqKWbxat4tk3/sa4SSMjvT1nAalKHrbHzevxIBSJiO+fSlxOCl68pxUzdzx6J5JTS3JPeKzTasdldxCTlURUSiyDLhmL3WhFGa1BkxiNXHNkcKHDwIonP8JuOjq41FndwsqnPmbsXRdSvbEU9xGT4OZ91YhlEsbfcxEtB+owdxqIy01BHatj18ersfcxM7Z0GjE2d5I3rQSZWoHb5UYkFuGw2ANSG+QaBcmDMmncWxVw/ZmjC9j6ji++sDe7O6SxsVCAtE8UoKm1h2V/+59/QtjtdFG+ajfN+6uZ9MDlJy2kAYytXQGirpeOymbqth86rml3hHObiLCLEOEsoFQpuOzquQweUsBrL7xHS2MrxcMGct2tV5CWnny2L+87sWH11rD79u46gM1qh2hfvvDf//yfoGM8Hg9//vUTvP/VyyQknl6UVYTvjkyjJGN0AVXrgy15UobkINP4hIVAKPD3rZ1pbEYLHqcbgUiAXKs6rqCwW2xUrtkb7G03Mp/iy8b7RZ3X66VhV3mAqOvF43JTtX4/6cPyqNpw9HXXbz9Mw84KRt46C21KDHK1guqNpRhbugIeH5udjEQhC+rvG3LlpICfpUo5JddMQfDhKhp2V/gqgQJfH15vpbRpXzXpI/Op2XQg6Dqzxg70L8M67U5KF2/2i7q+mNp6aDvcQL8R+WHetWNev9vD4VW7w+4vX7WbtGF5kSXZ85SIsIsQ4Syh1WkYOrKI/IG52G0OVGolMtn5F12Vkh6+Vy8mLtrvc9bU2IrDHnrZr621g+7OnoiwOwtI5FIGzhuDWCKmYt0+PC43AqGQfqPyGTRvDNLvsQfSYbHRXtHEns/XYWjsQBGtpmDOSFKKs/0CDXwRYG6nG7Fcgqm1O0jUAdRuLiN5YCbpw/MAcDtcNO2rDvvcHZVN5IWIOPN6PEhkEhRaJUq9lpKrp5AzuZjKtXvxuN2kD8vDbrax7UjFrRehSEhCfjoOqx1pH2NkZbSG4TfMYLDJgtPqQKKQ4ekjzirX7mXYDdORKmW+Xje7E7FMQu6UYnInFyORS3HZHVg6DDSX1oR9PfU7DhOfm4LiJKp2Xq/nuEvwLrvTb97sdrmPJHQIkGkU31vFNsKZIyLsIkQ4y6hUSlQhBgzOF6bPnshz/3w9ZL/gTXdc5V9WFgqPX+051jojwg+HQqdi0KXjyZ1WgsvmExZyrRKx7PuxMXJY7DhtdlpKa9n27lGBZO0ysf295Rga2ymcNwa8XgzNXZQt3Ya1y0j2pCLaDoY2WwdfHFbCgHRkagVCkfC4ViEyjQK3M3hQIn/mMBp2VyJTKxh00RjAN1gRm+OrpNvNNvZ8sjagciaWSRh67VR2fLiS6PR48qYPDRCmUqUMqfKo2LMbLUSlxdFd14bX62Xr29+QUpTNsOumIZSI0CXFoIzR+nv12iubMDR2IpFL/Z59xyJRyKjeepCcCYPDet95vV4cZjsCIWRNGEzTMUvEvSQXZSNRyjG391Cxdi+1Ww8iFAnJHDuQfiPzv9OSb4QfnoiwixAhwmkRnxTHUy8+yq/ufRRXn5vd1JnjmXPRNP83/MSkeBQKOVZr8I0pMTmeqKhgK4yfMk6bA5fdgUgsDsiw/b4QS8WoQ9iRnGkMzZ3s/Gg1maML2PPZ2pDHHF61m5xJxTTtr2bXR6v92zurmrEeJ8fUbrTiOWIjJBSLyJ1cFHKJEyBv+lAUUWoK546ivaIRqUpBakkOnVVNVK7dS0pxNh6Px//72/t/hUbJkPkTyZteQtuhesQKGWKZhEPLd9BR0URrWR36jETSjtMrKNMoGXXLbFY+/Ql2owW80LCrgpYDtUz8xaWo46Jw2hy47Q48Hi/b31uBQqciY3QB+xduCnnOzDEF1O+qwGG2hRR25k4DDTvLqdlchlAiImdCEaPvmMOWN5cGCFyJXEre9KHYjRaWP/lRQG7s3i/WU7PlABPuuyQi7s5hIsIuQoQIp4VCIWfspJEsWPEu+3cfwGAwUVRSSHxCLFH6o0IhNl7Po0/8mt/8/LHAfGGJmP97+pGQWbw/RVx2B4aWbkoXbqKrrhVVjJaCOSOJ7hePTHV+R7yZOwys/OfH2E1WciYO9luHBOH1TbOWLgoUMT317SQUpNNaFrpqF5+XikR+tDKmjo1i8KXjgmxRMkYXEJebwsbXFuP1eIlKjcNpdbD17W/9S5SxuSlhlx2lKjkHlmyhdutBXA4XzmNeR+mizcTlpgRU7Y5Fm6Rn+sNX01HdTEdlE3G5KWiTYxAgoG77IcpX78bj8pA+Io/iyyew/f3lDJgzgticFNrLGwLOlTulmKZ91Vi7jCEj1sydBlY9/Qnm9qN2Mh0VTcTlpTHu3ovZ9Opiv7VNwZyRKPUaShdtDhB1vRgaO2k9VE/GyO8nHSfC6RMRdhEiRDht5HIZqelJpB6n304qlTJh6hg+Wvwa77z2EdWVdRQOzueqGy4+bp/eTwmv10vb4QbWPv+l33LD2mVizX8+Z9DFY8mdVIT4e4iYOhZLtwmn2ZfFKlXLjytQThav1+sbIBDA6NvnhDQ37otQIvJPrPbSUdXEgDkjkGkUAVOq4KvQDZg1ImD5WKqSkz1+EClF2bQcrMPtdJGYn45cp0KmVjD44rGsfOoTOqsCI9DEcikpRdkB29xOn4ATikWIZRKkKgWKaE3QYwEsXUbsRp/x7/FsSHongeNyUmjcU0lHZZMvOePwUeHWWd2MKlbHsOumsfnNJUy47xIsXUaa99cgkoiIz0uj7VA9ZUu3AeCwOBh922z/++txu6laty9A1PXSdrAO97QSZvzhOrweD1KlHLFM4jNWPhzaWBmgekMpKUXZ30vcWYTTJyLsIkSI8IOhVCnIK8jhD397CLvN7ssXjsTR+bF2m309ZyHStfYt8OWUqr/Hm6nL7qS9otEXcH8kCUGbHMOIm2YSlRLrH4Q5FdxOF037axhx4wx2fbyGjNEF/j6zY5EqZT4bkRA9cLs+Xs3Im2ZxeNUumvZVgRdispIYctVkVHHBS8kShQyJQoYmIThtJyo1jtG3zWbH/1b5p2e1SXpG3jwL1ZF0CY/bg7m9h0PLd2DpMtJ/agmGpk56GjtIyE+n8IKRlC3dFiDGotPiqN5YStO+KoZeMwV9ZpK/X+5YHGYbez5fR2tZHQUXjAw4Ty/m9h46KpuIzUrC2m1CqlZg7TbhsjupWLM3wI+vtawWm8HiF3Z2k5WarQdJGpSJJj4Km9FK4+4K34AEULluL6NvvwCRWIS120RnTQud1c30G5FP3rShlC7eTFdtoJ2RUCKK9MSew0SEXYQIEX5wZDLpeTkB/H3jsNiCMlZ78Xo8GFu7/Bmn3wfGli7WPvtFwFK5obGDVU99zIzfX4s6LuqUzy0Ui0gq7EfjniqMLV0cXrmL4ddPZ8tbSwMsSYRikS9DVa0M6a9nau1m71frGfuzeXhdbrxeLxKlHNkp9CFKFDJSSnKJyUrGbrYhFAn90Vr+19/UwfJ/fIhcp2TI/ElseGkhzj4TpUKxiJE3z8Rpc/hEqgByJhez/b3l2I1WVj/zGdN/dy265NARe1aDmeqNpWSMLvBVNMNQu+0gY++6kH1fbiBv+tCwgw/gqxj6n08gYNi1U2nYWU5HdTPKaA0jb55F495Kn8WNF8CLuaOHNf/5IsDaRSyXMvKmmexftClAgOdOKkIc+UJ2zhKZW44QIUKEc4QTVUFOp2J2Ipw2B6WLNoU0ynXZndRsLgtpYnyyCIVCEgakU7ftIODLXN318WqGXTeNossnkDG6gEEXj2XSA5dTs+kAFWv2MPU3VwVV2oRiEUPmT0IZpUYVq0MdF3VKoq7vdSn1GqLT4tAlxwSIOofZxs4PV+F2uug/rYTdn64NEHXg88Tb8cFK8qaVoIhSM/y66dRvP+xfKva4PRxcth2XI9h/DqCrxlcNO6EXsBfaDjfQuKfK15t4nON7vQcBLB1G1j3/JeWr99BR0UTdtkOsf+krtIl6kouyyB4/CI/TzY4PVgX59blsDra+/Q35M4f7tyUXZRGdFn+Ci41wNolU7CJEiBDhHEGqlKNJiA66wYIvout0KmYnwmV30FkTOkEEfKLC5XQhOQkLFJfNgc1oobOmBY/LjT4jEblWhVgiwd1n2dDY0sX6l75CkxCNOk6HIkrNwW+2+bNpK9bsYdIDl7Pvq42YW7uJyU6m/5QhIZdcvw8cVrt/aVQZrQn5uYBvuVOp11B44SgOr9rlr24JxSLSh+eRWpyDuaMHqUIWFNUllvvez5aD9RRdOi5sJS5tWH+a99egTY6hp7GDxAH9QvraqeOjUOh8z2EzmNn69jchl7T3frmB8fddjDYxGpvBQtP+0M/rsNgRCCBtRB6ZowrQpcQe10YmwtknIuwiRIgQ4RxBoVMx4uaZrHrqk8CEAQGMuGlGQDXpTCMU+7Jdrd3BwfYAmoQoROITVwwdVju1Ww6y88OVARW+vOkl9J9WQkpRNrVbDwY8xtjShbGli7Sh/alav+/oucw2yr7ZxvDrpoPXi1guQST5YW5bHo8HkUSMWCHFbXchDNMj14vT6mDHByv9/W4ShYyRt8yidksZG15eiMftQRmjpejScSTkp/stbKJS4xCKRVg6DKjjo4jJTqKjoing3Ko4HenD8zB3GOiua0MsFVN0+QTs//2GrpqWo8fFahl69RT/z3azDUNTZ+jX53LjdjjxuD1Yuowh+zp78Xq8jLhhOiJxRDKcD0Q+pQgRIkQ4h4hOi2PmH66jelMp7RVNaBKiyZ44GHWMFpHk+OLidJCp5BRcMIK1z30ZvFMA2ROLEIpO/Pzmth52fLAiaPvBb3cQm5PKwIvG0LS3KmhJMyYrCbfTjc1gCdhev/0wgy8ee8q+aTaDGVNbD82lNUhVcpIKM1DoVGGniy1dRjqrmqnZUoZEIWPULbOQaZS47U4kcmnQdQMIhEKUMVo0CdH0NLQDMPjScdRuKSM6PZ643BS6alup2VLGxlcXM/qOC0gtzkEgFKDQqRh1yyw2vrqYtkP15E0twTzESN32Q3hcbpIGZtJvRD77vtpI/Y7D/ueUKGSMvWsuXo8XU1sPqhgtlk4DW97+hskPXOE7KMSyel+8bg+bXl1MzuRipCp5WPNjbZIeU2sPTfuq8Lg9JA3MQBmtOeFkc4Szg8AbqqHiR4rBYECn09HT04NWG34EPUKE84mO9i5am9toqGsiPjGOpOR44hJicTldNDW2sOKbdZTuOUjR0EImTBlNUkoCopO4QUc4u3g8HtwOF0KJ6Af7vOwmK+WrdlO6aLO/104oFjH8hukkF2UhOcHAi8flZtt7y6jeGNoUWJ+ZyNg7L8TtdFH2zTYad1cglkvJHFOIOk7Hlv9+E2RxIhSLmPPYTack7KzdJja+tpj28sajGwUw7LpppA3tH2TXYekysuY/nwdVubLGDyI6PR6Py83OD1cFPU//qUPwuL2kDctl1dOfIFUrmHDfJTTtqaR68wGcFjtx/VPIGjuI/Ys2YTOY/UbE4MuBtXYZadxbRVRKLHu/XE9CfjpCkRBrjxlNQnSQF18v4+6Zh91kp2zpVnTJejJGF+K02PC4PcRmJ7Pm2c9DWp0IhAKm/fYqvv3rB8TnpZEwID1kVFtiYT9yJhWx7vkFAdv7jcyn6LLx32sVOcJRvot+iQi7CBHOY5oaWvjlnX+gdO/Rpa2UtCRee/9pWls6uOPaB7D3yWdVqhS8/r9/Uzg472xcboQziMvhOpLhecTS4wzZoDhtDuxGCz2NHQjFIrSJeuRa5UktgTrtDta/sIDWg6E90JTRGgZdMhalXoMmQY/LZj/yOCffPv5eyMdkjC6g5OrJ33kK0+N2U/r1VkrDJDXM/ON1aBNj/AMrbreb6g2l2HrMeNweGvdU+qtvAJMeuByZRo6xuZvSRZvpaexAHacjZ1IRLruTvV+sZ9rDVyOW+foId3+yJshIWSQRMebOuWx+cykT77805BCCx+3B1NZN1Yb9dFQ2kTtlCPu+3BC2vy974mASCzNo3FWBJjGavV+s9y+Ba5P0DLpoLBteWRg0+DLwojEIhAL2fu4TcwVzRiJRyji0bDvWbjMiqZis8YPIHj+Ibx5/D4/LjUQho9/IfKLS4nDZnOhSYkjITz/JTyTC6fBd9EtkKTZChPMUQ4+RRx/+Z4CoA2ioa2L/vkP87Y//DhB1ABazlYfu/hNvf/YccfGRpIfzFVN7D2VLt1Gz6QBej4eU4mwGzhuDOi7qtP3FJHIpErn0lAY1xBIJ8fnpYYVddEYCrQfr6KppZfBl43E7nLhsTkQyMakluQFLjeCL3iqYMyJI1PXmEh8vkN5mtFK+clfY/fU7K4jrbyMqJQ6pUoa1w4iprZumfdWIxCIyRg1ArlWy7d3luJ0uareUYe0xY2zpovCCUehSYmgrb6RizR4MjR2Az4RZqpTRXdcWMh3D7XRzaPlOssYVhu1psxnMbHxtMQqdmuj0eEQScdDydMDxPWYadpaTUpzN+he/CthnaOqkcv0+pvzqSg6v2ElnTQtKvYYBs0agitUGVOhKF28mJjOJwrmjkSikCERCYrKT2PHBKjwuN/F5aeRNL6F81W5qNh1AqpaTOWYg6vhoVPpIvNi5RETYRYhwntLV0c2G1VtC7hMJRXS0hW6abqhroqujJyLszlPMnQZWPvUx1q6jQw512w/TXFrL9Eeu/l4nZ0+EQCggfXge1RtLSSvJRZMQ7TPI3VxGT2MHWeMG4jBb0SREs/uTNbhsDpIGZpBcnE3S4EwSC/tRu/UgTquDhLw0EgdlIO3Tx2UzmDE0d1Gxdg9ej5essQPRpcSiCDWl6fHisAT3jKUN7U+/UQOwGy2Y2w3IVHKcFhsrn/4kYHCkq7aV2OxkiudPZPt7y3E5nAhFQkyt3Wx+cwnq+CgK5oz0izqZRolcrcDaYw45rdpLS1ktA2YND0jI6Evj3ip66tvpqW+neT+AgJjMxLDnjM9PRxWro3F3ecj9TXurcJisjLnrQvD6MoElChmm9h5SirKp23bIf2xHVRMdVb7BjcGXjiO+fxp2gwW5TkXulGLWv/gVHrdPVDttDvYt2EB7ZSMjbpxxRtJJIpwZIsIuQoTzFIvFGnK7UCjE5QrtmdWL0+H8Pi4pwg9A096qAFHXi9Nq5/DKXQy+ZPz3OmRxIqQqOcOvn8beLzdwaMVOFFFqciYWEZubjLmth6oNpQHVrPLVe6jZcpDRt89hx4crSRzQD7FUQkd1M2XfbuOCx25GqpBh6zGz/YMVfisU8A1WxOelMfLmmUE2IiKZhLiclIAkh5xJRci1Sta/uMC/NCkQCMifNZyM0QUc+Drwi1J7RSMZYwpQRKlJyE+ndPFm1HE6nDYHptZuvB4Pcq0Sm9HCsOum0lbRSP32w6jjo8K+P0KRCJlWGXKuwW6yUrVuX8C2mk2ljLhpJi1ltUHLqXKtkuRBmci0yuNWJ60GC3i9CIRCBEe8EGVHhFjG6AKqN5YGHK/PTCS1JBeJXEryoExcDidlS7b5RV1fmvdVY+kwRoTdOURE2EWIcJ6i0aoRS8S4nIEizuPxIJNJkUglIQWcUqUgOjbqB7rKCGcSp81B3fbDYfc37qkkf+bw0BWsH4j28kbWPX90stbU2s2uj1eTMbqAzLGFIZconVY7FWv3Et8/jfJVu4/uEBxdseysaQkQdb20HqyjpayWjFEFAdtlKjlFl41n+T8+9KVTyKXE56Wx4eWFAcd5vV4OfL2FkTfP9Im0Y5Y9m/ZWkTG6AE1CNEWXT8DY3IVMo0CqkGFq6yFnSjGpRdk4bU68bg/a5Bjic1M4tGxHyPcnfXgebocTTnLJ3GHxvTfj77mI3Z+upaexAwSQOKAfeTOG4nY4EYlFJBak07y/GvAtp8u0SuwGC4kDM8gaO5Bdn6zF0NiBNklPzsTBmNp7iMlMwmmzkzwok6Z91bhdLhILMtBnJqKO9XkFpg3rT3d9G6WLNoe9xqb91egzEk7q9fyY8Hq92HrMuF1uhCIRCp3qnIhaiwi7CBHOU2Li9Fx5/cW898YnQfsOlVXys1/cyLNPvha07/7f3klcXOh4owjnNgKREKlSFna/RCH7XtMpToSl28SO94OtTgCqN5aSOaYQgUAQMt2iaW8VI26cQeXavf5tCfnpSJUynHYHh1bsDPu8h1fsImlgZpD9hjY5hsm/ms/OD1ehS46hZktZ2HNUbSglfXgeh5Yf8zwCAVnjCtn2znIEYiFpQ/sjlorpaeggaVAGQomYHf9b6e8rjM9LJWlgBoMuGesfTOhFGaMlbVh/tr27nNG3XxB0DTK1gsxxA+k65j10mG2Y2g1kjC5AGaNFIBDQXt7AhlcWIQCm/+5aUoqzqVy3j7wZwxCKhFg6jajjo1BGa9jw6kKsnb4qb09DO3XbDzH06qns/GgV/Ubko02JRRXn8ymUHGOirIrR4na6EAiFeD3BFTsAifynFy9mM1pp2lPJvq82Yu02IdMoGTB7OOnD8pBrz2718rwSdmvWrOHJJ59k+/btNDU18fnnn3PxxRef7cuKEOGsoFDIufXuaxGLxfzvv59htzsQiUTMnjeVi66YhUwmJTM7neefeoPamgaycvpx369uo6ikEEkk5/G8RCwRkztlSMjKFfhsN86mt5jTYveZ3YbB0NyJXKcKaYLsy4U9KhwkcinFV0xEqpTjsNgDDZuPwe10hYw7E0slxGYlMfq2OdiMZnZ9vCbsOazdJuLzUpEqZWSOG0hMVhJ4vKhiddRuP0z2pMG0HWpg98ercVjtxOWkkjIkmxVPfoSrj7dd68F6umq+ZOL9l6K54wIadlfisNiIz0tDqdew9e1vsfWYw8azJQ/KoiJlNz0NHf5tmWMK2PfVJmw9oXOEO6uaSR2ay+jbL2Dd819i7jhqb6KK0TL82uls+e/So9VIL+xftIlxd8/D1NpN1bp9KKLVJBVmhJyuVkZrSBuaG2Qs3UtiYUbY9/XHiNvponLtXvYt2ODfZjda2PXRasztBgbOG33GptRPhfNK2JnNZoqKirjlllu49NJLz/blRIhw1omN03PvQ7dy1Q0XYzFbkCsUxMZFo1D6bu7TZk9kyPDBOJ0upFIJ+pios3vBEU4bbVIM2RMGUbFmb8D2pEEZJAzod5auyseJqoUyldyfzHAs6cPzUMdFoUuNI6mwH1njBqKK8S0HShRS+g3Pp6OiCZFUTPb4wcT1T8HjcuOyO33TqGHyYj0uNxKlDI/bF23WWdUc8jh9ZiJxualH/Nw2cPCb7QBHlmDHY2rrRqaSkzdjGO0VjQhEAirW7A0Qdb04bQ6qNx3A2m1CIBQwcN4YWg7UsPGVRf73KVwfpDJazfh7L6ZpX/WRFA4BUalxYUUdQFd9G/EF6Wx6/esAUQdg7jCw+7O15E0fyu5P1wK+vsKSqyez86NVASkXuwSrGX79dH9/XS9imYSBF42hvaIRS2egcC++YsL3uvTvtDmwHRlIcVrtJAzohypWe1Z7+qw9Zg58HXppunzVLnInF0WE3ckye/ZsZs+efbYvI0KEcwqZTEpKWlLY/TGx0WH3RTj/kGsUDJw3hsxxA6ndchCPy+0XRWd7CUiqkhOTlURHZVPQPpFEhCouyr9k2BelXkNaSX/qd5Uz8ReXIFHKAkyZBQIByYOzcNocJBdlcfDbHWx8dTEelxu5VsnAi8bgtNmRqY5WK112B6Z2A+Urd2Fo6iQ6I4Hs8YOoWrcvqPonFAnJGDUAp83Btne+Deizs3abcNldgIC67Ydwu9wkFWbQb2Q++74K7ZEHvsGLxIIM2g7V07i7Al3K0Sn0tGH9j1tZVUZryB4/iNSSXAR4cTndyHWqsOIuOjUOh9Ea4LvXl56GdjQJR/8OJBb2o+1QfVB0GV7Y+va3xGQlIUnUB+xSx+qY8tB82sobqN9xGEWUmqxxA1HGaJEowrcHnA5Oq53abYfY/v5yf7PlvgUbSRiQzoibZp61XlKH2RYyfxd88WvWHvNZnU4/r4Tdd8Vut2O32/0/GwzB7tsRIkSIcL4hUyuQqRXo03/4hnXfjcuEy+5r2pdplX6fOZlawbDrprLyqU8C4qkEAgFDr51GZ3UzWeMGEtc/lbrth5GpfRFfUo2Cza8vwWG2kjNhcMhqjFAiQpcSw7a3l/ktOQBsBgvb3lkGQOboQgRCAW6Xm+bSGja8ssgvCNorGumqaWHi/Zey/f0VfhGkSYhm4EVjqN12CE1cVNDwxJD5kzi0bAed1UcrfYdbd1G3/RCjb7+AlgM1IZdVZRoleL0Uzh3F5reWUnL1ZADU8VEMnDcGoViEudOI3eh7PrlGiTxKFeDNJztShZQcOc/295YHPY9UKUOfmXhcrzsAd59KadrQ/uz8eHXYY+t3llMwe0TQdqVeQ78R+aQN639cD8EzhaXLFPI1txyopXZLGf2nlpyVYYUTTZ1/VzPtM82PWtj97W9/49FHHz3blxEhQoQIPwrsZiuNuyvZ+8V6bAYLQpGQ9BH5DJw32h/5pUuOZdIDl9G0t5qu2lYUUWoSC9KpXL+f6PQEjC3dVKzZw6BLxtJZ3UL9rnJUMTqGXTeNsm+24bQfneTuFZEOs+3IcquC/JnDsHQZObR8J+b2Hv+xe79YT+KAfij1Gmw9Zra89U2QCbDb6cbaY2bETTMQCAQIRELayhvY+8V6otPj6agOXKZV6jV4PJ4AUdeLzWChbsdhkouyadgZ7CGXM3EwCARs/2A5Mo0CoUjIiJtmEJebikwlp3FvJdveWYYuJZacSUVYOgxIlDJUMToUUaqApA+BQEBKcTaWTiMHvzlqO6KO0zHmzrm+63R7wg6mCAQCROKjYkQkFeO02IOO87+24yz7wvGNoc8kNZtDR9MBHFq+k/TheUE2Nz8EMrUSbXKM38OwL4po9VmvnP+ohd3DDz/MAw884P/ZYDCQlpZ2Fq8oQoQIEc5PvB4vjbsr2fr2t/5tHreH6o2lGJo7GXfXhf7cUIVWhUgiQiAQ0NPQTvmqXQgEAuJyU1BEqcifNZx1LywIEBdCsYgRN8309yZ5PB66alqp3XYQdZyO/V9t8lcBNQnRFF8xgdLFW+iqaQHAbrTiOiIKfcungVY/mWML0fdLYNdHq7B2+4RLXP8U8mcOx+v24LDY0cTpAh4Tl5tK077qsO9J/Y7DDLtuWpCwy544GEuHgf0LNxHdL4EBc0ZQs+mAz0w4RktXXSsbXl5I2tD+xPdPZet/v/Ffr0giYsiVk0gd2h9pnyVO+ZGpy8wxhdhNVkQSETKN0r8cKdcqyRhbGOSDB5AxpgCbwUJUWhwJA9LRJscQk50UvBR7hKRBmWFf88ni9XqxGcx43V6EEtEp9cQdbxDHbrKGFLE/BHKtktG3zWHVvz7BbjzqJypRyBh397yzIjb78qMWdjKZDJns+1n7jxAhQoQfGw6LHafFhhffEp9UeXQgwdpjChkSD76pTHO7wS/sZBolGWMKSRqYSUdVE6klOSijNVRt2I++XwJ7/rcyqGLkcbnZ8cEKpj98DQCWTiOb3/iagReNZdNriwOONbZ0sfmNJYy+fQ5rn/N55gmEAoRHlsiOXRpVxWiJz0tj8xtLAra3HWrA2NJNyZWT2PT61+ROLqZ8zR5/pc/r9SAUhV/qEwqFaOKjmPnH648kQ3iJzUqm9VA9ArGIYddPp+1wPU17qkgdkoM2UY/L7uTAkm2IxGL6jchn3YsLAiqLbqebbe8uR5sUQ2x2sn+70+7EbrDgMFsRyyTINIoAsSSRSxl44WhkKjmHV+7C7XAhkorJmVRE/6klSORS4vqn0lJWS/WGUgbNG8PqZz4LEkfaJH1AP+CpYDNYaNhVTunXW7B2mdClxFJ02Xj0GYnHtes5lpSibGq3hJ7EjctNCZve8UOgS45h2sPX0FXbQldNC7qUWGIyk/yV67PJj1rYRYgQIcJPFY/bg63HjMNqRyQRI1Mrwt5UvV4vxuYudn2yhubSavD6/NiGzJ+EJknvSzOxO4/bx9V6sA65VonqiLGtVCEDr8+8tu1gvf+xmWMKMTSFjrtzmG1YDWZUsVo6KppIG9o/bKKCy+6kvaLRX3lKLcn1vz5FtBqRRORvcM8cN5CD324PeR5bjxlLtwlljJbarWUUXzGR3Z+sxevx0HKgjqLLxlG/I3RcV79RA5AopMi1KnTJPm9Ir8eLTKNg27vLaT141Iz54LfbKbhgJFnjBmJobCe5KIu67YfCZsaWLt7M6NvmIDmSulG6ZAsVq/f6LWGi0uIYffscNPFHhyIUOhWFc0eTPWEwLocLsVSMXKtCKBbSWd3C6mc+9VcGja1djL7jAg4s2UpXTQsiiYiMUQUMmD0C5SlWnJw2Bw6LnQNfbwnwI+xpaGfNfz5n5C2zSB+Wd9J9cTFZSahitZjbA/vjBUIBgy8ZF/DF42yg0mtQ6TWkFuec1es4lvNK2JlMJsrLj/4Dq6qqYteuXej1etLT08/ilUWIECHCuYPdZKV+x2H2frnBt3wpgMSCDEqunuxPFOiLucPA8ic/DKiitR6sZ/kTHzL9d9eiiY9CKBYhFAlDxkoByDQKNr21hDG3z/UvD7odTtoONQQIQncYuxP/fodvYtXQ3IEqVueroIWhp7EDdawOt8NFxqgCWg/Wk1jYD4VORfEVE9l+xOhXEx9Fd31b2PN017WhSYimdstBXHYX4+6Zh8NoxdJjQpccS0pxdpB3oCYhmtQhOf5oLj8CaNpX7Rd1iigVEoUMS6eR0kWbSR6USVRaPHKNIqinry+mth5cDhdCiZiKtXsoX7k7YH93XRtr/v05k381P0CIiSQiVDHagGMtXUY2vPwVLruTuP6p9BuRj0QhxdptInvCIOJyZiGSiJCqlYil310WuBxOTC3d7F+0iewJgwNEXV92fbyauNyUoKqWtceMrceMzWBBeaRHTaZRoozWMOmXl7FvwUbqth3C4/YQ3S+BkqsmoU3Sh3yOCOeZsNu2bRuTJ0/2/9zbP3fjjTfy1ltvnaWrihAhQoRzA6fVjs1opbWs1i9qAPBC8/5q1vzncyY/cHlAD5DH7aF604GQzfQuu5PyVb78WblGSdrwPGo2BTe0i+VSpEo5HeVN2I0Wv7ATScVoE6IDmvG9Hi8ShQynNfj5BEIBSr3vpq/PSKSnvh1VjJZuS2hRpkmIJn14HoamDja9/jVOm52Zf7weXVIMacPy0CbHcGDJNl+agk7l760LdR5dcgxCsQh9ejxet4emA7WkDslhxZMfMe2Ra0genEXdjsN4nC4SCzPQ90tAplPisjuP+NL5bqd2g4VDy3cSk5lE/sxh2AxmbEYLuqQYrN0mqjaWUjh3JHs+W4cuKSZsn5suOQaRWITNYObg8p0kDEgneVAmApGI9vIG6neWY+4wYGrtPmGFzW60YjNYGXnzTAzNnez9cgN2o6/nLn/GMLweL0q99rjnCIfDasfSYaBhTwXWHjOmtp6wx9qNVhwWe4CwM7Z2s+75LzG2dPm3xeYkM+rW2SijNahidAy9ZioD543xR8OdTRPu84HzSthNmjTprDVLRogQIcK5jNNqp2pjKWKpmNLFW0IeY2rtxtjSFSDsXDYHzfuqwp635UAtztl25Bolgy4ag6G5i64+lSaxXMqIG2dwYMlWwNen14tUKafwwlG0PnU09q5y3V4K5ozwm+X2JXvCYP/0ZnRaPGVLt5I9YXBIywuBUEhqSS4bXlmMua3bv71q/X6KLhuPVCkjJjOR4svGU7+rnKzxg9n/1caQ54lKjePQip3IVHLqjlQ6AeL7pxCbm0xPQxsytW8i1+NyI5FLEQiFNOwop2FXORKFjKzxg1DFaBEIhajjdWSNHcjmN5cEDHHoMxMZfMk4ZFoV6cP7I1HIqd5YGlwFFfjeC1OHAZFUzMibZtJe3kj5mj2IpGKi0uIZd888dn64CmNLF/H9U8N+fuBLSiiYM4LabYdo2nv0s+6ua2PT618z5s6537kC5rI7MDR3sW/BBv/0c86kohOKrr4m1tYeM+teCBR14Msb3v7BSkbdPBOJQoZYJjmr/XTnG+eVsIsQIUKEnypupwubwYKly4hAIEARpUZ+ZPoUfJ5fuz5azeg7LggZ2dVLZ00L8XlH3QGEYlHwcmIfpCoFwiNmwcpoDaNvnUVXXRvGpk5kWiUytcLfpwWgOMbqQZcSx7Drp7Hro9W47E5ay+qIyUxkzM/mUrpwMz2N7ahideRMLPJ9cT/SfqXUaxh+/QxaD9eTN72EQ8t3+fvLJAoZQ+ZPZP/CTQGiDnzi1ev2IBCLMDR1svwfH+J2uvyJCvU7DvuPFUnEDL1mCodX7aKltCbotXfVtDD0mqmseOJDbAaLT2DIpYy6dTZb3lockMLQuKeSwZeOJ2FAGkWXjmfja4uDJnM7q5qp2XIAfUYiycU5mNu6GXv3PLa9s8z/mck0CgZdNJaqDftp2FnOjD9eT+XavaQPzyMqzZdAoYrx9Z2VXDUZgeD4/WouuxOZWkFUehz7F4Y2VN71yRpiMhO/0zRnW3kja5/7wt8jaDda2fbOMiY/eDliuTRkIoc+MzFA+NkMZozNXUHHATTtrcRmtHxv5sc/ZiLCLkKECBHOcZxWOw27Ktj+/gp/aoJYJmHotVNJHpyFRC71Cxav24NYJgkSFb2ojumxE8sk5E0vCajk9CV/5rCAoQu5VkVH5R6a9lXhtNgD+udSirODRKJUKaPfyAEkFWZgM1rB6/WJVKOFggtGHhnyMFG1YT/aJD1Z4wf5H6uIUiEUCUkpziZ9RD7WLhNCsQiv10vpos0hEy7i89MQikU4zDZ2frjK/35te3cZeTOGMe6eizC2dKGO06FJiPYNjOyrRq5Vkj1hMLrUWLweL3ajBZFUgsvm8L9Gl91J0qBMarceDBB1UWlxDL5kHPU7y6lavw+pSkHetBJcdie7PlkTMCBRs6mMgtkjUcVocTvdlC3dxpg752LtMYH3yPL36t10VjWjjo+ip6GdnEnFbH3n24Al7ai0OEqunowqzBKqy+bA2NrNgSVbie4Xh1gSPuLK0mHAaXNwsguclu4jxsEhFtD2fL6e0bfPYf0LCwIqkTKNghE3zggQdn2tQoLwgssW+nc4wvGJCLsIESJEOMcxtHSx5b/fBGxz2Z1sfmMJ0x+5huj0eOwm302ybvshMkYNoHx18NCBWCZB3y84rUKXHEvejGEc/GZbwPbsCYPQZwQeL5ZJyJ8xFIFQ4G/oF4pFZIwaQOHcUUGZrbYeM6aOHjoqmpBrlWiTYqhcv4/mfdXEZCWRNW4QleuqsHQZGXPHBUj6LLlJFDKkChkrnvwY8PXsSRUyhlw9OSB9wn+8Ukby4CzA1/vVdrjBv8/r9VK2dCuCbwUodGr6TyshaWAG+vR4LJ1Gii4dz/5Fm/xVLXWcjpKrpyA6ZpggpTjbn3QBvhi1QReNZcMriwKqVO3lDaSPyGfArBEc+Pro0rjH5fbn5Sq0KjQJ0VSu3UPVhtKg1xObnYxIImLbe8uCTIO769o4sHgLQ6+dGvQ4j8dDS1kd61/+CrzQUdVM8eXjg47zI/AtSZ8sTos9KDO2l47KJtwOJ+PuuYiOyiYsXUbi+6cRm5McNNRxvAqhUCSMVOtOkYiwixAhQoRzGKfdSdmR/rVQHPx2O8Oun05KcTblq3bTuKeSUbfOxtjWE7C8KFXKGH/vxSiig2+mMrWCATOHkTF6AM37a/B6vSQV9EMepfbHWvVFrlUxcN5ociYOxmVzIpJJkPeJFuvF0mVkw0sL6TyyTAs+ETj8+mm+hvtdFTTtrWLcvRejTYwOeaOPyU4msTCD5v3VuB0urA4XddsOMfLmWez9Yr1fYET3S2D49dNwu1yUfbuduJyUkEkMXo8XS5fRlyhR20r6iHzi89PZ8NJXAf2BprYe1j77BVN/exX9RuZTs7nMf/19K1GZYwo5tHxHyKXH2i1ljLt7nu8xR8ScMlqD6Ih4letUFF4wkoPfbkefkUjOpMG+91AowNptwtxhBC9Yu0IvrTftrw5Z1bJ1m9n6zrf+ipo6TociSh1wHX1JGNAvZEyW2+nC2m2i5UAt5k4jCXlpaJP0J7QrcVjsbHt3Oeq4KNTxUcT1T0UZ4vdOrlUSl5dK28H6oH1Z4wae9QSH85WIsIsQIUKEcxiPw4WxtTvsfmNLF26HC22inuj0eLpqW9n85lIGzB5O7qQiTO09aBOi0SbpkUepw8ZBSVVypCo5uqSYk7oukViMKibYOqUXl8PFga+3BIg68FWstr6zjDF3XEDrwXoyxhQiEEBrWR0CkRB9RiJyrRKJXOr3oRt6zRRsPWYOLtuOF5+YikqLJ75/Kg6LHYFQgEgq4eA32ylftQuA3MnFJBb2C5scoU3Us/LJj4g9IhwdIaaCvV4v+77axLBrpyCWSanasJ/WsjpSirKo2+5b+tZnJnJwWWiPPIC28gaiUuP8sWSDLx0XMMWqiFKTNX4Q2qQY9ny2zr/sq46PYsiVk3BZgwXj0QskpFCzm6wBWb1imYTWw/UMvXoK295bFmDgrIzWkDe1JEgAu50uWspqWf/iQn9vY9mSrWgSohl/38VEpcXRXRc8rSySiJCpFTjMNjrNzXRWNxObk0zOhMEA2IwWX7vAkenWkTfNZOdHq2ncVYHX60UoEpI1bhAD5oyIDEycIhFhFyFChAjnMCKZmKjUuJC5lOCrVInlYkRiOWPvupDyVXuoWLOH/Qs3kTAgnaLLJ6CJiz5hcPmZxm60+JcX1fFR9J9aglynxOvx4nV7cNqdFF8xAXOHkdX//sxfXRIIBAy6dBypQ3I4vGIXjbsrEMsk9J86hCHzJyHTKvG6Pf5KkqXLRHxeGhKljNqtR6pqRzJgiy4bT2d1i3+Zupf+U4fQvL8ar8eLKlZHe3kD4eiqbgaBgKLLJ5A/Yygup8tnH1NaG9Ky5Vh8ww1eFFFqBl8yloSCfkHHOC12tr23LKBnzdTazcZXFzH5gSvCnlskFSMJZTp9TEGtp7GD5EFZ1O8qZ9zdF9Fe0Yitx0R0egIyjYKKdXtJKc7Gm+VFfSRWzdpjZsNLR0VdL8aWLg4t38nwG2aw6qmPcfatVAqg6LIJVKwJ9LFr2ltFWkkuLQdqObBkKzaDhdicZAovGIUmIYrhN0zHfsk4XHbnEcPn4OpvhJMnIuwiRIgQ4RxGLJWQP2MYdVsPBlVVBEIhuZOLEYl9f8qV0RoK540iZ3IReLxH/OXObJ+Sx+PB1m3G5XD6Ei00oU1tPW4PHpfb5+c2axi7P1nj9ziTquQUXTqeqLR4dn28JuBxXq+XPZ+uRRWjpXpTqd9fb+s7y0gYkM6Im2bSVdPC+j6i48DXW9Am6Rl5yyw6KpvR94unp6Eda5eJib+8jMbdFbSU1SFTK+g3Ip/O6mYOLT9iz2K2HbfXS67zDXCIpWLEsTo8Ljdul4fpv7+WQ99up6exncQC31JxKFKG5BCdkYDTYqe7sYO4/qnQZ3nbYbWzb+GmkIMILpsTm8lCfH46rWW1QfvzZwzzx7j1RaZWINcq/dU/S4cBsVyCsaWLtc9/gb5fIlK1nNZl27F0GBnzs7lse3c5AqGAqb+5EpVeS2dlU1gz6orVe8ibPpTpv7+W+u2HaT1cjzJaQ/LgLGo2lwW9F8poNbXbDrLzf6v82xp2ltO4u5LJD15ObHZyQC5uhNMjIuwiRIgQ4RxHHa9j3L0XsfW/3/hv1oooFSNunOmvsPQiEolOORLqRNiMFmq3HqR00WYcZhsiiYjMsQMZMGt4kDgSyySo4nQUzB3JhpcX+hMlwCemtr7zLWPvujBAgPSldksZqcU5VG3Y79/WcqAWu8nKhpeDK0mGpk5qt5QR3S+BdS8s8G8XioSMun0OqSW5AKx7YQGmPkvbzaU1jLlzLpXr94UUV0PmT8DtdNNV14ZAAF21rTTsriCpMIP+00pAAKlDcumsagpazs0aN5D67YcD4sy6a9sYdess/3So2+6k5zipGOWr9jDihuns+2ojtVvK8BxZxsyfOYyssQNDVmIVUWpG3DyLtc9+4X+fdn28mhE3zaRu2yFqtx7E43ITnR5P0aXjqVq/H7vR9xk07akie+JgbKbwE6tejweP04UmIZr8mcPIHD+QzuoW3yRsiKXhzLEDWfnPj0KeZ/v7K5h4/6UBubcRTo+IsIsQIUKEcxyxVEJiQT+mPXwNDpMVBD5/OUWUKqSPmdvlxtZtoruhHbvJSnR6gs/3TnPqjv1ul5uq9fvZ+8X6o9ucbspX7cbcYQiyslDoVIy4cQZNe6oCRF1fDi3bQcaoAsqOmcYFsHabUcdFBWxTx0fRfrghbCWpbtsh/1RsLx63hw0vL2Ti/ZfRtLcSpV4TIOw8Ljd12w5SfMVE9ny6NuDcY+6cS09jJxteXuQTbQJIHNCP3KlD2PLmUkq/3sLkBy73BcI/cg01mw7QtK8KqVpB+rA8LF1G9h0xO+6l5UANdqPV/145bQ5UMbqwObzqWC3yKBUlV02m4IKROK0ORBLRcU17BQIBcTnJzPzDtRxeuZuuula0SXoUUSoGzhtDSnE2HrcHoViESCyi38h8ssYNxNTeQ+uhOvqNGkBsVlLIc4NvGEMsl+Kw2OiqbWXfgo1kjRtI8uCsAJ9ABFBy1WQcZqu/X/JYehracVrsZ1TYWTqNdNW10l3fji4lluj0uLC2MD9GIsIuQoQIEc4DBAIBymh1yOnCvrhdbtoON7D+hQV+DzeAxMIMht8w3R/31YvNaMHr8SJVyf2pD6Gw9ZgDbDv6Xpc20Rcb1l7eiEQpQxWjRRGlRpccS9nSYNHWS09jB+nD80Lu02ckYGgK7CsUyyTY+wwFHEs4wYcXGndXYuk0kDOpiNayuoDdNZvLcDlcTP/dtZhau3A5XcRmJtFysI6dH64KOE9zaQ3mDgODLxnH1ne+Zf+iTZRcOQV1rI4Bs0eQO7kYm8nCqqc+CSvWrAYz2iQ9lm4TW9/+lqzxA0PatwgEArLGD0IoFOLyOOmub2P3x2swdxgQCIWkDe/PoIvGhBQtIokYbVIMxfMn4nY4EUnFiMRi7CYr+xduJm/aEOp3lFO3/aC/UqlN0jP02qkIxUKUei1x/VNoOxTcf1g8fxJSlZyaTaVse9eXCtJZ1cyA2SMYe9eFGFu6kKrkxOWmItcqadhVHnSOgNd5ginb70JPUwernv4kwCNPqpL7BHhK7Bl7nnOZkzeuiRAhQoQI5zzWbhPrnv8yQNSBLyu2fNVu3G63/7jyVbtZ9fQnrHjyQ/Yt2ICpPXzOp9PqCGl6PPS6qVi6zCx97F3Wv/QVq57+hG8ee5f2ikZEEhG65PBTtqpYHTZjsPgRyyQkD8qieX9gGoSptfu48Vnq+KiwYsrWY/bFgO2sYNh1UwOsNDQJ0WSMGoDDYiWlOId+w/MRiETsWxAcQQa+AQKhRIRUKaNu22FsBp/HnFAkRKqSI0AQ9joAv4WM3WCho7IJc3sP+TOHB3jJiWUSRt0+xy/a2g83sOGlhZg7DIBvGbN2cxlrn/viuEkjIrEIqVLu78OUqRUMvmwc7ZVN1G07GLD8bGjqZPMbS7CbbMi1SkbdMpv8mcMQy33mxtrkGCb+4hLicpKx9ZgD+iO9Xi+lizez8dXF1O04TGJBBpr4KCRyKTFZyWETMuLz04K8D0+V3oGPY42PHWYb61/6CmtP6KzgHxuRil2ECBEi/IhoPVgXss8JoHzlLrInDEIgELDhlYV0VB7NfD34zXaqN5Yy9TdXoY4NtjERKySMvetCPC43ApGQxt2VmNq7sXaZfAKhD06bgzX/+ZxZf7qBzDGFHPx2R1BPHED/KcUo9RrqU2LpaWgHfFO+Q66cRNmSLUHDIqlD+6OK0RKTnURHZROJBRnE90/F6/HQtK+a/tNLgpY+pUoZ6SPySRmSQ1dNC4dX7MLY2sXgS8chVSkQSUQYGjuoWLPX1zN3BLfDGWQK3BdDUwdKvZbuhrag3jqZRkFiYb8gYQqgS47xi8peoVy6eAvpI/IY+7O52M02hCIhIrEITUI0YpkEa4/Zl2CBr7rV167E0NiJsbX7O8WBqfQaqkMYIoNvGdPc1o0ySo0iSk3hhaPJmViEx+NBLJX4r93Y0h1S6HtcbrqqW7B2m/zVZYVWScnVk9n+/oqAY6UqOSVXTUaqPDPCzm6yBuXO9mJq68FutARVrH+MRIRdhAgRIvyIMB+v6mZz4HF7MDR2BIi6XuxGK4eW76TosnH+Cg/4qnv7F2yidmsZXo8XoVhEvxF5FF02gfV9BhX64nG5aS6tIXNMAePumcem17/2T7gKRUIKLhiJKj6K+m2HKLlmsq/nzAMdVU3s+N9KCuaMICYrmZYDNYjlUtJKctEmx+DFS+HcUUjkUuq2HaJy3V4EIiEZowtQx+pQx0dhaOoEIG1YHunD+1OxZi9b3lqKKkbLoIvHYmjqYMtb35A9YTDWHhNimYTcyUV0VjeROCDdd41iESKpOGx/oCJKg91kJXFAP4ytXcRkJvr3SZVyhl47jU2vLQ6IPdMm6Y8MjPjEhVyn8pso1245SO2Wg4jlUrxuD+Bl5p9uAHwiM3lQJgkD0n09dlIx1m4TB7/dgcvupLOqGW1iNKa2Hpr2VfkSOAZlodCpQqY3uB2uoIpuX0xtPcTl+iqjIrEIpV4TdIxAdPzl0777xXIpacPz0GcmUbF6N5YuE4mF/Ugpyg5Kozgdwn1WJ7v/x0JE2EWIECHCj4i4nFQOEDqpQpMQjUgiDpg0PZa6bYfInznMP1lrN9vY/v4KGvdU+o/xuNxUbSil38gBx11yNDZ3IJKISchPY/w983DZXbhdLoRCIdWbyihdvIXUklxcNifq2Ci8bo8/MWHDSwuJTo9Hn5mI2+Fi1ydryBw7kNisJARCARteWRSQyLD38/XUbjnI6NvmYGjqRKqUkTAgjfUvfeVfbrR2mWgvb6RgzgjShvUnc2wh5vYeGvdUsf6lhUx/5Br/+eQ6FdnjB3Fo+c6g1yWRS5HrlDitdnKnDAmZOqHSaxh5yyysXUaMrd3INEqEYlGAQbRcoyRr/MAA37fecxXMGeEXZQKBAGu3mbXPfwleX6Wr+PIJjLx5Jt0N7USlxNJW3sDO/63yfx57Pl3HkKsmkTFyQIC4s5ut2E224+YJq+OjAn62m204Lb7eRolSjkwlR65WItepQlY15Vpl0DCEVCFDmhZHydVTfNU/yZmXHzK1AqFIGLLXUiAUBuUY/1iJCLsIESJE+BGhTYlBHafze8b1pejyCcg0CoTHMSsWioUB/rZ2oyVA1PWlq64VTWI0xubQy1+xOb6qj8fjpaepC5fdwd7P1wcsFdduKcPSYWDkLTMRCIVIZFK/6W1XbStdta3+Y1WxWpw2B101LSFjtnoa2umsaWb8PRfh9XpZ9fQnIS1MypZuY+pvr2LvFxtoLq0mIT+difdfikgmxmG2+QdJ8qYPxdDSRXOf9AqpSs7wG2fQUdnEmDvnUvbtNoZfNz3g/A6LHYfVzq6PV9O0pwqxXIrL7kCuVZEzqYjUklzEcgkKrYqCC0ahiFJzaPlOHGZfb1vO5GJEEjENuytIG9qf8tV7qNt+CPDl4Y68ZRZ7PlvnX74G0CRGM+LGmWx+a6nfumTn/1YRn5uKLuWosLN1mylfvZvMMYUcXrkr6L1Rxer8S/Eejwdjcyc7Pljpz92NzUmm5KrJaBL1jL5tDqv//VnA5ykUixh12xwUutBLw0KREKHo+2nvl+uU9J9eQtmS4IGd3MlFyH4iEWURYRchQoQIPyKUUWom/uJSdn2yhsbdlXi9XhTRaoovn0BsdjJCoZDs8YOp23oo5OMzxw4MqGzYQww39FK5dh+DLh7LhpcXBu2Ta5XoM+J95zCYiUqJYe2zX4Ts/2uvaMRutqFLjiV74uCwk7RxOSm47E72L9wU9pqqNx0gZUgu5rbusNVEj9uDtduMMlbLlAfn01JWy4aXF+Iw2YjNTaHo0nFok2NQRKkZedNMbD1mepo6kMhlSJUyjK3dWDqN7F+4ieHXT/cvJ1q7TbQebqBi1W48bg/JgzLJGF3A9veWkzFkAAkFGRxesZPSRZtR6jW+5ebsZDqrWyi+YgIiqQSX1UHVxv20lzcilkmIzU6mfPVu/7X3nzKEA4u3BIg6AGNzF3s+X8egi8aw7d1lR9+PzQcounS8/+eWg3U07Cpn+PXTyRhdQM3mA/6evej0eEbePMvfr2dpN7D8iY8CKpLt5Y2sePIjpv/uWvRZicz84/XUbjlAZ00r0enx9Bs5AKVec0YnXU8WsVRC/6klKHRqShdvwW60INMoGDBrOOkj8pH8RCLKIsIuQoQIEX5kqGJ1jLhxJnaTFY/LjUQhDWiu1ybqSRvWn7ptgeJOkxBN1pjCgIqK5DiN7caWLnSpsQy7fhp7P1/vj+6KyUqi8IJRGFu7kWqU1O+sQKnXhMxj9Z+ruQt9egI5k4poKa2lq641YP+QKyeh0Kmwm2zHrfgIRSIEAsJOYfbisjtIzEtnzxfrAyLF2g7Vs/yJD5ny0HxispKQqRXI1Ap0KbH+1A2RVII+I8G/D3yibuNrXwecq7O6GU1CNKNumY2prYdNry0OeO82v7mUnElFKKPVbHnrmxDX6MRtdwb0hkWnx4cVtt31bWiT9Iy+fQ47P/Qty9p6AsWtUCwCL2x7ZxmZYwsZ+7MLcbvciMQiehp9S+cAbrebyvX7Qi4zu+xOKlbvZtAl49DER1E4d7T/HGcbuUZJzsQin1efy41QLEKhU58VoXm2iAi7CBEiRPgRIlFIkSikIffJtUqGzJ9E5ugCDq/ejdvhImPUAOLz0lBGBzbKyzU+UXNshQggvn8qIpGItsMNFF8xwddDJhLRXd/G5reW4Ha4mP7INZQu3MSIm2YGTXQee03gi0Ubd888DM2dNO6qQKpRkFqSizJKjUQhQyyXkjl2ILs/WRPyPOnD8yhdtImMUYVhl6TFMgkiiRiPyx0yJ9br8bLjw1VMuO/iANNloVCIUq8JOUzQUdUc8lzGli7aK5voqm0Jeb3lq3cz/p6LKF+zJ+SysVAs8i3lHhFY4Yx+e7F0mdj75XqG3zCD9S99RcqQ7ID9CXlpvtfo9VK5bh+V6/b59yUWZpAzcTAALquD5tLgqd5eWsrqyLfaER2p7p4Loq4XgVAQ9Hv8UyLiYxchQoQIPzHsZhvd9W0cXr0bTXwUyYOziE6LDzlBKdeqGPuzuWgSowO2R6XHMfzGGTjtDmo2HWDzm0vZ+Opi1r/0FfsXbsJutOKyOzG39+D1emk5UEPSoKyg84Ovb00Tf/T8iig1CfnpDLlqMoUXjEKXFBMwSJA2tD+61GCz2fj8NNwOJw27KrGZ/r+9+46P6j7zR/85c2bmTB/13rsEKiAhIVFEEcV2bNywk7hgJ9eJHZyYeFPszSZO7k2uc/dms944TuxsEpPN2rGT2BgXjG0wvQiBkBBCHfVep/c5vz8GxgyaERIIDRo979eLP3TOzJznHAn08C3PY0TBA2smt9y61Kh+4EKnx47Vq413Dno2uJ+C3WpD25E6n+e7TjUiNNlHJwceMI7rPBLIy8RyCcQyDpkbvijDIg9VTTkaKeREMAxr0FXVhNTyPIQkRnqcl6hkyLtv1aT3cQopCh5Y7X7OAiHrtQ+t+/Uqqdd2ZsT/aMSOEEICkN1qg1lrhMNqh5ATQaKWgxWysFusaD96Hud2HQUAuFMbBljx5J2IyUuZlDgowoOw5rv3wzShd9UnC1FCqpZDopJjomfySN6VHDYHBKwA7ScuoOwbd8A4qsXEFb1RRTIOq79zz4zqsMmCFVj19N0Yae1F+7F6MKwAcQWp4J08zv79EFY8+SWceO0jKKOCseLJu9Bf3w5N7wjkoWqkrs5D0/5q6AbGEJuf6vMaAiE7a9N3V9fju5pUrZg0kskIGJR8bTM4lQypq3JhM1rQW9sGm9mC+GUZ6DrVNOlzYvJTMHJpk0P3mWZs+skjk0auRFIOKSsWISIjDi0HamDWGBC9OAmxBWkepUdEEjEyNxZioL7Da8zZG5dBJJn8HwHif5TYEUJIgDFN6FH/4Ul0nGyA0+6AkBMhc8NSpK7Og91iR91VRXwBADxw5o39CE6I8DqNJVXLXcVdrxoBEss5SFQyrxsVGIaBKjoEqthQjLT04eSf9iL37jJwCil0g+OQBikQlhYDRVjQjJMoWZACCUWZCEmMRPPnNbjw0SkYx3UIS4vBSFs/LHoTLK0mHPnte4jMToAyMgRmrQEtB2vAMAwmeoaRu2UFwMDrFGhicZbXUTRvhGIRUlcuxqCPqcvE4iyf9QWFnAgCkRAlX9uMgQtdEEvFUEQEITQlGlK1HAKBABKVq8drxvqlOPO3z5FYnAVWLELnpe8vIxAgvigDcQWpOPnnvQAAp8MBgdD7pJxYJkFIogTLHq6A0+kEKxJ6HQUMig1D9uZlaNjrWT4nc2MhguLDp/VsyNyjxI4QQgKIxWDC6Tf2o7+u3X3MtZO0Eg6bA3FL0712gQAAs9YIi948o/VJ0iAFCr+6DsdenbwzNmtzESRqOYof2YiD//UujKNaVP/tAIScCIrIYCx7uOK6krrLTBN6GEa0kKrlyN+6GrzDCZvJgq4rNoXwPO+xVkweqkLJ1zZDJBGDdzpR+NX1OPPGfo/PVUQEIeeOEgjF3ndROmwO2C1WCIQsRJfabYWmRCM0JWpS4WdFuBpJZTmwm63oqW7x2EDCCBgseXANGvZUQhUditj8FHRWNWGouQf64QkkFmdBFqICz/MQciKAca3/q3x9L5JXLsb67z8A/YgGApZF//l2nPzTx+4abpHZie7YfBEIWQjgezqVU0iRWp6HhOJMDDX3uD43KwESlRx2ixXagTHXlK1S5oqP3BIosSOEkABi0Zo8krorNe8/i4TirCnfL7hGR4GrMQyDiKwErPvBgzi/+zgmuocgC1Uh5/YShKfHQiQRQyQRY933tkLbN4axrkEoI4IQkhQFabD33YpmrRF2ixUMKwCnkMFpd8CiM8JqNEPIiSGSiWHWGMEKWfA8j57qFox3DYEVCVGwtRyc0vdIm1ghhTIyGIVfXQfA1Y0jLC0G3aebYZrQu9Yb+hi1dNgdMI5q0fL5WYy09UMarEDWxiKoL5VGKfvGlzDY0IXWQ+fgdDiQVJqDuII0yEKU4HkeG370VfSf78BQcw/kIUpEZCag9VAtOJUMshAlDr/8nvtaEqUMuqEJtBysdfXIzYxDbEEaMtYXYKC+AxcP10EdFYKes63uGnOXsSIW+feuuqFWXTaTBWOdg6j95xFo+kYQmhyNxOXZEAhZ9J1rw7l3j8KsNYIRCJCwLAO5W1Z43VRC5h4ldoQQEkCM4zqf55x2B5w2u8+uA4qIIHDy6U0/XkkkEUMZGYRl2zYCPA9WLJzUeUAWrIQsWImoRYk+P8dmtmKsfQBn/34Q2v4xsCIWiSXZSFqejSO/ex92kxX596+GSCpGX107kkqycOy1D91TqQ6bHefeO4plj25Az5kWr9fI2ljoMcUqkoihjg6FfFMRHFYbnA7eZ0I00TOMA7/6h7sW30TPMPrr2pF370qkrs6DNEiBpNIcxOSlgOd5iOUS8A6nuxSIPFSNmLwUDDX3YKxzCM37zoLneazcvgXHfv9Fa7aonEREZMbhyG/fc99bf107Lnx0CmuevQ/Rucnor2tH7btHUbxtIyIy49FxsgE2oxmROYnIuaMEyqu6R8zUUEuvR7u4kbY+OJ1O8E4nqv92wH2cdzrRWdkIbf8YVj69BdIpNlyQuUGJHSGEBBCxfOpRGqFEjOLHNuHEHz7yWNTPioQoeXwzJDNskm7WGTHc0ovGvVUwaw0IS4t1tcOScFPumuR5HlaD2R0zwzAY6xjAof961/0ah82Bi0fPY7R9APn3roJxXIfR9n50n27G4rtKcWHPqUnr42xGC8baB5F9WzEaPj7lcS5xeTbCM+I8jjmdTugHJ1D3/nH01V4EK2KRXLYIGRVLPTYTmLVGVP3PZ14LLNftOoa4JWnuqU+xXAKz1oih5h60HToHh82O5LJFCE2OgkjKgXfyGL40tSkNVrh2Dl+xeSK1PM9V8+7qezNZcPqv+1D2zS9hIC8FbYfP4cKeSmRuKET5d+6BQCR0lbm5xhTstZgm9Dj79sFJx1NWLEb9hye8vme8a8g1LU6Jnd9RYkcIIQFEqpZDHqaCYUQ76VxEZhwEIiGiFiVi448fRtvhc9AOjCEsNQZJJdmQhc5sKs1qNOPChyfReuic+1j36Wb0nm3Fmn/ZirAUV4kPs9YI04Qe2sExKCODIeLEsBhMsJms7inUqOwEnP37Ia/X0fSOgBUJEZoUhQsfVQIAlFEhGO/ynmQ0flKF4sc2onzHvRhu7oHT4URoSjQUYepJI4mGYQ32/fJv7hFMu8WJlgM16D/fjjXP3u+ekrUazdD2jXq9Hs/zGO8agiI8yH2/Z98+6G4DBrhG3IITIrDiqbtQcP9qaHpHoB+aACPw7G0qlktg0Zt81qsb7xqCw2ZH6qpcxBakunrHKiQePWhvlM1shXF08s+PSCqGaWJyb1h3bJ2D7u858R9K7AghJIBIgxRYuf1uHP7Nux79VNUxocjcWIQjL+/C6qfvhjomFAVby+G0O1y7Iq9jA4NJY/BI6i5zOpw488Z+lO+4F067Ayf+8BFG2weQubEQFq0RjZ+cdq3PYhhE5yYjtTwPxnG9z8QJgHvtnvsal3b7+mpkrx+aQOtB11o3RiBA8/6zUISrsea797nrs9mtNjR8UuX1M/TDGgy39CLxGmsSvdH0jngkdZeNdw2h52wL0tcWYO2z90PTP4qR1j6Ep8e6XyNgBXDY7JPee6XLSd/VSepsEbACn7uFBULW66gl4Bp9JP5HiR0hhAQYdXQIVn5rC7T9ozBN6CEPU8OiM6Hyz3thNZjRdqQOi+4sBStkb6gh+0hbn89zmt4R2C021L13DKPtA64NCSFKnH3roPs1PM+j79xF6IbGUfLYZrBioUf7rCuJFVKPqeOe6hYkFGfhorfCwIxrl+qFjz2narX9Y7AaLO7Ezmq0oL+uw+v1pEFycAopemsvYrilB7H5qVDHhELjJflkGAbB8a6+uA6bHS0Ha3w+l7ZD55BQlAFpkALSIAWishNhNVmQtanIlfDqjFCEqX0mVrLgG+vDajNZYNaZ4LTbIZJwkATJJ432iRVSxOQmo++c5yacvnPtiC/MQGdlw6TPFXIi9zMg/kWJHSGEBBin3YH6D09gqKnHNbWnNXqMAnVWNiJ9bcGMigJ7c602Ug6bAz3Vrk0MKStz0bD3lNfX6QbGYbNYkViShYtHzk86zwgYBMWFu/qcXtJ37iLKvvkljHcOYrzrir6yDLBkaznaT1zwmhg5HQ4MNnZBJOUglkugjgnFUJNnDT6RlMOyRzbi9Bv73VOSvTWtKLi/HCf+uGfSiFXuPSvAXWqJxvP8lG2/HHYHjON6WAxmSFRycHIJxFIOmRsKEZYWg4aPqzDc1oe0NQVoPVBz1YMAFt9VivGuQQTFTu68cS2GEQ2q3zqI/vp2gHeVM8m9ewViC9LAKb5YmymWcih4YA0mekc9pmR7zrZi/Q8egG5oHGPtX5R1EXIirP723Tf880RmByV2hBASgBiGgd1s9drEnREwrhGhGxSaEgOGYbx2VgjPiAPvcLg3BYjlHIxjvnfsDl7oQmJJNsa7hjDe+UWixggEWPboBrQeqkVEVjxSVi7GxaPnL9Vz+wT5962CSCLGeM8wxFIO0bnJuLCn0uuuWHVsGAYbulD7zhEAgCxEieVfvw1V/6OHbnDc/brkFYvQtL/andQIWAESijIhVkiw7vsPoP14PUYvusqdZG8sgiom1L1hQSgWIak0x2ex4ujFSbiw5xT6atsQnZuMoofWQxqkAKeQIiY3BWEpMbAYzND2j0IVHYKLh+tgHNchKD4c6WsL0FXVhLgl6df61kximtDj0G92QT804T5m0Ztw+n/3gRULJ005K8LUWPcvWzHaMYDBC52QqOQITYnC+Y9OIqk0BwVbV0PTOwppkBzqmDBIgxQ3NPpLZg8ldoQQEmAEQhap5XnorWnzej65bBE4xY2vz5KoZFjy4BpUv3XA47hYxqHwK2vBikUQScSwma3gnfyUU60StQy6wXFkri+EWCHBWMcAJGo5IjLiIZSKEJIUCbvFhuhFSUgoykDDZ2dg1ZuhHxpH5KIk2AxmJC3PRkflBaijQ9EDz8SOFbFYfFcpaq7YoGEc0+HYqx+geNsmV2mRS8LSYtC8vxrAF629Oisb0bC3CgJWgJj8FMQvy0TckjQoL22YuFJ4WgxUsaHQ9npO23JKGWLzUnHkFde1+uva0XGqAUklORCwAnAKKcRyCVixCG2HatF/vsPVAUMphW5oAqf/ug8Omx15d6+Y7rfITTs47pHUXalu1zFEZMRNGnGThSghUcsRlhqD0fZ+DNR3IGFpBkJToiEPVSEsJWbGcZCbj+Gv1cQugGi1WqjVamg0GqhUqmu/gRBC5imz1oDT/7tv0jopRUQQynfcB/ksFZO1miwwawwwjevdI3eqyGBIQ5RwOp1o2XcW53YdRdzSdIjlEq9r4lixECuevBNWgxl1u49h7b9sde9GNWmN6DndhLYjda7admIh0srzkVCciZ6zrZjoHgankCJ78zIIxEI4zDZ0VzdDFRWCzlONME0YEJYS7RrJ+6jS67rAldu3QCTj0FnZCKGYRcKyLOx78W8AgPiiTIgkIlw8OnmKWKKSoeK5r3gtzGsc16HzZCMuHq2D0+FA9OJkxC1JR/Vbn0M/rAGnlKLooQqMdw2it/YiGAGDlJWLEZOXClmwAqYJPar+5zOPrhkiKYdV374bIYmRMx4da9hbhbr3jvk8f9v//dgN174jN89M8hcasSOEkAAkUclR+FAFUlYNouXzGjhsDiSVZiMqJ3FGLcOuxW624eLR87h4pA52iw2hqdGu7g8qGViREEllOQCAxk9Oo+iRCugGx9013ADX+qyyb9wBHsBY95BHiRHDqBaj7f0wjOmQsioX8lAVLuw5habPzsBqNCNtTT5i81IgUckgCVK4NwGkrFgM47gOGeuWQCyXQMiJ8PEL/+OzlZphZAIJJdmISI9FZ2UDNL0jkAa5kqu4Jak4tfMTr+8za43QDU14TexkwUpkbipEUlk2DCNaNO2rxpFXdrtjKHq4ArXvHPEYRav+2wG0HanDqm9tgSxEieLHN8Os0UPTNwruUseM653ylIepfZ4TciKffWXJ/EOJHSGEBCipWg5pbgrCM+LBO50QS7kb+jy7xQazzgje4YSQEwPgcex372O8+4s1caNt/fj839/G+h88iJCkKEiUMqRXLEF8UQbsFhuWPbIBNpMFE70j4BRSqCKDwXIi8E4eEemxYEWuX0v64QkcfOldj8X7Qk6Eksc34/wHJ9Bx/AJi81Nx9HfvQ8iJUL7jPoQkRYJhGPeO08uMYzqIpGJ3QeSrqWPCMFDfgco/7QUAmHUm5NxejDNvfg4wzJSbIfQjE4hEvNdzAoEAUrUChhEtes+2uo+HpcZgvHPQ69SopmfENeVZkgWJUgqJUoqguHCf15+u0KRIn+VhUsvz3DuFyfxHKTohhEyTaUKP/voOVP31M5zbdRQTvSMeTd1vVSJOdMNJnWFMi9Nv7sfHP/kLPn7hLzj26geujQ5XJHWX8U4eNf88AsulRIplWchDVVDHhEIRrkZwQgSSS3MQk5sMRUQQpGo5ZMEKd1JnMZhR9dd9k4rk2i02VP31M2RtKnLtPr20O9VuseHY79+HaUIPbyRqObJvK/Z6Th6mgixUibp3v5imHO8cxET3MIq3bQQjYKbs5KCODp3iqV26vkoOVcwXr4vIikdv7UWfr++obPB5L9dLGqzE6u/cA9FVPwfRi5OQsW6Jxw5nq8kCw6gWhjEtbF4235BbG43YEULINBjHdTj6yvuY6Bl2H2v85DRy716B1NV5EMtuLHHyJ6fTOWXnApNGjyMvvwdt/xgA1y7R4IQI9Ne1+3zPSGsv7BYrOB8tzpxOJyxao3tTxZX9W616k8d07ZWsBjMYhgErEnokI67uFgav08wCVoDEkizYTBY0fXraPQIXmhKNksc3QSAQTOqx23akDpxahujFycjYsBT1H5yc9LnKyGCPtmO+sJwQSx4oR8PeKgw1dgO8a9eyLwzDuDpZhAXdUM26KwlYAUKSo7Dpxw9BNzgBi94IdUwYJGq5+9nzTh7awXHUvnMEA/XtYBgGcUvSkHv3CndXDXLro8SOEEKuweFwoPXQOY+k7rK6944hJjd53iV2VoMJ+hEtLh45D6vRhISiTIQkR3lNjLT9466kjgEyNxQiPC0WJo0exnHfo0pCTuQzeTFp9Og40YDm/dWw6E0ISYpCwX2rERQXBqFEfM3OC1ajBSHJUdAOjHkc99WFAnB1acjevAxJpTmwGS3uZJJTSGGa0EMaJPdol8WKhAiOj8D+X76FpV9Zi/R1Bbh4pM6dFIalxaL4sY3Tqt0mVckx1NSDkIRIpK8tACsWQSznUPOPyT9PABC3JA2Djd2IyU+FUDB7v6YFAgFkISrIQrwno4YRDfb/f2+5S+TwPI/uMy0Yau5FxXNfnlYSS/yPEjtCCLkGq9aEtsOTW2dd1lXVhNzrKBjrLxaDGc37qtHwcZX7WE91K5SRwSh/5t5JmwGGmrsBAHn3rIRuYAxHf/c+GAGDld+6y+c1UlblgvPS8sqsM+L0/+73GO0bax/A5//xd5R/515EZidAJOMgknKwmbxPcyvC1VjyQDmOvLLbfcy1tk4O3sn7HOViRUJXV4erSNRy5Nxe4lpTd0nUokR3uZjqvx1AfFEmSr5+G3gnDwErgGFEA6FY5PP+rxaVnQDdwBhO/OEjOB1OlH3jDqhjw6DpHfF4XUhyFEQyCeShqmsWgJ5NDpsDzQdqvNY9tOiM6KluQcb6pbM2gkhunnm3xu6VV15BUlISJBIJSkpKcOqU90rmhBAyW3jwXn/hXWbRm+YwmhtnGNF4JHWX6QbH0fz5WffatcvkIUp3Ed324xcAuKbtuk43I9dLTbWg+HBkrF/iNTExjeu9T+HyQPVbB2DSGCBVy7H4rlKvsccVZoAVsug81eTRfSGpNAddVU1o/PT0lIWQ3ZfjeXfxZIZhELskDVkbi8BcmpIWSTmP72v36SYcf/VDnPjDRzj2+w/Q8HEV7FbfI4STrufkkbAsExt//DA2/eRhKCODUfaNO1CwdTXC0mIQnh6LggfKkVaej9p3jiChKGPK6drZZjWZMVDf4fN8b00bbBb/rbcza43Q9I1gtH0A+uEJWvs3hXk1Yvf222/j2WefxauvvoqSkhK89NJL2LRpE5qamhARQT3qCCE3h0giRmR2os9ffHFLZ94JwF+M4zp0nKj3eb796HlkrF/iMSUbkZkATf/YpB6hnScbkLg8Gyu3b8FoWx/sVjti8pKhigrxOUU5VX9Z3eA47GYrpGo5ovNSwPM8mj+rhnFcB5GUQ8qKRQhOjMTBl95FbEEqhJwYEpXMtatTKceZv+0HeKD92Hms+e79XsuQWHQm6IbHcfHIeditNiQvz0FQfDikQQrk3FGClFW5MGsNEMslGGrq9rmOMDQl+ppTxgBgt9ow1jmI6jc/d09nR+UkYcmDayBRy6COC4fVYIbNbHOPCq96egtkczztKWBZiGXe10MCgFgh8VtnCd3gOI7/4SP36Kar5l8uFn2phHbzejGvErtf//rXeOKJJ/D4448DAF599VV89NFH+POf/4znnnvOz9ERQgKVSMoh756VGGrqntQnNCg+HOqY+TENa9YZ0fjpadgtvhMSu5fOENIgORKWZeJ0Q9ekc50nG9B1qhGJJdkoeGANxFIxeJ6HWWuA08lDLOM8piynSh4YAQPmUvLAyTkYx7TIvq0YYjkHh82BrtNNaNpfDfBAbEEq1DGhiMxOwHjXEMxaIxKKMtFX1w79sAbd1S3IWLfEY+rQrDPi/PvHPfrR9pxpQUhiJMqeuhOyIAUU4Woowl3TtQJWAIlKBrPWs5esgBUgdXUeWg/VYumDa6ccWdP2j+HQr98Bz/OQBiuQVp4PZWQwtP2jEAgYRGTEQRkRBKvBjJSVi8EpJH5JVji5BJkbluLEf+/xej5j/dIZTT3PFuO4Hof+612PUVjeyaPt8DlwSimybyue0ynr+WDeJHZWqxVnzpzB888/7z4mEAhQUVGBEydO+DEyQshCoIwKQsXzX8G5XccweKEDIokYqeV5SF2dD2nQ/Bg1sOhN6DnTgrx7V6LjxAWvr4nJS4ZI6lnegxUJoYoORWROIjR9o5Pewzt5SIMUEIpZmDQG9Na0onn/WdhMVkQvSkTWbcVQhKkhYAUITYkGIxB4LRYck5/q3qEpknBIKl2Eff/vm3A6PF8rD1MhNCUadbuPIakkB/phDcY6+sEpZSjethHDLb3oOHEBiSVZkFyxzk83MO6R1F021jmI7tNNyFjnuYaMFYtQ/PgmtOw/i4H6TvA8j+CECGTfXozuM02IyIyHSWOAWMpByE1OeqxGM+reOwae5xGSFIWc24tR/+FJjHe5SsSoY8NQ9HAFguLDZ7Vo9PUKT49DwrIMdFU1exxPX7cE6phrl3W5GfTDEz6n1pv3n0Vy2SLa1HGVeZPYjYyMwOFwIDIy0uN4ZGQkGhsbvb7HYrHAYvli8a1Wq/X6OkIIuRZWKERQbBhKv77Ztb6HYcAppWDZ+TNa4LDaYdYa4bA5EJIchbH2AY/zrEiIxVvKIJJM3uEr4kRIK8/DxaPnJ603FEk5JJctgtVgxqmdn2DwipG9jpMN6K5uQcXzX4EyMhiMgMH6HzwIbf8oOk42YKjJtTFDHqpC/n2rPGrGKSODse4HD6LmH4cw0toHgZBFQnEmFt2xHCIZh9SVuTj+2ocetQS7Tzcj5/YSxOQle4ykOZ1OtE6xAab14DkkLsuCRP1Fku5ahwckLc9G6uo8OOwO6AfHYdEaEZIUhZbPa1D33nGEpcUg5/ZiKMKDwYq++HmwW2wYvdgPRsBg8Z2lOPbaBx69cjW9IzjwH//Axn97CKqoEJ+xzRWJSoYlD6xFRkUh+mrbwLAsYvNTIAtWQCyXXvsDbgLdVTufr2Q3W6c1Hb7QzJvE7nq8+OKL+NnPfubvMAghAUQk5SYVeZ0vOLkErIhF7T8Po3jbRox1DqHzVAPsJisishOw6EvLp+wXKgtVYf2lRGuwoQtggMjsRBRsXQ2hRARt36hHUneZw2qHbnAc/ec70PTJaVj0JnAKKdLXL0HmxkI4bHaEJEZOGrVihSxCEiOx4qk7YTdZAQEDTiGFUCyC1WhG/Z5KrwWiL3xciYrnvuJRG493Tr0BxmG1uXvdmrVGDNR3oOGTKpgnDAhOjET6ugJ0n26CLEQF3dCEx4hn9+lm9FS3Yu33tiIsJdp9XCAQgFPKoIoOQe+5No+k7jKn3YHm/Wex5IFyd4Fmf+KUUnBKKUISI6/94jmgjAz2eU7IiW6JZ3armTdPJCwsDCzLYnBw0OP44OAgoqKivL7n+eefx7PPPuv+WqvVIj7ee+sXQggJdBK1HFmbilD/YSWO/+EjhGfEIWtTEViREAzDQBaihGCKEUiBQAB1TChKn7gDVqMZDACWE0E/rEHL5zU+35dUmoPBC10eJWMsehPO7z6OjIqlWHxnqdepzMs4uRTcVSNGVoMZw03eixiDBya6hzySE1bIIrEky+dmiJiCVIjlElgNZtc6vKNfTNkONXVjqLkbJY9vhkQpw6H/enfyJZ1OnHljP8p33Oue/r38vPXDEz4LLgOuYs42k5WSFC8UEcGQBSsnFZAGgPT1SzxGWInLvCl3IhaLUVhYiP3797uPOZ1O7N+/H6Wl3rfFcxwHlUrl8YcQQhYqViREank+ln55LTilDMPNPah//wTMGiOiFydNu+2YWMZBEaaGPEwN45gOB/7/v0M/NO5zEXvckjSPROlKLZ/XwKw1eD03lcuja75cvS4PcPVoVUVPnvIUyTgkLc+Gw+aaqvYaKw90nLgA/YjG5zU1vSOwXTWCGJOfAnmIcsoERKKWg3c64XT47km7UMmCFSjfca9HSzaGYZC6Khfpa/Jp44QX8+q/B88++yy2bduGoqIiFBcX46WXXoLBYHDvkiWEEDI1iVKG1NV5iMlPgcPmACtkIVHLr6uUhdVowbldR8HzPEba+pG+bglaDtRMep3DZve6WQJwjXSZtcYZt6wSSSUITohwb0S4WnhG3OSDDJB/32oMNnSiq6oJArEQqatyEZmZgNNv7EPpN+7AWMfA5PddYhjRQCCc+jldvUNWqpIjvigTqpgw9PnoD5uycjFOvv4JwlOjkVS2yGsR5YVMGRmMNTvuhVlngsNqg1guhUQlm7KH70I2rxK7Bx98EMPDw/jJT36CgYEBFBQUYO/evZM2VBBCCPGNETCzsgvTbrFipNVVl85pd2CktRdp5XloPeS5SYG9RpmM6+lmIFFKsfSr63DgV/+YVIImdXUupKrJXS+sBguOvPIeohcno/Qbd8BhsaH33EV0VjZg0ZeWw2YwTzklrB/WICQpCgzDeB0xDE+PhdhLb1xOIUVQXBjy71+Fc+8c/eK9DJCxbgm0/WMYburGcFM32g7XYf0PHoRiirWO/mIzW2EzWcAwDDiVbMr+wrNNopJTzbppmleJHQA8/fTTePrpp/0dBiGEBASrwQye5yGWSWacYDEMA4lS5l7/1PRZNbJvW4bSJ25Hb20bbCYr4pemQxERBGVkMHSD45M+QxER5O4AMVNBceHY8KOvomFvFUZaesFd6gcblhrjdRcnK2QBHkhYlonz75/wWPfWcqAGmRuWIqlsEQSswOtUbnh6LDi5BAUPluPsWwc9zollHJZ+dZ3XxM51XoKUlbmIyUvFeOcgHHY7JEq5uzTMZRa9CfUfnUThQ+v9UjfOG6fDAd3QBC58eBID9Z0QSsVIW5OPpJLsafXKJXOL4a+1UCGAaLVaqNVqaDQaWm9HCFnQTBoDhpp70Pp5DRx2OxKWZSK+MGNGNcF4nkfL5zWo+cchj+MiiRhRi5KQf/8qjHUOgnfyEHFiVO78BBbdF8V+OaUUxds2QqKSIzjh+rsH2a022ExWCISCSZssrmQxmFD7zhEoQtU4/4H3+qflO+6Ftn8MZ/9+ELjityOnkGLt97ZCFRUCq8kCw7AGLQdqYBzXISo7EXGF6ZCHqqbdBqz+gxOo31PpcY3LBEIWt/8/j90Ste0AQNM3gn0vvjWptEhoSgzKvnkHpDewgYF38rAYXK3bJF56CxOXmeQv827EjhBCyI0xaQw49fpeDDZ2u49NdA+j9UAt1n5v67STO4ZhEF+UgaGmLvSd+2K3qd1iQ9SiRPBOHmffOghlVDDiCtKw9MtrYDVaoB+egCI8CGIZh9bD51D0UMUN3Y9QLJrW6BYnlyJr0zIcfWW3z9e0H6tHcGIkVn5rCwYbOmEc0yEqJxFRi5Lcz0Us5SBOiEDRwxVw2h1gxcIZ93W1mixekzoAmMMWsddkNVlQt+uY13pxoxf7oB0Yu+7EzjCmQ3dVEzoqGyAQCJCyOhcxua66eeT6UWJHCCELzETPsEdSd5lxXIe2w+ew6K7SaRdelqrlKHpkI0wTOgw1dkMk4xCeHgep2tWKyzShh2lCj6jsRJh1RnSfaYFIIkLXqSYEJ0Rg6ZfX3tCIz0yJOBFsJt/17GwmCzS9I6jbdRTxyzJR+HAFJArvo4ACVnDd/VMTlmX5LBETX5QJZg7Xr03FbrKi30ePZMDVki0yc+ZlxAxjWhz89TswXLHLuPrNz9GecB4rvnUXZDTFe91ujZ8cQgghc8LpcOLi0Tqf5zsrG2DVmWb0mRKlFMHxEcjcUIiUFYuhjAiCkBNDIGQhlrlKqJzbdRRjHYNYdEcJMjcUYumX1yJrYxHkIXO7LEYk4xC9KNHn+YjMeIx3DsLpcKLzZAOcl4oKG8f1GGzsRsuBGgxc6PRaV20m5GEqJJZkTzouUcmQsCwTh156B33nLrpG9vyJYaasr3d1+7npcDqd6DrV5JHUXTbeNYSRlt4Zfyb5Ao3YEUIIucLszQNKVHJkbihE3e7jAICB+g4MXBr9EUnE2Pjjh2ftWtMlFIuQdVsxuqtbJnWCkIeqIA9VufvhKiODIRCx0A2O49BL73okcxKVDOXfvR9qL3XxpkOilCH/vlVIKMpA075q2MxWRGbFIzw9Fmfe/ByGEQ2O/u59rPzWXYjJS7n+G75BnFKK5JWL0XLFBo8rJSzLnPFnWvUmdJz03qsYAC4erUN0bjKVM7lONGJHCCELiIAVIHVVns/zSaXZECtnpy+ogBUgecUiJJXleOSLrqTovlndHMDzPIzjeox3DWG4pRf64QnYzN5HuxRhalQ8/xV3P1lWxCKpNAdLv7oO1W8fdL8ud0sZAODEH/dMGqEza4049vv3YdLMvLjyZRKVDNG5yVjyQDkiM+Mx2j6AI7/d7TGSVfOPQzd0jRvFCllkrl/qtbVXzh0l1/k9ZKZck8gIBLfWQsN5hkbsCCFkAeF5HoqIIETmJGDwgmdfV1moCimrcqe9vm46JCo5Cu4vR/amZTCMaiGSiiENUkAapJjxhgNfeCcP/fAEDv/2PRiGXUkRI2CQtrYA2ZuWQXJVTTsBK4A6OhQlX9sMq9ECh9WOi0fPo/L1vZCqFRDJOKStzkN4ZjzMGgMmuoe9Xlc/NAGLzgipWg6nwwGzxgi7xQZWLIREJZt2i7D++g40fnra+zWGNbBbbDN4GrNPFqJE+Xfvw1j7ALpON4GTu0q3yENVPsu7TIVTSpGycjFq/nHY6/nU8jyIpqgnSKZGiR0hhCwQFr0Jfecu4sKeSmTfVozY/FR0VTXDYbMjsSQLsQWpN2XNm1jGQSzjpmzofj3MWiP0wxPoPtMC3ulEwX2rMdrej8ZPToN38mjZfxaKMDXSyvO91ugTSTiIJK41gOlrCxCbn4qxjgFIgxUISYyCkBPBYZ06qbJbbDDrjOg4fgENn1TBZrSAFbFIXrEY2ZuXueu8OZ1OMIz3kaqpNo8IhOx1b9CYTbIgBWRL0hCTn3LDhYkZhkHc0nRcPF4Pbe+ox7nw9DiEJnvv/06mhxI7QghZABwOBzorG9yjJKf/ug+KiCDE5CYjKD4cMXmp7o0O84FJY8Dp//0M/XUd7mOtB2uRsnIxFn1pOeo/PAkAaPj4FGIL0qYsoWEc1+HEHz7CWOeg+xgrEmLV01sgD1X7LFjMMAykQQq0HqzFhY8q3ccdNgdaD9bCOK7HkgfLXSNdVU3gFBKkrMyDIlztMdIVmhoDgZCd1EEDAJJLc8DdQvXdZqvbhCxYidVP343Bxm60HzsPRiBA+pp8hKbGzOku6UDk//8GEEIIuenMEwac/+CkxzH90ASa95/FqZ2fwqz13zqu6zFQ3+GR1F128eh5KCOD3UmqWWuE0zE5YbrMbrWj/sOTHkkd4Opve+S3u8HzTqStLfD63qQVi8A7nGj69IzX8321bdANjOPEH/egt6YNF4/WY98v/4amfWdgMZrdr5MGKbDiqTshuKqhfXBCBLJvL4ZQHJhjMLJgJZJLc7By+xasfOouxC1Np6RuFgTmTwshhBAPVqMFdrPv+m36YQ1UUde3w3OumXVGNO+r9nm+52wLonOT0VnZCFmw0tVKzAeLzojOykav5xw2O8a7hpG9qQicXILGz87AZrRAKBEjY/0SpK7Og1lr8Fq89zLjuA4iCQfbFWVLGj6uQnxhBjiZa9SOFbKIyIzH5p8+itG2Ppg0BoSlxkAeroZ0AfRHFUvnz0jxfECJHSGELACsaOoNEfNpGpZ3OK9RZNjqbi226K7lU/YzddodXqdALzNp9OCUMmRuLERCSTYcNhtYoRCSIDlYloVtimQZcCUt3tbpdVU1ISgu3P01K2ShCFNDEaae8vMIuRaaiiWEkAWAU0oRlhbj45wMspCb15fU6XSCd85eW3KRTIKoxUk+z0dkxGGidwS5W8oQkzt1DTghJ5ry3kMSI2HWGeGwOSAPUUIVGQJ5qMq9c1iikCLCR+cFWbASVpPF6/q8ayWEhFwvSuwIIWQB4ORSFD+6cVISI5SIsWr7XZCqZ7+Fk0mjR//5Dpz808eo3LkXw809MOuMN/y5QrEQmRuWQuilJIYsWInYJWlY/vXbkFGxFJyPdmCXSYMUyL9vlddzwYmRsBotOPjrf+Lknz7GSFsfrEbP2nhiuQTLHqmAMspzxy+nlKH4sY1o3Fvl9bPjl6ZPGRch14vheX72/ht1i9NqtVCr1dBoNFCp5raNDSGE3AqM4zpo+8cw1jkIZWQwQhIjIQtWei0HciNME3qc+OMejLT2eRyPL8rAkgfWTKotN1NOpxP6wQnU7T6GvtqLYFgBEkuykFGxFLrBcchDVJAGKaZ1HavBjMHGLtT+8wiM4zoIhCwSlmUibmkaKv+012N0bemX1yKpNGdSUmnS6GEY0ULTPwpFmBrKyGA4rHZ8+vM3Jq3BC0uLQekTd9BGATJtM8lfKLEjhBAy69qO1OHMG/u9nlv9nXsQleO7X+tM2ExWWE1mOKx2tHxeg/bj9e41c6Gp0Sj9v26fdncE04TeXQy49fA5tB06N2n9nUDIYvNPH53WWjinwwH9sAYXPqpEf30HRFIO6WvzkVCUOeW6v5mwma1gGMbr6CUJHDPJX2jzBCGEkFll1hnRerDW5/mWA2cRlhYDofjGkxGRVAybyYID//EPWHQmj3Ojbf04t+soCh+qmFYng8vJ1kTviM/eqE67A/rBiWkldgKWhSoqBIUPV8BmtIARABKlfFZGR43jOgw2dKHjZAMErADpawsQnBhJo4CEEjtCCCGzzMlP2bHBbrHP6mYK3fDEpKTusu7TLVh8VxlE3PR3m16z09kMV6eLONGstsgyjulw6DfvQjcw7j422NCF6MVJKHpkAyV3CxxtniCEEDKrRAoJ4qbYHJC0PBsiiXjWrmee0Ps8xzudcFh915nzRiyXQO5jRE4gZKEMD5rR580mp9OJzspGj6Tusv7zHdD0jvghKnIrocSOEELIrGJZFimrcsEpJ+9IVUQEITI7YVavp5yisLJIykEomdlomVStQPFjGyd1ggCApV9dB+4GN37cCIvOhIvHzvs833qoFg77zBJZElhoKpYQQsisU4Spsf6HX0bzvmp0n24GwwqQXJaD1FV5097MMF2yYCVCkqIw1jEw6VzOHcXXNTUZkhSFjf/2EFoP1mK0fQCKcDUyNxRCGRE0K2sDrx8P3jm5Lp77rMOJhbMlknhDu2IJIYTcNA67HRadGQzjKpIsYKfugHG9jOM61L5zBD3VLeCdPERSDjm3FyNxeTYkyusfYXPYHbBbrGBFQj8ndJficThQ/8FJn/Xxyp78EuIK0uY4KnKz0a5YQgghtwRWKIQsePaLH19NFqxE0cMVyN1SBofNDiEnhjRIfsOJJCtkwQqnLnI8l1iWReqqXHSebIDpqrWFIclRCE2K8lNk/uN0OmHRmcA7eYjlEgjFCzu1Wdh3TwghJGCIJOJZ3ZRxq5KHqrDu+w+g48QFdFU1QSBkkVqeh5i8lFmrjzdfGMf16KxsQNvhc3DYHIgtSEXWhkLIw9Vgrrm9OTDRVCwhhBAyDzkdTlgNZjAM43WjSqAzTehx9JX3Md495HFcJONQ8dxXoIwI8k9gN8FM8hfaFUsIIYTMQwJWAIlKtiCTOgAY6xyclNQBgM1oQeOnp2GfYZmbQEGJHSGEEELmFafTiY4TF3ye7z3bCqvBPIcR3ToosSOEEELIvMKAgXCK9ZSsSHjtDiIBihI7QgghhMwrjIBB6qpcn+dTV+f6tZC0P1FiRwghhJB5RxERhJSViycdV8eFIak0BwLBwkxxqNwJIYQQQuYdiVKGxVvKkFSag9ZD52C3WJG0PAehSVGQzkHtxFsVJXaEEEIImZckShkkShlCkqMAJ++1v+9CQ4kdIYQQQuY1gUBAi8suocdACCGEEBIgKLEjhBBCCAkQlNgRQgghhAQISuwIIYQQQgIEJXaEEEIIIQFi3iR2v/jFL1BWVgaZTIagoCB/h0MIIYQQcsuZN4md1WrF1q1b8dRTT/k7FEIIIYSQW9K8qWP3s5/9DACwc+dO/wZCCCGEEHKLmjcjdoQQQgghZGrzZsTuelgsFlgsFvfXWq3Wj9EQQgghhNxcfh2xe+6558AwzJR/Ghsbr/vzX3zxRajVavef+Pj4WYyeEELIbDFpDBhu7UX9ByfQeqgWuqEJ2C02f4dFyLzD8DzP++viw8PDGB0dnfI1KSkpEIvF7q937tyJHTt2YGJi4pqf723ELj4+HhqNBiqV6rrjJoQQMnuM43oc/8OHGGsfcB9jGAYlX9uM6LwUiDiRH6MjxP+0Wi3UavW08he/TsWGh4cjPDz8pn0+x3HgOO6mfT4hhJAb47A70Ly/2iOpAwCe51H5573Y/LNtEEUE+Sc4QuahebN5oqurCzU1Nejq6oLD4UBNTQ1qamqg1+v9HRohhJDrZNEacfFInddzPM+j/3z7HEdEyPw2bzZP/OQnP8Ff/vIX99dLliwBABw4cABr1qzxU1SEEEJuBO90TrmWzqwxzGE0hMx/82bEbufOneB5ftIfSuoIIWT+YjkRghMifJ6PzE6cw2gImf/mTWJHCCEk8EiUMhQ8UA4wk8+p48Kgig6e+6AImccosSOEEOJXwfHhWPPs/QiKc22mY0UsUsvzsGr7FkjVCj9HR8j8Mm/W2BFCCAlMQk6MiPQ4rH7mHtgtNjACBhKlDKyIfkURMlP0t4YQQsgtQaKUAUp/R0HI/EZTsYQQQgghAYISO0IIIYSQAEGJHSGEEEJIgKDEjhBCCCEkQFBiRwghhBASICixI4QQQggJEJTYEUIIIYQECErsCCGEEEICBCV2hBBCCCEBghI7QgghhJAAQYkdIYQQQkiAWFC9YnmeBwBotVo/R0IIIYQQMj2X85bLecxUFlRip9PpAADx8fF+joQQQgghZGZ0Oh3UavWUr2H46aR/AcLpdKKpqQk5OTno7u6GSqXyd0hzTqvVIj4+fsHeP0DPYKHfP0DPYKHfP0DPYKHfPzC/ngHP89DpdIiJiYFAMPUqugU1YicQCBAbGwsAUKlUt/w38mZa6PcP0DNY6PcP0DNY6PcP0DNY6PcPzJ9ncK2Rusto8wQhhBBCSICgxI4QQgghJEAsuMSO4zi88MIL4DjO36H4xUK/f4CewUK/f4CewUK/f4CewUK/fyBwn8GC2jxBCCGEEBLIFtyIHSGEEEJIoKLEjhBCCCEkQFBiRwghhBASICixA2CxWFBQUACGYVBTU+PvcObUXXfdhYSEBEgkEkRHR+ORRx5BX1+fv8OaEx0dHfj617+O5ORkSKVSpKam4oUXXoDVavV3aHPqF7/4BcrKyiCTyRAUFOTvcG66V155BUlJSZBIJCgpKcGpU6f8HdKcOXz4MO68807ExMSAYRi89957/g5pTr344otYtmwZlEolIiIicPfdd6OpqcnfYc2p3//+98jLy3PXbistLcXHH3/s77D85pe//CUYhsGOHTv8HcqsocQOwA9+8APExMT4Owy/WLt2Lf7+97+jqakJ77zzDtra2nD//ff7O6w50djYCKfTiddeew319fX4z//8T7z66qv413/9V3+HNqesViu2bt2Kp556yt+h3HRvv/02nn32Wbzwwguorq5Gfn4+Nm3ahKGhIX+HNicMBgPy8/Pxyiuv+DsUvzh06BC2b9+OkydP4rPPPoPNZsPGjRthMBj8HdqciYuLwy9/+UucOXMGp0+fxrp167BlyxbU19f7O7Q5V1VVhddeew15eXn+DmV28Qvcnj17+KysLL6+vp4HwJ89e9bfIfnV7t27eYZheKvV6u9Q/OLf//3f+eTkZH+H4Revv/46r1ar/R3GTVVcXMxv377d/bXD4eBjYmL4F1980Y9R+QcAfteuXf4Ow6+GhoZ4APyhQ4f8HYpfBQcH83/84x/9Hcac0ul0fHp6Ov/ZZ5/x5eXl/DPPPOPvkGbNgh6xGxwcxBNPPIG//vWvkMlk/g7H78bGxvDGG2+grKwMIpHI3+H4hUajQUhIiL/DIDeB1WrFmTNnUFFR4T4mEAhQUVGBEydO+DEy4i8ajQYAFuzfeYfDgbfeegsGgwGlpaX+DmdObd++HXfccYfHvweBYsEmdjzP47HHHsOTTz6JoqIif4fjVz/84Q8hl8sRGhqKrq4u7N69298h+UVraytefvllfPOb3/R3KOQmGBkZgcPhQGRkpMfxyMhIDAwM+Ckq4i9OpxM7duzAihUrsHjxYn+HM6fq6uqgUCjAcRyefPJJ7Nq1Czk5Of4Oa8689dZbqK6uxosvvujvUG6KgEvsnnvuOTAMM+WfxsZGvPzyy9DpdHj++ef9HfKsm+4zuOz73/8+zp49i08//RQsy+LRRx8FP4/rVs/0/gGgt7cXmzdvxtatW/HEE0/4KfLZcz3PgJCFZPv27Th//jzeeustf4cy5zIzM1FTU4PKyko89dRT2LZtGy5cuODvsOZEd3c3nnnmGbzxxhuQSCT+DuemCLjOE8PDwxgdHZ3yNSkpKXjggQfwwQcfgGEY93GHwwGWZfHQQw/hL3/5y80O9aaZ7jMQi8WTjvf09CA+Ph7Hjx+ft0PzM73/vr4+rFmzBsuXL8fOnTshEMz//+9cz8/Azp07sWPHDkxMTNzk6PzDarVCJpPhn//8J+6++2738W3btmFiYmLBjVQzDINdu3Z5PIuF4umnn8bu3btx+PBhJCcn+zscv6uoqEBqaipee+01f4dy07333nu45557wLKs+5jD4QDDMBAIBLBYLB7n5iOhvwOYbeHh4QgPD7/m637zm9/g5z//ufvrvr4+bNq0CW+//TZKSkpuZog33XSfgTdOpxOAqwTMfDWT++/t7cXatWtRWFiI119/PSCSOuDGfgYClVgsRmFhIfbv3+9OZpxOJ/bv34+nn37av8GROcHzPL797W9j165dOHjwICV1lzidznn9b/5MrF+/HnV1dR7HHn/8cWRlZeGHP/zhvE/qgABM7KYrISHB42uFQgEASE1NRVxcnD9CmnOVlZWoqqrCypUrERwcjLa2Nvz4xz9GamrqvB2tm4ne3l6sWbMGiYmJ+NWvfoXh4WH3uaioKD9GNre6urowNjaGrq4uOBwOdy3HtLQ099+LQPHss89i27ZtKCoqQnFxMV566SUYDAY8/vjj/g5tTuj1erS2trq/bm9vR01NDUJCQib9mxiItm/fjjfffBO7d++GUql0r61Uq9WQSqV+jm5uPP/887jtttuQkJAAnU6HN998EwcPHsQnn3zi79DmhFKpnLSm8vIa84BZa+nXPbm3kPb29gVX7uTcuXP82rVr+ZCQEJ7jOD4pKYl/8skn+Z6eHn+HNidef/11HoDXPwvJtm3bvD6DAwcO+Du0m+Lll1/mExISeLFYzBcXF/MnT570d0hz5sCBA16/19u2bfN3aHPC19/3119/3d+hzZmvfe1rfGJiIi8Wi/nw8HB+/fr1/KeffurvsPwq0MqdBNwaO0IIIYSQhSowFhQRQgghhBBK7AghhBBCAgUldoQQQgghAYISO0IIIYSQAEGJHSGEEEJIgKDEjhBCCCEkQFBiRwghhBASICixI4QQQggJEJTYEUIIIYQECErsCCHkOjkcDpSVleHee+/1OK7RaBAfH48f/ehHfoqMELJQUUsxQgi5Ac3NzSgoKMB///d/46GHHgIAPProo6itrUVVVRXEYrGfIySELCSU2BFCyA36zW9+g5/+9Keor6/HqVOnsHXrVlRVVSE/P9/foRFCFhhK7Agh5AbxPI9169aBZVnU1dXh29/+Nv7t3/7N32ERQhYgSuwIIWQWNDY2Ijs7G7m5uaiuroZQKPR3SISQBYg2TxBCyCz485//DJlMhvb2dvT09Pg7HELIAkUjdoQQcoOOHz+O8vJyfPrpp/j5z38OANi3bx8YhvFzZISQhYZG7Agh5AYYjUY89thjeOqpp7B27Vr86U9/wqlTp/Dqq6/6OzRCyAJEI3aEEHIDnnnmGezZswe1tbWQyWQAgNdeew3f+973UFdXh6SkJP8GSAhZUCixI4SQ63To0CGsX78eBw8exMqVKz3Obdq0CXa7naZkCSFzihI7QgghhJAAQWvsCCGEEEICBCV2hBBCCCEBghI7QgghhJAAQYkdIYQQQkiAoMSOEEIIISRAUGJHCCGEEBIgKLEjhBBCCAkQlNgRQgghhAQISuwIIYQQQgIEJXaEEEIIIQGCEjtCCCGEkABBiR0hhBBCSID4P/Sq3l1KMGBCAAAAAElFTkSuQmCC", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "X_blob, y_blob_true = make_blobs(n_samples=1000, centers=3, n_features=2,\n", " cluster_std=0.70, random_state=0)\n", @@ -299,56 +306,32 @@ "plt.title('Ground Truth')\n", "plt.tight_layout()\n", "plt.show()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 487 - }, - "id": "n8h-JNoVGHPP", - "outputId": "072e04af-c9cf-490f-e3ae-a082293a3bd4" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAnYAAAHWCAYAAAD6oMSKAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOydd5hkZZm+75Mrd1fnHCYyBEEEWbOuKCKmdU2IWXRFEAQVFzGAAcQ1ACuKAcWE4WfEHFAXd00oBuLk6ZnpnCuf/PvjVNd0dVV1mOkJPXz3dXFpn1N1QlVN19Pv977PI/m+7yMQCAQCgUAgWPPIR/sCBAKBQCAQCASrgxB2AoFAIBAIBMcJQtgJBAKBQCAQHCcIYScQCAQCgUBwnCCEnUAgEAgEAsFxghB2AoFAIBAIBMcJQtgJBAKBQCAQHCcIYScQCAQCgUBwnCCEnUAgEAgEAsFxghB2AoFAcJiQJIlrrrnmaF/GorzmNa8hFosd7csQCASrhBB2AoHgqLJ7924uueQSNm3aRCQSIRKJcOKJJ3LxxRfzz3/+82hf3mHlqU99KpIkLfnfoYrDXC7HNddcw29/+9tVuW6BQHDsoh7tCxAIBI9cfvSjH/HSl74UVVW54IILOPXUU5FlmYcffpjvfve7fPrTn2b37t309vYe7Us9LFx99dVceOGFpZ/vuecebr75Zt71rnexZcuW0vZHPepRh3SeXC7HtddeCwRiUiAQHL8IYScQCI4KO3fu5GUvexm9vb3cddddtLe3l+2/4YYb+NSnPoUsL76wkM1miUajh/NSDxvPeMYzyn4OhULcfPPNPOMZz1hUgK3lexYIBIcXsRQrEAiOCh/5yEfIZrN88YtfrBB1AKqqcumll9Ld3V3aNtcPtnPnTp797GcTj8e54IILgEDsvO1tb6O7uxvDMNi8eTMf/ehH8X2/9Pw9e/YgSRK33357xfkWLnlec801SJLEjh07eM1rXkN9fT11dXW89rWvJZfLlT3XNE0uv/xympubicfjPO95z2P//v2H+AqVX8eDDz7Iy1/+cpLJJE984hOBoPpWTQC+5jWvoa+vr3TPzc3NAFx77bU1l3cHBwd5wQteQCwWo7m5mbe//e24rrsq9yAQCI4comInEAiOCj/60Y/YsGEDZ5111oqe5zgO55xzDk984hP56Ec/SiQSwfd9nve85/Gb3/yG17/+9Zx22mn8/Oc/5x3veAeDg4N84hOfOOjrfMlLXkJ/fz/XX3899957L5///OdpaWnhhhtuKD3mwgsv5Ktf/Sovf/nLefzjH8+vf/1rzjvvvIM+ZzVe/OIXs3HjRq677roysboUzc3NfPrTn+aiiy7i3/7t33jhC18IlC/vuq7LOeecw1lnncVHP/pRfvWrX/Gxj32M9evXc9FFF63qfQgEgsOLEHYCgeCIk0qlGBoa4gUveEHFvpmZGRzHKf0cjUYJh8Oln03T5MUvfjHXX399adsPfvADfv3rX/PBD36Qq6++GoCLL76YF7/4xdx0001ccsklrF+//qCu9dGPfjS33XZb6efJyUluu+22krD7xz/+wVe/+lXe/OY3c8stt5TOfcEFF6zq8Mepp57KHXfcseLnRaNRXvSiF3HRRRfxqEc9ile84hUVjykUCrz0pS/lPe95DwBvetObOP3007ntttuEsBMI1hhiKVYgEBxxUqkUQFWbjac+9ak0NzeX/psTS/NZKDZ+8pOfoCgKl156adn2t73tbfi+z09/+tODvtY3velNZT8/6UlPYnJysnQPP/nJTwAqzv3Wt771oM+5nOtYbard565duw7rOQUCweojKnYCgeCIE4/HAchkMhX7PvOZz5BOpxkdHa1aXVJVla6urrJtAwMDdHR0lI47x9xk6cDAwEFfa09PT9nPyWQSgOnpaRKJBAMDA8iyXFER3Lx580Gfsxr9/f2rerz5hEKhUh/eHMlkkunp6cN2ToFAcHgQwk4gEBxx6urqaG9v5/7776/YN9dzt2fPnqrPNQxjyUnZWkiSVHX7YkMCiqJU3b6SPrfVYP5y9BySJFW9jpUOPdS6R4FAsPYQS7ECgeCocN5557Fjxw7+/Oc/H/Kxent7GRoaIp1Ol21/+OGHS/vhQLVtZmam7HGHUtHr7e3F8zx27txZtn3r1q0HfczlkkwmK+4FKu+nlqAVCATHH0LYCQSCo8KVV15JJBLhda97HaOjoxX7V1IRe/azn43runzyk58s2/6JT3wCSZI499xzAUgkEjQ1NXH33XeXPe5Tn/rUQdxBwNyxb7755rLtN95440Efc7msX7+ehx9+mPHx8dK2f/zjH/zf//1f2eMikQhQKWgFAsHxh1iKFQgER4WNGzdyxx13cP7557N58+ZS8oTv++zevZs77rgDWZYr+umq8dznPpenPe1pXH311ezZs4dTTz2VX/ziF/zgBz/grW99a1n/24UXXsiHP/xhLrzwQs444wzuvvtutm3bdtD3cdppp3H++efzqU99itnZWR7/+Mdz1113sWPHjoM+5nJ53etex8c//nHOOeccXv/61zM2Nsatt97KSSedVBrugGAZ98QTT+Sb3/wmmzZtoqGhgZNPPpmTTz75sF+jQCA4soiKnUAgOGo8//nP57777uPlL385v/jFL7jsssu4/PLL+cEPfsB5553Hvffey8te9rIljyPLMnfeeSdvfetb+dGPfsRb3/pWHnzwQf7rv/6Lj3/842WPfe9738vrX/96vv3tb3PllVfiuu4hTc0CfOELX+DSSy/lZz/7GVdeeSW2bfPjH//4kI65HLZs2cKXv/xlZmdnueKKK7jzzjv5yle+wumnn17x2M9//vN0dnZy+eWXc/755/Ptb3/7sF+fQCA48kj+ke4AFggEAoFAIBAcFkTFTiAQCAQCgeA4QQg7gUAgEAgEguMEIewEAoFAIBAIjhOEsBMIBAKBQCA4ThDCTiAQCAQCgeA4QQg7gUAgEAgEguOER5RBsed5DA0NEY/HRcSOQCAQCASCNYHv+6TTaTo6OpbMyn5ECbuhoSG6u7uP9mUIBAKBQCAQrJh9+/YtmcbziBJ28XgcCF6YRCJxlK9GIBAIBAKBYGlSqRTd3d0lHbMYjyhhN7f8mkgkhLATCAQCgUCwplhOG5kYnhAIBAKBQCA4ThDCTiAQCAQCgeA4QQg7gUAgEAgEguOER1SPnUAgEAgEgrWJ67rYtn20L+OwoGkaiqKsyrGEsBMIBAKBQHDM4vs+IyMjzMzMHO1LOazU19fT1tZ2yD67QtgJBAKBQCA4ZpkTdS0tLUQikeMuYMD3fXK5HGNjYwC0t7cf0vGEsBMIBAKBQHBM4rpuSdQ1NjYe7cs5bITDYQDGxsZoaWk5pGVZMTwhEAgEAoHgmGSupy4SiRzlKzn8zN3jofYRCmEnEAgEAoHgmOZ4W36txmrdoxB2AoFAIBAIBMcJa0rYDQ4O8opXvILGxkbC4TCnnHIKf/nLX472ZQkEAsGq4Xserm3hWiae6xztyxEIBGuMNSPspqenecITnoCmafz0pz/lwQcf5GMf+xjJZPJoX5pAIBCsCq5lkhvex+zD9zP78H1kB3bjFHL4vne0L00gEBwEt9xyC319fYRCIc466yz+/Oc/H/Zzrpmp2BtuuIHu7m6++MUvlrb19/cfxSsSCASC1cO1LNK7tuFZZmmbnZnF3p4isfFE1FD4KF6dQLD28RwH37HxXRdJUZBUDVk9fDLom9/8JldccQW33norZ511FjfeeCPnnHMOW7dupaWl5bCdd81U7O68807OOOMMXvziF9PS0sKjH/1oPve5zy36HNM0SaVSZf8JBALBsYiTy5SJuhK+T350CM91j/xFCQTHCa5lkdm7k9ltD5Da+TCz2x4gs3cXrmUdtnN+/OMf5w1veAOvfe1rOfHEE7n11luJRCJ84QtfOGznhDUk7Hbt2sWnP/1pNm7cyM9//nMuuugiLr30Ur70pS/VfM71119PXV1d6b/u7u4jeMUCgUCwPHzfx5qZqrnfSadACDuB4KDwHIfs/t04mXTZdieTIrt/D56z+r2slmXx17/+lbPPPru0TZZlzj77bP7whz+s+vnms2aEned5nH766Vx33XU8+tGP5o1vfCNveMMbuPXWW2s+56qrrmJ2drb03759+47gFQsEAsHykRZZEpIUBf/4d3sQCA4LvmNXiLo5nEwK31n9/NmJiQlc16W1tbVse2trKyMjI6t+vvmsmR679vZ2TjzxxLJtW7Zs4Tvf+U7N5xiGgWEYh/vSBAKB4JCQJIlQQzPW1ETV/UZjC7KqLXkc17Jw81ms1CyyrmPUJZF0HVlenXBxgWAt4i9R7fa946savmaE3ROe8AS2bt1atm3btm309vYepSsSCASC1UPWDUIt7RTGhsu2q5EYRrJhSfNS1zJJ79qKN69nqDA6RLSnHz1ej3QIEUUCwVpmqc++dBj+8GlqakJRFEZHR8u2j46O0tbWturnm8+aWYq9/PLL+eMf/8h1113Hjh07uOOOO/jsZz/LxRdffLQvTSAQCA4ZWVUJNbWS2HgioZY2jMZm4us2E+1dj6zpiz7Xc11yw/vLRN0c2b278Q7DUpNAsFaQVA01lqi6T40lkJZRDV8puq7zmMc8hrvuuqu0zfM87rrrLh73uMet+vnms2YqdmeeeSbf+973uOqqq3j/+99Pf38/N954IxdccMHRvjSBQCBYFWRVRVZV1PDKcjF918Gena6538lmUIzQoV6eQLAmkVWVaFcf2f17cDIH3DHUWIJoV99hszy54oorePWrX80ZZ5zBYx/7WG688Uay2Syvfe1rD8v55lgzwg7gOc95Ds95znOO9mUIBALBsYXvL7pbJFgIHukouk6sZ13gY+e5SPLh97F76Utfyvj4OO9973sZGRnhtNNO42c/+1nFQMVqs6aEnUAgEAgqkWQF2QjhmYWq+7Vo/AhfkUBw7CGrKhxGIVeNSy65hEsuueSInnPN9NgJBILjD9/z8GwL17KEAe8hIGsa0c6eqvvUWGLJHj2BQHD8ICp2AoHgqOBaFubUGObkOL7nocUThNu6UHQDSRZ/c64UJRwlvv4E8sP7cHJZpOIwhp5sRNZWvzlcIBAcmwhhJxAIjjiebZHZsx23kC9ts1Oz2GmRi3qwyIqCHI2h9G3A9zwkSUJStSVtUpaD77p4jo2Tz+F7LmokhnyY+5MEAsHBIf5VCgSCI46Tz5WJuhK+T35kkGh3P7LwXTsolmNkvBI818WenSa7fwA4MKShJ5uItHWKaqBAcIwh1jsEAsERx1rEmsNOzy7pFA9B/qNrmbiWie95q3l5QJDf6jnOI36i1LMtsvv3MF/UAVjTE9jp2aNyTQKBoDaiYicQCI44krJILqqssNjioe+6OIU8uaG9uPkcSBJGsolQSxuKvjoRgq5lYs1OY81MIckyocYW1GjsiAwheLYdhJJ7LpKqBpYMR7F6aU6O19yXHx9Bi9eJqp1AcAwhhJ1AIDjiGMlGzInR6vsam5G02r+aXLNAeufDBzb4PubUOHY2TXzdJpRDFF+uZZLeuRXPPpDikMlm0OJ1RLt6FxV3nm3hmibm9ATIMkZ9I4phLHt51DULZAZ2li1T68nG4pLnkZ9snZtarrnfsZf00DtW8Wy7VBmWFEWIU8FxgxB2AoHgiCNrOqHWDgqjQ2XblVAYo6EZSareJeI5DrmhfdX3mQXcfO6QhJ3veRQmxqqKGTs9i2sWagosz7bI7Ct3trcmx9HrG4m0dy0pHDzbIr1rW8W5relJZFUl3Np5xKeFJVlGiyewUzNV9yvhKChrq6PH9z3cfJ7s/j0lAa2EwkS7+lBCYTGRLVjziE+wQCA44siqSqixJchFLVpyxPo3Eu/fiKLXFma+5+HkMjX3W6lD6/nyXAdrerLmfnNyHL9GhcpOp8pEXemaZiZxC7klz+2aZs3qWGFiHNcsHJXMVy1eV3PpPNLeibzIsvqxiGdZpHY+XFYVdQt5UjsfXrQ6KRCsFYSwEwgER4W5TNRIRzex7n70eN3Sy41SsGxW85hHaTnNc2wKk2M19xcmxvC8xQdCXMusvdP38MwCmb27jrj4UHSDxPrNqPPSK2QjFCx762srf3auIlt1+dj3KUyMHZZBHIHgSCKEnUAgWDPIqorR2FJzv1GXPLTjKyp6sqH28Ruaq/vC+Sw6yet77sKh0goUY5HBD0nGB5xMGnNqombVcCk828LJZ7Ez6aACuMyJXyUUJta7nrrNJ1O36SQS6zahxRKLiuxjEd9zcbLpmvudbDp4rwSCVeDuu+/muc99Lh0dHUiSxPe///0jcl4h7AQCwZpBkmRCjc2okVjFvkhXL9IhDhhIskyoqRWpSuVPjSdQQtUrVJKioCXqax5Xr2tYcrJV0Q3kGlO9RkNTySKmMDGGb698SdYp5EjteJjU9odI79rK7Nb7yQ3tW7IC6Hlu6TGKEUIJhdduRJkkL3rtsqZBjf5OwdrHzBZIjUwxuXuY1MgUZrZ6tvJqkc1mOfXUU7nlllsO63kWsraaIwQCwSMeWdOJ9a7DtUzsdApJUdETdatmCxIsPZ6ANTNVtDtRMJpa0BaxO5mzRLGmJyoqd7KmoyXqlnVf8f6NVadi1UiE7L49APiug79U+W8ec5Ot6Z3b8BdU6KzpSWRNJ9zSXjE04HsermVSGBvByWWQVY1QaztqOLLqJshHCllRCLW0lfz31Fgco74RSZbxXBclFBHG2Mcpuak093zll4w+tLe0rXVLL2e+8mwiDfFFnnnwnHvuuZx77rmH5diLIYSdQCBYc8iaHgim6OH5hazoBqHmNoyGJkBaVnSWrOskNmwhPzaMNTONJEnoyQZCzcv311OMEPH+TXhWcZBClrFTsyVRB6BGYkjy0uLD9308y8ScGkc2whWibg5zYgyjoaniGp18jvSuraV+NM8yyezeTqi5jVBL+5oVQIoRJtzWiaxquGaB3PB+fNdB1jRCrZ0ohr5mhaugOma2UCHqAEYfGuCer/yKf7nwXIzo2uoXXQwh7AQCwSMaz3PBcfGlII5rroduLmt1uUiShGKEiHT2EG7tBIKewIWVMM91S1W9avtlTcP3fXL7duNVGagId3QvS2i6ZoHUjodQdANtkeXFoP/PDyp7jo1nWfi+hwTodUmsmamyxxfGRwLBu0aFnayq6MlG8iNDWNMTpe2ebZPbvwe/vYtQY4uwPTmOMNO5ClE3x+hDA5jpnBB2AoFAsNYJKloF8qPDwdKcLBNqaMFoaDykHjJZVkCvFD1zFbTcyBB2ahqQMJKNVRMzFF0nvm5TID5mp8D3UUJhIp09qMbSX0Ce45Ab3Aueh2fbi1YMAysTCTuTIrN3F5SmQiVCza2EWzvIL/AbdHJZlGVcxzGL55WJuvnkR4fQ65KrlmIiOPrY+UUmzgE7f3zZ3AhhJxAIHpF4ZoHZHQ8dEDKuS350ECs1Tbxvw6oPCHiWSWrHQ/N68IqJGekZ4utPqCLuDCJdPYTbOsD3g3SEZVYQ509/+q4DkoSs6VUHJUItbfi+R2bPjoVHoTA+QrSrr/K51SaD1xDVKqEHdnrFZWsh7I4XtPDi76UWXqPDQDUQtWaBQPCIw3NdcqPD86pTB3DzOZz80obCK8H3PAqT41UtUTzbxk7NVLUwkWUFRTdQjNAh9X3lR/YT7epFCUcObJQkQs1t6PWNWFPVq1cAhclx9GRj2TZ1/nHWIItlFQcPEF+NxxNGPELrlt6q+1q39GLE1/bneSGiYicQCB5x+K6LnZ6pud+amQoSF1apMuW7btVYLr2+Ab0uCZKEW8gjq9qqmCxLioqWqMMuJnF4tk1m325CTa0orR1IioqsaSWx6Jq1bR88yywTlZGOnhX1Hh6LSKqGpGpB1u0ClHBkWT2MgrWDEQ1x5ivP5p6v/IrRhwZK21u39HLmq84+bP11mUyGHTsOVMJ3797N3//+dxoaGujp6Tks5wQh7AQCwSMQSQosSmqmDMjKqok6z7FxLbPCzDfS0Y1rmkFfW7FaFxgBr0Mxwis6finMXlWRFRVZUYi0d5PKZkr7fMchPzKI0dxKuLm9JF5830eJREsWIAtRwmF830evbyDU1IpsGGt2InYOWdOI920gtWtrWdVWUjViPevEVOxxSKQhzr9ceC5mOoedt9DCOkY8cliHJv7yl7/wtKc9rfTzFVdcAcCrX/1qbr/99sN2XiHsBALBIw5JVTEamimMDVfdH2poWpXzeK5LYWIMe3Yao6GJXHGJV43F8RwHc0EMWZBZuo3Ehi2LZuZCMTc3nyM3OFDyvVNjCaIdPSihELJukNh4ItbMFHZqBklRA+uVULisIiVJEkZ9A4WxEfArhW64tRMlFEKSmo+bSVFJklDCEeo2nYSTzeKaedRIFCUUPuihCd/zggljSV7zwvd4xYiGjuj061Of+tSDTok5FISwEwgEjzgkScZoaMaena5YhjSaWpCXEFXLxXfsQDDhIykqaiyBk0lh1DeSG95f8zmumV9S2LlmgfTOrczPKnMyKVI7HyaxcUvQmzfnx9fYHAxQ1PC/k3WD+PpNZPcesFiRVJVIZ28gEpfqSVuDSJKErKio0SiyrgXVW9/H89yar1M1fM/Ds0wKk2M4uWxg+Nzchnycvm6CYx/xqRMIBI9IFF0n1r8JN5/FnJkqpkc0I+vGqi3FBZOkgfDKDg4QaevCaGhCVtSahsEAbj4P8dppFZ7rFi1IKqsBvutgp2ZQmlqBoh/fIgLDc2zsTBprZpJQcxuyriMrSpDkoemrtiR9rOG5DtbMFLmhfaWlcJCIdHSh1zcuu89uoZGzm89hp2aIdHSjNzStSCQKBKuBEHYCgeARi6LrKLpeynldbREjzZ+u9H1yw/uQFIVodz+SolSdkgVqZtKWDuW6OLlMzf12OoXRsPTSqec45EeHMCfHg+el5vrsJOLrNx0VLzffc/EcBzefx/c91HCk1Du4mnimGXj9lZ+d3NC+4gDF0qkmnm2T3b9nnjA8QG5oP1q8Dgwh7ARHluOjYUIgEAgOAUmSDktlStK0iqEJ33UxJ8cwGpqrP0dRUUKL2y9IsrRoVVFSNZAkPM/FtS28KtOfECz7zom6BXvI7R/As6s/73Dh2jZuoYCby+K7DoXxUWa33k9+dGhVr8XzXPLj1fsrAQpjI3g1RHfZcVwHr+ZEsY9bOLwh8wJBNUTFTiAQCA4TsqYT611Pevf2sqqOk80SbuvCc2ys6ckDj9cNYn0bluyvk1WNUHMb2X27q+4PNbfimgUKY8PYmTSyqhJqakWLJ8qMl+1Fqn6uWQiWi1fBfqUWnm3hFvJYqVmMZAP50SHsdAoIxGm4pR03EsGcGEONxDDqG1bpxD6eVTttwLOtYFr2kIcgqjfOe64bDKrIsliqFaw6QtgJBALBYUKSJNRIjLpNJ2HOTuPlcyjhCEo4Qn58lFBTM+HmNjzXQZIVJFVFWWbihRZLBObCM5Nl2yOdveB7pHY8fKDvywmWDLW6JNHOnlK1T1rCiNeXJFzLxC3k8WwbNRwJevBWoQfRsy3Se3bg5nNEu/vJ7N1VJrZ8xyY3tJdoVx+2kaYwNowWi6/KuSVZRg1HcWsYUSvhaEWltRqyoiAboZpVOyVUblsTVPhM8mPDeGYBORQm3NIeWMgIgSdYJYSwEwgEggW4lomTzWBnMyhGCD1RFwwSHITdhyTLKEaISEt7MEHpOviWhZFsLIk5LbR837o5ZE0j0tFFqLkNO5tCkmW0aBxkmezArqp9X/bsNF5zW0kcqZFozePrySZ82ya1Z3uZ15saiRPr7V9R5Jrn2LimWRShEkZDE1ZqBjefC5aNfa9mBS0/PkKooZn82DC+7+NaFp5ZwDHzqEYY2QgtWeFciCTLhJpaMKcnKl8nKcjIXc57LWs60a6+suGJOcLtXWVGzr7nYadmy6qsrlnAnp0m1rdhVQ2xBY9shLATCASCeQReclvLplbzI/uJ929EjcaWrHLVwvdc7EyazMDOMhGgxhNEu/qWXambj6wG6RFq+IAwdE1zycGKOUEnaRqRzp6KIQJJUQg1t5La/lCFt52TS5MfGyHS3rUs8ePZFtn9A2UGyEooVOrtU4zQohFunllA1jTUWALfdUnv3oY/r99O1nTi6zahGCvzJ5N1g/i6TWT37SlZvMi6EbwXKxgaUcMREhtPpDAxilu0Owm1tKEY4TI/O8+xyQ4OVD1Gdt+ekkWNQHCoCGEnEAgERTzHIbNvT6UVie+T2bOTxKYTD/rL17NtMnt2srDvykmnMCcnCLe216zYeK6L77lIkry0DcdSRR/5wANkWUGvb0SNxChMjOHZVrDEW5fEyWerGhYDmFMThJpbl/Va2Jl0RaqFJMmBmS+BPcti1T9JUfB9j3BrO5mBnWWiDgLhmBnYSbx/04ri2OYqnIn1m0uDEpKioqywp1CSZdRQmGhHTzDlLFc3KPZtu2o2MQSvge84IISdYBUQwk4gEAiK+I6Nm89W3ykVM1+zGdx8DlnTUcLhZXu9BeKmejO9OTmK0dBUsaTouy6uZZIfHcLNz1WD2lEjsZoCT1JUtLp67NmZqvv1Bf54sqIghyNEu3rwfR9JkpEkCSs1XftmfK/qUu9CPMehMDFWsd3JZ9FiCezUDG4hH0wBS1LVYxrJJmQjFJgH1+hlc00Tz3PxTRff85AUBVnVlr2cKq/CfIgky4eWzCGWYQWrhLA7EQgEgiI1438kmWj3OrL7dpPe+TC5ob1kBnaQ2vYgTj63rNggd5EpzMDPrvIYTj5LavuD2KkZPNvGyWXJ7NlBYWIUr4bBsawoRNrK+7vmCLd2INWojklSMKE5J1LVcO3+O1nTYTkixvdLlbn5mNOThBqbobisXRgfIdrVV/p5Di1eh9HUghaJ1ax2SbJCrHcd+eH9zG69n9T2B5nd9gCF8dGaNi9HA0nTkGoMSEiquqiJtGBtcv3113PmmWcSj8dpaWnhBS94AVu3bj3s5xXCTiAQCIpIilL1C9ZoaMScGi9lss7hey6Z3duKCROLo8VqG94qoXBF755b7E2rRmFsOFi6q3lAlcT6zUQ6eoKl1WQjiQ1bMBpblp1jqhhGzb61cHvnsnoCJUVBL5o/l+F55EeHiK/bhJaox8llMKcniK/bSKx3PdGuPhIbTyTafaDfTapRoQy3dQQ2KamZBccfxJyaCKLCjgFkVSPS3Vt1X7S7f0XLyIKDY3Ymze6de/nn3x5k9869zM6kD+v5/ud//oeLL76YP/7xj/zyl7/Etm2e+cxnks3WWBVYJcSfCAKBQFBE1nQi7V1BmsA8tFgiGHqogu+6pbxZf862RFErlkqVcARZN0qN+vMJt3dXfLH7rlv1sXO4+XyF8PLdwJDYnp3BSs2ghMOEWtqQ9ZVPjsqaTqx/I7nh/dizwbKspGpE2jrRYrXjzuYjyTJGYzPm1HhFyoZrWcFkb2cPnm3hmSaF8RHcQoFQc2tpMKR0LFXDaAiOdWCjhKzpNW1LCmMj6PUNx8RQgiTLaLG6YNBifDTIAw5HCDW1ohzH0W3HCiNDY1zzzo/w+7vvKW17/JPP5JobrqSto+WwnPNnP/tZ2c+33347LS0t/PWvf+XJT37yYTknCGEnEAgEJSRJQkvUE+vbSH54H65ZQFK1JZfJ5uKp5oSYGksQ7eotExRKcXozN7SvVF2SdZ1IRw9qpDJpYsmvebnyEa5tkdmzo3Qdbj6LNTWBGo0T7eoLxIMUiKTlCAmlOCXqt3UG/W9zvWsrECGyppPYsIX86BDW7DQgoScbCDe3I6sq+fFRCqNDZc/JDe7FzecJt3eVKoyyogRLyapKYWIUgFBjy6IJEb7nHjMVO5jfz9gb9AIeal+eYFnMzqQrRB3A7+++h2ve+RFu+O/3UVe/dITcIV/HbDBE1NCwSkbbNRDCTiAQCOYhqyp6og41HAl65yTA95EUtXJadu45mla2HOtkUmT27CDev7Fs4lPRDaLd/fiOXRJKtZY0g2ixcMXyb7BTqjC/dR0ba2qiapXPyaZxCzlyo0PgeYSaWtDrksvyopMVZVkJDJ7jFF8npUysSJIU+Ph19hJu6wqOqapIsoxrmRTGRqoez5waJ9TcWnZuWQvSKPSGJnBd8uOjFa9DOdIxKZyEoDuyTE1OV4i6OX5/9z1MTU4fdmHneR5vfetbecITnsDJJ598WM8lhJ1AIBBUYf7SqGvbhFrayQ/vq3icGonhWmbFROdcWsNC8bRcoSRrGtHuflI7H64YHIh29iIvqCL6jlusiFXHnJ5Aiycwx0fJDe3DSs0SW4XeLs+xcfI5CqPDeI6NGo0Ram5D0Y0y8TL/vn3Pw7XMIP+1hqUKBFYmC5ebJVkGby5Zw0OPJ5BUtWrPoV7fIIYSBKRTtX0dATJL7F8NLr74Yu6//37+93//97Cfa838yXDNNdeUgrrn/jvhhBOO9mUJBILjHM91KYwPg+cSbus60MQvSejJRsLtneRHhqo+112kR245KKEwdRtPJNTagRqLozc0kdh4Ilpd/bIir8rwyyPEnEwKzz606/Nch8L4KJnd23FyGTzLxJqeJLX9wZqmw55tkx8bZnbrA0HlchGqTZF6rkt+ZLAkCPNjw0S7+iumgNVIjHBb57KHRRbD94NsWdeygsqkYE0RT8QW3R9bYv+hcskll/CjH/2I3/zmN3R1dR3Wc8Eaq9iddNJJ/OpXvyr9rC5l1CkQCATLwPe8wBrDKwazz/NA8x0bc2Ic8FEjscBKpLjPSs0EQwE1qk4rid2qxtwyZrilHd9rDf6orbGEJykyWl0Ss9h/thC9LgkLqldWagY1cuBLzfd9PNvGsy1810UxDCRVragOlh7vOBTGqyyl+j65wYEK02Df8yhMTVAYGwaCSC0lHKk6/CBpWtVqou+62OlU6WfPLJAb3kukvavoNeihRqLB8MUqTJp6toU5PUlhfBTfdVDCESLt3cEwzCqIRsHhp6ExyeOffGbV5djHP/lMGhqTh+W8vu/zlre8he9973v89re/pb+//7CcZyFrShmpqkpbW9vRvgyBQHAc4dkWhYkxCpNjJWEXamol1NiMrOnFJb5gmdXJZSriuvT66o3QsqZXTKJ69oGKj6yqyx5ikCRp6QqdD0ZDU5AHu8B+RY3E8PGRfK9s2XJ+Rcz3/ZJP3vxeQiPZFFS+qoikxaLL3EI+EL3znuc5NuY8IViYGCXa3U92356y6p2kKMT7NlT14pMIlmN994CY9kwzyGCVZUKNLaiNzTWvayV4jl0Rh+bmc6R3bSXWv7HC7Hk18RwH37FLhsuSqgkheZDU1ce55oYrq0/FfuTKw9Zfd/HFF3PHHXfwgx/8gHg8zshI8Nmvq6sjHF55PvRyWVPCbvv27XR0dBAKhXjc4x7H9ddfT09Pz9G+LIFAsEbxXJfcyCDW9OS8jV7gE4dPqKm16vTpfGRNQ40ncOZVkWTdIN63oVSx8z0PJ5clu293SXTJmka0qx81El35smq161BV7LxFpLMHJ5cNJm8lGaM+iaRqZPcPoNclUSOx0lTufI85z7ZI79pWUX00pyeQQyFCTa1VROhir42Ej485M4UkKyihEL7nlRkW+45Dbv8AkY7uwN7FtlBDYZRItGaih6SqGA1N1SuFnhdUJlcJz7Yr4tDmyA3uRVl/AnOiX1IU5BoGxCvFtUyye3eXCWc92USkreOQq8CPVNo6Wrjhv9/H1OQ0mVSGWCJGQ2PysA5NfPrTnwbgqU99atn2L37xi7zmNa85bOddM8LurLPO4vbbb2fz5s0MDw9z7bXX8qQnPYn777+feLz6G2OaJqZ5oIcklUpVfZxAIHhk4jt2uagrEm7tRNZ1cvv2oNc31vSfk40QsqoR616H7wRLmJKiImla2bSra5mkd28rG7DwbJv07m0kNp2EqhzaX+++7+M7DrKikt69HSUcRkvUg+9jTk2UfPYkWcJ3g2sIt3WWpVA4mXTNJeXC+AhGXQPSggqkGqmeTmE0NKPX1WPNTOG7Dmo0jp1OoUZjFdFhnm2R3bsLSdWI922oecw5Am+8liCObEHEWKi5DXkVPeucbPWKpKQoRDq6MSfGMKfH8T0PLV4fCC/dOCRPOq9oWbNwGtqankCSZSLtXWKi9iCpq48fEVuTOZaTSHM4WDPC7txzzy39/0c96lGcddZZ9Pb28q1vfYvXv/71VZ9z/fXXc+211x6pSxQIHnF4jh1EXWUzSIoSVJ/W0JJRtUb4UHMbnm2SHx0EgiXFSGcv2X27y5YoJVUl1rv+QAVFVatab/iehzkxVjNbtTA2QrSr96C/rD3bxpqdJj82hBavQ082YE6OVxUlWqIeK50isWELsm6UvU9VbVXm7sFx8KtEnkmqRqSjm9zQgWlho7EFSZZJ795e2mZOjqNGYyhGCL2+EWt6oup5aqVLLETRdWL9m3Dz2aAiqKiEGpqCe1rGMTzHKb2Xc7myK7meSEcP+eH9ZcLSnp1iNj1D3cYTayZ2LAfPtmu+F+bUOKGmlkM6vuD4Z80Iu4XU19ezadMmduzYUfMxV111FVdccUXp51QqRXd395G4PIHguMezbbLD+7Bnpsq2R7r60OvqazbcH0tUiClJQo3GyOw58HvFsy1yw3uJdvYENh1zy4WhCIqxdHXI9zycfO0IITefxffcgxJ2nutSmBilMD4K+FjTk8T6NmKnUxUVRqOhGTUSRYvXVa0oqdEY1Bi8qFWFkhUFPdmIGomRHx/Bdxz0uvpgSXcBTjaDnUkRamnHsy2czLyla00j1r9pRQkRih70MGqJ+mVXyHzfxzUL5AYHSsJXjUSJdPYWY93Kj6OGoxUVRlk38D23oloIBFFmY8NEOw9FqC8ST+f7x5ThsuDY5Nj/zVuDTCbDzp07eeUrX1nzMYZhYCzjF69AIFg5VmqmQtQB5PbvQY2cdEwJu7kKje+6QeSXGkR+yaqKbITwil/SajgaLEkWkY0QihHCdxwye3chaRqx7n4y+3aj6CEiHV0oRqhmuDsE4lHWjZqxV7IeAulgRJ2DZ9soRohY7zp81yU/PkJ2/26iHT24thX0/SkKocYWlFCoZmUKgsizWn5wwfBE9d4uWVGRIyqx7n583yc/vL/mOazpSfS6JOHWdvymVjzbRFbUIILtIKu8K1n29CyT9I6Hy/r8nFyW1I6HqdtUWWmTNZVYz7qyODk1Ei2byl2InZrBb+2sWLZeLov30EmLftYEAlhDwu7tb387z33uc+nt7WVoaIj3ve99KIrC+eeff7QvTSB4xOHZdvXm9SLW1ARqx7FRHXdti9zg3rKQeDUaLwXMx3vXk969LTDLJWiFl3WDSHsXnmXi5HMo0RihlnbMybFgWdK2cWyb1PaHSWw4YdG+MEmWCTe3lfJWFxJqaVuxqPFsm9zI/rL+QEnViHb1kh8ZJLN3F0ooTLRnXYVRsO95eLaN7wcid87aRdENEus2k9m3uyRCJVkh3NaJFksseU2SLIPv49VI54BAjCJJpHduDZ6jqIHI8n3UaJxYz7pVsSiphu97mNMTZaLuwE6PwsQokfbu8tQMWUGLJajbfDLW7DSuZWEkGzCnqi8lzz3HP4TYV0nTyv7YmI+ebFj2crXgkcua+YTs37+f888/n8nJSZqbm3niE5/IH//4R5qbV2esXSAQLB8fP/B9q4Frmfi+f9SDzT3XqRB1EERsZfftJta7AVk3iv1aOTzLQo3G0eKJoKdufvVqfIRodz+uPf++fXJD+4j1bVi0t0s2gszV7ODeAwMKkkSkowcltLJ+Kd/3KEyNVwx9+I5Ndt9uol19ZAZ2Bn1avl8mVDzbIj82gjk1HiwvShJGY3OQ26ppKKEw8f6NZfFgsqaVGRsvhiRJ6HX1NUWsFo2X9Y/N71l0smk82zp8ws71sNPpmvvtTLrqkrikKCiKQril/cA2Sao6dANgNDYvWhldCkXTifdtOPAeFtES9URWyXBZcHyzZoTdN77xjaN9CQKBoIgky6iRWFmf1Hz0FfQ9HU58x6kQdXM42UzgEybLgcnt0F4kVUUJRyiMD1ddkszu30OsZ335cXKZYhVoEWGnqOj1SdRYvNT7FgwvqCu2OvFsu6YJcWAZUowxk6Uysem5LrnhQayZeYLE9zEnxvBdl0hHTxBSr2o1hYnnOKWKV63lUzUSrzpFLClqMHQwMlgzd9cp5Jacij1oiq9HlXpdsFvVgn665RxKD2E0tmBOjpVtV8IRjPrGQ/7sK0aIeP+m4uvtBFVVRV3WYMjxivcI6C1crXt85H5KBALBQSMrKpH2TlLbK4WdpGqosSNnKbAYvlvrazzAcx28/FyzuoRnmuB7NW0u8INKZZkwkWQW93Obe5iCoiulAYEg7cIB1wkqY8vtSfT9Re/Ls01kI0Sko7usX8t37HJRNw9rejKoSNUQmb7nBUMHQ3tLr41WlyTc2hEE2s+7fkXXia/bRH5sOKhq+T6RrmDZOz8+XKxUduO7Drnh/eWDCYdQ6VoKWVYINbfV9KULlsQr34O5NI45A2VJVZE1jXBrO0aygcLUBLhuMEQSjqyaz5xcI3njkYau68iyzNDQEM3Nzeh6dX/DtYzv+1iWxfj4OLIsox9kf+YcQtgJ1jTTkzMMD43yf//zZ4yQwROfehYtLY2HPfvvkcJc1FYwdCCXxUspeoj4us3kBgdKE4JarI5IZ/eKphsPJ0tVwyRFxbMz2KkZIu1dZPfvqWlLUqK4XOcXtZWebFzxBKRrmRTGRjCnJ4L+sliCSHsXSii05LKnJMlIqlYzZ1WNxDAaWyreg2oVyLL9i/TGuZZJasdDZa+NPTuNk80Q7erFnBgnPDdIIkkoukG0o4dwS0cQLzY6SG7eoI01M4kaixPt7A1ecwBZrmoXs5AgkSGoHAaJDLUjzxaihEKEWtpLkWZzGE0tqOFIxeN918XOZcju3V1mjxLp7EWL16FGYsQisWOi7eB4RZZl+vv7GR4eZmioeibz8UIkEqGnpwf5EH0KhbATrFkmxie57j038auf/k9p20c/cAuXXvkGXvKK55OoOzaqRmsVz7bJjw9jTo6XvtC1RH3QF6brSIqCFosTX7f5wPLcCr5kDxe+5wVftLKMpKhoiTrsVGWVRo3EkFU1sOoYGUTSdGJ9G4Cggd23qwsn2QgfSI8wQuiJelwzj6wu7/PmWibpXdvKliqdTIrUjodIbDwRNRTGc91ASMz1uc2rZEnFalFucG/ltWkaSjhaEWUG1KzGAaixOJKsUJgYw7VMtGgcJRxB0XU8zw2EUBXB6zt20Jvo2qR2PFTm4RYMZOhY6dmq09NOJo0er0MxQriWRbx/45LVLteyyO7fU9YCoNXVE+3oWValTFY1Qs2tGPUN2MXpZy0WD7wXqyxzurZFZp4fHwRiL7t3V+AFWFw2FqLu8KLrOj09PTiOg7tEFX6toigKqqquymdJCDvBmuV3v/lTmaib4+aPfI7HPelMTnrU5qNwVWsXz7ZwCwWsdBAM72QzFT1EdmqGrGMXhwUCsREsFx39JSPPdfAsi8LkGJ5lokbjGPUNRDp6yHoDZWJAjcSI9vQH92D4KKEw9uw0dmoWo6mFSHs32b27Ks6h1zfi+x56fSNqNIYky2T37UIxwihLDFDM4WQzVVMs8H3yo0NE2rvIDQ8WBxCCa4t09qCGIkGFSpLQ65KBvcnocGkYQwlHifX0Vxd1BMvnSihcYX6rRmMYDc3Mbn+wJN7MiVFkTSfWvzGoWmVqDx042QxqOIKbz1EYHyXScWCy1HNdzPHq/YAA5swUka6+0rLj3JeaX/RrkyTpwLEch+y+XRXL5PbsDFkkol19yxoskBUVlOpm0vPxvWBSthb5sWGi3f1imOEIIUkSmqahieXpJRHCTrAmmZyY5suf/WbN/d/8yvd534ffjrJKv3Q9z2NifArXdQkZBsnG+lU57rGCa1lkBnaUbC603ngwOVkFJ5cNGvQPYz/USvFdN/iCn1vWI6gIFcZHSKw/gVhPEPnlu+6BQPWiCJM1nVjfRvKjg1gzU0FIfVMrsf5N5EcGcfNZZE3HaGxBiyewZibxPYfC2HCpcufkc8syjvV9D6vGxGhwzanAyHf2QIXLLeRJ79xKYsOW0mCBrGqEmlrR6xuCyp4kF335ar8nsqYR611Pevf2MmEZam4PfNoWVOQ82yI/tA+jsSUYOqix9Cupaqnnz07P4rvtSPKcuFzcUNf3XBTdKOslcy0Ta3Yae3YGSVEINbeihML4jlOz99GencZv61y0KlkLz3PBp0Kg+Z6Ht0gah1vIg+cd1DkFgsOJEHaCNYnrOMzM1DYJnRifxHGcVRF2E+NT/Ph7v+SLn/k6UxPTnHDSRt727jdz0imbicUP0wTfESSIvBotN9D1/UV7zTzbgio9SUcLz3XIDg5U2eGR3beb+LpNi1ZoFF0n0tlDuDXoCUOWUTQdNRwp+qyBUyiQ2vFw1TxVuUZDd5Dhah+wD1FVlEi05qSuJCs1e+Fyw/sCe5aiIJ3znoMVpDUYIeLrNuG7Lq5tIvkU76+6+LIzKYymVvRkY03jYaOhiUzxtZcUpWyyVJIV9PpkWZj9fPREsqwP0jULpHY+XPYa2OlZjMYWjIbGRe9tqUGZhXi2jVPIBVPBnode34AWrytVPCVZRg6FIVc9NUQJhUBktgqOQcSnUrAmiSVinPX402vu/9dnPmlVUkdmpme54Zqb+diHPsXURFBpefiB7bzh/Mv58+/vPeTjHwt4jkNhYXVuiT6PY6laB5Q822rtW2pwAIKpSUU3UIwQSrFfS1bV4jYD1TBqCqBwS3vFBKPvBdO1szseIrX9QVLF/1U0HT1ZXaToDU01K3pONnNIcVKubWPOTJIZ2EVmYCdOKoWk6SVj5pp4LrKioMXrKnaFmlsD7z8jXPy5rbwfUJLQEvVV+98kRcVoaC5bts2NDFV9r8zJscA5et7nUo3Gg365hmYkdWW2MXNxeJnd27HTszjZNLnBAdK7tuIWq5mSLBNqaql5jHBLu1iGFRyTCGEnWJNEImHe8JZXohuVXxjNLY084SmPXZXzTIxP8fMf/abqvg9fczNjI7Ud6NcOfrCkNA87k0ZL1Fd9tKwbSMdan4sXJBfUEhFLzLkuC1nTguGKBVOrRlOwRFtxSZZFeve2siEM33XJ7tuNXt+AtGDIRI3G0WIJnFwmmBjtWUesZx2x3vVEu3pRorHl2qxVXotjkxvaS3bvbtx8Fs8yMafGyezejhatPUEuaRq+55Hdvxc1GiPWu55QUyvh1g7i/ZsC8ZrLgO+hJerRqtjcKLpBfP1mjMaWIA5LltGTjSQ2nFCWteu7Tk1jYwgi7PRkI7JhEOvbGER7ZTN4tkWko2dFsWyuWag60OFZJubkeElAK5pBrG9DuWiU5aC3zliZsbRAcKQQS7GCNUtvXxdf/d6n+PA1N3Pvn/+Joiicfe6TufTKN9Le2boq53jwvsow8zlGhsbIZLK00LQq5zpaSLISDEvMWy4zpyaC/FHHKdsu6wbx/o2litaRxvNcfNspJQRIqgb4yIYR9GG5DqGWNiRZITe0D9/3SlUhz3UPqcISTAEnqNt8Ep5ZwPe8IDi+yiSw7/slK5NqFMZHia8/odiv56LXJVF0A991MRqaUYwQuf0DpWljWdOJdPVCjZzQ0hQt1Y2DPcvCTs0ia3oQ61UULr7r4BbyaPF67PRMxXHDLe0UJscBn/zIIEgyajhMuLWD9MAO8Dzi6zYF0WS6jqxqeK4Lnhf0MharcYpuEGnvJNTSFvSzqWoNi5hFJLjvE27twDNNMgM7S/frMrdc20y4tXPJAZbSe1MDc2oCo6kFRS5OfsfrSGw8sVhJ9Iv9mdqKLW4EgiOFEHaCNYuqqZxw0kZu+tyHSKeyyLJEfbKOSHRpL6zlEl/EDy+Y0lr7/4RkVSXS0R34lM3he2T27iLS3kWks6c4LKEiadrRE3UL47CAcHtnIOLmWX9YM1OBAF2/Gd91KEyMkdm9HTkUCqKzjNDBB84X+9qW8ukLKlnVe7MAPDOPpMhE2joPPMf38X0fo7EZOz2LpCrIso6kqLhmgcyeHdRtOqmiWd81C+RGBkvVLi1RR7gt8JTzXRekoFIY6+7DnYvs8oIJXM+2yA4OkNiwBSUcDrJwXRfFCBFu68TOpHDz8+7D90BWcIqDA6HmNpRQBFlV8RwHO5MOhkocGzUSI9TcgqzNZdVKQdJGDUG0mDUNgF6XLFqyjFb13DMnxzEampeXzrDokraPNE9fzvnycYx4MwoES7H2v5UEj3jq6hPU1S8dUn4wbDphHYahY5pWxb7HPekM6pOVfUdrESUUIrFhC7mhfUGFTpYxGprQ4vVBM/kKtbJn23i2iZ3NIKsaajS2ZJVjMZNXz3PJjxU99QAkCT1RjxZNlAvSucdbJoXxEfD9kuBxzQL27AzRnnVB5NkqV1zmBiV83wcpMNt1stVtQmS93IjYtS3MqQnMiVH8YopBrGc9diaNZ5tB+LskY85OE25uK71OgXHww2UpGFq8HjwXc2oCa3aKcGsnuaG9JRNpOFABzO3fg2cXBzs0jVj/JiRZxsnlcC0LvS6JZ1k42QySqmI0NpesYWK961HCRVHnOphT40FVb+6eCnnM6Qni6zeDT2Ad4rro9Q2osUSFLYusKITbugJrlQXCS0skkXU9WK6tMXgCwXJtNaPh+UiShLFIL6Ne14B0kNFdnuOUGRkfa72ogkcGQtgJBIvQ3NrIx2/9AJe94V04zoGpu9b2Zt71wcsXreitJYLl2CixvvWl/qKDXW5ybYvMnp3llR5JIta3AS0aLztmkG1qYU5PBsa4sQRaPFGZmmDbmFMTQR9XvA41HMVKzWAt9iU/M0W0ux9rQS9Vbv8A6qboqqZjeLaNNTtNfmwY37GRjTCx7r4KH8A5wq0dpcqS59jk9g+Uoq7UaAwtliC18+HyuC1dJ9rVj+dYRcEgYc1MlVWvYt19eL5HfnQIO50i1NJOfmR/magLrtciN7iXUEs7TiaNOTWOORUsT0qKQqxvI67p4Zomsq4TrusC18PKpIJKpOcFHnSR4PPvO06ZqJN1AzUaZ24JV4vXlQS2nUmVUieQ5GD6tPhaKEaIuo0nUpgcw86kSwMMWjSBrGqlwYaaLJUaMnd9oTBqNF4hvCVFJdTcenCfe7NAdnAAp+j5pxghIl29qOFI0FsoEBwhhLATCBZB13XOfPyj+f5dX+Z/fvV79u4Z5KwnnM7Jp26hraP2xNxa5VArDL7nURgbKRd1AL5fWkqcSybwPRcrkyI7sLP0MHt2GklRia/fjDrPnsT3PGJ9G0reZpl9uwLD3cgi1Rnfr5rg6ntu0C+1SsLOcx3yo4MlYQTBUmt+bJhY73qy+/ccsOKQZCIdXWXWK55tl+WXhppayezdXekrZ1kUxkcCSw4jhBwKl1Wv1GgMp1BACRnY6cAKSI1EK+KzDhzPDPz5GppI7znwHgTJCjuLxsE6rmWSG9xXPhFcFOrWzCRavP7A+y3LRDt7A1/B9CxIEkZ9I0ooTF6Sgj65tmD5PLNnB65lBQbM7Z1B9U9RkVSNUGMLWqwOSZKQDaM0vCApaiASF+S9KkYISdPR65JLvFvFx2s60Z5+nHQqWNr1PPS6ZLG/ceWfi4rKKYHQS+/cGqSJHEPWQILjHyHsBIIlCIUMevq6eOWFLznal1KTTDrL1OQMg/uGiUTDtLY309LadMiZgyvFc+wygVOG7+NkMyVh59lO1XQH33XI7R8oplsc8GzL7Q+80pRwJBhekBWMphZMqlfFlEi0olK1mgSZpTae51W9Zzs1g++5JDZswXddfN8PEhZUtayCM78XTyr2qtX0lUvPFoXYduo2nlQ2WavXJXHyOTx7XlVrGfYo2aG9FefzbBs8D88s4NkW8XWbyO7fg2cW0GIJjKZWCqPDOLkMSihSEjSxrj7y4yNlnoh2agYtXkekvRsnH5hbm5PzlmzzWdK7thHt7keNBsbYZWJUlol1r0OLxYPl2vauovWLixKOEm5txy3ki8kpeSRFWVY1VtF0lIYmtEQd+JQNe6yUwJi5uqVOfnSQaPc6YY0iOGIIYScQrHGmJqb53Ce/yte/9F284hd5sqGOmz5/HSefegLqQfYLHRS+X1OUAGWeaYt5zzm5TPBFqar4vo81O41nW2iJulL6QFB5sysmeucIN7cFomUBc8HxZdflOuAFxsTL+QL2HJv82AjW9AThtq55B5fL7t/JpPE9r5QYUY05jzi9rh7kIDIMWa4tyorm0XZmllBr+4Hq1dxz5osTSQr+q7lEKeGZ1Zc3fc/DyWfxHYfMwE7i/RtxzQJuLkt2365SFdLNZVEj0ZKQLjO6LmKnZ9Hrkuj1DRXZq3PkhvYS799UWWH0PDIDxWqvEkYxQiQ2bsGcmUYNh8ns3VV6rczJ8aoV38VYjSp1rYEPACebDaabhbATHCGEsBMIjhCp2TRTkzOMj04QT8RobG6guWVxN/2l8H2fX/3sbr72xW+XbZ+emuWNL7+C7/7ydrp6Og7pHCtCkkr5opIs4+bzFMZHSrYd6jzPNN9fPCnAL4oR33VKje6+5yFrB74gc8ODxLr7cPJRzOlJfMcpGte2ge+XecjNES1mk0Ig6NxCPpgQNU0UI0y4bW5ytvavRyefw5wYDaK8NJ34uk2AhOfYSLKCk8uUhjeWMp9TwhHkbJrc8CC+56El6oj3ric3MlghkgJfuaKgMk30ZCNGYzPm5DhuLosvSejxOqzpSSAYJjCSjVUrilq8vkwQS5qGGokVRWMKSQmiwiRJwnds7NQMVmq2cpkdHyuTItwc9PPVwpqdJtRU24Yo6LesbZZsFkW0JEkoRggj2RAMziwQwL7rkB3YSXz95iMzvCBJyDXyeaFo7VK1KUAgODwIYScQHAHGRye54dqb+cWPf1va1tPXyY2f/SDtnW1EYwfXgzMxNsXn/vsrVfcVCiZ//N1feNEFz1vWsYb2j/DXP/2DP/7fX+lb180zn/1U2jpblp3g4VoW2X17yhrS1UiMaM86snt3Iet6Wf+SGqp9z7Kmz6ucSaUJUiebIdTUemAooWjLosbihNs6USMx7Eya7L7dgaFu30asmUlcs4BihAk1twY9W5Ic9PjNTJObF0Xm2Rb2jtlgcrYuWXVK13PdQLRJEtHuPmRVJbNvV1nlS40liPWsIz8+uqi4cG2L9J4dePOWjO3Zaez0LPHe9UHv27wK4AFfOdCiMWRFJdzaidHQjJWaIRRL4GQzaIn6QIhNTxLtCoYUzKmJ4FiShF7fgJFsxE6ng764ju7g3OkUKEqQret7aLEEuaF9wb5sGjUcqRB2SjhCfmAnWm+sJMar4RfPvTi1n+8WCmVC2XecmokirlnAc45MnnEwZdt8YGJ7AaHmtopUEoHgcCKEnUBwmEnNpvncJ79SJuoA9u4Z5KJXXcl7rn8bLa1N9K3vJhRamZu94ziMjlT/QgHYsW33so6zZ+deXvOSS0uxaQCf+vgXuelzH+RfnnQG+iIVCQj6zbL791RMGTq5DIWx4WA6MBItS4WQVA2joalqNSnS0YNPsUKnqhhNLTh7M0E1KTVDuLWD/OjQgfNk0viuhx6vw6hPokUi2OkUnlUg3NYZVFUWeKh5jlMSLQvJDQ6gRmIVlhzBEz18xyHS1okkSWT27sJbMK3pZFJYqloSfp4biBA3nwdZCoyNZQUnmykTdfPPYU5NEmrvDOKB5MA6w07P4OZzSKqGUlzelVUVWVWDXFvfD2w2DAMtUYc1M0VhMjDcTTQ0BdcpSUiqSnbvHozGJhLrNpMdHCirDlrTk0E1sL6xzPh4YaSZXt8YLI37PubkOFq8ruYksJ6ox/e9IA/Xq6zWykZo0cg0NRorn6heqn/QW428keUh6zqRzt6yPxIgeH2qRbEJBIcTIewEgsPM2MgE3/vmj6vuGx0ZJ53KcPXl13HT5z/E6Wc+akXH1nWN3v4uBnZXXwI79fSTljzG7EyKa975X2WiDsB1Xd7+5mv43q++RGd3+6LH8B0bJ5Oqus/JZYiEeisa2mU1qDapkRj5OVPbcIRQUyvW7BTWvl2EmlsJNbSgReOosQROJoU5NYGebCLWtyFoovd99EQ9smGUhKOsFpcVF7tm267ZD+i7Lr5rA9UyThXUeAJJ08H3K0TdHNbMNOHWTjzHpjA+GlT5SgeRiPVuqLBiKe1WNfSGRpxMmsJMsKyqJZKBUCjGplWz0JAkCTUURlIUfNdD1gyczCzW5Di5+cuuikq0q7c0EVqtL86ankSL15WEWKixGXNmOji3qmE0NILnkxsuVvTSs8T6N2LNTuM75UuqihFCi9fjyxKx3nWk9+wo6/uTZIVoV9+B6eGFyDJ6onziddEqmCwftBcdBJVbzwkSOiRNC9JFFrEskRUVPdmAFovj5LJBX2XRu3FZhskCwSoiPnECwWEkNZtmeGi0qsHxHBNjkyTq4nzo3Z/gc3d8nIbG5Vk2ADQ2N3DZO9/IFW96b8W+ZEMdp51x8pLHmJma5d57/ll1X6FgsmvHwNLCbonqycIvbM+28fGRZAWjoQk1Fsct5HGyGbKDA6UltsLoMHhBlFSsux+3kKMwNQFe0PsVam49+OW2JZcFq++XZJlQYyvmxBiyvti5fXzPxTXz5aIOggrX1HhNf7NoVy+5/QN49oHPjTk5hp2aIdLZQ2rbA6jRGJH27mL1r3ya07NM3EKewthI2TFKp3cdPNtGr2+ovLZ5BBOtCSRdRwmFCbcYeA1BhJ41O425QKz6jkOsdx327EzQF1k0A9brG0vVT9eHxMYTsWancQt51HAUJRTCzqSCFJTOXvKjg6XPgGyEiHb1Ii2onkqqitHUGvQ6LiDS2nlQnwvf93ELOTJ7dh543SSJUHMbocaWRcWkLCtgKKWpb4HgaCGEnUBwGMnnChTyBSLRMLlsvupj+tb1MDkxRS6bJ53KrEjYAZz5uEdz9Qev4KYbPkMmHfQ/bdqynhv++720d7Yt+Xy7Rp/SHNlMZTVnIdISE39z/XKebWGnU+THR4qDDjHCbR1ISGT27Kj63MLEaJB4oBvIWh1qLE7Qd3doDemSqhYrW5VVImmJSousaSD5ZUvLlQeRkGSZ/Gh1Hzk7kyLWsw6rWJGbI5jyzVYVZJ5t4eSyhDu6UVQtsHNRFNR5YsJzHazUDHoiidHUgp2arZqA4Zp51GhsUVHuex7h9m5kRcF3HVI7t5aqcUZTK7G+jUHaBsF7XJgcx83nSGzaQqg5GJSQVA1JkvCKucO+G/gIerZV2idJgdlyqDHI9Y109ASyWlYCixhdr7DukRWVcHMbim6QHx/Gt21k3SDc1okWix+UdYlnW6R3bitfKvZ9CmPDyLpOqKF5xccUCI40QtgJ1iSWZZPP5QmFDIzQsZvhqGkqf/njP3jRy5/Llz/3rYr9feu6cVyXXDYfTPsdhCVCXX2Cf3/ZeTzpX88iNZNG0zWSDXXLFoiJRIzWtuaavXqbT9yw5DEkVS017C9EjcaRVA3PsckO7SslEEBQEbLTs8T7NwUB9VXEDL5fJr7mR3EthucWo7Lk6v5ksqYR7e6vFJSSRKynH2mRio8kSeh1DYGPWzhSdSkz1NgCslz9niDwibPt0lTrHGo0VmHAO5+5wPu5IQoll0Vqbi0tdftOYN2S3bsrGJSoSxJqbiW7b0+Z15oSjoIUWK3MTdEuRK9vQDUMPMcms3dX2RKrOTGKOTGKHIoQbm4lM7ATWdeJ9a3Hmp1FjyeCZduiAHdyGTzTxE7PYs9btrcopl30rCO9ZydaLEa4tQPfp2ifkkWrSxJkzZb/+5A1DaOxGa2uvmgDE1RUDzbpYc4frxqF0eHAHPooZSULBMtFCDvBmsKyLPbvHeaOL36H+//xML39Xbz6jS+lp6+LWLy2V9ihks1kmRif4o+/+wvZbJ5/eeIZtHe2kGyoX/R5DU1JHn3mKWQzOV7yiufzvW/9BNsKvhxPO+Nk3nPd23jTK98BwJOedtZBZ8+qmkpHZxsdy6jQLaS5tYmr3n8Zb33juyv2/dtLz6OhsX7JY8iKSqSzhxyUiTstVkekqxdZVXHyuTJRV8IP+rSMhmbyo4OV+2FF1RfPsXHyOQpjI4HPXTwRLKPpRlmVT5JktGicxKaTMCfHcAsFlHCYUENz2WM9N/DLc/N5kAiWPotVJHfGItzaSWFipBQlNbf8aDS3lqLaygSvJKMn6oo9YD6KESbWuz4wufU8tLpkyauv6mshySi6gRIKISkqaiRGYWKUcHMbvu+T2rW1zOalMD6CnAoR7ewJPN+g6NenUpgcJdrRgz07UyFoZCNUSsjwHKeqeAXwCjlkTSfWtyHoTXNdzPER8sP7iK/bjBaN4dkW+dEhQs1tZaJuDt91Macnia8LsmrTu7eVTbzmR4eIdvcHGb8LxJ0kBWYiVmomELvF1zDU2LLiFAmnwspl3n3a1rIjywSCo4nkLzaffpyRSqWoq6tjdnaWROLwhMYLDi9/+dPfeeMFb8Oxy5cPP/jxd3HOc56GYaz+X9OZVIYffvcXXP++m8q2/+szn8i7P3QFTUt40U1NzvCFT32NmelZnv6sJ+M4DrphEItF+N63fsyd3/45jc0NfO37n8YIGTi2Qygcoq4+vur3UotMJsfDD2zjE9fdykP3b6OlrZkLL34FT3vmE2lsql35830/6JdzbHzfQ1aDgQLfc4NKWXFiEyA/PkJ+uLbPWax3PZl58WJzqLE4sZ71y2pC9xyH/OhQ5WSmLJNYf0LNaCff84KJUlkqqwh6joM5NUZ+ZKjs8ZGObvRkI/g+biGPa5qlipmkqpjTE8XM1zo8yyS1/UEA9GQjel0SayYwXFajUdRonPzYMKGGFvT6wGLFnJkku7f6RHOko4fC5FjZNG2koxs1Eg/EzdhQ1eeFO7qxUzO4hQLRrl7yo0NIkky4vQs8F3NqAis9iyTL6HUNaPEE5sQY0Z51eLZJavtDNV/3aFcf2cEgwUIJR9DrkuRHBpE1ncSGE/A9j9zQPiRVw5qukUwiScTXbSY/OlRjEEeibvNJFT1sXtEypsLzT1FJbNyyokxgc3qS7L7qr7us6cQ3nCAqdoKjwkr0i6jYCdYMY6MTXH35dRWiDuCD7/oYj3nso5Zs8j8YhgZHK0QdwK9/8b884SmP5cWveP6iz29orOc/Lns1U5Mz7Ni6i3AkTEdXG3/837+SSee45oYrOesJp/P3v97PZ27+MiNDY5xw4gYue+cb2XTiBmIH6XG3EmKxCGecdRq33H4DhYKJqihLClbfc3GyWTJ7d87LQpUIt3ViJJsqhNhSS6iyEQoMeOdVm5RQODAUXuZkoefY1e02PI/c0F5ivRuqHkuS5aqjEm4hVyHqAHJD+1DD0WDZ1Enj5DK4hRxOLlfyeTMnxoK0BN0g1r8Ja2YCNRQpW/p1smmQxoj1rgsqgcUqYXDsypB6NRr0ji20SMkN7SsOJFSfsgWwZ2eCfkZJJju0FzefI7ZuM3ZqhsLEGHp9kmhHD37RUmbuOn3PDaLL5qVhlPrmisvMkqqVJozdfA6lOagcz02XBhVXaYl5laDyZiTnLFQW9v75OLlshbBz8rmq1UTfdSiMjxBp7152xVeNxmr2XYZbO4SoE6wJhLATHFGmJmcYGRrlb/fcR30ywamPOZmmlkZCy+iTm5lOMTxYOQEHwfTm4P6RVRd2vu/zna//sOb+2z/7TZ52zpNoam5Y9DjxRIx4IkZv/4H4qXUbennJK55PIZ/n1pu+VNaD97e/3MdrXvwWPn7rB3j6s55U+sJ3XZex0Qny2Ty6YdDYlCQcWb0pvJUsBXuWTXr3dspMZX2f/PB+FCOMnig/lhav/VfmnIVHYv0WPMvEs81isLuBsgJzVztd3XIFiv1TxZiy5eC5Lvmx2hOj+YlRIppeTK2onklrTk8Qae8O+s10ndS2Byoeo0aiQcWvuOzpWhapXdsIt7RjJBuxisu4erIR33HILvBKm8NOp1BC4ZrXIkkS1vQUdiZFpLMHJ5tBDYVxc4GIsqYnsWam0OuSaPEEajRWPLcUWNO0dODkMhgNTXiWhe97KEYYz7GwM7PzT1RhM+wW8si6hhaN18wS1uuTQSXSsoh2dpPdX3mfCwc9fL96Tu8c1uw0oZZ2FHl5gixIEdlMZmDnARsbSSLU0h5kyi4T3/fxnCBvF0lCVrWa4rJU9S5OekuKKixSBIeE+PQIjhjjY5O8523X8/u77yltU1WF/7rlGp7wlLMIhZcSd0t0DRyGrgLX9RgZrm0APDM9i+ssHo21GKqqMDkxw1c+//+q7r/+vTdyymlbaG1vZnpqhp/e+Ws+/YkvMjuTQlUVzn3+2Vz6jjfQ2n5kp/V838ecnqDWe5IfHUKNRMosJyRVJdLRXWEKLKkakfauoDFeUYq2GIdrGXoFk7S+V33wQZIxkg2osQS+71WNLZvDNc3AlFeSg2SK+d5tmka0sxcnm8GangimQptakWQZ37bIDQ4gaRpaNFG68lqiDoIKlV7fUL2PEdDqkhTGhvFsC3NqgkhnD7KqoifqyY8MooTCRNq7MKenyI+PBFY0yabiLcvo9Q1IikJmz07mv+96YzOqfuCPC72+odRTKBWzbzMDu4j1rS9ZrCz075M0DaO+oeRvpycbqw7TqJEIrm0FQkmSWGo6eqWT05IkoYYjxNefEAyK+H6xnaC2MFuI5zhYqWnyI0PBMWSZUEMzRnNrRcXPcx3sdIrc0L7SYIoaiRHt7jto25Q5oTiXMjJ/gEXwyGDl8+ACwUHgui7f/fqPykQdgOO4vO2i9y2anjBHfX2ipoDRDf2wLMOqqsLTz3lSzf1n/Mtph7xUunvHQM0opvGxSVKzKVzX5Sc/+BUfft9NzM4EVSnHcfnhd37OlZdcy+RE9S/zw0axt6wWnlWouKfAxLWRxMYT0Rua0OJ1RDp7SWw4YdW8v/RFqoJqLL6kLct8gsGHcpNjJRQm3rcez3XJ7t+DNT2JUqNvD4Iqpe8F1RtJUQLjXEVFjcaJdfeTG9xLYXwk6NPLZzEnR8vyW33bxpqZDGLRCoUlz6WGIlUfo8aC12VOKNmzMweWVTWNSGcPkfYu0gM7sWYm8W07qMo5Np5VKNqU2MVkhfL31ZocD6Zvk40YDc3o9Y2lbN9wZy9OIQ/4weCG7xdtUjYE1xuJEWppJ9rZG1Toip8ZOzVTtLWZd391SazZGVLbH8KamQqWeCUJo7Gl5muiJ5sPys9O0TTUcAQ1EkXRjWWLOr9Y+cztHzgwQex5FCZGyQ0OBKbH83ByWbILpo2dXIbUzq24NYyvF8NzbMyJMVLbH2R26/2ktj9IYXxk0QxewfGHEHaCI8LE+BRfua16VcrzPP7nV79f8hjNrU184KP/WdUS5D+vecuSy6EHy5mPezStbZWCUlUVLr7idURXMI07MjzGn/7vXr799R/y1z//k7HRCeob6jjzcY/mUY8+scKrC0BRVcZGJvj0J26vesy//eU+RhepKh4OJFkuRVpVQzHCVXvqZCWIvop29hLrXU+o6E+3atelaYSaKyeDJVkh0tGzoiUuSZYDL7a5aockl8SPPTtdjP0aJ9RUXVjoySaUcITs/j2kdm6lMDFKvG8j0Z5+tLp6rNRsRUXKs+2aJrjm1DjhKvcGQV6r73mkB3YQbmkPzhFPoMXriHb1odfVkxvaO+8ZfklEyYqKlkgWjZ+90r3GetfhmgXSu7aRHxupmYU6d21aoh7f9/Edm2h3P/F1m9DnN3kX+xzTu7YGlaRQBCUSxcmkyOzZUf5aSCDroWB6t+hNp8cTFMaG8R2b7L7d2NngDxzFCKHVV/7bl40QRkPTEa1WebZdFnU3Hzs1GyzPzj3WsWsOE/mOjZOrPaFb9TmeR2F8jNzwvpKtje+65EcGg3aBWqkeguMOsRQrOCJ4rkdqttIkdY7hoeq9c/ORJIlHn3EK/++nt/HFz3ydh+7bRndvB6978wWs29B32Pzs2jtb+cK3buLGGz7Lr3/2O1zX5eRTT+Cq919G3/ruZR9n1/Y9vOHlVzA+FniGhSNh3v3By2lpa2b9pj6i0Qj/cdmr+fkPf82d3/k5AFtO3kiyoY7JielFX7+d23dz4imbDu1GV4hR30BhbKRqLFe4rXNRESVJ0jKSH1aOrKiEmtvQ4gkK46N4joMWTwTDHEvk3VZD0Q3i6zaT3b8HNRIN+rnm9Xn5joM1O020qy/48iyKEy3ZhBaPk97xcOmxnlnAnp0OlkAVFXO28jPv2VYpLmyh/YhnW3i+R3z9ZnJD+4KBAVnGSDahxRNBRczzAj+54tCJOTlGbnSwYrlYNkLlXm/FgYk5wi1tFCZGSxYukqIuWvXxbDuoLk5PYE1PoEaiRHvXl4R8+YM9zPFRlHCYQpXUCAA9kcRzbBIbtuBk0pjTExUDEvmh/UGer6YT7ejGTTZRmBzD9zyMZCNqNF496/cw4rtuTR88CD4DFHspfW/xqredSWFUEaw1j23bFCaq94SaU+PBHykH4ZMpWHsIYSdYEelUhsmJaaYmpoklojQ0JpdVKQuFDU48ZTMP3re16v7HPfGMZZ3fCBls2NzPe697G9lsYFAciYbLHjMxPsnQ/lF2bt1NW2cr/et7aG1vPqS/3Lt7O3n/f72Tt73rIlzXI56IVgwaTIxPMTM9i+O41NcnaG5tLFUXx8cmuOR1V5VEnSzLXH/j1dz2qa9x398P2Ejc9qmvcek73sALXvJs7vrZ3Xzw4+8i2VBPNpNDURTcGn91N7c0HfS9AWTSWSYnpvjrn/6B43iccdapNLU0kKir3esm6zrxdZvI7t11YDpSVoh0dKOEwzWfd7iRVRU5lggMeH0fSZGXbWq8EEmW0aIxEus2F5MXHq54jKwbyLpBtLu/lDYhyXJNe5D8yCCxvo01z5kfHSLauy4wFJ5X4TGSTeixOmRNI96/Ed/1glSEydEKk2WvkMfNpoPl1CqCLNLWied7+GYhmHiFQGgXq3hKOFJWefLMPGosUdM4WY1EghSMIk4uizUzhdHYjKSqhFraKYwdSOCwMymMphbk2ZmKrF01Gsf3ffIjg9ip2SBursrUq2db4Hm4xfg0kIh0dIMsoxxszNwhstSSbem1BpCC/tKFubpzKMbK/g35RUPuWniOLeLOHiEIYSdYNuOjE9xw7X/zix//trRt/cY+bvzcB+ntX7xylWyo5+3veTOve8llFfu6ezvZfNLS6QbzMWokTgwPjnLphe9i64MHvuiSDXV89msfZ9OW9Yck7qLRCNFoZf+S67pse2gn/3nZB9m9Y6B0zqve/1ae+NSziMWjTI5Ps3/vgS/Kxz/lTP7yp3+Uibo5bv6vz/G1H3ya/7j01XR0BbFMDY1JnvHsp/CzH/664vH1yTp613VVbF8uszMp/t/X7uTmj3yubPsrXv9iLrzkFTTUMGEODH5jJDacEPQOzTWaa9pBC6mDZb6fHhJIila8jtWpCsqahosfDDbME9fRrl6sdKpMtCBJxPs31azc+K6L7/vodcmqFau5Kk58/WZ8x8H3XGRND6K1SiJMxrXySBKYk9WnQnMjgyTWn4A5M4U1PYHvuijhSGASnE0jFwrkRwdRwhGi3eswko3BcqskVdh9OLksoZb2mlYgRmNLhf+bOTmOFouDrCAZIaLdfZhTk3iOhRqOgiwT79uIlZ7Fmp0qpXlIshR44hH0m81Fk80nWGZtxM6myQ3uLRM04bZOjIbmRSvGvufi2TZ2Jo3nWGjRBIphLB4RtwwkRUWNxQ+YVS/YJ89rO5BVjXBLW8UwUfBgqWKqfOmTLyEqDzKNQ7D2ED12gmVRyJt85uYvl4k6gJ3b9/CmV76DsdHalgNzbDl5E7d+5aP0rQtEoKIoPOu5/8pnv/axqj1sKyWTznL9+24qE3UA01OzvOlV72BsGQMaB8Pw4CivfcmlJVE3d84rL7m2dC3pVHmSwDOf/TTu/PbPah7zd7/5E53dbSVhEomGueJdF3HyqSeUPa6uPsGtX/kobe21G8iXYvfOvRWiDuCrt/0/Hvh7ZYVqIbKmlzeaH2FR57kudmqG1PYHSO14iNT2h0htfxA7naoqQg4WWdUw5mWFKuEonu1UTqH6fll0V1VcBzUWL/uin0ONJYL0he0Pkd75MJmBXRTGR/EdFyebKfm22akZ7GyGWN96jIYqFVvfx8mm8WybSEc3sZ516Ikk+eH9OJk0/jzfufSuhwk1tQbL1b5fdcgkP7yfaPc61Hm9lbJuEO3px5yaqHitfdfFzedxMilk38dKp1HDEYz64Fozu7eTGx1ECYUIN7cFy/eahpVO1RyAV2NxYn0bMJJN+G4wbRzt7C273vzIIG6hdr6x77nY6TSzWx8gNzhAYXSY9K6tpHdvx7VqxL8tE1lVA9/FBe+rJCvE+zeW9U/OCVk9ucAvUpaJ9W1YsciUVbVkmVOxT9eLSSeCRwLinRYsi8mJKb73rZ9U3Te4b5jh/SO0tC6+HBiNRnj8k8/kC9+8KVhaVFUaGusrllIPlqnJ6ZpDGJPjUwzuG6H1EARQLX798/8ll63eK3PzRz7HzbddR/OC1yYUNsikazdHj49VCuW2jhb++wvXMzw0xo6Hd9PU0kBrWzO7tg+Qy+Xo6eta8j1YiFkw+crnKzNs57jtU1/jtDNOJp6I1XzM0cazChWJFb7rkNmzncSmk1CV1fl8ObaDEq9HSc3g5nMYyQYK49V7xHzfq1ndkhQlSGIY3ke0sxe3kA8SH4qTpYoeIr1rGxB412nFpcnC1HhgTTK8r6IiFGpuw2hsKTdnliRkI4w9vB+3kC0dx/d9jPpGrJkD+bC+42Bl0sTXbQ5EX7G6N38J1DULZPfvJtzWRaSrDwlK08HVvPO0WBw7m0ZP1JMZ2El83abSfZXwPCRZIT86HEwDF61kYn3rye7bjSQryEYwPGGnUxjJpuC9nlehk40Q0Z51gQ1LUazmx4ZRwtGKbFkIetGCz0u5enQLeQpjw0Q6lm9oXA1FN0is34xrmjj5bBD/Fo5UtR2RNY1Iezfh5jacQh5ZUZCN0IrsVeYfK9azjtSubWXLu5KiEuvbIMyVH0EIYSdYFrlcvpRxWo2h/SOc+piTl3WsppbGJVMNDgazYNa0DQEOiyWI67rce88/a+7fvnUXhbxJQ2OSc59/Nj/9wa8AePiB7Zz+2Efxlz/+verzHnPmqezbM0hXb0fZl0FjUwONTQ3EEzHeeuG72Ln9QJWws7udz37tY3T3di77+i3LXrTaOjkxhXWIVYzDiectbiJcmAiyUFeUNVs0iw2CYWV812NoeJxvfPn7/P2v9/HOd7+Z9X09KIZRNuU4H3NinEhHT9V4qkh7F+bkGL7jkBnYiV6XJNLWiZWaQVY10nu2B5Wwju4g4mpoL5IkYzS34uayVZf5CuMjxHrXY05NoNcn0euCGDhJkoIBhEIee2YKZCnwDNSNilxeJzVDKNmI0dCE73mokSiZgZ1lDf6KHkKLJQ4MJVg18lNlGaOhifSeHeiJeiAwUJ6fpiEpKkZjC+mdWymJrKLhsJPNEGkPKvvZvbsDD8TOniCabcH5PLOAOTWBkWwomRXP9d9VGxaws2lqlQTN6QlCLW2HPKkdLJ3rwVL0Uo9VVVik2rYSlFCYxIYtuIUcbiGPYoRRwuFVnTwXHPuIpVjBsohEwoumQ6xETBwuorEo0UU85Q6lD60WiqKw8YR1Nfd3dLWh6RqJuhjvePebedUbXkIoZPD9b/2E17zxZVWtW9Zt7MUHzn/efzC0v1K0jI9N8uZXXVkm6iConP7npR9gZqp6g3s1ItEwj3/yY2vuP/NxjyYWW76dyxHH8xadLHTz+Yq0glr4roudSZPetZXZrfczu/U+8oP72L17Py959oV89bb/x/1/f5hXvuhSLnvLhxganw1ETjiCXt+AFq8rTfo6uUwxq/TEoAoXjqAnG4lvOAHHLARWFpKMnmxCTzaSGdiJOTEWiBHPJ9rRTWbvrsDI1/PwXQdZkilM1p4et1KzxHrXISkqmT07yezZQXr3NtK7tyPLMr7nYadmye7bHVSm2sv/Pci6TqGYF+u7DooRIr5uE4mNJxLv30Ri00nE+taXTZoquk68f2OwFCzLIEloiXrivevJjQwWp3uD19+zzLK+N6OhicL4CNVElmsWkBQFJ5/FLeTxTLMYM1ZdkNmzM8HrX0QNx2p6FvpVIgkP7PQXHUBYCyi6jp6oJ9zSjl5XL0TdIxAh7ATLorm1kZe9+t+q7lu/sY+2jtVf4lwpza2NvOGSV1bd9y9POoPmw1AlBDjv+WejqtW/RC5662toaKwHgkrlpVe+ge/f9WW+8K2b2bRlHV/+7i2cdkZQ6QyFDF7wkmfztqvfzEeu/W9Ss2l++J2fV0zCTk5Ms29gcOGpALjv7w8xNTWz7GtXFIXnvvCZxKp48RmGzqsufMlhs5FZFSR50Uk/xQgtu1oXeLZtLZvuzFkuH7n2k6Wl9rMe/2i+/ePP8IEPXEIMG6OxpVRZkjWNWO969GQjkqqhhEIlz754/yYibZ046TSSpJDYsCUQRMlG8DzCrR3IRigQRnX1WLPTlcu4ioy/SMqJJMt4joM5Mcp8seS7Dpl9uwm1HDDwttOzQSrEvOlRLVFPfmQ/md3bSe/ahmuZyGpg1BuYH4ermv1KqooaTxDt6CHa3YesaeQnxgg1thDr2wCShBqJosYSgZfaXB5uLFGRhTsfKzWDZ81NW8s1p0eLdzlPkEmEWtpqvu9qrHZbQYUNjECwBhHCTrAsdF3nVW94KS991QvKRMyjzziFT37xw4dlaXWlaJrGC17ybN7xnktKNh2arvHClz2HD370KpI1pjsPlfauNm6+7foycaQoCm+67NU85rGnlj1W13U6utpYt6GXto5WOnvaeeazn8rHPn0t1/7XO8nn8lz2hqtL6RK/+80fGZ+3VDo7k0ICPn7r+3nLOy6smsRRyFfPCq1FR1cbX/7OLZzxL6eVtp1y2ha+9J1b6OrpWNGxjjSyohBuqZ04EmpuXZaw8xyHXBWz2Lwv86ff3wvAY856FB+47q00+VlC+VmkzDSZPdvJ7t+DnmzEnJkis2cHSjhCYv3mUqVEkuXAgkXT0Rsag0QFWaYwMUp611Yye3dRmBwn3NKO5zroifqqmbduPreoKNGLkWFV8X2cXCawgClipaaD/F5JItLVi2fbxHrWEWpuwzULFMZGlqx2upYZJBuYJpKiYk6MoUSiqOEIueF9pHc+TH58lHB7N7JuoNc3FKt/J6MY+qJJIJKils7vWtaiS5WypuO5LrJuEF+3aVH/OlkP1UzwiHT01DSIFgjWCpK/WFPScUYqlaKuro7Z2VkSidrRQ4La5HJ5JsenSM2kiUTDJBvrVxQcfyRwXZexkQl830dRFOqSiUWXkQ+FqckZ9u8d5N577uPkU0/AdT1c26G7r5PG5gYikcX7ZlKpDJe9/ir++ufqfXpPfNpZPOlp/8Kzn3c2Y6MTfPDqj/O3v9wHwImnbOY/Ln0Vt3/mG6Vtmq7xg7u+fFCCbHYmRWo2je9DPBEj2XBsva+1CPI2Z4NIqrmYLEUh2tWHGk8gL6MC41oWs1vvrzBbToeSXH7xB5AkiQ/c8HbaVLOqIbOWqEPW9FI6Q93mkysqiZ7jkB3cQ7ilg8zAjlI1aj6xnnXIeojc6CCeWSj3eJNlYr3rA8+6hXFtmk6sfyOpbQ/UvEe9vqG4HDsTXHMsQailHd9zMSfHSx51erIRJRQmPzJE3aYTa1ZEXdMktfMh/GJMlpaoI9TahTk5ilXsdZONEJH2LrL795QeBwQGxj3rMKfGA5PrKsT6NpTl0kY6urFmpssi1+aI9qxDCUeCRJRlDAm4lkVhfCToyfM9FCNEpKMHJRI5YCkjEBxDrES/rNlP8Ic//GGuuuoqLrvsMm688cajfTmPGCKRMJHeTug92ldSG8d2yOfyfOfrP2LHtt2c8ugTee4Lz6Gzuw11FUf+Jyem+a/3f5KfFAciIMisfcazn8Lbrn7zkqIOIJGI8Zo3nV9T2J37vLP5xPW3ctYTHsOr/v1ispkDU4oP3reVd1xyLTd97kNceuG7sC2bC1777zQ1H1z1tK4+QV392vuDR1ZU9EQSdVOsuFwnrchPz/d9kIKs1fnpC0ZDM7G6Bj772ffheh6JZB35/XuqHsNOzQbDC0VhZ2czgVHuPJHhuzZaNIGTz1UVdUgSnusi4aNFYxCLoxghzKlx7NRskDk6Nkx83WbyI/uDnjNJQq9LYjQ0Y6dTKKFwzZ5DJRQOevaK6MlGcsP7cfPl09nW9CSRrl5kVcWzLCRFqViCDeKrRsrEmp2aJdTUVhJ1AOHW9sBoeYH9i5PLkhveT6SjC9eycNKzZUvP4daO4ntxQMB6rku0Zx2FiVHMqXHwPGTdINLRjRqNrUiQKbpOpL0r8Mjzi1VVUakTHCesSWF3zz338JnPfIZHPepRR/tSBMcYjuPwp9/fy6WvfxdesXrzh9/9hS995ht8/uufWPbk7nJ44B8PlYk6AMu0+PH3fsnZz3oyT3/Wk5d1nFNO28K/vfQ8vvfNH5dt//fzn8vw4Aibt6znzm//rEzUzT/fT3/wK57zgmfQ1dvBC1/2HELhY7gnboXMGQ/juUFuaA0bCEmWg6XPFTSK+25gUmtOT+AW8qiRKEZDM/nRQbRYAnyfzO6tyICqG+DUHswpXuyB/+u5FCbGCDe1lPzIPMdBiURqZq5Gu/qwZibJDc4fignSFCRJxpqdRtZ0nFwONRon3NoBxeix9O5tyJpOuKUtqFxWvD5KmehTQmEkRa0QdXNY05MYTS3FIRC5UtgVo9TKTyKV5b1KshK0vlXx9FMjMYxkI04mgxoKE0o24hMMuwQCe7Y04YokE25pQ69voDA+jOc4RDv7kFUVSdeL3okrN6IufWYEguOMNSfsMpkMF1xwAZ/73Of44Ac/eLQvR3CMMT46yX9e+oGSqJvDNC3+87IP8KXv3LJir7dqZDNZvryI/9uXP/ctznz86SSW4f/W0Jjk1W98KU97xhP42z33IckSjz7zFP76p3/wyY/exqve8BL+8qd/1Hz+P//+EJ+6/QbaOlprDnEsRT5XYHJiGtM0iUTCtLQ1VZ3YPVTyuTy+7xOpkuCxEM+xsWanyY8MBeKg6PMWae1YsXlrIBCtosFvFjUaR5KksiguOz1bWu7E98v2eba16JCGpGplSROKHgxtuIVC6VolRcU1C8iqhhKJEmpoBlnByaRwzTyuWajSW+eTG9pLfP1mtLoknmmSH96LGo2jxeLImkZhbBJ8H88ycU2TcFsn+bHh0rK0bBhEO3vJjw4j6wZGYzN6XZLMvj21Xy/HQY3EyOzdievYxCLln2O/mo7y/TLRLSlKVTsYNRLDaGqp8KNTQuHAb003kHUdvT6J73mlPrz0zq0l4ThnCi0pwSCKiMoSCA6w5oTdxRdfzHnnncfZZ5+9pLAzTRPTPNCjkkpVNiQLDp3JiWn27tnPj7/3S2RZ5jkvfCZdPR2ladAjydjIeE3j38F9I8xMza6KsHMcl2ymts1GJpPFdRaxVZj/2HSW//vNn7jnz39ncmwK3/f58ue/hVO0Zchm8zS31M7jbWpuoK4+cdCibnR4nE9+7DZ+/P1f4tgOibo4b7rs1Tz7355RM05spYyPTnDf3x/iG1/+Pr7v8cKXPYfHPPZUWtqa8IqxWSAFVRhZxvd9rJmp8rgl38eamsCzzKAXbQV5oK5ZIL3z4dJynxaJkaniMYfnBTFT5oL31vdxzUKZD9t8wi3tFIrRXnp9A042SFkw5wYUCJaMPST0ZBNaoh47NYNnWyWhk62xzAtzHnAJJMUm1rcBt5AnvXsHdZtPQpq3hFgYH0GLJ4h19QUbJAk5FEHRNGI9/cGm4uumRWO4NaZS1VgcO5MKcmarDFDIioqRbKyIRPNdF0nT8G07yCatUhELNbeS2bu7ok/QLeTJDQ8S7eoNllXnLa0WJsfKqoHzz1eYHCfS1nlIpsICwfHEmhJ23/jGN7j33nu55557lvX466+/nmuvvfYwX9Ujm4mxKT707o9z189/V9r2jS9/j/P+7Rm8/d0X09iUrPncTDrL9NQsrusST0RpbKotXhYyOjLOnl372PbgDjp7Oli/sY9oNIxtLx4h5brL8zRbilg8ytnnPpkH/lk9cuvsc59SmsytxvTkDFNTMxTyBWLxGPl8gZde8Hze/66PMTx44MtSURQe+y+Ppi6Z4K6f/a7qsV530csPOhlianKa/7zsA/x1XkUwNZvmI+//JJ7v8/LX/PtBC8Y55qqo98wzY/7T/93Ly1/9Qq648nUURodwsmkkWcFobMZoDKxz5ofQz8fJBDFZyxV2nm2THdh5oIdLkoLOrRoTn5LvB9m3C8iPDhHrWYcdCmFOT5Z6vMIt7ThmHt9zCbd3FZdLs3iuV9b3JWsaciiEm8uS3beHuf4xa2YKSVGJ9vST3be7rG+tdA+WhVkYw8llivuD5/qOg5GopzBywP7GTqdKlT+jsYVIvA5JlpHk8ipnkA07VmmrIsvoiSTp3duLj6v8Q0iSZYymFqzZ6QOCS5ax8zliPevI7NkRLHVbFko4WlrylTQtqOJVGUCBoBLnt3WWGQt7ros1U9tc3E7N4De3VtyfQPBIZc0Iu3379nHZZZfxy1/+klBoeWX3q666iiuuuKL0cyqVort78bB6wfJJzaa5549/KxN1c/z4e7/kvOc/gyc+7ayqz927Z5CPvP+/+d2v/4jv+/Rv6OXqD7yVU07bQniJoYN9A4O88YIrGNx3YJouURfn+hvfTbKxHk3XqqZk1CfrVm3SM8i5fTpf/cK3mRyfKtvX0FjP81/0rJpLmfsGBnnnW97P/f8IRKGma7zkFc9namqWy696E6mZNA/ev5XG5gZOe8zJjI9NMrs7xSVvez23fPwLZekar37jyzjpUZsP+j7GRibKRN18PnPTl3jGuU+hvbMyhH0l/O0v95WJOoBkQx2vfM0LyOzeVqrc+J5LYXwEOz1LtLt/0ZxX18yj1rCsWIjnOIHhraxgNLWgRqJIxSVXKzWDNT1Z9ni3kEeLxnFzCyq/vk9mYCfh9m7qNp6E73u4uaAyq+ghlKYwsq7j5jL4jo0ny8Ekqu8f6AHzPLKDAyw05fVdh8LoEKHGlqqCVo1EKUyMVni5SbKMpGlEOnrIDe0t26cYIULNtf3cZN0gvv4EckP7cDKBEFSjcULNbeRG9gM+aixRc5lTKT7fTs8EEWShCNbMJIXJCWJ9G/FsE7eQJ9oVLAPbqenAsHjRSrZfIfokSVq0GicVjZEFAkHAmhF2f/3rXxkbG+P0008vbXNdl7vvvptPfvKTmKZZ8UVqGAaGIZpjDwdTE9P88X//wh1f+l7Nx3zltm9x+mNPqeinGh4c5XUvubQsymr3jgHeeMHb+Or3P8XJp26pecyZ6Vne87YPl4k6CETmNe/8CB/46H/yxre8kls+9oWK5777Q1fQ3Lp6fnud3YH/222f+io/+f6v8H2f57/oXF79Hy9janKG3//uHlpam9iwuZ/WtmYURWFsZII3XvA2Bvcd8BuzLZuvfeHbvP7NF7Dt4Z3s3LaHdRt62f7wLn747Z/z7uuu4OrLr+ObP/k85zz3afztnvtwXZfTH3sqjc0Ny+rjq8XuHZWN9nOkUxkymdp5tsshm8nxza98v2L7K17770TdHF4Vt6XFkiTmkJUVTDD6XqkiVhgbPuD1JkkYyUYiXb3k5g0cOPkc4fYuzMnxsr654DkyeqIOpfh7RZIkrMG9WJZJpL2LzMCOskpgYXyU+LpNqJFosJxbKNSsFDq5LKHmtsp71YIA9zLrE0CL12Fl0hh19ejJBrRYHHNmCs+x0euSgaHwIr2IkiShhsLEetcFxse+h1solKLGol19aPHEotOiiq4jJRuxpibJ7Nle2m7PTCIbIWLd/WT2D6CFI6XeRWmRSqukaRUGwZIsE2pqLdmxLCTU1BoMbjg2kqIe1CCFQHA8sWaE3dOf/nTuu+++sm2vfe1rOeGEE3jnO995WBq9jydSqaCXJpFYOrtwOfzjbw8wsHs/uSqTmnNk0lmcKk75f/3zP6vmk3qex43Xf4aPf+YDNZcxp6dma2azjo9Nks3mMAsWn7r9Bj73ya+yf+8QG09Yx0WXv5YNm/pX/XPS3dvBVddexkVvfQ0+Er7n8faLr+G+vz1Yekw0FuHWr3yUk089gb0D+8tEHUD/hl5e9qoX0NLaxDnPeRp/+N+/8MPv/JxHn3EKb77idVz3nhv5+K3vp7U40NDbv3pV56ZFhK4sy4fs/+f7Pm6Vz8BjHnsKXo2JTAAnny/1oS1EUoJg+OUiqWowUDC0ryxVAt8PMkZluexc4bYO8mMjgbXG+Eipp06NRAMD2/mRWkaIaO+6IFh+9/ZK0eZ7ZAZ2kti4BVlRK4VixbVqyEYIr3idWqI+uPaR8qQRLZ7AaGgis3cX+D6hphbkkEqkrTzaz5+LyJKkmoJnfj+brBuo0RhILHup27ftimohBBmu2cG9GHVJ8iP7A4sSINLejRqJBrFqC4i0deHhI3leWZVOCYXRk01Y0+W/N9RipFtmzw58z0OvS6LXN4hpV8EjmjUj7OLxOCefXG5VEY1GaWxsrNguOMDYyDh//L97+fYddwLwopc/j7OecDqtbZWJBcslncpw+63fIBqPcNYTTmfHtipN6MAzz3tq1aiqu+/6Q81j/+PeB8jn8jWFnVkwq24vXVs6yze+/D06u9q4+bbrME2LcCREPH7wVa2lMEIGre0t5PMFrnvPjWWiDoKq1Zte+Xa+84svsmtBvuvTnvlEnvWcf+Xzt3yFk0/bwhOechabTljHxz79fh56YBtbH9zBp7/8Edo7Wg9KlBbyJpMTU+zdEwiDnr5OGpsaSpYo3b2dNDTWMzU5U/Hcs899Mg2NtXskl0MsHuUFLzm3QowXCiZSLFRT6LhmnnBbZzDpOa+CJ8kK8f5NK5qKlVUNRTfKRd08zKkJYt39+K5DuKUDc2YSe3YKJ5PCaGgi1BT0/EmKEpjgLhBIshL4vVU090syel09sm4Uhwr0oHJXg7nJ2lBDM7JhIOtGMBU8Ooxe3xDksXoeyDJONlMSdebEKHp9sswzz3UcfMfGt21838f3XNRwBHkJa5CgF28Z3n+eV+pDdG07WAqtVn3NZ9G6+vAcO5hkLfY3RrvXUZgYwZyaBN9D1nRCLW04+SzZwQFCjS2BWC3ek6xpRNo7CTU2YU5P4nseRn0jnueS2vFQ6dz5fI7CxBiJ9SeUqqoQ9OlRnLAVQxaC4501I+wEK2d0ZILLLryaB+/bWtr297/cz4mnbOamz3/ooMWdZVnMzKT4x70PcMFrX8RPfvArphcEzze3NPKMZz8Vucov0a7e2hFQjc0NyIsImERdnHAkTD5XfbmuuaWRbCaHETKOuNnu1MQ0P/7+L6vuy2Zy7Ni6m/Ub+0rb4okYL3zZeXzo6k/wvg+/ne9966f852UfwLEdHnX6SVz53ks4+1lPRl8kHmkx0qkMP//Rb7j+fTeVeg41XeOqay/jWc99GrF4jNa2Zm79ykf5j1e8rew9POlRJ/D2d19MNLa8PrbFeNyTzmTDpv6yPwC+dcePefc7X4Ocnan6HC0aI71rK9GufiRFxs3nkXUdpbi8uJLlNkmWAy+8WnhekHcaiWHNTKGGo1jTU0Hf23iw5K/VJYl29NQ+7wJRoyXqMBpasGYmsVMzuIUc4ZYOJEVFr2/EmpmsOESkOHghazqeZZLevQ3fDpZVrdnpksVH8a7Q6+rR6pLBNXleqZfPtSwKk6OBX15RCBoNzeB5KJ637N7EWrhmgfzYcDDQIAVRZvG+DWT3D1SdXJUkiLR14jW3IhEIWEmSiLR3E2pqxbMtXLOAOTleEvGF8RE81yHS3l36fSCrWpBdW7ResTMZsgPbKs7nOzaF8REiHd1BH2QhiEfzbBMlHCHU3BYsIYtMWMFxypoWdr/97W+P9iUc0/zh7j+Xibo5HrxvK3+4+x5e8JJnH9RxE4k4j3/ymezeMcCH33cT19/0Hu789s+462d3I8sy5zz3X3njW15JR1dlvxDAc17wTG675WtUS7N77ZvOp6l5EWuPlkbeeMkruOkjn6vY9/RnPYm//ukfKIpMZ087D963lc7u9iMm8EzTKlmUVGNkaIwnPe1fePlr/53v3PFDnvvCc/jmV77PO957ccU07D/vfYDXvPgtfONHn2XTCesP6nr27NzL+6/6aNk227J5/1UfZfOJ6znltBORJInNJ27gGz/+HAO79jMyPMaGzf20t7fQuMj7sBJa25v51Jc/wi9/8j989+s/wvU8TjltC/G2dgqDZkVP3VzqgO84ZPZsJ7HppFLV7GCRjUXEsSThO/NEnFNHrG99SaQEQsLHLeTxfa9oybKgD0xVQZKDeKpQGL2uoaznzC3ksVOzRLr6CLd1BEbF46OBP144QqStEyUcRVZVXNMs83jzXJdQcyuKEcLJZXCymWA6Nz1Ldt/uYt+aSri1Ay1RT35sqCz9Ac/DnBjFb2hCNkLBIImqLfoHVC1cyyS14+EDpsN+YGZsp1NEu3rLvP+C1z0U9L3JMsqCqdW5yll6V6U4A7CmJgg3t5VNyM7HnK5u9AzBpHGotQ07NUtu8MAysVvIY01PEV+3MTChFgiOQ0RN+jglNZPm23f8sOb+//e1O0tB8ytF0zXOf/ULiUTDDOzez2UXvgtVU3nfDe/gmo9cyZsvf+2iWaVtnS1cd+PVFUuL5zznaTz9WU9etBqj6xovPP85XP2By2koWqlEomEueO2/84xnP5WvfeHbvOsDl/P5W77Ky57zRr72hW+Tmq3u1bUQ3/cZHRnn4Qe289D92xgZHqswOl6MaDSyqBhKNtTz4me/nkwqwy1f+ggnn3YC2XSOkaGxMlE3h2M73PLRL5Bd4Mvn+z7ZTLbMo3Eh+VyB2269o+b+L9z6dfK5YGlSkiTaO1o5419O43n/fg4nP+qEVRN1c7S1t/CK172I2755I1/81k285j9ehhGNEu/fSKxvI3qyiVBTK7G+DXi2dSB1AGo2za8EWTdqLt/q9Q2gqEFvWfF8mT07UCMxJEUhtfNhUtsfIr17G7Nb78eancFbkKYgq8FSIQTN/Lnh/VXPNScywk2txNefQN0JpxDv34gWr0Muxt35nlvqi4t09qIn6imMDmOnZlDDERLrT6AwOVbMOT1ge5Ib3Is1M4VfLa6MQCj5rsPs1vvJ7t+Day3e1rAQv9iTWC1JwndsnGwGNTq/hUIKPOkWGb6odqyV7F/0uZ5f7oN4YA/ZfXuqVhcFguOBNV2xE9TGx19UlHheZbVsJXR2t/HV73+aj37gFv7wu7/wo+/+gtRsmiuuehOt7Ysv8UYiYf71nCfxw9+exD/ufYBMOsvpZz6K5tZG6pNL25EkG+p58Suex1Of8QQymQyO7fKPex9gz859fOKzH+RbX/0Bv/v1HwG49aYvLekpB0G17e9/uY+rL7+uNNjR0FjPNR+5ksc+/vRl5b42tzZy6ZVv4H3vuKFi34mnbGZ8bJLUTJo7v/Nzfv+7e/jCN29m+9bd/O0v91U5WsCf/3AvmUyOaLFXcWR4jK0P7uDB+7YxOjzGc194Dus39VW8boWCyf6B6j5wAIN7hykUTMKREKPD4/zj3gf4yQ9+RV19nBe9/Hl093Ys671YCZIkVfTsyZqO4vn4joVjeRQmxlhoBbIaVhaKphPv30h6z46y6VItXoeeqCc7sJNwWyeyquHkskS6+gIBvXdB/6jvk923OxiGCKt4rhv0snkeWryOWK9erADWWPr1vcDbTTdQaiyxz1WyIm1d2KmZMmHrFgqo0QROpsofK5KEk80SamkHSaouiIu/E+zZadKFPIl1y+9X9B2n6jDLHHYmhV7fiGeZKJEY4db2mvdYYql+t0Wyfo1kU4VVzRx6MriOan1/ECSJeI6z4gQTgWAtIITdcUpdfYIXvuy8klfaQv79/PMOaYlSURQ2bOrnI7e8j/RsBkmSqKuPE43Vbg6fTzgcoqunY9HK3mLIskxrezOtNDM+OsnvfvNHxkcn+czNX6pY4v3ZD3/Npi2LL2cO7hvmole9o2yKd2pyhssuvJo77vwMm05Yh6YvPiUoyzL/+swnAnDTDZ9lamIaVVM5+1lP5rx/ewb/eekHSo+dGJvid7/+A+c+/+l880vfr3nM+mQCRQm+3PYODPK3P/+T/7nr90iSzFOe/ji2PrSTu3/zB173ppeXvZ+RaJiTT93Ctod2Vj3uyaeeQDQWZmRojP945dvLbE++982f8Jr/eBmvf/MFR2QZW1IUfN8PQu2roK/SkpkSChNfvzn4UjcLSIqGkzswhJAbHCCxYUtQYZKVYDm0BoWJccKtGrnhffN63ySM5haMugXVTklCr29AjwdCWZJl7Ewa2TDKBh5KD1c1tPoGJFWtEGeB7UnlEMhcT5+dmiY/NoRihIj1b6QwPlryqAPKhJRnFnBNc/niRpIW7UuTZAW9PolRnwRZWdZSrySrZRm281FC4ZrCDIKJ5GqT05KqBb17K6xICgTHC0LYrUEsy8YqTnsuNin5pKc9jo0nrGP7w7vKtm/cvI4nPe1xq3ItiUR81SxUDhbXdfndr/9Ys0KZTlUXDHPYls3Xb/9uVWsW3/f57H9/mWc8+6mcfuYpNfsG56irT/D8Fz2Lxz/pTFKzaYYHR7nr53fztoveh2WWL/386qd386zn/ivPfv7T+c7Xg2XzWDzKi1/+PE4742Qcx6G1rZm6ZB0jQ2O87x03lJkJ//Inv+XxTz6Tpz/ryYyNTpSJMMPQedWFL+bOb/+04r5UTeUVr38xkiTx9du/U9XL7vbPfINzn/f0IyLsZFUl0tFTFvk1R6i5vSwy61CRZIXC2EiQzFAl/aAwMUa0q7eYmlBbGKjhCLn9A9iZ+cLLxxwfRYsmSrFakqIS7e7Hmp4IIsx8PzAObm3HnJki3NJWYc0hKwqR9m7yI5XLub7nIinlv7bVSBQ9kSzr6XMyacypicDo2bFxC/lAQC2YDHayGbTY0v9+vWJV0mhqwdlb/d9TqLm1qlBdikh7V8XghazpRNq7MKcmak4Sy5pGpLMHtxhtVmF3IlFzWnfOG1AgOB4RPXZriEwmx0P3b+cDV32US177n3zyY19g7579ODWc3Fvbm/nU7Tdw9YeuYMvJm9hy8kau/tAVfOrLH1lyuXQtEYtHayZcADzjvKcu+vx8vsBD91dv4IbAxHd4cIRXv+iSqr1wC5mrJja3NnLrTbfzvW/+pELUQTDhG0/E6Fvfw2VXvpGGxnr+65Pv46EHtnPZG67mbRe9j4tefSVfv/27jAyNVU2I+P3d9+D7Pvf84e8V+7p6O/jsHR+ns/uAGO3sbuezX/sYXT3tTE3O8O2v/6jmfdz5nZ8vea+rhWKESGzYQqilAzUSRYvXEV+3mVBzS1ks10J8z8O1LVzbwq8RU7XgCYFHXI3HumYe3/NAkVEWmR5VwuEFou4A+ZH9RLv6AIlIRze54b1Ys9MlgeGaBbJ7d6PH4uRHhwMrjoXHryVmPQ8kysSd0dRCbrhKL5kf9JiFmlpLQmluQGQOeZGlUs91cS0Tp5AjO7iX2Yfvw3ddtHjlEr1Wl0QNL69aX4YE2eH9hFs7iHb3E27rDP63tSPIzl1iGV7RdPS6JLG+DcT7NxYnXotCWZGJdPRUOadEtLv/oESoQLAWEH+yrBHMgsldP/0f3vP2D5e23XvPP/nabf+PL3zrZk4+9YSqz2ttb+Glr3g+5xTFzWr3TR0LxOJR3vrO/+BP//tXzAUC6vQzT2Hd+iq/3OcRChv0b+jlnwv85+bo6u1gbHSC0eFx7vrZ3Vzwuhcty26jPlnHq97wEq685P1V91/wuhcRCoeYnJxmcP8wn/3ax3n7m9/Hnl0HvqTTqQwf/eAtvO3qizj9zEdVNWf+xY9/w/mvfmHFdl3XOeOs0/jSd25hdiaFRLBc3twaZH/6vl/xes0nkz601ImVIEkSihHCaGrGqG8oiRd5kaqKa5oUJkYC0SRJGMkmjIbmxfu6ZBm5SuVqDiUUKXm5hVvaF1iMlC520SVCt5BHVjUSm07Ezefwagy55MdH0BP1QT9elcp7rR6ywuhwkMc6sLNUwQu3dJSGFKx0CmtmCnwP37GRjVBJKJXFeUlSaWBkPr7n4VoF8iPFDF9FxUg2Br2I+wcIt3WgJxuxM6ngda9vRNGNRYckaiGrGnpdkuz+PUiygqSq+I5T8jc0GipzaqseZ4H4dy2L/OggkiQR612POT1ZmkAONbUKA2PBcY2o2K0RJsameP+7PlaxvVAwee/bP8zkRO2QbAhExvEo6uboW98dRG4952nE4lFa25u5/Ko38ZFbrqGpZfEYMV3XecUiYu3fXvJsfnbnrwH46Z13kZ5dfGl3Pmec9WjOPvcpFdtf+NLz6O4L+gvz2QK/+PFv2b51V5mom88XP/ONmvY0hYJF/yLitaW1iY2b17Fhc39J1EHgo/eUsx9f83nnveDsmvtWG9///+ydd3hT9duH7+zdke5BoewpoCACMlSGooCCqAwRBBRRhkzZIFtQAUFAhig4GAqCbGSI7Ckbyiije7dJs5P3j7ShIUkBxfV7c18X10XP9+Sck5M2efKMz8eB1VCIPvEqeZfPknfpLLrEK1gNhV5lcWxmE/lXLzhtv6xWHBYLxvQUCq5fwu5jKhRAKBShCPetoygPDXcNL4ikMtR3iSELpTI05St7lEPvRiAQIpYrvLoruJ6DodDpw+ojSCzuIStGEhCEKrYs8vBoBCIRqtiyqMtWBIcDY3YGupvXnOVeuw112QquaxQAptwsdy0/odAp9OzFXcJmNJCfcMEpOVNUkjakJWPKyXK6cqTcpjDpBmKVBlV0HBKV+g8Fdc77JEAeHIpIocRhd56rOKiTR0T/oeEGu8WC/uY1zDlZmLIz0d9KRCASIVEHINE47eD8IsV+/pfxZ+z+I1y7esOrsT3AlcvXycvJIyT0z7kE/Fux2+1ehY6zMrLJyc7DbDYTFBxIbFw0Ez4aji5fj1gsJjgk0Ovj7iYvN5/U5HTGTh3Mx1MWoC+ySVMo5PQb3JNDvx13ScMolHJE4vvX/woN1/LBhP680q09O7fsRSgS0qDRY1w8l8DAXqP49IvJpKVmUKFSOa5f9bRlKiY7MweV2vtk7lMtG/8heRKVSsl7g9/kt92HPQSfH3m0BuUrln3gY/5R7GYT+VcvullyWQt15F+9SGCl6m5G9A673RXQeRzHZMJS5BjhC6FUhrpsBfS3b7jkNJy9cOXcMjkCkQipJgBxxapOlwWBAIFIjEgiwW6xIFIosRk8LfXEKo2rf0tYysBN8dDI3dk6u/2OS4IqpixWbSgCoQhzbjaFKbdx2B1IAgKRh4Rht9vRl9SOczgw5+VgNRpQRsdSmHwLgUSCukx57BYzVkOh04lDoUAokSC4a+rUbrU6JUK8BJtWXT5ybSgIhThsNszZWc7+PJvN6awhEiMQl55l9YZQKkVTriI2oxFTXg5CsQhpYAhCieSBj+V8DhashXe+fDnsNlfmUyAUIa5c3Z+x8/M/jT+w+4/gzW+zJN7M1P/LFOTrSL6dyrrVm8lIy+SZZ5vyaP1HiIwOx+FwcPVyIkPfHe+y6FIoFQwd3Y/GTz1OVno2t24mExUTQUxsJOH3cNg4efQMA3qPon7DusyYOw6JVEJebj4SiYQfvt/Ib7sPu/bt+ubLD+zGUFhoZHDfsdSqUw273c5Pq7dgMBgZMqYfHwyYRJA2kCZPP1HqoIJCIUeukHtsjykTResXnvrDQw4BgRo+Xz6D779ex8F9x1CplbzwUktq1K7qCnD/ahx2O8Zil4S7KVpTRsa4siwOm9VZfvWBKScLSWCwz6lMoUiEJCCIgEoqZxlUAAKRpCjQ8czaFrtBuG+ToI6rgO7GFbeJTpFChapMOVdAIg0IxpDi7vNajDQ4tCgQcgZ/dpsVu8mEISMFu8mESK5w9ozJFBRcv+w2zGHJy8FakI+6XAWvpWFnHyEoY8u6nDqEEkmplmbgDIJKBkV3YzUUunxeFZFR6G9ed3npAkjUgShjy95b5uQuiu+xROP997ikrIxAKCxVYNlm8u5KA87n53gAbUo/fv6L+AO7/wgVKpdDKBR6nfx0uiv8s5OpDxNdgZ71a7Yw88N5rm07Nu8lOjaSpd/PRigU0POVAW4CyxKJmOgykfR7Y7ibH2tMmUgWfj2LsuXLeD1XdmYOc2Z8AcDRgyc5evAk0z8by4UzCRw/fIro2ChmzB2HWCLCZDRT+9EaD/x89u89gq5Az8F9x1zbxBIxcWVjOHPqAgBNn25IhUrl0ASovU7xtu3YGk2Amg9njmDuzMUIBUKebfc0T7V8Er1Oz/WrNwkJ0xIQ8GCeuNeu3ODdHiN4tt0zDPrgbUxGEzu3/srieSt5uvWTTPlkNCq1kvy8ApfQc0CgplRdQIfDgd1idmXUBGKx1+yQa3+7zV2S4y6sunwc9sg75bNSDO2hyO/0Hj2QAoHAGXz8Qbs2AJFMhia+MnarBbvFUpRhkriVJQViCaq48uhvuk+mi5VqZNpQhEX2Wg67HUt+kZNEETajAXNuNqq48kVlVfdePYfdhikny2k5lpvtcX02owF5RPQD2a8VXTUeWoKuJQGK8GishToMKUkeQaBFl0dh8g1UsfF/KNvmDZvFjCEtGXN2luu6pEEhKKNivJZqvZWX3Z/Cn9dF9OPn34y/0eA/gjY0mHeHvOmxXSQSMWHGcMLC76/J+L9ARnqWW1BXTPLtVBbMXk7SrVQP14xuvTqxaO5XbkEdQNKtVAa+NZrMDM8PPgCzxeIqgQYEavhw5gfYLDbsdjvPtWtBt14vs2vbPoa8M57vv17H7RvJGA0Ppo+lK/AM1AKDAkhLvWOJNGXMp/y66yDzlk0nWOveC9m42eM83uhRenYagEAoZPj4/vR6tyuJV2/R67VBXDx3hTdfHcgXc78iJzv3ga5t26Y9GI0m1q/ezIcjZzFj4meu6dtffzlIfl4BCZeuMfjtsbRp0pk2TToz5J3xXLl83euXDLvdhiU/j/yE8+RfueD8l3Aec36u1+lPAATODIwvBGKJm1CtUCxBVorFmKxEn9xfjVAiQaxQIg0IRKxQevSaCUUipJpAAqvURBlbFnlkDJoKVVCViUcsV7iCH7vVgj7JU3YGoDD5pk9LNUtBvs8snEAifWDbMIFYjCTQd0uHWKnCkJ6CRBPoM7Nnyc/7U44RJbHbbBhSbhdZpN0JNs25WeiTbjpL5HchlMp99kBKAoNL/V37p7FbrdjMJueUtz+z6OcP4s/Y/QX46gn7M6hUSl7p1p5adarzxWdfk5KURq061ej9bjfKxsc+1HP90+zbddDn2uafdvLSq55DBNVqVOLzT5Z5fcy1hBtkZ+Z49aAVi8XExkWRkpzOtDlj+HTqQjezeqFQyKhJgzCZTOzZeYDuHd/j6x/n80jd6m7Hyc3OIycnD6vVSkCAhvDIUFdmoFHTx1k8byUtnmtKtZqVKdQVsmv7bx4uDMsWfMvBX4+yaOXHXL9yk7y8fKJiIrhw5jIjB03GZrOx4NMv6dWvK9PGzXE97sLZBMqVL8PXi1fzeKNHafq0U6MwKzMbs9mCWCwmzMcAiVLpWd4tRiKVYrZY6N7hXbey7OH9x3n9pX6s3ryEMmVj3B5jN5nQ3XD3C3XYbOhvXENdvgpSL5ppQpEIRVgkBT6ydorwSI8ARRIQhCgnC9tdwwmSgGDE8j9ncv+wEYhEiEQitz7Bu3FYLN5L0TgdH3wFqgKREAQilDFlXUGizWTElJWBNODBh6WEQhHKyBgKCnUellvy8Cgs+bnO7KpAgKpseWwGZ1bxbs2/u/UI/ygOq8VrNhLAkp/rFJu2mBGKxa7snVAiQVO+EgXXEtwCTJFCiTIq9g955P7VOOx2bCYDhcm3naVtoRCZNhR5aOQDl7X9+PEHdg+JgnwdKUlp/LhqExlpmbR4rhl169UiMvrPmZeXJDAogCeefIzqj1TGbLKgUilRlPLB/F+ltN4uq8WKXO7Z+FyabAdAclIaUqmEqNhIZCUM4UPDtPR7/01+23OYrRt2uQV14AzSp42bw9ylU9mz8wB2u52Zk+bx2dJpBAUH4nA4uHblBmMGT+PcaafLh3NgYiCNmtZHrVERUyaKRStm8cN3P/Pd8h8JDNLQ/uVniYwOJ6ZMJEm37miLGU1mft11kKWff4tSpSA3Ow9biQ/J5NupBAW79yGFhAWTf8hZJl08bwVVa1TizMnzzJnxBYnXbhEVE0HfgW/QrEVjtCFBbo9t82ILli/63us9e+nVNpw6etrr66HXFfLD9z/z3uBeiCXFHqd2jBm+df4K01IwmG0EaoM81kQKJfKwSA+dNXlYJCIvgZpIIkVTtgJWQyGm7EwEAgGykHBEMvkfntD8K7BZzODA1ePmDbvFgsNX6fMeKCKdX+oMybdcgZhIrihRvn1wnCXmSlgK8rDodQhEYqQBgViKRI/BOexiLch3BtIqNXaj0U1LT/CQgqd7BYhOTcBrCGVy1GUrIJYrnGV2uZKAStWc7hoWizM7KpH8ay3EbCYj+Vcu3umVtNsxZaZjLchH8wC2b378gL8U+1DQFehZv3oLLz/7Jt9++QM7Nu9lRP8P6flKf5Jvp977AA9IQICG0DDtvyqo0+sKuZmYxN5fDnLot2Mk307FXIrsRGk0bu5bbLhuvVoEBQeiuMu7VSqVIC5lWlUkEtKhVQ9OHDntIejcsGk9XunWjm2bdnt9rM1m49K5K1SoVA6A34+fw1Do1EFLSUqjx8v9SUlOo22H1nR47Xk0ARqG9hvPxXNOJ4CszGz6vTGcn9dtJ/l2KhfOJvDRh/PY+OM25i2bQUyZO/IbhfpCQsO0GAoNZGVkuwV14MwgCkvYOonFIipXq+ByFykbX4adW/by/ttjXdIpKUlpjB/+EcsXfYde7x6kRUVH8OY7XTyec1y5GLq9+TLfLl/n854e/PUoOt2djJnDbiu1cV1gNXPh7CVMRs9StlAsRh4eSWDlGiij41BGxxFYuQby8EifvVpCiRRpQBDqsuVRxZVHotb8a4I6u8WCKTuTgisXybt4mvxrlzDlZbuVDu02GxZdAQXXLzszdr6ycmIxeLHyEqs1iCRS9DeuumXXbEaD85h/shxqys5EIBTisFnR3byOKSvdY12XmIC1IB9EQuRhTiFsSUDQQ3N1uFdJvXjdbjJScP0ytqL3HGcPpQyJJhC5NhSxUvWvDY7sVqszKPYm62MyYvUyee3HT2n4M3YPgYz0LGZO8uwJS7qVyoJPlzNq8iAUXiYa/8uYzRYyM7KxmM1IJBJ+/P5nlsz/xtV3JZfLmDZnDI2aPf7Azz22TBSNmzdg/57DbtvFEjHDx/cnIiqMJd99ysA+o8hMd5Zp9v5ygJdeacOabzd6HO+pVk9y7NAprFYbI/p/yOrNS9wyqcHaIPLzdF7dIYrJy8tHqXIGk0qVAoHQWWY9vP8Evd/tijZUyy9bf8WcbaZTl7aEhGlZMn8lcfGxzPxwPgaDpyDuqq/X80q39nz9wzzSUjPIyswlJjYCiUSCTCb1moVs+vQTHNrvHMKQyqSMmzqE75b/6Fpv17E1A/uM9vocVixZQ6eu7VGp7mTAAoMC6PH2a7R4rimrV24gNyePNu1bUKdeTTQB6lKnbYO1QW7+uQKhCJFM4VUCBMAukrDnl0PEVShLdIynNZtQJAaR0zv0QfA1lPFPYbfZMGamuWUf7SYj+hvXUEaXQaYNQyAUOgOwa5cAMGZnoIx0ypNIAgIRK1ROmY68HJTRZRBKpKjjK2POywa7HWlwCAIEGNKSfVyEHXNeNvIw55cGu9XiHGZxOJwTpT4mgIsRiMUIJBKvZVCJJtDN19eYmYa6XEWEYgkSYyDK6LhS3UKKcTgczilXgcB3qVksQaxUe+3nEymU2Ix3/q4cFgt2k/E/V7p02O1YdQU+1815OUhL6Bn68XMv/IHdQ+DXX0rpCduwk36De6KI+d8J7DLSMvlq8SrWrNxAWEQIPft24YvPVrjtYzSaGPLOeH7c/iXlizJd94s2NJhJM0ewfdMeVixdTW5OPvUb1uW9ob0oV74MYrGYmrWr8t2GL8jMyMZoMBIeGYpUJkUToOHb5T9gNJqQSCW0ad+CJ5s3YOSgyQDk5uSRmZHtUSJXa5RUrBzvUYotpsYjVfnx+00AdOrSzqUZqFIr+W3PYXZs3uPa97c9hylfqSzvj3wHo8HIod/uTMMKBAKaPPUEz7V/BqlUQn5eAeUrlnUTDs5IzWT8jGGMGzYDq+VO1qVM2Rj6D+vD8cOn+GDiQGJiI1m5bA2H958AQCKVIFfIfZaybTYbKclplCkb7ba9WLy6eq0q2G12V2kVoGff19yuvyQ93u7sFiQKhELkYRGYcz3dEgAKhTLWr9lC1zc7eV3/X8FhtfgsSRemJjkzWgKhW+nSqitwlQ9NWRmYcjMRisQoImMQCEXkXz4LQiESlQYEAiz5eUgCg0rN5lh0OmRaKzajAd3N605pF5xlUmVMWSSawFL6zQSoYspSmHTT6TBRhEQTiCwkDN0N9ylfS0E+ErUGVZl7T8PazCashkKshTpEEhkiuRxEIkQSmcdjhWIxqrh4dIl3ycrI5CgjY9DddP97tZmMPiVT/q0IBEWahj7Kzvea8vXj5278gd1DQK/zrS5vMVt8mtP/F8nJzmXiB7P4dddBtCFBvNylHatXrve6r91u58dVmxgyut8DSwyEhofQuUcHWrZpht1uR61WodLcmf4TCARERIV5eN72G9KTth1bc+1KIgKBgN3b9zNy4CSsJXQAvXnrSqVS+g/rzaC3xng4HdSqU4283HwK8nVUq1mJRs0e5/KFq1SpVhG5QuYW1BVzLeEGxw+dpEq1CohEImw2G0KhkIkfDefK5etMGfMpugI9wdpA+rz3Om1ebOEapgjUBpCTk8fsLyZz6fwVMjOyqVqjEmKxmPd6fsCMeWMJDApkwvCPOHnsDACVq1Vg3LShHiXquykte+os87pnTqrWqET33q/w9ZLVbtu793mFKtUreB5DKkMeUw5T6i3XB5VAJMKsDGLxglXExkX7FFr2hdViJSM9i+ysXEQiIcEhQSgUMjLSsrl1I4ngkCAio8L/Nf7HTocHHz1zdrvTGcPhcBv8EIhESDQBbiLNdkxYb15DEhCEMqYsApEIAYBAgN1qRSAQIpRIsVm9C5cLpVIcNjsF1xLcrsdhs6G/eY2AitUQ3jVRa7c6A0FDWjJ2ixl5WCSKqFgcdjsOmxWrXucM6u7y2nXYbSAQ3juoMxrIv3bZFWSCM9OriovHpNM5JWDuCjZF0juyMjazCQFgt5gxZmUUBb7O7KcpO9MZJP7HEIjFyELCMaaneF2XBpfunOPHz934A7uHwJPNG7Bwzlde1+rWq4Va8wfMsf+lZGVkI5PLmPfldFKT06lUtTzLFnzrc//rV29isViRlqLA7wuBQOCWybofpFIpSpWCCSNmetWDk8mkHhOiebn5fDZrKc1bNmLGZ+NYtuBbLp5LQKlS8HKXdrR+4Sm2bPyFqbNHYzSYeP/tMdisNjbu/YYtP/3i81q2bNhFl54defrZJuzYtIfXur/Eof3H2bRuh2ufnOw8PvpwHrk5+fR5rxsyuQypVErzZxrRpV1fwiNDCQwKYMfmPWSmZ1O5WgWioiOJiApjzpIp5OUW4HA4CAjUoFDIyc7KoUKlclxNSPS4Hm1IEOERD/YhEawNok//13nxlTYc+u0YAqGAJxrXIyw8hAAv2olCkQiLUEKaTY5S4RxyyczMZf6Hszl2+HeWfj/bYxq4NHQFevbs3M+0cXNcr2d4RCijJ7/Pt8t/cGUrw8JDWPD1R1SqWuEf0SmzF4vnFrlTlIbDZi1yariTpZEGh2LKSPM6GWvJz0UeGoHu5jVXQCSUSFHGlkMeGu6mfVcSeUg4xqw0fAWZhvRkVGXKuwIph93mdLdIvuOAUlgkwaKuUAVTZgYWXZ7XY0lUGkSy0t0c7BaL23MoxmG3ob99A2VkDA6LGUSegb9z8EGCSCbHkJGKSCZ3/j8tGYfNilipdmYLpf/BwE4gRBYShqUgz6ONobgM78fPg/Dvak75jxITF02jZo97bBdLxIyY0P8PuwL8G8nP01G1RkUG9RnN5NGfsGvbPq+Zm2LqPVHnDwV1f4awiFA+mDjQ69r7I/t6yJ5kpmezesV6crPzWL3yJ1o935xZn0/k4wUfElMmkhkT5nLp3BVmfjiPD0fOolBvwGQyc2jfMYxG72byAGazGaFQyKARbxESpqVx88fZvH6n132Xf/E9KcnpXDyXwNnfLyISiVi9eQmPPv4I167cQCKR0H9Yb+Z/OcOVmQoKDqRsfCxx5WLIzytg4gczeaf7MIaM6echICyXy5izeMoDBcpms5nEa7f46otVfDz1cwRCAU+1aEyZctFeg7piAoMD0YaHsX79L7z20nv0eO19DAYjy9d+RvVaVe77/AAJl64xatAUtyA9PS2Toe9OoMdbr7kyjBnpWfTpMpjUlHRfh/pLsNtsWPQ6dIlXyLt4hrzL5zHn56AuW+QIcRdCmRy7xYw5NxtZ8J3XQqJUuZU878acn+sWONktZnSJCYgUCmQhd03eCwSoysQjEEuwFfou1dqMBrDfyWS7mvi9UHjzOoqoGK/PSaRQIpTJ7jkwYbdZ3cqpJXFYLQhEIiyl9JqBs9wvCwrBlJWBMSPVGSQ6HFj1BegSEzwkWv4riCROWzVN+crIQsORR0QTWLkG0qCQf6U8i59/N/6M3UMgJDSYSbM+YNvPu1m5dA25OXk83uhR+g/tTdny/1sacw6Hg89mLnH9vGHtVsZNG8aRAyc9SpgqtZKWzzX7W68tKzMHu83Gk80fZ/naz5j/8TKuXr5OXLlY3nm/BzVqVUV2l1zKhXOXAZg1+XOmfDySVSt/Yt6spbz5Thf27z3MhbMJXs+3deMuXn39RX7Zus/reqsXniIwOBCZTMo3Py3g6qXrXg3tAcwmMzeu3aJ/r5GAc0Bj2Lj36Pf+m/R573XEIhESqdjj2gFu30yhS7u30RXoi57HfCbN+oCkWykkXrtJ5WoVadS0PpHR4fetr+hwODh94jxvdRvi6vPbv+cIH09ZwIKvPqJ+w7qlHis8MpR+g3ryarcXsdvtyBVyD+Hle5GfX8Dnn3zpdc1itrBv92EaNqnH/r1HAGf28/qVm0RFR/g8psVsISMjG7PJjFwuIzwy9E9pTtoMha4BCHBm44xpyYhVGucwxF0SIMqoWAqTbmK3mJFpQxGr1G6DCL4QgGfizeHAnJPt9IItVwm72YRAJESsVBdNBwsQqdVIA4NcWR9zQZ5zIMLhcGa3Skzb2i0Wr5OZzjVnwBRQqRqG1GQsBfkIREJkwaHItKEIROJ7D0zcoyXFYbfflyivw2ZxszErSWHyTTTxlf6TfWkuWzX1/04iwM8/gz+we0iEhYfQtWdHWr/wFHabDbVGhUr9v1OCBTAaTHz31Y9u23Ky89ixZQ8TPhrO/FlLSU9z6lxVqlqeKZ+MIjrWc/rxryAjPYtftv7KN8vWUlCg58nmDXh7QHc+XjARs8mMTC73abum0ThtuLIzcxj8znjadWzN9z9/gdFo4vLFqz4DO4FQSNWalahVtzpnTp53WwsKDqR771ddmnnRMZHk5ZSejQjSBtKzb2e+XPgdhXoDE0fMpFKVeLQhwaz/aScH9x0jIiqcbj07EhcfS0CgBpPRxPIvvnMFdeDs7xvYZzTxFcsyetIgHm/06D3vX052LrnZ+djsNgICNYiEQob3n+g2vAHOfrcRAyax6ucviIgqXaNRLBH/qb43o8HENS8l5WKuX71BdGyU27bS5IUy0rP4Zulavvt6HYZCA9qQIN4Z1IOWzzUlMFDttPd6gCDPbrG4lS1LYtUXoIiMQRlTFqtB75TbEEswpCa5giTdresoI2ORh4TjwCkTYsnP9Xo8sVqDMcszG2kzGhCIJRRmZSCPiEKiDnAFcXabDYlKgyH5FjaTEQSCInmYiuhvXUcREe2WDbqfArZYrkRVJr6ohOwoCujuL6MkEIudDiIO78GbQCRGch8T0ZYC35lNm6EQh83+t36y2a0W5/0QCJz2eV6kafz4+TvxB3YPEYFA4FPh/38Bk8nk9YNz8/qdJF69xdBx71IuvgxSqYQgbeAD9VL9GbIyshn1/hQO/3bctW3D2q3s2LSH7zYuuudUbsUq8S55EUOhgVUr1hNbNpp9uw7R8bUXfE49v9m3M1HREXy6cBI7Nu9h1Yr1GAxGWrZpTpceHdz06QACAtUsXDETXUEhMrmUhAvXWP7F9+TnFVCtZiWOHTqFSq1k+Pj3iImNwm53IJPJWPPNBr798geX/Mnm9TsYNvY9OnR+Hr2ukL07Dni9vutXbrD8i++p/VgNZD76n+x2O1cvX2fMkOlcOOvMXEbFRDBq0iAaNqmHVCojrlwMOdm5bPnpF9JSM8jOzCErM+eegd2fRS6XERcfS0a69ynbuHKxJCe5/z5WrBzvdd+83AJmTJjL9k17XNuys3KZMnY2ugIdL7VugFypQBYWgeg+e5ocdpvP0iKAVa9DER4JhBWVOW8jCQhCGhiMRVeAVV/gzOgJhQRUqIoyKpZ8vc5Df06mDXVm9bxk00TyolJsZLTLd7YYm6EQ3fUSX0ocDsx5OViNhc6s1l2/EwKJxOd0plAidWXkhCIR/IHyoFAsQRERhSE1yWNNGhyC3WJGrLy3a0ipPYwCwf1FqA8Bh82G1WigMPmmszdOIEAaqEURGY1IWnq/oR8/fyX+Hjs/941UJqFOvZpe186fucTBX48SXyGO8pXK/W1BHUDitVtuQV0xBoORuTMXlzq1DBAWEcLHCz90Ezj+bvmPDB3Tj9iy0Sxf+xkdXn3e5XghEAh4e+AblCtfBnCWHbv07MiXq+fy7U8Lef+Dt4mNczdfT7qdytSxs+n7+jCG9htP/zdHsueXA8yYO5aKVeIZNOJtvv/qR2o8UpXQsBCuXbnB+tWbee2Ft7h+9SYz509wm2j9eMrnZGVkIxQKXfp63lCr1ezZvp89O/eTmuyZ8UlJSqNHpwGuoK5424Beo3i5czvMZjOrV67nzMnzDBjeh7cGdAfAZvvrJ70DAjX0e7+n1zWxWESzFo04sPeoa1v5SmWJiYvyun92Vo5bUFeSxfO/QWcXYcxMozDpBnYfU6YeCASUFkUISvw+ORx2xEollvxczLnZiJUq1OUqunTahGLnYEBApWooImMQK9VINIHOnittmIcjR9EZkAaHIJJKEUmkbr9vdqvFZ7+c3WTCbrV4lE6FEgmqMl4C46KePeGf1IcTFNlkKWPLuYSkBSIx8ogo5CHhSAOC7quEWpqciTRI+9DEke+FzWSk4OrFOwMPDgfm3CwKrt0RSvbj55/An7Hzc1+YzWZOHD7Nk80bsGblBg/xXLFEzBt9XvXaA/ZXc+zwKUZMGEBEZCgIBCTfTuW75T+QdCuVvTsPUpCvL7UsLpVKadD4Mdb/8jW7d+zHWGik6TMNWTh7OXt2HkAoFNC67VN89/MXWExmEAjYtX0fNxKTXMMIAoGAEC9etOCUw/lkyufs233IbfvpE+eY9/FSps0ew56d+5ny6WgSLl7jp7VbMRQaaNi0PvO+nM708XP45su19Hj7NRbMXg44M22njp+jbYdWdOnRkWnj53g5MzzVqjGTRn9Cfl4BYeEhLF01m3Ll41zrO7f86nV62OFwsGjuVwwZ/Q6GQiNnTp1n9OCp9OzbmY6dX3Dp+P3VVKlekbFThzBr0h2R56DgQCbMGMbabze6nDkaNa3P2KlDfGbMb93wzBIVU6g3oNMbUIuKDOytVvASYDgcDuwWM1a9DpvRgCQgEElgEJa8HK/HlaicpX+71YJVl49AKEKiCcSUk4kxIxVhrhRNvFPYtzjQEUllyMMikQZqsVvMmLIzkQQGoYiMcYoRF2XtBCIRyug4DGnJKKNiPTJEDrvdp1A0gEWX7yF6KxA4dfICKtfAlJWBzWhArFQ5JUge0mSmUCxBrg11BmfF/XQiMaIHCMYEYgnKmLKuiV3XsaUyZ3n5byiFFmdgva6ZTdgM+v+cULKf/x38gZ2f+yIjLYuBb42h5iNVmT53HPNmLXFJapQrX4bxM4YRExdN8u1Ujh48yZnfL1C1eiWeeLIekdFhiP+ib9Fms5matasxY+JnJF519jtVrBzPsLHv8dUXq5yZqPsozchkUuLKxfJGn1e5dSOJV5/v4+pbs9th07qdHN5/ggkzhjN9/Fx69evK2VMXqFQl/p5Tz1mZOT4HLM6dvkRqSjpPt2rCjAlzOXLwpGvtxvXbbNu4i2lzxtK/10i693nV7bFWixWBQMAzzzVl26bdnDhy2m293cvPcutGEvl5zt6+jPQsRvSfxMIVMwnWBmE2Wzhy8ITP665UtTxWi43mLRvRrEUjgrWB/Pzjdnq8/Rqhf1PLQUCghnYvP0vjZo+TkZaB0OEgKFCFWiqk4tCevN2vMzK5lAClFG20736+oHu8RjK5DCzOwNFmMnl1vyh2iiguVZqys1DHV0AkV2Ir1GEpuCMFoioTj0AkxmY2YcnPw5iZit1iQaxUoYopizk3G3NeDua8XBQR7oLRdrOZgmuXXL14QokEB6AuW8ElqeJw2DFmpGMz6LFqghBp7/5CJShd9NZHoCYQiRCLFIiiY3HYHQiEwr9EPuZ+y93eEIpESIOcHrXmnCzsVgvSgCBECtXfFkw57PZSh17M+blIA+/vy4/zC4MFh8WM3WZDJJU63UH+psyjn/89/L85fu6Lc6cvYTaZOXH0NOlpmXR+4yWiYiPB4SAjPYvYMlEkXr3Jm68OdMsAKZQKlnz3KTVrV8VmtZGWmsHJY2dIuZ1G7cdqEF8h7oG16kqSkZ7F+jVbSCtRZrxy+Toj+n/InCVT2fvLAYK9mM7fjb3oA9NisfLd8h/dhhGKyUzP5vTJ84SFhzDxg5mMmzYUq6V0k3Jw+uiWJlJtMBjJSMt0C+qKycnOY9O6HbRs04y83HykMqnL+qxu/VoAiIRCJswYjsVs5tD+E9xMvE2DRo9y+cJV5n+8zO14F85eJicrl2BtEGKxiI6dX+ClV9oA8PuJc6xbtZn8vAIGDOtDRkYWr77Qx/VYkUjEu4PfxGK2/K0SNjKZlOjYSCIjtBRcT8BmyMFhADWgFgIWIwFh1UqdyoyICicsPISc7FwCggLQF+hdWef6DeugFgNFFViBF89hm8WM7sYVV6AkD41ApFRhTC8K2FQqNOFVsRkLnZk6oRCLvgBzbrZbRs+q16HT61CVicdmNGDOzUYeEo6gKGNnt9swpCW5yXaI5Ar0txMxeS3HgqUgF5nWPdAWSu4hensPiyqBQIjgXzwDICyawhVH/TOqAwKB8/fE4UXsHHwHznfjcDiwGQspuH7FTd9PEqRFFVXmX+N97Oe/hT+w83Nf5GTluv5/+2YyMyfNd1uv37AuQ94Z51HWMxQaeP+tMXz38yJuXLvNO92HuZVxy1WIY+GKmV69Q0sj+XYqe385wK+/HEQbEszU2WM4cvCEyzfVZDKza9s+3urf3TWZ6o30tEwunLnMhh+2oVQpeL13J37d5dsi7uiBk1SvVZmTx86wZP5KGjWtf89rVamVCIVCn8FdXNlYVn39o9c1gD079zNkTD80AWpXUPd6r05oAlT8tucwMyfN5/qVGyhVCl7p1p7X3+zE6x3fdXvNSmIymbFarCRcusayBd9x+sQ5BAIBDRo/xoy5Y/ly0fdow4KZO3Ox2+NsNhtzZy7m6x/nez3uvcjOysFssiASCQkND3ngTJBQIkVdrhLGzDRM2RlgtztlRaLLIJKVLkwbHhnKku8/5cb1JFKT09CGBKPXFzrleiYNRGrOw4FzclMo8WwncFitTscIQBoUAkIh+pt3bLVsBj2mrEwCKlYFoYiC65dRRsX6LNMa0pKRh0ZgzHQXEHZYrZjveozDZkUolvjUaPMmyisQCJGHhGHV6zykQVRx5f+TciD3i91qwW42Yc7PQyASItUEPfQMmEAsQR4a4XUQBEAW5L0tw+NaLWYKrl52OneUwJKbjVEqQxEe9UCT2n78gD+w83OfPNrgEYKCA8nN8VSejykThUgk4mai9ze59LRMCvL0vNvzA4/evMSrN5n54XwmfzLSzXe0NG5cv80bL79HduadD8CNP27j7QFv0O7lZ9mwdivgHOiQyX0HdWmpGQzsPZrzZ+7okIVHhqIJ8C2+GxCocfV6Jd9OxWy+d6N9SKiWVi80Z+uGXR5rj9StTtKtZGrVrc661Vu8Pl4kEqFUyslIz6L2YzXo1a8rj9avxfEjZxjYe5Rrv0K9geWLvufsqQv07tfVI/gGZ39asDaIxGu36N7hXdfr4XA4OPTbMS6cvcznX33ERx9+5vP5rPlmAzVqVUFyn1m7/Hwdp0+c49NpC0m4eI2IqDD6vPc6zzzb9IF69axWKxmZOWRn6HE4FGhDgggN0yK+j77OtJQMJo6YyYmjZ1zbomMj+WzJVIIwYitygtDEV/KeJSkh0SEN0qJL9CKB47Cjv52IMibOaRlWysSs3WxCKBY7NeDuDrLumn415WQj04ZhSPMRRAR7DyKEEinquPLYLSYsugKEYgliVZGsy0MSvbVbLNgtJswFeQiEYqQBAc4g6l6adn8RdosZ3a1ErCXEng0pSSgiY5GFhD606xIInIMrFl0+1rtElZWx5RDcZ8bOZij0COqKMWWmI9OG+ids/Tww/sDOT6nk5RaQlZHN5QtXGT7+PRQKBSuXruZ4iX6uEeP7lzolGRKmJSkpBZlMiqHQ88Nu9/bfyMnKxWyykHQ7hY0/bMNkNPH8iy2Jr1jWzSlCV6Bn5qT5bkFdMV989jXzvpzOxh+24XA4iIqJKFXmY9O6HW5BHcCOzXt59fUXOXf6otfHtW77FLOKAiaxRIxEcu8/IYVSTqcu7TCbLOze/ptLpPixBrXp1a8rk0Z9zOxFk30+vtULzan9WC2kUgktn2tGYFAAGelZfDRxrtf9jx3+nd7vdkOhVLjdb4VSwcIVM9m1/TdOnzznEWSD017t8P4TRET67ldLSUojIz0LuUJ2z+lnm83Gr78cYNSgKa5taSkZTB79CZcvXGXgB2+5dARLw2Awcnj/CcYMnurqGVRrVIydOoTmLRohFQmxGfQ47HbESpVbhkZfoOejD+e5BXXgDMz79x7Fl999Qkh4NCKFAuFd06XFCEQSEAhKzZxBsY6aDRz2e2dahEKkQe6ZS4HQKTBsLbyT+bYZ9AhDwrzo3AlQxZVDUEpfWbEVl1h573v8oNgsZvS3rrsFNoYUUEbHIQ3SIhSLsdtsOKwW5z0TCIuux/s9/rM4iuVcvDh4GFJvI9EEIFQ8vI88UXHgbDZhKShw+f06A9v7C5xtJt/ONQ67zadgtB8/peEP7Pz4JDMjm1mT5rP5pzs2WAqFnHHThyKVSUlPzWTYuHd5pG4N8vMKUCjkrmxWMZ17dOCplo1JT81k4Ii3CAkN5vuv13Hg1zsyFXa7HUOhkeWLvmf1yp9c23/8fhOPN6rLtNljCSvyOM3NzWefj1Kpw+Hg/JlLVKhUjiuXr9Pj7deQK7wHdlmZOW7nKibx6k2CgwN55tkmHgMP7Ts9R2pSOtlFJc7n2j2D9j4yTgKBgK0bdxEbF8XcpVMxm8xIZVLO/X6R4e9NRKlUoNMXej1nTJko3ujzKlHR7ppxel0hSbd8i/Fev3qTkRMH8MnUheTm5BERFcbMeROYNXk+TZ9uyKljZ30+9sCvR3iu7dM+5UGq16rM+OEfkZ2Zw4gJ/alZpxpKpXfJlYy0LGZ+OM/r2ppvNvB67073FdjdvpHMoD6j3crZugI9h/YdpVmjWuSl3HL7EJQGh6KMjEEokZCVlcuubd6HV5Jvp5KRlUdUXEyp5xdIxMjDIpzuDD68V137CgTYLRaEUpmzGcvLh7NYrUEkV3g0+wvFEpQxZci/ctHtcfrbiShjy6KIjMFusSAQCp3TtGIxgn9AENdR5Hpxd7YKnO4PYrUGHA6MWekY01MpvmcCkQhVXAUkKvVDLzE6rJai0rZ3TNkZiGPKPtRzOl+DPx44ixW+qxQCsQSBwF+G9fPg+AM7P16x2+1sXr/DLagDZ+Zk7NDp/LB1GQFBGkJCndk0qUzKu0PeZNbkz137Dhv7LtcSbvBW1yGubVKZlOHj3kOtUbN9024Al0SFt0DryIGT7P1lPy93aQeAw2b3acsFYDZbkMqkjJw4kLIlZD3uxmG3YzR4flt+4aVWOHDQsEl92rRvwZGDJ5HLZbR4rhkHfz3KZ7OcdmqVq1Wg/9DebtpyvrBarbz2xktsXr+TWZPmc+O6u0zCy13asnT+Stp3eo6Ondvy3fIfKSw00KZ9C5o89QSR0Z5CwBKJGLFYhNXqvYwTGqalRZtmNGxSH4vFeU9ys/M4duh36tZ/BG1IkE+XhmBtEDUeqer1+Cq1koZP1mPFkjU4HA76dBnM0lWzqdegjtdj5eUVUJCvo8VzTalcrSJ6nZ7tm/aQkpSGw+Hg+tVblI0vU+r9M5vNrFy21qNHUSwR8+Zbr2D04v5gzslEolIj04ZiNBhLHV7JzMgu9fwAQqEIeWgENrMJh497Ds5Bh2IBXVNWBsqoMh7uFAKxBFVMWZ8lNpFM4bLusuoKEIjFyMOjkKjUmPPzMOdlO3voQsNBqUb0D3iJ2q0WjFm+gyhzTiZiTaDH8IbDZkOXmEBg5Rr37It8YByU+trYLRYcDsdfki38owjlziyxtyywIiLaNVTjx8+D4A/s/HglMyObLxd973XNarFyYN8xuvbs6NomlUpo9/KzREZH8NnMxYjFYiRSCT98/7PbY80mM1PHzuazZdPYte1XrFYbg0e/w5YNv/i8lpXL1vJUqyaEhAajCVBT45GqPkulzZ5uyEuvtEEbGuwziwQQEBRA85ZP8mOJ6ytTNoYnn2rABwMmAU6/1lp1qmGz2Tl26BRjpgxBKpNS+7GaxJWLuafLiMPhIOlWCmu+2cCenQfQaFR07tERiUTMtHGzsVptVKlekSebP0HderWoWacaYeEh1GtQG5vN5tLes1gs5OfpEItFLmkVbUgwrV94ik3rd3qcVyqTUrNONUQikZul19lTFwDYtnEXr/d+hbO/e7+H3d58GalcyoKvZzJ13ByuX3HqhdV4pCp9B73B3JmLXcG1w+Hgo4nzWLhipteyrFKpYN6XM9ixaQ9bNvyCVhvI2wO6o9MV8vHkz1Gp791XaSg0knDxqsf2Bo0eRS30/UFuyEhFoglEpVYil8swGk1e94st413U+G6EYgkOqxVjfmaJwYcSCAQoo52TjLLQcEyZ6QiEQtTlKmHR5eGwWBBrApCoA0rtmxIIhS7rLmw2EDjvc8HVS24BgE5fgCQgEFVMOY++QIfd7rS6slqLSsjiO1ZjFotzwMBidvbbSSQPLj/iwOdEKDglW3zZo+FwYMrJQhlZepb0gRGJEKs1Ps8rDQz+VwV14CznaspXRn8r8U75XShEER6NNDDoX3e9fv4b+AM7P16xWW1klZLJuHHdU9U+KDiQVs8359HHH8FoMDGgyND+bux2O7/uOkibF1vSrEUjHnv8ETas3UrZ+Fhe7tKW6NhIjAYTm3/ayYFfj1KoN2Av6uEL0gYyZsr7vN7hXQ8f0xc6tCIuPpag4HubzefnFtC2Qyt2bN7jmuTt1LUtS+d/49qnUG/g8P4TJX4u5M13utzz2MXcTLxNl3Z93SaFT588z1Mtn2Ta7LFYrBbqPFaTkNBgFCWCUHlRFrBkYLh7x37UaiWv936F+k/UITQ8hAHD3+LC2QSuXbkj1CqWiJmzeLKrdF2SYgHlm4lJWK022rzYgs13BYYDhvehQqVyBARpqFg5nmXfzyY/r4Ds7DyOHz7FpJEfu/yAi7l4LgFDoRG8xLmFhQYG9x1Lod7Z63cdOH7kNG07tObtgW/cV1ClUCqoUr2iRyAarA1CKhLga3zFbjHjwEFYRAjder3MkhKvbTGPPv7Ig2nyCYWYcrKRh0WgKhOPKSfTKXeiUDmHGATOEqkiPApZUAimnEzMednIQ8IQSmUPNI1abN3lsNvdPGZLYsnPwxpSiBilK7izF03WGlJuuxrzhTIZ6rgKIBJRePMa1sI7cj5CqQxNfKUHyqAJRELEKo3XfjZw+t4afMizgFMT8GFnz4QiEYrIaKee4F1ZfaFEiljleyjqn0Qkk6MuVwGHzebUKRSJHti32I+fkvgDOz9ekcmlVKpanoSL17yu13+irs/HhoZpSUvNIC01w+c+aSkZTPxouEtjrmffzqSnZvLlwu+4mpBIQKCGF195jnYvP8vpE+cJDL7zplypanlWb17CF3O/5tjhUwRrg3izbxeeePKx+wrqAE4eO8MXc79m5vwJbPhhK7/tPkxcuTIkXPL+fAGOHDhB/Ya+n3dJdAU6Ppu5xKurw+4dv/Fy17Z8MmU5nbq1o/MbHbwe41ZiEl3a93UNCwCM6P8hrZ9vzvuj3uHA3iP0HdQDq8XK5YtXiSsbQ4MnHyMiKgypl4b6yOhwIqPDyczIZu/O/TzX9hnadmjN7yfOIpfLad6yMWHhIWgC7vQLhYRpCQnTcuDLH5g3a6nX61SqFF7Lgfl5Bcyc+JkrqCvJxh+38e2GRV4D0LuRSiV0e/Nl1q3a7FZSvZpwHb0FfOWaxEoVAoEQqURM1zdfBmDl0rUYjSaEQiHPPNuEYePeQxsSdM9rKEYoliAPDcOYnoJALEEaFIxEpcFmMqK7fYOAClVd+wmEIuRhzsBVIBLdd0P93dhtVsy53v1yAczZmViVKuRBIQglEqyFeg9XBrvJRMHVS6jLVXAL6sA5oVuQeAVN+SqI7rP0JxSJnd62CRe4u+dQKJUiUihLDUycr81fIHwslRNQsSqFSbecGTCBAGmQFkVE9L/aCUIolnh1O/Hj54/gD+z8eEUbEsyQ0e/Q9/VhHmvhEaHUqlOt1McrlQqq1azMkQPenQ0aPlnPTTg4P1/HmCHT7vycV8DXi1fTsEk9Zwm0xJuyVCqlYuV4Jnw0HF2BHrFY/EAfzoX6QtZ+u4GES9cY2HsUrV94ivdH9iU2LsrrAEgxDyKknJ6W5bNhH2DvzgOERYSyZP5KWjzXjPC7jm0oNLJg9pduQV0xDZ6sx8QRHxEaHoo2NIjsrFxSbqdy4shp6jeq6zWoA4iIDOOLbz7h9s1kDuw9woljZ2j6TENaPNsMkUhIYFCAW1BXkiZPNWDmh961+Dp1bU9ImGcZNj9P51V0uZhjh05Rs3ZVn+sliSkTzWfLpjFm8FRysp2SO7dvpiAPDsZh1uGweZYFlZGxrsnYkFAtfQf1oGPntuh0hSgVcrShwfdVCi6JQCgs6rWzYMnLxpTpFMZ2Zb2K7r3NbCrS28sEuwNJQCCKyBhEMvkfC2juMRxpL9RjU6pA4JwA9XoIuw2rXodIofSwG7ObjE6B3Afo6RLJZARUrIo++Sa2Qv2dICo8GrvNgjwkHH3hdc8HCoWI1aU7gfxRBEIhYoXTh7c4WykQi/8WmzE/fv4t+HO9fnxSq051Zs6f4NZL9nijR1m2eo7Xhv6SaALUDBzRx+uHWECghqbPNHT9nJ6a6ZIQuZuD+45RqPfuealUKgiPCH2goC41OZ0rlxNdP5tMZjb8sI0ZE+ai1xfy/EstvT5OJBLxxJOP3dc5crPzuHUjqdSMhSZQTcs2zRg5cSDGQiNGg3v/V15ePts37/V4XGi4lti4KF7t/hImk5mTR88glUrp1a8rUpmUhbOXO8uiXtAV6Nm3+xD93hjOymVr+WnNFob0HceI/h+SdDuVYf3Gk5biPcsaFhHKzPnjPTJzj9Stweu9XkbiJSAQCCg1iBGJ7v/tR66Q0ahpfVZtWsKqTYv5/ucvWLttGeqgQAIqVEGsuhOQCqUy1PGVEd5VWpRKpcSUiaJKtQqUKRfzwEGd6/gSKaqYOAKr1ERTvgoBlaqjqVAFcZENmc1spuDaZWfQZ7cDDiz5ueQnXChV3sLn+URipD606gAkmkAseh2mrAwcdkep57CZjD5dEYqdD2wWMzaT0TkoUsrQiUAoQqxUoSlXicAqtQisUhNlTBwimQyBUITdYkYZXcZNM89ZEi7/l0/yCsViRFIZIqnMH9T5+X+HP2PnxyeaADWtnm9OnXo1KcjTIZFKCNYGEhB4f70qFSrHM//LGUwa/TEpSc5G85q1q/LhzA+Ijr3jNKHT6UktYQl2N+dPX6JK9Yr3dU6Hw1EkiKxDLBETFBzgKs/eTLzNgF6jeP6lVgwY3oeUpHTy8wr48fufebbt0zjsDl7o0IqWbZqxd+dBfvhuIyaTGbFYxJgpQ5DfhxAuOCdBf9m6j2daN2HrRk9R4npP1KHZM42YPW0RJ46eRiKV0KZ9C/oO6kGM674IEAmFHv1jr77+Etev3GTa+DmubadPnmfjj9uYPmcMC+d85ZSeUXr2S6WnZniVHrmakMju7fsJ0gby2azFvDu4FyFhwW6ZP0OhkZq1q/Hz3m84fvh3UlPSqd+wLmXion32qAUEBdC42eP8tucwtepUo3ylcuTnFbB/7xHMJjONmj1+75tZApFI5ConuyEWoy5b0Zm1czhAJPpTXqT3g1AsBrHYa1+atVCH3exlUMNhx5CWgiq27AOVZYuzhObcHDfbKQCxSoPDYcdhtTiDMIEAoVSG3UdwJ5TKfPbFCSQyTDlZd/r5hELkIeHIQsNLvZ/F96IkIokUh1qDISUJZUwcAgQgEGC3mLHq9cj/Al09P378OPEHdn5KRSAQEBEZ5lWwNiM9ixvXb3Hy6Bkio8OpW68W4ZGhroBAqVTw5FMNWLHuc/LzChCJRAQFB3h4t0okklIttwK199c3p9cVcjUhkWsJiWSmZ7P5p50o1UomfjSc8IhQ5n60mGHj3mPFktXMm7UEh8NBbFw0Hy+YyHdfrWP29EVYrTaEQiEtnm3K0lVzOHH0NOUrluWH736+70BEIBSwdcMvfPrFZI4eOuU2hKLWqHjn/Z70em0QliLXCovZwk9rtnDs0Em+XPMZkVHhBAUH8PxLLfnhO/ep4kfr1+KdN4Z7nNNsMrN14y4mzBhGRnom2Vk5BIcEER4RirAoc7hjy68+r3nz+h2Mmz6UsUOn06xFYzQaFfUa1CE/X8exQydZNPdrMtKyqPFIFfoP603LNs3cBj68odGoGPXhQK5fu8XZUxc4e/oioWFaZs2fgF5feM+p4gfBW3DxT+Bw2DHn+h46surynJOuD9hvJ5LKCKhQFVN2hnM4QCBEFqRFIBKhL+qnk2lDEUkkKCKi3ezOXAgESDQBXv1jpSHhWPUF7r15djvGjFRsRgOqMvEellzF5vV2s8lpeyaT39HWE4kQyRUoY+IwZqZh1RcgFEmQh0W6xIv9+PHz1/Cf+etasGABCxYsIDExEYAaNWowbtw4nnvuuX/2wv6fkpKcxns9P3AbrpBIJcxbNp16DWq72U2FR4R69JCVJFgbSNNnGrJnx36PNZlMSpVqFTy2m4wmHODKoplMZhKv3WTJvBWcPnmekFAtL73aBplMRq9XB7F8zVxaPNeMD0fOcmUPARo3e5yvFq9ymw612+1s37wHnU7Hk82f4L2eH/DMs03RBKju694EBmqoXqsKk0d/wsSPhnP6xHkOHziORqOmZ9/OrFyy2hXUlSTpVionj57huXbPIJfL6NWvG/t2HXJNoWoC1CQnpbr8YkvS6vmnaNSsPv3eGOGyfdOGBDHp45HUf6IucoWM/FzvmRpw6hNKJBKsFisOu4OBfcawbsdyVi5by8qla1z77d97hIP7jrHg65k0bFLvnvfCYrEy+v2pblZ061ZtZvz0Yffl2vHfQ1CqXZdAKII/ODMgksmQhYQhEIlw2GwYszNcmTmRQuUSu5WoNcjDo+4SBhajLlsBoUSGLCTc6bVbNDkqCQxGERruFEX2gqUgzym4XCIYc5nXX0tw62+UaAKdGUmJFKFQhFCuQBUd53TjKJJd8ePHz1/Lf+avLDY2lunTp1OpUiUcDgdfffUV7du35+TJk9SoUeOfvrz/VxgKjXz20RKPiVmL2cKAXiNZ/8vXxNynNhg4s1gjxvcn4eI1km7dySaIJWJmL57iFhRmZ+WQnppFZkYWYrEYpVJOTFw0NxNv0+vVgS5B3eysXGZOmk+r55+iY+fnOXrwJAFBAW5BHcCTzRsw6K0xXq/rwK/H6PpmJ+RyGe8N6XVPL9uM9CySbqVw+2YSw8a9R+/Og5j/8VJ69u1C4+YNkEolKBQyjh465fMYOzbvwWgwognQULNOVb7ZsIAdm39l+6bdPn1slSoFbTu2YkCvUW7izdlZufR/cyRrti6lUpXyNGvZmBUlgrSS1HuiDhfOXkYbEoTRYMRkNJGfV+AW1BVjt9uZNOpjvvphXqlZt7zcfCaP+dSrv/Dk0Z/wWIPa6HR6km+lEBUTSWR0+EPN4v0TCAQC5CHhmHO8T7HKQsM9vWFxCvfarRaseh12mxWJSuMMju7qXRRKpEiDtE4NPbsdoUyOPCQMaWCwq3dOKHZmxmTBIU6XCoEQgUTssvJSRsUiD4vAYbMhEAoRFNmkeRtAKcZmKkSsuJOhtVucfYQO213m9QV5GDJSUUbGunpMBUKhX7rDj5+/kf9MYNe2bVu3n6dMmcKCBQs4dOiQP7D7m8nOymHrRu+CwiaTmfNnLj1QYAdO66zlaz/j8vmrHDt8ipgyUTRsUp+IqFBX9i8lOY29Ow+wcM5XZGfmIBAIaNzscd4f+TZTx8726sKwfdNuPls6jS0bfqHeE3W8Xq/N5lvk1mQy8/2mxcSVK11MNT0tk0vnr5CanE5qchpisYTvNizi1ImzfDZzCWmpGVSrWYnRkwYRGKRBV6D3epzAwAB2bfuNvb8cICIqjGWr5tDhted5/sWWyBUysjKyPRwhWrZpzoa1W706ctjtdlYsWcOgD94iOiaCWnWrcebkBbd9xBIxb/R5lfHDZ/B671dYv2YLYREhXDznxei+iNs3k8nPK7hHYFfAUR9TsTabjQN7j7Bi6WqXNVq58mWYv3wGZco+ZOHavxmhVIY8LBLjXTpuYqXaWT69a6DEbrNhKchzK58aALE6AFWZcm79bQKBAJFUhjIyFkdYJCBAIBZ7HLNYA89bD6BAKPQQSHZYS08jCkXuAabNaPAI6ooxZTkFnP3m9X78/DP8ZwK7kthsNtasWYNer6dhw4b3foCfh4rFbPFpZQWQmX5vi6aSGAxGsjKy0esKqVCpLPUa1vFq1XXy6Bmmjp3t+tnhcPDbnsO80q09l85f8Xn8C2cvU6deLa+epDJZ6U32ceViKF/R6S+Zn6+joEh+JCBQ45IGMRQauX7lJiMHTnaTJ4mNi2bMlMHk5eZjNpn5/fg5po6bwyvd2vPptEVez9f0mYYMf28i4NT6mzp2Nk2eeoKDvx2ja8+XiSsXQ5/+r7Pg0+Wux0THRLDDywRtMZfOX2HjD9tZvug7ps4ezbFDv7Pmmw0U5Ouo37Au3Xq9zI/fb6Lbm52wWKwcO3SKkDAtak3pped7WVnZ7b5/R8ApXlxymjbx2i0G9x3HohWz7suD99+KUCx29ZKZc7Ow2+zIgoKdPWhehhAcVovXnjirLh9zTibysCiPwM2ZBXt4AyICsRiJOhCLzjO7KhCKEMrcgzSbt+GQYhx2sPvN6/34+af4TwV2Z86coWHDhhiNRtRqNevWraN69eo+9zeZTJhMd96A8vN99xj5uX9UaiXRsZE+vUar1qxEdmbOfX04Z6Znseizr/nhu5+xWqyIRCJaPd+cwaPfcRvYSE1O8ymQa7XZEAgEPj1kpTIpjZrWIyc7zyPbdfrkORo0fozD+48jkUro0qMD9RvWxWgwoVYr0WjU2O12rl+9ycwP53EzMYlgbSBRMZH0G9yTcuXLkJGeychBkzw0527fTGbxvBW82v1FFn+2AoBTx87SvferPPHkYxz67bjb/n3e68ah/ccxleihO/DrUTp1bcfenQfYu/MAX3zzCYV6AzPmjmP9ms2kJKcTHBJEuQpluHLZi2YYzuD00vkrZGXm0Pf1YTRqWp95X04nJDQYk8nMjWu3eObZpvy0ZjNHDjgzbPWeqEPlahWQSCVe+wEfqVudoODStcg0AWrKVyrLtYQbXtcrV6vA7ZvJbtsunb9Cdlbu3xLY2cxmbAY95oI8RFKZs5wplpTaI1caxcMEDpsVgVCIUCJFGVW6Dy6AOS/H55oxIx1ZcCiCv3rKVyRGGRtHwbXL7hO9QiHq+EoeAWmp5vUiMfhLr378/GP8pwK7KlWqcOrUKfLy8li7di1vvPEGe/fu9RncTZs2jYkTJ/7NV/m/T1hEKEPHvsvgt8d6rD3yaA3On77EtHFz+GThh8TGRbut5+bkkZGWydnfLxJfqRzrV21282u12Wxs2fALBQU6ps0eg81mIz9Ph8PhoEGjR8nKyPYQEP79+FmeePIxDu475nE9QqGQJ558jMSrN9n28x7GTx/G5NGfuIKnb5f/yPzlMzBbLHTr2ZFN63fy9eLVriCxeq0qTJ8zhs8/WcZr3V/i9s1kMtKyqFi1POdPX0IikZCZke0zS3n88O907/2K27YPBk5i+ZrP6Ng5hd9PnCM4JIgq1Sqwe/t+fvhuo9u+DofDVSp+9fUXUaoUfPXFKrQhQTzb9hkea1CbK5cTadfxWXZ6mXoVCAS80KEVw9+d6Dre/r1H+P3EOX7Y9iVh4SEk307lywXfcuXydYK1gbzx9mu069AadYCaSbM+YOTAyW5BsyZAzYQZw+/p8hESqmXc1KH0em2QR7n7+Zdacvzw714zv3qd9zL1w8RmMlFwzd171ZCahKpseaTqwAcO7lw2Xqm3XSVKsUqNKrbcPa26Sst+OWxWn19YHjbOydsq2IxGrIV6hDIZYqXK1Zt3975CmdyrrIoiItqjN9CPHz9/HwLH3/Wu8RfQokULKlSowKJF3sta3jJ2ZcqUIS8vj4CAv0b5/P8LBfk6jh/+nZmT5nPrRhJyuYznX2xJ02ca8sGASRgMRipVKc+ibz4mtMijNDM9i2nj57Jj8x4A5i6Zyvtvj/Xa41aufBk+XTSJzz9dzu7tTgeHp1o9ScfObZk2bjY3rt9R1w8I1LBo5ce822M42Vm5bscZPu499LpCRGIRP6/bTlh4CF16dCQjLYv8/AIqVSnP1YRE6tSryU9rtrBu1WaPa3m27dO82Ok5Br01xs1IvlyFOKbNHk12Vi7v9hjh817N+nwiQ/uNd9s2+4vJjBkyjSrVKjB+xjBeatHD632Iiongrf7d2b5pN42bN0AkErFqxXoSr95026/dy89S85GqzPnoC/Q6p6CzWqNi0Advc+LIaTb/tNPj2N///AXVa1UBICszG6vVhsloQldQiETqdPNQqpQk3Uzhx1U/cysxmQZPPsZTLRsTHRt5Xw4KRqOJxKs3mTdrKWd/v0BImJbufV7FoDcwbfwcj6BFIBCwYdcKypa/d6brj2K32dDfuu7DLF5AYJUaD+SbCmDKzfZaThVKpGgqVC3Vzsqcl4PuxlWva6IiAeB/4zSpzWxCf/uGSxdPIBQhj4hCFhzyQJ64fvz4uTf5+fkEBgbeV/zy73u3eADsdrtb4HY3MpkMmczfwPtXoAlQ07xlY8pXKsul81exWq38snUfQ94Z58rCJFy6RmZ6FqFhWux2O5t/2ukK6gDMZovXYEYgEDBifH96vjLQbaJyx+a9HDt0iimfjubdHiNcQYHJaCIoOIBvNy5i744D/Lb3MNqQYJ55tin7dh1kzTcbqFm7Ks+2fYbPP1nG4f0nCA3XolAoSElOw2qxsnbrMjb+sM3rc231wlMMfmecW1AHkHj1JovmfMWQMf183iel6s4kYXhEKC93aUutOtVQaVQMGPEWIaHB2Kw2pnw6ik+nLfRwfnirf3dWr1xP73e7MW7YDJfV2wcDJrldz8YftvHCS61Yu22Za7BEqVQwecynHPMxhSsuESyIxWJ2btnH7OkL0esKafZMIzp1a0dAoAaVSsmbfbsQGBzg1WGiJCaTGYvJgkIlRyQSIZfLqFqjEs+/1JKmTzckLy+f1OQ0rl+96TUT1fqFpwgODSr1HH8Wh9XqI6gDcGAt1D9QYGezmDGkeLfxslvM2IyFpQZ2IoXKKSrsJXOnjCrzrwzqwJm1U8eVd2YV/4Pm9Xa7DYfVKWpdXDr34+d/gX/nO4YXRo4cyXPPPUdcXBwFBQV8++237Nmzh23bvH8Y+/l7sNns3Ey8zZXL19mzc79HaS2zSJw3MyObLxd977bma3ChYZN67P/1qFeZjJzsPE4ePU3L55uz/efdqNRK5i6ZSkRkGGKJmJZtmnHhXAIF+QUMf3eCK/g5+/tFuvd5ldqP1eD34+fcSqftOrbGarF6LQtqQ4LIz833amQP8OuuQwz84G1aPteMHVs8Bxi69uzIz+u283SrJ+nRtwsF+QXodIXs3XUQq9XG062e5M1XBxIdG8WkWR/w4/c/s3XjbqrWqESPt1/j8P7jXDjrnE7V6wrR6wpZtvA7Pv1iMvv3HiHh4lWiYiLp1LUdNrsNtVpFTKxzIjk1OZ2rPvruYuOiCS5hxXbi6GmmjPkEcPb6SaRShr07EUOh83mXK1+GmZ9PoFKV8i7B45Lk5xWQePUmXy9dQ0ZqJg2b1OOFDq2Ijo1EKBRSuWoFOrTqgcPhQCQSMeXTUSjkcjau247ZZEYilfBip+foO/ANArxIujxcSi9S+Jr29Ind4VbSvRtroR5pQJDPdZFUiqZ8ZQpTbmPJywUciGRypz2XonQR6H+af4sw9INiM5sxpCZhzssGhwOhRIoiKhaJOuChBtLGgkJwOJCq5A/kNuLHz5/hP/MXmZ6eTvfu3UlJSSEwMJBHHnmEbdu20bKld29PP38t2Vm5nD55jqWff0N2Zi6PPFqdOYunsPizFZw4etq1X7EGnd1mc3NgAPj9xJ3BhZLUqF2VX3856PPcv+05zNRPx/BK13bExkUTHhnqyj45gEO/HfNqUTZ+2AyWfPcp+fk6flqzBZlcSofXXiAkTEvi1ZuIJWKsFnctL6VKSW6O76Ebu92O2WSh5fPNCY0I4ac1WyjUG9CGBtPz7ddo1qIxB/cdpV6DOiycs5zd238DoOkzjejUtR0rl65h+Pj+jBw4mXe6D2fl+s8ZPLofFrOVIe+Mc0mOlMyCJN9O4ffj53i61ZPOQPbsZRwOB3nZ+Vw0JBCsDUQbqiUsIoSPF3zI268PdRuAUCgVzJw/3iVVkpWZw5wZXwAQX7EskdERTBr1sdvzTLx2izdfGcg36xdw/uxlwGkPFxKqxQH8+P3PfDJ1oWv/k8fO8PWS1Xz1wzwqVSlPVEw4U2ePZuzQ6ViLRIvbtG/BwhWzUKmUaALUhIQFe52GftgIhEKfGTLAzXf2/g4ocIkGe+N+sn8iqQxVbDkcUcUZJJG/T+0vwm4xo0tMwGY0uG3T37yGqmwFZIF/fnDHkKsj9VwiCbt/x2axEvtoJco/WQNVyP256Pjx82f4zwR2S5d6n4j08/eTl5vPojnL+e6rda5tt24ksXPzXmbOn8Dtm8mkp2VSq041QsOd/XUyuYzqtapw/swl12O+++pHZs6fgK5Az7nTd1Tv5Qp5qVIbao2arT/v4uXObYmIcrc6CwsP4Z1BPRk/fIbnAwUCtKHB1KpbnYZN6iEQCMjPzadfjxFUqBxPm/Yt2LB2q9tD0tMyqVS1vM9rCQnTkp+XzwcDJtG8ZWPGTxuGWCJCrzMQX7EMr7/Ujy+++ZjenQeRk30nA7lr2z6OH/6d6XPGkJyU5poynvvRYmbOn4gmUsUnCz9k9cqfnEMRDgchYVoqVo6nS48OLFv4LQvnLHeKOC+azJaffmHVinWurGN8xbJ8umgStR+twbody9m+aQ8XziZQp15NnmrZmKiYCNe1WCwW1+Rqh9eeZ+WytV6fa0G+jl3bf2PTuh0kXLqGUChk4Ii3aPFcU6/yLboCPVPHzmb2F5MJDArgmdZNqf1oDS6cTaCw0OD8/QjVEhB0J0NnMpmRSMRes4IPC6FEijImDt11T50+iSbwgQMqoUSCLDQCY1qy56JAiPg+fVGLtef8/LXYzCa3oK4khuRbiJWqP+U1bMjTcXDpFjITklzbLmw5wvX9Z3l6+KuoQ/3BnZ+/lv9MYOfn30NmerZbUFeMyWRm8bwVvNylLccOn2LSrJFoQ5zffoO1QQwd2483Xxno2l+vK2RE/w8ZOOItxk4dQkZaJmERIUREhVOpcjzHD//u9fxt2rdg0dyvqNegjkdgB9CsRSPe7NeFr79Y5Qp0wsJDmLNkistAvjhwyM7K5cypC1w4e5mps8dgMprYsXmvy7e2Ws1KlK8QR8Mm9bxO3Q4Y1odtm3Zjt9vZtW0fu7Y5Bz0aNH6UajUrU61mZXZt2+cW1BWTl5vPb3sOEx4ZRqeu7chMzyItNZPCwkICAtXExkXTf1hvuvd5FbFYxEfzxmM0GBnYZ7Qrs1j/iTr8fuIs33zpHoxdv3KD3p0H8e1Pi4grF0vvd7tht9u9BkwikYiYMlEk3UohKjqC61e8y5MAXLtyg6iYCBIuXcNut/PptIVUqV6RgEANeV4sy44f/p283AICgwKQK2TExkV7TEo7HA6Sbqeye9s+Du0/TkyZKDp1aUd0mch7un0UYzFbSE/P4lpCIgX5OqpWr0RIWDCBQd6bjMVKNZoKVShMvo3NoEcgFiMPjfDa+G+1WMnOzgWHgyBtoMsLuRiBQIBcG4bNaMBSQrpEIBKhLlcRodSfefs3YdX7nrq2W8zgw7P6fsm9lekW1BVjzC8kYddJHnmpCSKJP4D389fhD+z8PDBHD3l3EwA4c+oCY6YMJjRM6xLwLaZajUp8tmwa08fPIelWKgKBgNqP1qBhk3pOt4FalV371qpbjedfbMGm9e7TnK2efwqj0eTqH2vQ+FGPa9CGBPFW/+683Lkt6WmZyOUyQkK1hEeGekxyGgzOcpzVamPUoMm8+vqLzFkyBZPRjEwmJSomgpi4aCZ/PJLlX6xi7bcbMRQaiI6NZMCwPtRvXJeTx854XEN8xbKcO32JWnWqsW/3YZ/368jBk7w3tBeJV29x8VwC8RXLosvXYw6xIJVKkEgkrqni+ApxTBjxkVu5+IWXWvHRh/O8HjszPZsrl697BLN348xy9mDMkGlkpGcRGxftoS9XTGxcNAkX3Sc4v/vqR1q2acbabzd6fYzDUfoH5dWERN7o+B4F+TrXtlVfr2fKp6No8Wwz5IrSB6BMJjNHDpxgSF/3AZfnX2rJkNH9XPevJEKRCKFKgya+krPxXwACscTj9yM1OZ0132xg/erNWK1WWr/wNN37vOIRnKamZXHqxBVq1KiICDsIhVjsAjBYCVZ5v+8Oh/2Oh6rI/a3YZjFjMxRi1esQSqXO3i+J9D8zmPBvptSMrEDg/PcHsdvtXD9w1uf6zaOXqdKqHsqgByz3+/HzAPgDOz8PjEhc+rfNpNuprP3uZ1q3fdptu0qtotkzjahWszL6Aj1iiZggbRAaL2XXkFAt7w3tTYvnmjmFfAXQoPFjXEtIZGZRIFO2gm9JDKVSgTJOgVqjwmyyIJN7anEBBAZpkMqkmE1mrFYb33z5A8ePnEYToObGtVssXTUbAIlUwqvdX+TZtk8jEIAmQINCIWPrhl20ebEFP63Z4jblmZeTT1h4CEaDySPALUlAgJqw8BCG9HVOEx8/cpr1qzez4OtZPN6orts126w2jh485fZ4mVzmNVNWzOULV6hVpxoWi5Url66xaf1OlEo5bV9+ltgyUS4tuiZPPcGb/bqw8YdtdH7jJWZOmu9xLIVCTvValfn8k2Vu29NTM6lYOd7r+avVrExAoO9hiNycPCaMmOkW1IEzizdu2AzqPFaL2LjS7enSUtIZ2HuUx/DLpnU7qFm7Gl16dPApzVJao3xqcjq9Ow/iZuKd7Mv3X69j+6bdfPPTQpdtXlZmNu+/PYYLZxMQCoUEaQMxGowU6g107PwCw8f1R6G802fncDiwm82YcjKw5OchEImRh0U4NePEEqfG3vW7hIIFAjTlKiJWafzB3Z9ErFI7gzcvU9my4NA/LdUiEPl+fQRCAX88bPTj5/7wv0P4eWDqN6jje61hXQx6AyPG9+fLhd8xatBktm/a4zbMEB4RSnzFspQpG+M1qHPtFxnK1YREEq/dIvHqLUa/P5V5s5Zit9sJDddSoWI5n48tLnP2e2M4HVv3ZGDv0Rw7dMojgAgN09K9j1NA+MmnGjB/+QyebvUk5SuVZfDod5BIJWRn5jDzw3m80LQLXdv3pUu7vrz4THe2bNzF5QtX+WnNFkZ+OBCF8s4E44F9R3m5a1t+2fYrz7V/xud1durWnu2b9rgFJcXZw/S0TLd9hUIhgUHuQZLJZPZZbgQI0gYxduh0MtOzSLx2i6rVKxIaHkJBbgFJN1M4c/I861Zv5sTR0zzb9mkGj36Hxx6vTa93uyIuEcCHhGmZMns0i+et8DhHvQa1vQZfUpmUcdOGEKwN8nl9eTn5nD5xzuua1WLl0oUr5OfpuH0z2eVPeze7t//m0+LuywXfkpme5fP8pXFw31G3oK6Y7Kxc1hY5pQBkpGW5JpftdjvZmTmuKeqf1m51TYYXYzcbyb9yHmN6KjajAau+AF3iFQpTkrBZzBSm3PQc7HA4KEi8it3q6QLi58EQiiVo4iuBwP3jT6RQIQ+P+lOBs1AopEKTR3yuxzeqjkzz75509vPfx5+x8/PAhIaH0H9Ybz6bucRtuyZAzYDhvTl17ByjB091bf953Q5iykSy5LvZrizH/SCRSOjw2gukJKWxbtVmV99bXLkYPlk4CZXa+xuk0WDip7VbmVUi63Ti6GnefHUgkz8ZRZv2LVxBi0wuo9ubnahYOR6LxeKW+Vn19XriysXw8cIPPVwdbDYbH0/+nM+WTWNw33FkZeQw5dNRWMwWgrWBlCkbg0qt5K3+rxMYqKFtx9YeOnlt2rdArVax/C4ZGHDabekK9Bzad4z0tEwea1CbMmVjeLNvZ6aOm+Pab9O67bzSrR2L560EnEFzo2aPIxIKuZKQSGBQAK90a8/6NVvYveM3ho15lyMHTzGg9yhMJme5uW3H1jzWoDaD+47j488n0u+N4TR5uiHf/LSQ2zeTEYlExMZFM3bYdC6cuex2nXK5jFdefxFNoJqwiFCWzF+JRCymc48OlK9YFrlC7jqPN7zpGJakUFfIpFGz2PbzbgCeeLIeI8b3J75inKu0nHjdu4YcOIdf7nUOb+h1hWxav8Pn+vafd9O1Z0dCw7Sk3qU9WBKrxUqhvtD1s91mozAlyesErdMXNgJLvmc/JgAOOzaDAZHUr835ZxAInQMtgVVqYCvUY7NakChVCCWyhzKJHBCpJaZuRZJOuvtXq8MCKd/kEb/siZ+/nP+088SD8iDKzX5KJy83n8Srt1ixdDWZ6dk88mh1GjR+DJVayRsd3/MqPtumfQvGTx/mVpa6H/QFetLSMrl+9SYioZC01AyWLfiWSlUrMHbqYDdPWYCkWym0f6Y7ZpOntpgmQM3abcuIio5w2377ZjLtn+nu1Re1xbNNCdIGeu0he7lLW9JSM9i36xDgzFLNWzadJ558zHUtyxd9T2R0OLUfq8meHb9hsVh5ovFjmExmAgI1fP7JMk6fPO86ZuNmj9P6haf5cNQst3666rWq8PGCiUwZ8ym/7TnM443q0rBJferWr8WOzXspGx+LXC5n17ZfsVisPP9SS6rWqMTQfuO5lnCDLj06kpOdy5YNv3g8jzbtWxAYHMDtG8m07/QcQ/uNJyIyjH6DezJhxEzq1qtF9z6vsGD2ci6dd35gVatZifHTh1O5WnmX3Ex2Vg7Xrtxg5ofzuHA2AZlMyouvtqHXO11dvX4lyUjPosfL/bl1wzMzBrDg65m822OEK6gHp6PG6s1LXH1uW3/e5bJMu5tqNSux8OtZbpp994PRaGJI33Hs233I63qlquVZ/O2naEOCuHD2Mq8+38frfiKRiA27V1KmrPNabWYTeRc9ezKL0ZSvTMG1yz7XlbHlkGtDH+CZ/DnsVit2iwWbUY9AJEYkV/ynRIj/KYz5enJuppOw6xRWs5VyT1Qlsno5lNq/WqPRz/8q/2+cJ/z8cwQGBVD7sRpUrTkKfUEhVpsNHLBnx36f3pbbN+2m//A+xCgjH+hcJpOZ0e9P5cLZy24f8ClJacz8UMqEGcPd5FHS0zK9BnXglOzIycojKjoCs9mM1WJDqVJw7vQlr0EdwO4d+5n5+QSvgV1WZo5bD5nZZHaJ+qYmp/NW1yHcupHEkDH9+OqL7zEUGhAIBKxfvQVDoQG5XMbHCz9k1KAprl65zj06MOitMR6aeufPXGL5F98z+ZNR5OXms+WnnaxfvZmf1mxh+tyxLJr7tUsnD2D/3iNUqV6R94b2ZvDbY2nYtB4De4/2+hy3btzFnCVTGNBrFP2H9UYsFpGWmoEmQI3D4eDE0dMYjSY+WTQJq8WKQCAgMEjjUWa9cf02vV4ddMcVxGRm1dfrOXHkNAu+nunSNSwmLDyEcdOG8Ha3oW6vLcAr3drz2+5DHtt1BXrWr95C30E9EItF1Hm0BmHhIWR4KbkOHt3vgYM6cGYiu/Ts6DOw6/xGB7RFxw2LCKVi5XiueBGDfv6lloSG3b8umgMQSCQ4LN5/F8WK+5sSfhjYLRb0STfcXToEwqJeP7U/uCsFeYCKqJrxhFWKxW63I73HAJAfPw8T/1+mnz+FTCZDGxpMeEQo4ZGh6EoxcLdabdj/QFksKzOHc6cvenzAA+zc8ivZWTlu28T3UI5XKuWcOPI7IwdOYUDvkaxasZ4yZaO9ZpTAWS6Migpn9OT3PaYha9WpxtXLia6fhUIhFYoGCU6dOMutG0moNSoio8LZu/MARw6c5PD+E67gz2g0sWLJGl585TnAOU175dJ1j6CumPWrNlOQr6P/mx+wcM5X3Lh+G0OhkUsXrroFdcVcOn+FS+euUKdeTcwms9d7CEX2fEYzDocDvb6Q6Fhn8C2VSalQqRx9B77BxwsmUiYumvgKcZQrX8YjqMvNzmPGhM+8BvYJF69x9dJ1r2uPPFqD7zYuoukzDdGGBFGlekVmzh9PjdpV+ebLH7xe7/69R9AX/a5FRkewbPVcHm9Y17UeERnGp4smUaPIC/ePULVGRY8BIIBHH3+Eps80dP0cGqZl7tKpVKtZ2W2/Fs81Y8DwPm69lwKRGEkpLhRCsQRllPehoD+isfdHcTgcGHMyPK3XHHYKEhNKddrwcwexTOIP6vz87fgzdn4eKo97kR8pplrNSqUKD/siKzPb55rdbkdX4B5MhoWHEBgU4HVadOCIt/h+xXq+LREwHDlwkoioMCbMGM7APqM9sn2xcdGcPX2RrxevZsT4/nw2awmXL1wlJExL7UdrMG/WHfHsnn07ow0NwmazsXXDrqLnXdnNjeNuDu8/Ts++r7Fzy680blYfk9G3/7HJZCYvJ9+tqb9Rs/rs2rrP52O2bdpNu46t7+nzWizvIhQIsVisRMdGUrFyPEu+n01QcACie/QGFRYa3ASo72bX9t+ILRvjKksWo1DIqVazMtPnjKVQX4hEIkEqlzKg1yifxwoJDUZaQh+ubHwsnyyaRE52HlarFY1GRViEp7zNgxASqmXkhAG89vqLrP12I2azhQ6vtqFy9You145iYuOiWfD1R2Rn5aIv0BMYHEhIaLDHRLRQJEIZFUu+vsCjz06mDUUoFiPUBKAuV5HClNvYTUYEQhGy0HBkIWF/emLzfrFbLJgy0rwvOhxYdPkP5Kfrx4+fvw9/YOfnoRIdE0Hj5g3Yv8ddu00oFDJy4qBSJyR9ERoW4nNNKBR6BIuh4Vpmzh9Pvx4j3DJfgUEB1G9Yl24vvuNxnLSUDDat30GrNs35ed12t7U+/V9n5dI13LqRxMhBk5n66Wi+Xf4jPd5+jVMnzvHRvHEsX/Q9vd7txqP1a6FWq7BarC4pEavF6haE3I1YIkYqlfJKt/bodIXUrFPN577lKsSRl5ePSCRyDQWIRCIsPkp3ABazGbFYhEwuo2qNSi6bspJUq1mJa1du0Oe913HgICM9i0UrZ7kyd/eDUCREqVL49NUNDA5g+vg5jJs21KuwtFqjcnste/btzNGD3jUT33j7NbdMGEBAoKZUaZU/gjY0GG1oMHXr13L53PrcNyTYJchdGkKpjICK1THlZGIpyEMgEiEPi0QsV7oCN2lAEGKFqkgDUIBQIkYg+DsLLI5SPXPtJt9fPvz48fPP4i/F+nmoaEOCmfjRcIaM7kd4RCgSqYQnnqzHtxsWUq1mpT92zLBgaj9aw+vac+2eJuQuAVqxWMyjjz/Cj9u/pE//12n2TCPeG9qbH7Yv81quLGb7pj106trOlWWpVKU8U2eP5sSR0yRcvAY4+7vS0zNp1Kw+w9+byGcfLWbbz7uZ/cVknmndxBW4Xr5whSZPNQAgLCKEF15qxccLJjJ3yVTeGdTDFfQBPNv2acIiQmnQ+FEqVYnHZDT5vFfvDHyD82cu8dmyaTRo7BzQOH7kNE2eesLn82re8knOn7nsdK0Y8RZx5WLc1uPKxTB2yhCqP1KF8MhQEi5c5YdtX/q8574ICQmmU9f2XteKxah/23OY1BRPH19v1HikCl3ffNlje69+XalUxbtu3l+FUCi8Z8byfhEIBIhkMhQR0WjiK6EuWxGplzKrUCJBJJUhkkr/5qAOBAIhwlIycmL1/8YQgMPuwFxowuqjv9aPn/8i/oydnz+F2WwmLSWDQ78dJ/l2CrUfrYlUKsFoMDJ3yVQ0gWoCgwLcMilWixW7w1FqFqskWm0QH80bz9gh0zhSlMERCAS0fL457496x6vtlFQqpVz5ON4b0gtLiYyZr6EKcAoAx8ZF8e2GheTl5INAwG97DrNj8x63/c6eukhmRpZLU23H5r28O6QXxR16WZnZjB48jSZPP8H85dM5dvB3und4F4PBCECdejWZNmcM44ZORyQW8XqvTqxeuZ5uvTrRtf07KJRyps0Zw84tv7J1wy+YTGbKVYijd7+uHPztOOtXb0YilTDlk1FkZ+WQcPEawSFBVKpa3hWAFhMWHkLnNzpQkF/AiiVrOHrwJO8OeROVWkVqSjqRUeHodXqmjpvN1E9Ho9aoeOLJevf92pREIpXQrdfLHD98irO/3/H+FQqFDBv3HutXO0Wcs7Ny7+t4wdog+g58g5e7tOXQb8cQCIQ88eRjhIZpH3pm7p9AIBAg+JtKqw+KUOLs9dMlemZ3hRIpIvnfN8TxV6HPyuf2iQRun7qCVCmn8jN1CYwJQ+7XmfPzH8cvd+LnD2M2mzl68CT9e41yK3mWjY/lg4kDGdx3HOXKl2Hu0qlERIaRnZXD1YREVq/4CUOhkXYvP0udx2oQHulZlismKzOH7KwcDIVGNBoVYqkEs8mMSqlAFaBCo3kwa55Tx8/SvcO7XtfGTRuKXCHj06kLyUjPQigU0vTpJ3j19RcZ9f4Ul9/rgOF92FokTlzMnMVTeKrVk4DTT/XFZ7rzeKO6NGr6OLOnL/I4V0yZKKbNGUNWRg5pKRl8v2Idny2ZyqfTF7Jr22+IJWJaPteMN956jZSkNFKSUlnz7UY3H9eIyDD6DXmT8cNmoAlQM+vzCZw/fYn1a7ZgsVh5tt3TdOrSjpgyUVitVoa8M96VsVQo5ARpA8nNzsNgMBKsDWT1lqUe0jF/hNs3kznz+wVOHz9HQKCGmnWqsX71ZnZs3gvAuh1fUaFyuT99Hj9/LXabFUtBPoXJt3AUCSOL1QGoYuL+8/11uow8ds1chTG/0G17+Sa1qNjMqTUn0yiQ+dDK9OPn78Yvd+LnbyEjLYuBfTxlOW5cv82abzbQtkMrVq/8iW0bd/P8Sy2YNflzNq27I/r6666DVK5WgflfOgOT/PwChAIB2pBgxBIxN67fYnDfca4slFAo5PkXW9K4+ePcvplC246tMRnMaAJUyOT3njxLvp2KzWajcfPH2b/niNta7cdqEBCoZmi/Ca5tdrudPTsPkHjtFkNG92PMkGkolAoqVS3P3I8Wuz2+pPtD8Xeldh2f5eMpn3u9lqRbKRTk6/jhu4107NyWlNup6Ar0DBj+Fod+O06h3sDWjbto+XxzRvT/kJbPNaNdx9boCvRs3biLpFsppKVmOAWJm9bn+RdbYjSaqF2vJu1faYPD4SA4OBCxxPknLhaLaduhlSuwMxiMGJKMrut5qtWTBJXiYPEghEeGkbFtH+fPXMZgMLJwzleue9Lk6ScIeQD5Dz//HEKRGGlgMBKV2uVpKxCLPXxt/07sNhsOq8Xp7ysUIZCIEQofrERuNVk4u+GAR1AHcG3fGaJqlOPQ0s2EVoyhfveWKIP/+9lhP/+/8Ad2fv4w589c9lna3LvzADM/n8DqlT+xdeMvVK1R0S2oK+byhats+GErFouVLxd8i1whp0PnF3i58wu83W0oybdTXfva7XY2/riNgEA1qSnpnDx6mqbPNOT8mcv07NuZMnHRSLyUEDPTs8jLzadX5/fJzytg/LShPNH4MTb+uB1dgZ4mTz1Bt16deKf7MK/PJfHaLQQCAZWrVuDdIW+yaM5XbutBwYFuQwaBgRrKlS+DSq10Zfm88fuJc7z02vMIRQJMJjNKtZK4cjGs2rSEr774nv17jhAQoGbukqlsXr+TH7/fRHBIED37dsZoNPHx5M9RqhS81v0ldmzZQ4dXX6BilXifFmO16lanUpXyJFxyL9eqNSrefKfLfQXH94NUKuGFDq1wOBx88dkKHA4HUpmUFzs9x1v9u7v1F/r5dyMQCBBIpPAvqBjbLWYKU5Mx52RRpPiHVBuCIiIakcS7s4k3zHojt094lpiLSb98C218FGkXbnJy1R4ef6MVEr9kiZ//EP7A7n+YwkIDWRnZnD19CavZQq061QgJ05ZqSv8g5GTn+lyz2WzYbU7NtJq1q7Lmmw0+9/3x+5/p0qMjJpMZk8nM2m82UL1mZbegriTrVm9mwozhDH9vIq90a88nUxaw+aedfLX2M2rWvjNRajSaOH3iHEcOnODS+atkZzr17sYOnU6lquVp2aY5CoWMZ55thsNh5/bNZJ/XeOtmMvOXT2fMkGlu/WNKlYL5y2cQHnlHeDc0PIRpc8YglohLnRKNio5g2rjZfDBhIK1feBptSDAikYiy8bGMGN8f3WAdqSmZ9Hj5PUxFAfStG0mcPnGOF15qRd+Bb5CRlsnC2V/x6usvEhUT4QrqMtOzSEvNJPl2KlExEUREhRERGcb8r2bw43c/s/a7jZiMZp5u1YTe73Xz0Of7s2hDgun6ZidaPf8UBoMRmUxKSJgWuY/g0WQ0kZOTBw6nO4hK/d/v4fo3YTGYMBeaEAhAopQjkd9/IPRvwG6zok++hSWvpGalA3N2Jg6bHVVs3ANlEh123x1IDrvDJZOT9PtVjAUGf2Dn5z/Fff8lJCcnEx39cN/8/fx1FOTr+HndDmZMmOsmSvvGW6/x5jtdCNb++axJrVJkOaJjI106co/UrcH2Tbt97msymV0lQ3BqlN24fsvn/oV6g8sn9NKFq0SXieL6lRtMGvUxC1fMck2m3rqRxNvdhjJz/niWzP/G7RgJF6+5SrxisZinWzcpNQgLCFCTmpzB5I9Hce3KDc7+foG4crHUqlONiKgw1/UUow0JZsGnX/JipzZ8u9xTZDcwKABNgJrM9GxWLlvDhzM/oFBfSECgGoFAgEwuw2AwMmPCXFdQV5Kf123n6x/nM2/WUq5cvs6UsZ/SM6kznXt0wGgwMfjtsW5OCPEVyzL/y+nExkXz1oA3eLlrOxx2BwFBGmxWG1kZ2cjksoc6lCAWi4iKibjnfkm3Uli64Bs2rt2G1WqjWctGDBzWh7j42Ic2ifr/FYfdQUF6DqfX7Sfl9DUQQGzditRs3whN+L+rJO6w23HYrCAQeOj1OazWu4K6O1jysnFERsN9BnYShYzo2uVJOnXV63p45VgSDxZZ/DnAavRelXDYHRjydOgz8zAWGAiI1CIPUPr78vz849z3DH2NGjX49ttv/8pr8fMQuXUjiWnjZns4DXz1xfecOXXex6PcsdvtpKVkkHDxGonXbnkI/kZEhdOwST2vj+3z3uus+WYD2pAgHnuiNu07PefzPE2eeoLjh+8I+GZl5hBTJsrn/kqVwqXhFhCocbk4XDib4JpUNRpMfLngO9d+vhwXwJnZCw3T8urrL3pdl8mklCkbQ49O/cnLzadhk3r0ee91Wr/wFNGxkV6DjwvnLrPhh2088mh1WjzX1G0tIjKMuUunsuDTLwFnOfrMyfN0eq6X21RrQb6OU8fP+rzuIwdOuJ4vwFdfrCInK48xg6d62Ftdv3KDIe+MIzszB7FYRHhEKOoAFVcuXWf4exPp0q4vA3qP4vD+E+TnFtx9qgfCbLa47vu9SE1O481XB7L2m42YTGZsNhu7tu6jc7u3uX0z5U9dhx/QZ+Xxy4xVJP9+FYfDgcPu4NbxBHZ9tBp9pu82gb8Th8OBzWREn3ST/CsXKbh2GVNOFvYS2owOq3cnFte6rfT1kkgUUmq92NhrFi76kfIUpOdiNTnPLRAKkCg8s5sOu4OcW+nsmPItuz9ey8EvNrHtwxUc+Wo7hlzdfV+LHz9/Bfcd2E2ZMoW3336bTp06kZ3t2wnAzz+P2Wxh5bK1PtcXz1vh1ZWhJAX5OnZs3kvndm/RsXVP2j3VjYG9R5N47U4mTRsSxOSPR9Kn/+suYdnylcoydfZoEq/epN4TdVi5fgFR0RHUrFONajU8tdmCggNp/cLT7Nq+z+3cdpvdpzhuh1efZ/um3UikEuLLlyE1+Y4uWnEJRa8v5FyRC8LF81eoW6+Wz+f6ZPMGSKQSur75Mo2a1ndbUygVTPp4JN9/vY6+g94gLzef0yfPc+P6bQoKvL+B26w2Th07i91uZ8zgqZQpG8PnX33EhzM/4JNFk3h3SC8K9YVcTUgEICY2irTUDPLzCnj/7bFkpmeRmpx+z9fIbrNjs9koV74MHV97gXYvP4vDYef0Se+B+4WzCS6pEZvNxsFfj9G1fV9+23OYtNQMThw5TZ8u77Pxx23oC/SkpWSQmpzu4ezhi+Tbqfzw3c+8//YYJo/5lMsXrriCbl8c+PUYKUmeDgeFegNfLf6+VBcOP6Vjs9q4svc0FoPnPTTpDNw8drnULzx/FzajgbzL5zHnZGK3mLEZDehvXUeffBN70TQu98jcCh5wgEITHkzLUZ2p3OJRNBHBaOMjqftac6JqluPshgOu/co2qIZM49kWUJhbwN7ZP2LSuf9+p5y5zqUdx7FZHtw60Y+fh8UDyZ1cv36dXr16cf78eRYvXkzbtm3/ymt76Px/kTvR6wp5780POH74d6/r0bGRrFj3uYctUkkO7jvK292GemwPCdPy7U8L3UpsVouVzMxsbFYbMpkUkUiIxWojKDjQTQ8tLTWDzT/tZM3KDZhNZlq0cU56fjBgklvACBARFcbnX33EyIGTXbIiIpGI519qSf0n6jDxg1lM+vgDhEIBUqmMWZPnEREZzpwlUwgMCkCvK2TouxPYv+cwIWFaJswYxtB3xnuUNdu0b8GICQNcpen0tEwSLl7j4rkEgoIDCQwOYO03G3i9VycWffY1p445M2gCgYDWLzzF0LHvehjb37h+iyMHTjJp1Mdu21VqJSajCU2AmvdHvsO4YdMBGD35fb758gcSr94EYNXPixn8zjhatmnGhbMJHN5/3Otr9PlXH5GfV0BOdh6/7T6ERCKmQ+cXSElKY+ak+V79Zles+5zaj9YgNTmdV5/v7XW4QyqTsuS7T3mn+zCMBhONmzdg0AdvUa58GZ8+vDcTk+jZqT8Z6VmIxSIGjexLaJiWA3uPAALad3qW8hXLuolJGwqNvP/2GA78etTrMSMiw/h2w0LC7rq//ybycvPJyszhZmISQcEBREWHEx4Z9qeszB4WxvxC9ny6lvwU71/EtfGRNOn/IjLlPyddYrda0d28ilXnPUusqVgVkVQOOCi4noDN4DnJKlKq0JSr+Ifs1mxWG5ZCIzaLlfObj3B9/znA+fcd16Aqj7zYGEXQnZ5kY74ek96I1WQh61oKV3afQpfh/jckkop5dnx3VCF/zWeMSWfApDNgM1uRquTIA5SIJP52+f91/jK5k/j4eHbt2sW8efPo0KED1apV83ijP3HixINfsZ+Hilwh44kn6/kM7OrWq4m6lOb07KwcPpm60OtaVkY2vx8/6xbYiSViIqPCve5fkojIMN7o8yovvOScmAwKduqola9UjpzsPLcMVeu2TxMRGcYXKz8mOysXXYEOuVLBlYtXuZmYzNylU/n+q3X8uusgoeFapnwymvDIUNfwgEqtpM+73di/5zBZGdks+/xbZi+ewk9rtnDy2BmCggPp2bczDRo96tZvGBwcyC9bf+Xw/hPo9YVkZ+YwbOy7zJ25mAtn70zSORwOtm7chVQmZdSHg1CqnH01+XkF7N97lIpV4pHLZRhLZJz0OueHUvc+r1K+YhyNmtanXPk4CvUGV1AHkJ2dS9KtFNat2sz0OWO4cPayW8kV4PXer6BSK5k9fZGbnt6enQd48qkGDB3zLtPHz3F7jEAgICjYeX9yc/J8TuyaTWaSb6disVix2Wz8+ssBDv92jFWbFlO+UjmP/fW6Qj6ZtoCM9CwAPpgwkH27D7H3lzuZjw0/bKXJ0w2ZMGOY6wuFWCwqtadPrVEh/Bf32GWkZTF17Kf8su1OtjkkTMvny2dQpXpFj77LvxuhSIhE6bvpX6aS/+H763DYiyzHBAh9BPv3dRy7zWdQB2DOzcFhsyILDkUdVx5d4hVspjsyPSK5AnVc+T/soSsSixAFOKsNtTs2oWqreliMZiQKGfIApWvIxGa1kXsznaMrdrgC5YAoLY90aELC7lNkXL7tOqbNbMVu/WsydrqMXA4v30bWVWebgkgqplrr+pRvWgu5l8yin/+fPPA7z40bN/jxxx8JDg6mffv2Hv/8/POIRCKef7GFh4cqOIOw3u++7uGzWRKzycKl81d8rh/x4d95PwiFQsLCQwiPCEWv05OTk8vTrRozadYHLP1+Nu+PfJtVmxbT591uBARq0IYGU7FKPHXq1SIwUMPmDb+QmpzGmZPnqfFIFerUq0lmejbLv/jOIwNZsUo8w8f3RywWcfLYGd5/awxKlYKP5o1n/pfTadO+hYcdmUQq4ZXXX+TWjSSyM3MQCoXExkW7BXUl2bRuB1mZdzIihkIDsXFRzP1oMVPnjPGQHnmu3TPUe6IOX8xbwYBhfWjcrD5HD550ZXgkUomrPy0vN59Zkz9n+tyxuOAmcwAAzQtJREFU9Hy7M4/Wf4Rnnm3CslVziK8Qx297DrsFdcX8tvswSqXC4360fuEpl5epUFT6n75IJHIr05lMZuZ/+iV6vWfGJDcnjz3b9wMQUyYSoUjoFtQVs2/XQY4fufNlQyKV0PmNDj6v4fXerxAS+u9q8C/GbLawYulqt6AOnF98+nQZTFpKxj90ZXeQquRUafmYz/XKLR5FIvsDWS6zCUNaMgVXL1FwPaGoH863o8u98Z3dFAgE2E1GCq5dwmo0oC5fmYCK1VCXrUhAxWpo4ishkj4kmR6l3FmWLRuBJjzIbXJYn5nH7k/cs5/5KdkcWrqFaq3rIxTfCZDlAUpE0oefQSvM1bF3zo+uoA6cQeTZjQe5dfTSv6Ks7uffwQP99i1evJghQ4bQokULzp07R1jYn1ep9/PXEB0byVdr5zFx5CxOn3CWFypWjmf89KGUKVf6dLNQJCQ8IpT0tEyv62ERIWRl5vypD930tEzGDZ3uVoZTa1TMXz6DSlXLey35XThziY6vteXS+QR2bv0VgGdaN6HHW68x8YNZ5OXmu2WAAgI1dHztBZq3aETitVsIhULKxscSGqYtVbOtTFw0kz8eycSRs5DLZaVaYNlsNvS6QkwmM5lpWZw9fZHQcC2nT5xj8WdfM+rDQSBwesxGRodz7NAp7HY7DZvU48NRH2M0GmnUpD5de3Zk6rg5tGn/DL9svRMsXE1IpN8bw3m8UV2q16pM2fgy1K1fi/DIMN7rOcLnde3a9itNn2nID9/9jFgi5sVOz/HOoB4uqZvgIu09b5Iyao0KgUDgUcrdv+cwuny9h4Wb3e5wfag0e6YxWzf+4vO6Vi5dS6Mm9V2vU3zFOF7v1YkVS9e47de4eQOaPO3b//afJjMjm1UrfvK6lp9XwOULV+9rIvivJrRCNHGPV+XmkYtu2ys0e4SgmAd//7aZjORfueg2rKC/dR2JJhBVbDkPv9t7IRCJkQQG+Zx4FavUGDOdPZiFSTcIqFgdsdLzC+tfic1iI2H3Ka9ZOLvVxs1jl4iuXZ7bx51f/mq2a4gi8OFISpVEl5aDPtN73+35zUeIqVMRpdYvpuznAQK7Z599liNHjjBv3jy6d+/+V16Tn4eAUCikUtXyzFs2nbzcfOx2OwGBmvsKxsLCQ+j1blemjZvjsSaWiKlZuxrzP17K8PH9feqSlYbZbOHrxas8eqt0BXr6dhvKjzuWe52KjYqNZOSgyVxLuGOrlXDxGvEVyzJ26mCsXt54FUo5sXHR963TZjZbyEjPIiwylK/WziM9LR1tiNbn/iKRCIVSzoFfjzC03wQsZgvDx71HfMWyXDibwIgBHyKXy5DKpBTk6xj54UAWzl7OwX3HXMe4lnCDzRt+YdGKWYSEaZn/8VKP8xw5cJIjB07yxTcfu85psfg2LjebLXTs/AKdurZzvu5hWhSKO71UYRGhTPl0NG93G+ImMi0UCpn40Qh+2farxzHVahUCoWd2RROgoladapw5dQG5QkbZ+DJIpVIunk8gM929v8tQaMBW4nUKCg7krQHdaduxNVs37sJoMNL6haeJi48hJNT3ff+nMZvMpQ6G3LyR9DdejW/kGiV1X2lG5RZ1STp5FYFQUBQAqJGpHkyWw2G3Y0hP8TqBainIw2YyPnBgJxSJUEbGkK8v8Jh8lYWEY9HlQ1EbuMNqLTq3+5SqsaAQQ64OXUYeikAVSq3mobpFWE1msq75ntDOuZlOTO3ySBQyarzQgJg6Fb3+nfxZcpO8f9EGZ9+dzUtPrZ//n9x3YGez2Th9+jSxsbF/5fX4ecgEBQe4+qruF4FAQKs2zTn3+0U2/LDNtV2hVDB26mC+WbaWY4d/p/e73XxOrpZGZkY2a1Z6Fyw2GIycO33Ra2B36vhZt6CumOtXbpB47Rb1GtR+4Gspidls4eTR0wzoNQqDwdnHExQcyKgPB1K1RiUunvMsxz7X7hnEYjGD3x7nKqGuXvkT77zfk5EDJ2O32zEaTRiNJkLCtGi1QW5BXTHZmTms/WYDQ8e9x5vvdGHXtn0ePXCPN6pLxcrxgDPj1vqFp1m2wLsE0fMvtSQyKoLQcN/BkdlkZs7iKezbdYirCdeJLRPN0882YdvG3bRq05zN63e67d+5Rwe3LwYmkwmL2UpAoIZRkwaxfvUWnmj8GAf3HyfMauXZtk9js9v5aOJnrv7CVs8/RUCQ+4duYFAAgUEBVPUyNf1vRaGQow0Ndole3423CfB/Cpna6XmqjfPMIFrNFgy5etIv3cKkMxBeJRZ1aCDyAM+smN1qxewjswZgyslEon7wgEokkxNQsRqW/FzM+bkIiqzMbEYDxnT3gOruoZTCnAIOLtnsVp5UBKlpOuAlAqN9D4c9CEKJGGWwhtxb3svryhANZZ+oRvyTNVEE/nV9oeqwIJ9rYpnErRzs5/839x3Y7djhaQfl53+XkDAtz7VvQeu2T3MzMQm1WolKo2LlkjWcOOrUnLP8wW+IVovFFTh5I+mWZ3kwLzefjSWCzLv5Zes+Orz2vOtnm832wOK2KbdT3YI6cPaPTRk7m8+WTWPW5M9dZW2AFs81Y9AHb7Nl4y9uum2J126xfdNuPl00iW+X/8jpE+fQhgYzeFRfdm37zef5N2/4hd79X6dM2Ri+3bCI1St/YueWX1Eo5XTt2ZEnmzcgtHjwQCKmU7f2bPhhq0dWrHK1Cjze6NFSg7qszGxmTJxL4tVbNGxSj7hysWSkZzGwz2isFiuVqpWnXIU411BH7Udr0LZDa0QiEbk5eVy7coNvlq0lOzOHpi0a0bJNc2LKRPFWtyGuc6xbtZlqNSsxbfYYBr01Bm1oEG07tPL6uhgKnaLTD8vW7K8mLCKEdwb1ZMqYTzzW4srFEBf/7/8CbDVZSDl7nUNLtlBSHCGkQjSN+rRxmwa9L/7EJLBIKkMYEo4kIAhDWjKFt2/gsLtn4EUKJYISQxIWo5lTa/e5BXUAhlwdv362jmeGv/pQMncSmYSqreuRfPqa1/Vqrev/LWLPQTEhSFVyzHrP986KzWsjD/x7S9R+/r34Z6T9+ESlVtLj5f6EhAZjNJooyL+j2xYdG4niD8okyOVyIqPD3fTnSlKzTlWPbQIEpU4ZikRCCvJ1GA1GblxP4tTxs4SHh1D38UcIiwhBoyn9Q6pQb0BfaGDyJyNxOGDrxl/YucVZjgyPCOXq5UQmzBiGSCTEZnMgEYvQhgajCVBzK9Gz7PbL1n2cPHqG94b2ZsDw3pw+cZ4zpy6U1ifuFvDElInivaG9eL3XK4hEQoJDgjz2j4mNZMW6Baz55ie2btiFVCqhY5e2PPvCU0RElt4/ZTFbXdnP/XuPeKzfuHaLnn07c/bUBVo9/xTlK5UlLDyE/LwCvvpiFUs/v+PkcfrUBSpWjueTqQs8jnPhbAKHD5xgxMT+NGn+hEeGNzUlnaMHTrLxx+3I5VI69+hI5WoV/rVDE8UIhUJaPd8MQ6GBRXO/cmUkH2/0KBNmDPOQwPk3YsjTeQR1AFlXk0nYc4oabRu6/U4KxWJkQSGYsr1nrmTBf+45C4ocJ6RBWsw57l9WBCIxqjLxbhO4poJCknx4vhpydBRmFzy0kmxAlJY6nZry+w/7XHZkAqGARzo0ISDq72kZUARraP5+R/bN+8lNBLlMvcpUerouIn/Gzk8R/sDOj09i46KoWqMS54uEfksyZEy/P/zhFR4ZyqAP3uaDAZM81spViKNsfBmP7QFBGjp1a+dTfLfFc035ac1WRCIRi+Z+5doulUn5+POJPPbEI6jV3oO7tJQMPp22kG0/78Zms6FQKujUtS1jJg8m4dI1qtWqzNL533DrRhIymZSXXn2eXv26ugYRnniyHqtXejbSZ2flsvbbjbw14HVCwrQcPXiS59q3YNM679nvNi+2wGa1odfpUalVSCSSUrNumelZXL5wBaFAQL/BbxIdG0m5+FhXVq80RGJRqcF1ufJxvPRKG156pY3b9vS0TLegDuDR+rXYv8czOCxm4w/bWLt1GZHR7pI4qcnpvNVtiJvUy56dB2jd9mlGThiA9l8e3AVrg+j6ZkdaPd8cXYEOqUxGsDbQYxL630rKmeseQV0xV/acpmKz2m6BkUAoRB4eibkgF8dd/Z2SIO1DmU4VCIVIVGoCq9TAnJeDzWhAog5ArNZ4HN9qtvq8fgBD3v0Ja98PUqWc8o1rEv1IefKSsnDgICgmFLlGifhv8t0VCAQExYbxzIjXMObrMOtNqLQaZAFKpP+gFqGffx//rNCSn381oWEhzF48mZdebYOkSGg4OjaSWZ//H3vnHR5Vmb7he3qfJJPeOwkJkBB671XEjr23te266u6qW133t0VX1117d61rVwQEpffeCQHSey/T+/z+GDJkmJmAgAI693V5eXG+M2fOTCDzzPu97/M8xqixJad17XGTRvLYk79Bd7QSJRQKmTJzPC+9/WRIwThyTAmFQwKreYVD8snNz+bbJauRHmffYLfZefDuP9LWEtyktauzm9/+8v9Y8uVy33aqxWzh7Vc/oq62gcnTx/KnXz9B3dFmeJvNzv/e/pyH7v4jHW3eaw4qyg85AXnTnVfxjz89y4G9ZUybMwlddCTTZk8IOC8xOZ6ZF0zmyOFKVn6zgUWffUNVRW2Af10v7W2d/Ok3T/KL237La8+/x+8e+Cu3LPg5N11xX0ix1peYWB133Bd8CEomkzJp2piA4x3tXXS2dzP/slnIZNI+58swGkN/iPZWs/ricrn4/MPFfqKul2VfraSyIrCX8lxEIpGQlJLAgIE5ZGSlnjeiDsDUGdo/zmm1+ypTfRFJZWiz81EkpiJWqhCrtagzclAlpn7nwYlQCIQiRDI5irhE1GlZyHQxQUWjRC5F3I9dS389aaeCWC5FHRtJcnE2KcU5qGMjfzBR1xdllBpdegIJBeloEnRhURcmgHDFLky/JCTG8chj93Pnz2/EYXegUCqISzj9baaISC0XXT6bMROGYzKakUol6KIjUalD94nIFFL+8vQjbN24k2+XrMHj8TBt1gR00VF0dnQzeeZ4uoJYk9htdvbsOEBmdlrAWntrZ0hfvo/e+ZJhI4MPZOzZeYCG+maiY3UkJMXx2gfP8I/HnmXdyk0oVQp+86efUzgkD5vFxoQpoxk+upj7b/8dAgE89Pt7mTB1DMu+WonFYmXsxJHMmDuJ/bsP8udHn8JhP1YNWXDdRdz9wM0+/7lejpRVsnblpoD7amvpYNW361lw3UX99hgKBAKmzhpPxeFqPvjvZz67kohILc+88heS044Nr7S3drB25Wbeee0jDHojw0cX8+/X/spz/3yN/XvKOFRazl0P3MzCT5YGfa7R44ehOs4Qu7O9i88+XBzy/j5+dyFDhw/+zn2SYU6e+LxUjqwI/nc/Ki0OQQivQ5FUhjwmDllUNAgEZ81EWq5VkTdjGAcWbQ5Yi8lJQhEZ7jkL89MkLOzC9IvT4aSzo4tDBytob+2gcEgeIrHolHugOju66OzoxtBjJFIXgS466qRSKwBam7zbgEcOVTJm/HAAPvngKyqP1CCWiHn/y5e568ZfBX1sWwhPvvraxpDPZ7FYsdtDW4rs2XmAIUMLAEhNT+Lv//4dJpMZs9HMu298wjN/fxmxSMQFF88gPTMFXUwkbS0d/P2P/yYhKY5J08YikUpYv2ozw0cX8Ydf/SNga+mjd7+kePgg5l0y03fM6XDy0btf+J2nUiv5+a9vJyZWR211AxvWbCU3L4v4xNiQvYm66CjuefAWrr7pEuprm1CqFCQkxhEbH+0TVB3tXTz28D/9DIeXfLmcVd+s56mX/szDP3+cluY2REIhAwZmBxgmiyVi7n/4Tt+2dS8ejyeoPU0vNpu93222nxIetxu304HbbgePG6FUjkAsPm1BJZKK0SbqAiPHBJA/a3i/sxACgQDBd0icsJttWPUm2iuaEIoERGclIteq/EyAvysiiYjsSUMAOPTtDpw2h9fOZWguxZdPCCcxhPnJEhZ2YULidDjZvWM/99z0G79J0eGjivj7f/7wnSt3DXVNPHT3nziw95hZ6oSpo/nD3x46YbO/zWanu6uH5V+vxeVyBdieOB1OSvcdCumrVzxiUNDj0bGhBapQKPRtQQfj+GQHtUZFW2s7N1/5Cz8bjDdf/oAVy9byr5f/wnUX3wV4+8s+fOcL3zketyekkHn1uXcZM2G4z9fN4/Hgch1zmZfJpPzj2T/wwtNv+vVDarRqXnrnnxQOyQsp7tQaFWqNirSM4FOcDXWNQVMkLBYr773xCRcvmMPbr37Es/98nTc+fIZP3/+Kj95biNlkYcyE4fzykZ+RmRNYKY3URTBz7mQ++O9nQZ/30ivnhsyl/SnhcblwmAwYayvBlywgQB6fiDw67rTivNqONFB02URqtpZRv/MIbqeLiOQYBs4eQeO+KqKzAi2HTgWb0ULZsm0c+rZP3KQAhlwynqzxg05rK1GuUZI/ewQZYwbisDoQS8XINMrTEoxhzm88Hs85kdV8Ngn32IUJSUtzG3ff+OsAa5LtW/bwxkvvY7effIxQR3sXv7zz936iDmDdys08+fjzmPrp0YJjYqavrcjx6HsMKINEpQ0clEt8fCz/++/nfPHRElqaWmluaqWxvhldtC6gqb+XyTPGhexxk8qkDC4e6Hesp0fPR+8uDOptVlvdwKHScoaUFAasZedm0NUVPLcVvNVGp+PY65ZIJVx+9Tzfn+ddOouFnywLGHIx6I387PqHTiveqm8KxvFsXLuN4aOKufL6i3n9f8+QlJLAvb+6jS+Wv82yjR/y5PN/Iq8gB6k08ENWKpVy/W1X+Hos+zJkaCEDB+Wd8j3/mHA77Biry/uIOgAP1pZGnCZjyMedDMnF2Wx46SsEAgGjbp7FmDsuIGP0QPYv3IhMJUd2hipendXN/qIOwAMVa/di7grd53eyiMQiVNERRCbHoI6NDIu6nyAupwtDaxelS7ay6dUlHFm1G2N7T9A+0Z8CYWEXJiR7d5X6hdj35bMPFtHeFtqs9Hg62juDGvwCLF+yho4QRq+9yOUyIqO0pKYnhzxn2Ogi7n7gJpJTvZYaEqmE+ZfP5s9PPsw9Nz9MYnI8PT0GFn+xnBf/9SYVR6rZunEH/3zhT8Qn+lcMhwwt4OE//ZzR44aRV5DjtzZtzkTe//IlDAYjNVV1PhuYni4964L0vfWy9KuVzLt4ht+xuPgYHvnzL2htDi2+BhUNRHFcSsDAQQMoGendhho3eSQrgyRFgFfcVQUZUDhZ+ksWEUvEZA/I4KHf30N6ZgpisRiJREJ8YiwJSfEB26/Hk5KWxLtfvMTNd15FcmoCWbnpPPr4/Tz90p+JjT8z5rLnMx6PB1tXR8h1S2sjbmfoVoETodJpGDBtKDVbDrLp1SVsemUxez5dBwIBudNKzoh9ht1s4+BS/4SZuLwUxt89n9wpxTTsqqC9ohGr/sxNsJ4LWLqNtB2up2LtXpoP1p4RARsmOG6Xm/byBpY99g77F26kfucRdn24mm/+8h7d9Wc/s/lsEN7r+IFpb+1ArzcgFIqIiNQQpYs827cUkqbGlpBrVqsNZz+RVsfT0Y8IdLvdQScnjychKZ67fnkTj97/fwFro8YPIz4hlo2rt/KHvz10dAjDw+rlG7nmop/hsDuoLK9GJBJx+GAFg4ry+fmtj+JyuUhJS+LeB29FG6nBarGRkZVKXEKsr4/whf96p2J3b9/P8NHFbN24kxsuuwezyRspNW7SKH7/1we8Bruy0EJIrpAxfc5E0rNSqSyvISsnnYSkOP71t5e47Kp5REZF0H1c5U4gEPDzX9+G9jiRFBsfwxPP/pGNa7cikUj67VdrCSEa3W43Pd16r41CVETQc6bPmcSLz7wVdG3uRdOJjYvxm5D9rqSkJXLvr27j+tsWIBAK0UVH/uS3UXx4PLisoWPL3HbbaVUkpCoFeTOHkzI0l4p1e7GbrKSNyCM6K/GM+b+5nE6s+mP/tuPyUsgYU8jGVxb7slcPLNqMLjOBsXfMQxl15jNWf2iMbd2s+ffnmNqP/VuWa5VM+uVlRCSGv7Ccaaw9Jja9shi3y+133Gm1s/n1r5ny4OVBk1R+zISF3Q+E1Wpj/56DPPabJ6mpqge8Nh2PPfFrcvIy+zXfPVsUDQ3cNuwlOTXBL3v0RMT248cmEolQa078Dy86Jopho4r4z2t/5bmnXufwwQo0WjVX3XAJV95wMQAfvvsFzz/9RtDHb924i+TUROZePJ37bnnE19NWX9vI7x/6Owqlgocfu4/8wlw/cREbF01sXDRFJYV88N/P+c8Tr/pdd8OaLdx9069588P/cOFls4Ia9QIsuO5iYuKiiYmLZsyE4b7jjz3xa8wmC69+8C/++rt/sWv7PsBrUvz7vz5IVm5G0OvFJcRw8YK51Nc2EqWLCIgg6yVvYHbAsebGVpYtWslXn32DWCxmwXUXMX7KqACrmfjEWG6951pef/69gON3/uJG5IrT9y7z+vWFP/CORyAUIlapcRiC/1xFcgWC0/y9IVPJkankRKVNx+PxIAwxCXsyWA1mDC1d1O88gkAoJHVYLopINbE5yRhbuwEYMK3ET9T1oo6NwNTeQ9XG/Vi6jCQOziQqLe6MZr7+EJi7DGx+Y6mfqAOw6s2sf34hU391BYqI81+8nkuYuwzYzcF3lgwtXdgMlrCwC/P9UFtVz+1XP+DXI3Zgbxk3Xn4vH3/9+kmH1P+QpGUkk5uXxZFDgVE6v3zkLmK/g0GxLiaKopJC9vSJ5Opl7kXTT9qMNjEpnoTEOPIKcnA4HEilUmLiohGLRXR2dBEVFRkQsdVLdKyOmLhoNq3dFnRQwWK28OK/3mL85NEBgxHgtRJ5+d//DTgOUHmkhuqqOqbMHMfypWv9oscAps6aQF5BoMACr9Ftb+X2P6//le6uHpxOF9oITcB9eDweWpvbaW1px6A3kpySQHRsFPc+eCuP/zYw3qqopJD446aOmxpauPWq+/0mgv/0mycYXDyQf738F7+hGG2EhpvuuIrJ08fxv7c/p6ujm5kXTGHMhOEhvfvCnDmkEVFYWpuO67HzokhIOa3hib4IhAIE/cWinABLj4kd76+kcc+xqejDy3eSMaaAgbNHULO1DKVOg6GlK0DUpQzLJSotnlVPfwxH/1lWrt+POi6SSb+4FFX0+eEN6Ha5MXcZ6awKjEQEMLX3YNWbw8LuDOPqZ7cCCKjk/RQIC7sfALPJwsvPvh208d9kNLPkyxXcds+151zVLjY+hufe/DvP/P1lvlm8GpfLRXxCLA/89i5Gjx/2na6li47iief/yB8e+gdbNuwAvFOnsy+cyi8evgOV6uQbtQUCQVBRoYuO4qY7r+K3D/w16OMuuXIuH7+70OfZFozOjm7cIQY0LGYLPd36kI/dsWUPu7bv53d/+SU1VfUsW7QSsVjMxQvmkpWTdlK2LhGR2pAmt263m0Ol5dx788O0tR7rvZp/+WzuefAW/vC3B3nun6/T2dGNWCJm7kXTufehW/2saVwuF199tiyozcu+3QfZvWM/My+YHHBPRSWFFA7Jw+l09dt3F+bMIpTK0GbnYaytwm3zDjEJxGKUSWmI5OeOMW1rWZ2fqOulelMpKUNzmPrrKzm8fAc2w3FbywLIHFPIuue/8Im6Xoyt3RxYtJmSq6cg7mc6/VzB2mPC2t3/QIvDcvIDZ2FODpVOi0AoxBPk97pUKUOmDhyo+7Fz3gi7v/3tb3z22WeUlZWhUCgYO3Ys//jHP8jLO/en50xGc0AFpy/bNu3kulsuR6k69/4CJibH88e//4r7fnU7DocDlUpBbHzMSfdBdbR34nA4kUokJCbF888X/kRnRzcmowmtVkN0bFRIU2KrxUZPtx6hUIAuJuqkzGrHThzBnPnT+HrhCr/jt91zHQ67k472TiZOHcPSr1YGfXxxSSGKIJO14J2Elcmk2GzBfznHxEZzYM9BFsy9jfFTRjN15jgsFisWi5WEpNOvbrU0tXLb1b/0y+wFWPjJUlLTkrj5rmsYP2U0ZqMFqVxKdHRkwGvp7uzhq0+XhXyOTz/4iglTRwfdZheLxWELkh8YgUCAWKFCm5WH2+UEjweBSIxQIjlnehFtRguHVwY3OgaoWLeP4ddNp/iKyegb2yn7ZrtvLSIphq6algBR10vt1jIK541GHP39Czunw4kAEEnEOKx2HBYbIECmUZzUIInDakMgFCIUiwKqkgAIQBHx09oS/CGQaZUMnDOC0sVbAtaKF0xC/hN8z8+b39Jr1qzhnnvuYcSIETidTh599FFmzpxJaWkpKtW5/YOTyiTEJ8SGtJ1ISkkMiMI6l1CqFN9ZdHZ39rB5ww5eePoNaqsbyMhO5b5f3c7wUUVBEyD64na7qa9p5PUX32PVNxuQK2Rcce185l8++4R+d9GxOh5+7Bfc/LOr2bRuOzK5lKEjhrB8yRoef/QpfvPH+3C6nN6fx3FDBUKhkPsf+RnaiOB9PTGxOi656gL+99/PA9YioyJQa1V0Hk2+WL9qM+tXeR3xS0YMYeTYoWg0p7cFc2Dv4QBR18vbr33ERVfMCWnd4kMg6Lcv61yrGofxIpRIzlhk15nG7XYfFUHBcVhsuJxO1NEReBJ0RKbG0l3n/bfXK6JCXtvlDlqJOZNYuo10VDZRueEA6vgIMkcXcnDpNpr2VSKSiMkYW0j6yDyM7Xqi0uJQRKoQBfmCI5KIqd91hKzxgyhfvSdgPW14HjLNuffl/XxHIpOQO6WYiOQYDny1CVOHnoikaAZfPI6otPjT6hs9XzlvhN3Spf5xRW+99RZxcXHs2LGDiRMnnqW7OjkiIrXcft/13HfLI0HXr77p0h9FJUSvNyASihCJhHz03pc898/XfWuVR2r45R2/49d/uJcF11+MtJ+tlbqaRq6+8A6MhqMWCF3w7JOvsXzJGp598+8hs2R9eDxE6SK4+Io5RB31SYuLi+biBXOQyiS4XR6ee/PvPPfU66xbuRm32012bgaP/uWXZA/ICHlZmVzGTXdeRV1NIxtWH/t2GBOn4/F/PoJcLkMsFvU7oXo6VFeGti0x6I1+UWShiNJFcMmCufzrby8FXV9w3UXfaSgmTBipUk7ioAyOrNwddD0uLxWRxPv7TRGhYvzd8zmwaDM1W8rQN3eSP2t40McBRKbGfq95rOYuIxtf+orOmhZEEjEDpg1l1VMf47R5/y25HC4OL99J0/4qCi8YzdI/vc2Eey8iJicpQNzJNAqcVjvRWUnkzxpBxdq9OCw2xDIJGWMKyJteEs51/Z6QqRWkluQSm5uM2+lCJBH/JLdgezlv1URPj3fqSKcLPW15LjFkaAG33HUNb770ga9xXywW8fu/PkhK6plxeD9bNDe2smbFRhZ9/g1SqZRf/eFeXv7P20HPffbJ15g6awJJKQlB1y0WK6899+4xUdeHgweOcHDf4ZDCrqdbz77dB3n2yVepKq8lPSuVex+8leLhg4iO1dF3DCExOZ6/P/M7urp6cLlcqDXqk4pJ6+nSU1RSyFU3XExLYxvaSA0Ou4N/PPYsw0YWMXnGOJZ/7e8pd/m180+7WgeQX5gbci02LhrpSXwACoVC5syfxhcff01VuX96x4jRxRQOyaOpoQWL2YJMLiMmVocs3FP3o8NqMGM3WXG73EiVchSRqlPe2hWJRWRPKqJ680Ecx00nyiNUJBdn+8V7KaM0DL1yMgVzR+F2uhCKRcTlpdJ6qM7vsQKBgJIrp3yv0WCN+yrprPHaOqWNGEDVhgM+UdcXQ3MXNpMFpU7D+ue/ZNYfb0Ad428RJJHLKF4wmXUvfIkySkPJ1VO81SKBAG2iDqXu/BgCOZ8Jx8h5OS+Fndvt5v7772fcuHEMGhQ8KgrAZrNhsx37RaPXh258/76J0kVy2z3XcsmVcynddxipVEJeQQ7RsbrzukJy/ISlQCCgprIuZPXIYrHS2dEdUtjpuw2s+nZ9yOdb+OkyJkwdHbBlaLc7+HrhCv76+2d8xw6VlnPfrY/w0O/u5sobLg7wmFNpVKhOwmbl+Od/741PEAqFRERqMJssvp679tYOHv7Tz/2EXeGQfEaOGfqdniMUuXmZxCcG39K/64GbT1zJPEpCUhyvvPtP1q/eyhcfL0EsFnPVjZcwuGggSxau5NVn38agNyKVSbn0qgu47Z7rQl67s6OLuppGFn6yFLfbzYWXziI9K8UXf3YqdHX20NXZjdlkISJSQ3SM7pzsPz0f8Xg89DR2sPWtZb7tUHmEipKrphA/MO2UUxs0cZFMfegK9i/cROPeKgRCASlDcxgwvQRllDZANIqlEr++uVE3z6Jq4wGOrNyNzWQhJjuZossmEJH0/dng2AwWKtbs9f1Zl5HIvi83hDy/5WAduowEalu76app9Qk7p92BVW/G0m1ELBUz/mfzsfQY6a5rQxmtJTI5BkWUGoHw3OiJDPPj57wUdvfccw/79+9n/frQAgC8AxePPfbYD3RXJ0atUaPWqEnPTD3bt3JGcDpdfP7hYr8JS4/Hg0TS/1+r/rZhBUJBv4a3ao0y4EOio72Tnm490TE6Lrx0FksXrfQTls8++Rrjp4xGrVGdtPgJhdXsnUx0u90BvnF2u4Os3AwGFeUjFApZcN1FjB4/7Dtn6oYiPjGO1z54hkfv/wv7dh8EQKFUcOfPb2DarInfqeISnxjHZVfPY8YFkxAKhEhlEl57/j1e6mNGbLfZ+d9/P6e5sZXH//lwwLRuR3snT/75eZZ8udx37NMPFjFlxjh+/9cHT8mbrr6uiUd/8Rd279gPeD0OL736Au66/2ZiYs+P6vy5jLlTz6qnPvarrFl7TGx8eRFTH1pATM6p2S4JBAIikmIouXoqgy+2g8eNSC5Frlb4tmH7QxGpJn/WCDLHFuJxexDJJMhUwb/wetwe76CCSIjkNMyxPR6335CDy+lELJNgN1mDni+RS3DanahitMi1Cgyt3YAHfVMn2/77jc9LTaZWMPZn88iaMPiMpHeECfNdOe+6Cu+9914WLVrEqlWrSEkJHlzeyyOPPEJPT4/vv7q6un7PD/Pd6Oro4stPlgYcN+iNQX3gwGu6GxUkH7SX6JgorrjuopDrl119oU/AmExmNq3bzi1X3s/F027k4V88jsfj4ZlX/uIXZ2Wz2Sk/VMX1l9zN1o07Q061BqOttYOyA0fYtnkX1ZV1XHXjJYhDfFBNnTme7Nx0/vXKX/jLU48wdMTgM76NmZ6ZwnNv/oMvVrzNh4tf5fNv3+L6W68gShc8OeJEaLUa1BoVbS0dvPXSB0HPWf3thqCRb6V7D/uJul5WfbuB7VsDm8dPRHtrB/fe/BufqAOvPcvH7y7kv698+J2yic837CYrxvYeTB3679USo3FvVcB2aS97v1gfUtScLIoIFdqEKLSJ0aiiNCcl6noRioQoItUodZqQos7Uoefwip2sffYLNr60iKZ9VX7JFt8FqUpB2sh8358bdpWTPio/5PlJRdlIlTKGXTOV/Yu28PUf3mLpn96mamMpo26dgyLS+zvHZrSw5pnPMHeGY8TCnB3OG2Hn8Xi49957+fzzz1m5ciWZmZknfIxMJkOr1fr9F+bMEswT7r+vfMijj/8yYItZpVby1It/Din6wFuhuWTBXAYESUtYcP1Fflmx+3eXced1D/p6xRx2B4s+/4Zn/vYyD/3+noDrNjW08LPrH/KrMLrdbmw2e1DD4qqKWm6+4j4WzL2NW6+8n/lTruO159/l2df/FmC9olIrue9Xt1FTVc+DP/sD86dezwUTr+EXt/2WI2WV/XrnfVeidBFk5aQzcNAAklISkJwBjy+DwRQyFxigoa7J789mk5l3Xv845PnvvvZxv55/wWhqbKXySE3QtQ/f/py2ltC5qecrbpeL7vo2Nrz0FUt+9yZLfvcmW/+7DEPLyecwn/Rzud0BfWx96a5rw3kSAzhnC2N7Dyue+JA9n66js6qZloO1rHv+S3Z/sgbr8f54J4FQJCRj9EAUR2PM2o40EJUahy4jsE0kb8Yw5FolKUNzaS9vJG34AMbccQGaBB2NeyrY8e4Kiq84NsTndrqo3xk8GztMmO+b82Yr9p577uH999/nyy+/RKPR0NzsdfeOiIhAoQj335wNonSRXHDJDN544X2/4+WHq3jz5Q945/MX2LF1D6X7DjO4eCDjJo08qbSC+MRYnn/rHxzYe4ivPl2KSq3iimvnk5aR4qtMdbZ38cSfnw36+COHKhGLxeiiI+ns6CYmTofJ6B3GcDpdvPPaRzz4u7tpa27nsw8XU1lew7CRRcyaN4XE5HhEIhEtTa3ccc0DAZYoyxatIiZWx79f+z/++fjzmIxmJs0Yy023X4Xb7eaGS+/xE0g7t+3lhsvu4aMlr/mJ0nMNxQkqi8dXBJ1ON2ZT6EqJ2WTB9R0d3+trGkKuWa02LObv/uF9rmNs62HFPz7E5XAC3i+wDbsraK9oZPrDV5/R1AWhUIg2UUfD7kAjYQClToPwJLwiTwZLtwm3y4VQLDwjSQtOu5OyZdux9gQOVdVuPUTulGLkp2AloorWMvWhBVSu30/t1jIOLN5MydVTcdoc1G4/jEQmIXFwJjKVnM2vf42x7Vj7hVQpY+RNs9jz6ToMLV1Yekxo4qN8oryrthWP2xPurQvzg3PeCLsXX/Tmb06ePNnv+JtvvslNN930w99QGMQSMVdedzGLP/82oKFfIhERFR3J1TdeekrXjk+IJT4hlolTxyAUCgKGJcxmK0fKAqPOejmwp4yMrDRMRjOPPPYLvyldt9vDto27eOBnf/BV0tav2sIrz77Dmx/9h4LBA6itaQgQdb188v5XXHfrFbz50X9wud1ERGgQCAX88/EXgla9TEYzn324hHseuAXxOdpzExUdyejxw9m8fnvAWkJSnK830ePx0NrSjs1qY9qciezdVRr0etNmTwjpBxiKxBADNQASqSSkcfT5itPu5NC3O3yiri82g4X63eUMmDr0jBoRp48aSNmy7XjcgRXqgrmjkGtPb6rQZrTQtL+a/V9twtyhR6nTMOzaqWgTohFLJafs42Y3WajdWhZyvWbzQaIzT81dQBWtpXDeKHImFwHeyUqBUEBiYQbgzSLd8uYyP1EHYDfb2P7ucoZcMp6t//2GjspmIpJjfMIuOjvxjIs6m8mKVW9C39iJVCVDHReJIkL9k/RqCxOa80bYBdsqC3P2SUyO5+1Pn2fxF9/y9ZcrkMqkXH3TpYweP6zfLdeTJZQQEotFKJSKkFWcuIQYUtOTuO3e63j9+Xc5fPBYlWLeJTO479ZHA7ZHLWYLj/7yL7z+v2eor206/pI+bDY7NquN5D42NZ0dXWzdtDPkY7as387Nd1yFNvLcDDXXRmj4498f4t6bH6biSLXveHSsjhfeeoK4hFiMRjNbN+zgr79/htaWdp5942/ExcfQ2tLudy1ddCQXL5j7nUVsUnICKWlJQePOLlkw90c3POGwWGk5GNqbsGlvJVnjBp3ypGowlDoN4352IZteW4LLflRQCiBveglx+ac31OW0O6lYu5f9CzcBXsFUcvVUmg/UsPujtQjFInImF5E0ONPXj/ZdCCZGe3Gf5ueDUCQKmQrhtDtpO1wfdM2qNyOSihGKRSh1ahIHZ5JSkkvlur0kFwXPhj5VrD0mdn28hrrth33HJHIp4++Zjy4zMTyoEcbHeSPswpy7JCbHc/PPruayq+YhEAqIjDq1Rv7vQnRMFFdceyFvv/pRwJpIJGLy9LE89vA/2bV9n9+aQqnA6XSGFISVR2ro7tSTkRX6Q06lVgZUj6RSKTGxupA9YrFxMWekF+5kMRlNGI1mJGIxupPw5wPvYMsr7z9NY30zlYerSUpNJD0zxZdmcbi0nPvv+J3v/L/+/hkee/I3LF20km8Xr8bj9jB7/lRuu+c6P9F7ssQlxPDi20/yyzt+R/nhKt/x2fOmcufPb/zR+ekJRSJkakXIJnu5VoVQfGYrMWKphPiCdGb/8QaMbd04bQ60idHINQokCpnPusPtdGFq19NcWoNcoyR5aDaKSHW/ItOqN1G6ZCvgnW4fds00dn+6FrfDiaXbiMvhYsd7K6jOSmTsHRd8J3EnVclJHT6A6k3BK8QZowZ+tzcCryhzOZ0IhULkWlXI6ppPAIfAYbEhloqJzUlmzb8+QyyXMPLGmWc0ZcLtclO18YCfqANwWO2s/c/nQX31wvx0CQu7MGcEkUjU77TrmUYilXD9bQvYs+MAe/rk8IrFIv75wmPoYnRcvGAOB/Ydwn50ClYqk/Lwn+47Ye+Xy+UiOTWRjKxUqisDm82vv20BMXH+1SO1RsUtd13D1o3BMzNvvGMBih/Add5qtVJTWc9zT73O7u37iYnVcevd1zJm4oiTMmCOjYsmNi6aopJCv+PdXT08fVxaRVNDCz+/7VGmz57Iq+//i7j4GCKjtH4CzGKx0t7awa5t+9DrjQwbOYT4xDh0If6upGem8OoHT9Pe2olebyAiQotSpUCu+HGJOvDaYuTNHMbm174Oup4zpThodNXpIhKLUEVrA/r3rD0mSr/eSkJhBvu+2EBPw7FK7L4vNzD8uumkDh8QUtzZjRaffUju1KGIpCIGTB2KzWhBkxCFqa2H/Qs30VHZRFdd63cSdmKphIK5I2naV4XN6P+lLKkoC3Vs5Elfy26y0l7RyN7P16Nv6kSuVZI/ewRpwwcg1wZW7aRKGWKZJKhxMYA8Qs3AOSOp23EEj9uNw2xj48uLmPWH65EknJkqs1Vv4tDy4DsCLoeL1kN1YWEXxkdY2IU5b4lPiOVfr/yFhromtm3aTUycjmEjhxAbH41cLmfORdMpKhnEwQOHcbs9qNVKPv9wMVffeCkikQiXKzD6KyZOR0SUlrj4GF747xP89pd/9VX9JFIJ19x4KVdedxGSILmdBYPyuOnOq3jr5f/5Hb/7lzeTPeDEU9xngtJ9h7n1yvt9r62nW8+jv/w/Llkwlwd+e1eAF93JYrXaKDsQOOXnOGoM7fHAE8/9wW/NbLawZvlGHr3///ze64lTx/DHf/wq5Fa90+nihX+9ydoVm3yPmzR9LL/7ywPEJ/afFXy+ETcglbSR+QH9Y4UXjEITf3KV1jOBw2pn38KN2M02GvdW+om6Xra/u5yYnKSQYkV4dCtQl5FAQmE6659f6JcDG5OTxOjb5rDplcVUrt9PwsB032NOBnVsJNMfvorKDQdo2FOBRCZlwPShxOYkn3RvoNvtpnFvJVv/+43vmFVvZvdHa+hpaKfosgkBsV/yCBUD54xk3xeB5sVJxdnItUqqN5dSv+PYvw+P20Plun0MuWzCGclf9rjc/VrRGFu7T/s5wvx4CAu7MGccm9VGR0cXLqcblVqBLvr7+4CKidURE6sLqDCBV9Tced2D6PVGAN/2qzZCww23L+DNIL5tv/vLA75BgZS0JP792v/R2dGN1WJFG6EhJjY6oHrkdrtpb+vE7XJz7S2Xc8U189m8cQdCoZBhI4uIiYlCrT39ycAT0dHexeOPPBVUsH7+0RJuuP3KUxZ2YrGIhMRYaquDT65m56YHHGtpauPhnz8e0B+7duUmFn/+LTfcviDgQ0/fY+Avv32aNcs3+h1fs3wjLqeLv/3790Sco32Kp4Jcq2TogknkzRhG84FqhGIRiYUZyCNUSJU/XJXSZjBTvamUkTfNYsd7K0Ke17CnAm0IYSfTKFDFRDBw9gg2vrQooMLVXt6IJi6K5KG5eNxuOIWhEFVMBIXzRpE7tRihUIg0hN9dKKzdJnZ/sjboWtWGA+TPHB4g7ERiEVnjChHLJJQu2YLNYEEsk5A1YTDx+WmsfOJD3EF2AXoaO7yRadLTF3ZCiRh1XGRIARedfWrG0mF+nISFXZgzSlNjCy898xaLPv8Wh91Bbl4WDz/2cwqL8lH+wFONrc3tQSdbF366jLsfuIVnXv0Lr/znHZoamskvzOWeB28le0AGAoEAl8tFR1sXHo+HhMS4kJFW7W2dLFu0ijdeeI+21g7yCnJ44NG7mDNv6g8i5vpi0Bv9Bh+OZ9f2fWQPyDila8fERnP7vdfz+4f+HrAmEomYfeHUgOPfLFoVcujp7dc+ZO5F0wNSOTo7ugJEXS/rV2+hs6PrexN2brcba7cJq8EMHpBpFSgiVGfMAiQUMrUCmVpBVOrZq0bazTY8bg9CkTDkliN4p3VDoYhQM/7u+bQdqQ95jdptZYy8aRZSlfyUJzmFItEpZ4LazbZ+K1/65s6glVKZRknOpCKSi7NxWO0IxSKkShmbX18aVNSBt3J5prbSFREqhlw6no0vLQpYU0ZpzurfnTDnHmFhF+a0MRnNWC1WXG43D931R1/cFXg95W67+pe8+fF/KBkx5Ae9r/4Mcl94+g0+//YtXnz7SRx2OwqlwpdW0dLUxmf/W8SH736JxWRh/NTR3PPLm0nLTEHc5xd1T7eeZ/72Egs/XeY7dqi0nDuve5Ann/8TMy+YfEatKk6E6AQflIrT7FObMHU0V91wCf97+/M+15Tz5PN/JCE5LuD8xobmkNfqbO8Oatps0Af6lPmvG7/DHZ88TruDtiMNbH1zma+HS6KQMezaqSQOyjyjk6nnImKZt7Wgp7GD6KxEOiqDT4UnDu6/pUCbqKO5tDrkusvhQqKQnTAD1m6xYTOYsXQZkSikyLWqk+rJczmcWHtMWHpMCIRCFBEq5BEqn4g80davpJ9/IwKhAGWU/5eKwnmjaSkNHJgSikVkjBkYdCDDbrLisNoRCARI1QrE0mO/U9xud8it29gBKYy8cSZ7PlvnE9hxA1IYft30gPsK89MmLOzCnDIGvZHKIzW88uzb1FbXk5ufxe33Xs+SL5ez9KuVvvM8Hg9PPPYcL779BFG6yB/s/vqbzFQo5CiUigDj3baWdn5+6yMc7NNP9u3i1axbsYn/LX6VrJxjW44d7V1+oq4vTzz2LMXDBxGf8MN9k46MigjpRScSiRhSMui0rq+LjuK+X93GtbdcxpGySpQqJRlZqcTE6ZBKA4XPhCmj+fzDJUGvVVRSGHSYRK0Jbjlxsuuniqldz/rnv/Sz1HBYbGx+7WumP3I1uvQTG2ufz8g0SuLyUqnasJ+Sq6ay8ZVFAfYiUWlxIbdhexEIBEGTG3pRRKpRx0bgtDlpr2hEJBEj0yhRRKp8X4IsPSb2fbGB6s2liCRissYNIqEgHUu3CZlGgTxCFdTaw262UrOljL2frcPl8LYjSFVyRt86h9jcZO9zqeXoshLorAz80iFRyFDFhG5VsB0dDhHLpT6hH5GoY8xtc9jxwSpfJVCp0zD6ljkojxtOcTld6Js62P3xWtoO1yOSiEgfXcDAOSNw2Z1UbyrF0NpNfH4aiYXpKKO1fl8MZUo5aaPyictLxW6xIZKIkKkU33k7OsyPn7Cw+4nhdDgRiUWnXUmy2ews/3oNf/z1E75jNVX1rFi6jj/+/SEa65v9zGtL9x3CYrYS9QNakemiI5l1wRSWLV4VsHbbPdcFDakvO1DuJ+p6sVptPP/0Gzz+5G9QqrzbQH298Y6nrbUDg974gwo7jVbNo4//ghsvu5euTn8z1d//9cF+p2J7uvXoewyAgIhITUhzYY1WjUarJj3zxJ5ng4oGkpSSQGO9/4eoQCAIOcih68coecSYod9Lv6bb6eLIqt0hfdIOLtnKyJtn/airdjKVnBE3zGDjK4uoXL+PsXfMo+zb7XRUNCGWScieNITcKUNDer31RR0bSURyND0NgRFwgy8eR/PBWnZ/uNq3hamIVDP2Z/OISovD4/FQuW4v1ZtKkShkjL51NuVr9rL+hYV4PB7EMgn5s0aQNWEQco0Sj8eDpduEzWjGaXMg1yqJzkryRafZTVbWPfcls/54HaroCAQiIaNvmcPKJz/yS7EQikWMu+vCoCkZVoOZ9vJGDn69FZfDSe4078CGWCZBEakmeWgu0VlJ2IwWBEIBMrUiaHXR0NLFin986JscdjlcmNp7aCmtZcd7K3xtCw27ypGq5Ex+4HIik/1bFYRCIUqdBiXhCl2Y0ISF3U+Exvpm1q3azIbVW0hOS+Kyqy4gMSUBlerUelXaWzv52x/+HXDc4/Hwnyde5cHf3eMn7NQa1Q/ujh4RqeXXf7qPxJR4PnznSyxmC1G6CO74+Q3MmT8daRBfua8XBoba97JuxSb0eqNP2GlO0EPXd3LWaDTT0dbJnh37cbvdFA8bRHSs7oTX+K5kZKXxwaJXWLdyM+tXbSExJZ7Lr7mQpJREvz7Bzo4u2lo66OjoQqvV8OSfn/NN/w4fXcwjf/4F2bkZpzXRl5AUx2v/e4Z//e0lVi5dh8vlIjs3g0cev58B+VlBHxMRqeXPT/6G3z3wV7ZuOmYdUzJyCH956hEio8583rPT7qCnPnAKtJeepg6cdsePWtiB11B4wj0XY+kxYTOYGH7ddIRiESKxCJlGedIGuIoIFePvuYg9n66nYdcRPG4PMo2SIZeMQxmtZfVT/hnDlm4ja/71KTN/fx1CoYDDy70/90Hzx7B/4Sa6alt95zptDvYv3IhAKCB3ajGd1S1sfv1rn0iTyKUUzh+DOjaCyvX7AcgaV4ily0jpkq2YO/TEDUhh8i8vw9xpoGlvJZpEHQkF6SiiNAG/o+xmGwe/3sqRlbtJKMwgZ3IRR1btZvdHa5BplORNLyGlJNcrtnShxZbDamP/lxt8oq6XnMlFbHp1SUAvqt1kZfu7yxlz+1xUuu8n49zj8WDpMWHtMeG02lFGaZBqFEh/hNZCPzXCwu4nQFV5DTddcZ9fFee9Nz7hL08/yoy5k1Aovnspv7WlLWRofGdHd0A/15XXX0xMzA+fHBAbF819D93GVTdeit1qQ66UExsXjShEQ7y2n6lRpUqBUHDsF39mdhoKhRyLJbAZe/joYp9Rs77HwKcfLOKZv7/s9wv85ruu4eY7riJSd2b9p5KSE7jy+ou59MoLEIlFAeKsuamVh+97nL27DvDcm//g1it/4fcatm/ezQ2Xnpl825TURP785G944JGf4XS6UGuURJ/g70FCUhz/fPExOtu76OkxoI3QEB0T9b0ZX4ulEiKSo+moCt5Xpk3QIf4BzaXPJnKt8qh1yOlVmkUSMQVzR5IzaQhulxuFVolEJWf1058EPd9pc9BaVkdsbjIOqx2RxJsE0VfU9aVs6TaSi7NZ++/P/IYXHFY7uz9aw5jb59Kwp4LY3BSU0VrWPPOZ75z28kYOr9jFlAevYOhVU/p9HVa9iSMrd6OM0pA1YRAbXvzKO9ELmDv07PpwNc2lNQy9ajJyjTLk3xOHxU7rIf/0Cplagc1gDhB7vXRWNWNs60GqkCNRnNkvFR63h+76Nta/sBBLt7dvVSAQkDVhEIXzRgf18wtz/hAOmPuR09Nt4C+/+1fA1hzAn379DzraOk/puies5PTZ6i0ZMZirb7wUseTsfI+QSCUkJceTkZ1GQmJcSFEHcNHls0OuXXHtfL8Uh9i4aP71yuMBrys2Lpo//v0h3/RmVXkN//rbSwHfyt988X0O7Dt0Ki/ppJBIJQE/J5PRzFP/9yI7t+1l8oxxfLt4dVBh2ptv6wySY/pdUamUJB9NsTiRqOslMiqCrNwMhg4fTHZuxveaZiIUi8jtJ5O1YO7IH3217kS4nC7M3UbMXUZcIYRIL1a9iV0fruabx99l9dOfsPbfn7Hs8XfZ8d4K8mcOC/k4Q1sPApGQsXfOY9i10/t9HofVjqXHFHIitWLtPtJHDSRjTIEv4qwvTpuDbe98i7WfKV+AzmpvG0HWxMEcXLLVJ+r60rSviu66NnZ/shZDW3fQSXCBQBAwmCEUC3GeKNXCZPVOaZ9hzF0GVv/rU5+oA28Fr2LtPqo3HQw62BTm/CEs7H7k6Lv1bNsUPA3B6XRxYO+pCYvYuGhU6uDbuPEJscTFx3Dfr27jnc9f4KkX/xxga3GukpSSwK33XBtwPK8gh8uvme+XfyqRShg+upgvlr/Nr35/L1dcO58nn/8T7375oq8HzWqx8fZrgbFnvbzx4vvf26RnMDo7uvh28WoAcgZk+m2XH8+mtdswmc78h8q5iCpGy7i75/s1okvkUkbdMvsHNQo+FzF16tm/cCPL//o+3/7fe+z9dC3G9sAvir101rQERF+BVwC5XW7UcZEBayklOSQNSmfrm8vY9Opi9n62DnOHnlG3zA7awiEQCvH0kyBjaOlEkxCFuUMfVIwBdNe1YTcFF3ZWvRlzlwF1bCQyjQJNXGRA9VAeoaLo8omMu+tCxBIxqUNzKV+9B1N74DS+XKsid0qx/3P0mNEEeS96Ueo02M1WnH1Mns8UndUtOCzBd1zKvtnu138Y5vwjvBX7I8cZxKy2L6EyU09EXHwMj//zER686w9+31DFYhH/969HGVw8kCFDC07p2meTiEgtN91xFTPnTuaLj5ag7zEyZ/408gtzg4pTqVRKWkYy1992RdDr2e12WppD92+ZzRbsNjs93XqUKkXQRIszidVi830bNxpM6GIiIYS2j4nVBe1D/DEilkpIKEhn5m+vPepj50GmVXonML9nH7tzGXOngdVPfYKp45hYObJqD3U7jjDtN1cFxJI5LHZfj1wwaraUkVKcQ9k3x4Zj1HGRpJQMYNXTn8DRXyVWvZl9X24kviCdwgvHBKQ+pI3M67eSpY6LwqY392tfAsBx1TWrwUzz/moOLt2GpcdEVFocw66dhlQhQyAU+AZslFEahl83nT2frfOldAiEAtJHDcTcqUcRpfbrSfSu5dN8oJrWw/VHn9pDc2ktWRMGU7nOP9MaoPCC0ZSv3sPo2088qPRd0TcHDrb0YjdZQ24Phzk/CAu7HzkarTpk5inAkKGBiQ0ng1giZuykEXyy9A3ee/NTKo5UUTg4jyuvv5jktKQf1L/tTBMRqSUiUsvAQQNO+1oqtZLR44axt0+ebS/X3nwZ4yaP4i+//xdN9S2UjBjsff9SE7+3bWuVWolCqcBitvDN4tXc96vb2LIheAbljXdcieIHNpU+mwhFwhM2wf/UaNxX6SfqerHqzVRvPMDAuaP8Kmoet7tfg2On1U5cfipHVu3GdXSbP3/mMEoXb/aJur60lNaQO7kIkUTsOz92QAqDLxqH3Wz1Vu6CVOQK5o5ErlEiEApBQNBra+KjkPSx3LGZrez/ahOVa4+JrLbD9bQdqWfsnfOY+PNLMLZ203KojqTBWWx/dznmLkOf1+6helMpUpUcTWI0ij4xZzajBbvFRvGVk7GbrDTtr0KqkJNUnIVYKiYiKZryNXuwdBmJSosjd9pQ6nccQZOoO+m4tO9CVGqg72QvikgVwrPUNhPmzBD+6f3IiYnV8bu/Psgd1zwQ0Ddx2dXziIk99YEGpVJBbn4Wjz5+P1arFYVC/r1XnM43RCIRF10xm3ff+Bhzn22fOfOnERGp5e4bf+07VrrvEB+/t5A3PvoPg4sHfi/3ExsXzU13XsWL/3qT1pZ2WlvaueLa+Xz83kK/826/9zpyQ0yuhvlxYtWbMHcZMXcaUEapkUeoqN0aulWjbucRsicV+QkPiUJG6rBcX2/a8aSU5BKTk8TsP92AzWhBKBIhEAnQvxs6xkzf1MHYn83DabWjiY9CEaFGrJDQsLuckTfOYNdHa3weciKpmMILRiMUi4hIjsFhsVEwdxSli7f4XVMgFDL8uul+9i3WbpOfqPPhgT2frKVg7ij2f7WJ1GEDkKkVfqKuL5Xr95M9aQjgfV9MnXq2vL6U9opG73uklHn7/6YXoDg6pJAyLJforETweLAaLLjsDtJHDyQqJfZ76e+MTIlFrlVi1QdWPQvnjTkpW5sw5y5hYfcTYEhxAR989TLP/fM19uwsJTYumtvuuZYxE0agPQPxTFKp5CezZXcqJKUk8Panz/P4b59izw5v5e7SKy/gZzf8KuBcm83OH3/1D1794OmTHjT4LkikEq687iIA3nr5fzz75Gtcd+sVvP7hvyk/VIlIJGLEmKHEfA9WLGHOXUztPax/8SvftiJA4QWjEElDf0SIJOKAZAWBUEBKSS6HV+zE0u3fpyXTKMgYPRCxVII4WuLbxjW29/htcwYgENBR2Uj+rJG+lAZLt5GDS7ehjFIz9MrJiKRiPC43ApGQqvX7aStvQJcRj0QhI3dKMTHZiZR+vQ1Ll5HozAQGzhmJOtY7kOO0O7AZzCHTNrzvjx6xXIrNYKH1UF2/VTSn1e7r/7MZLWx96xufqANwmG2Ur9qNvqGdMXfOQ6aS47TY2fjyIsydx8SiUqdh0i8uRf49iCylTsPkBy5n8+tf013njV3snWROLso+r3dcwoSF3U8CuULGwEED+Mezf8RkMiMWi/s1qw1zZhGJRAwYmM1zb/ydnm49AoGAQ6UVuEL0P5YfrqKn2/C9CDsAXUwUt919LfMvn4XJaEahkKOLjmLE6OLTuq7RYKKrswen04lGowpqAB3m3MNmtLDlv8v8RB1A1aZSCi8YTcvB2qCPy51ajEwduFWvitYy5aEFHPp2B7VbyvB4PKSOyGPgrBGoYgKnm2VqBUlF2TTsKg9YEwgFRCbHoI6L9IveEggEiCRiOqtb2PLG0oDHpQzLRYDAd/2Eggx0GYm4HE4kcilimeRoEkQnB5dupaexg5xJRf2+T70i1tpjQtmPt5xYJkF0dCvTZrTQdrg+6Hmth+txWGw4rbYAUQfe/saNryz2irvvYTtWm6Bj0s8vwWq04LI7kanlyLUq372HOX8J/wR/Qqg1qu8tkinMient3QM41E9qxQ+BRCohOSV05Np3pa6mkSf+/CxrV2zyfpCnJ/Po4/czdPggn6FzX0xGM1arDaVSETRaLMwPh81oof1IY8Bxc6cBl8NJcnE2Dbv9/77G5aUQPzA94DG9qGMiKL58IgNnjwBAqvLPRO2LRC6l6LIJdNW2Yu7bzyeAYddMQxMfFSAIZRol2RMHs/ez9UGvmTupyC8X1mGxYTdb8Xg8CEVCxDIJ+sYOVjxxLAlCrlUiFIuCDg5EZyfSfXQq1m72TpMqotRYugIn2nOnDfVV2UJNnoK3D7CjshGpUk5PY/Bhhp6GdmwGc4Cws1tsOC12EHgroSLxKX6UCwQ4rQ6qNhzAaXeQMXogEckx4a3Y85ywsAsT5iyQNzAboVAY1C8qMyc9ZKTXuUhzYyu3XvULmhuP2UHU1TRw1w2/4q1PnqVkxBDfcYPeRMWRKl577l1qaxrIL8jh1ruvJS0z5ZSMssOcPv3Zaez6aA0zf3cNuVOHUrl+Hx6Xh8xxhSf14S+SiE86nF4dE8HUB6+gs7qZxn1VqKI1pJQMQBGlQRrEnFcgFJA2Ip+u2laMrd30NHb4BFn66IFoEo9Vuw0tXez6aA3NpdXgAV1GPEOvnEL15lI/EVe+di/FV0xi5/9W+g1byNQKCuaMYut/j+VC71+4kZE3zWLXh6vRHxVlAqGAjDGF3mGPo6JSEuJLS8KgDIQiEVveWMaYOy7o971x2o8No7hdLgwtXez5bAMtB6oRikVkjiskb8awgAnlE2EzWNj/1SYq1u71HavdWkZ0VgJj75gXNBYtzPlBWNiFCXMWiI7R8Yvf3MG//vaS33GJVMKfn/j1aQ21/NDs213qJ+r68vT/vchzb/6dyKgIbDYbyxat5M+P/NO3Xl1RyzeLV/PsG39j/ORR4d6es4BUJQ/Z4+ZxuxGKRMQNSCE2JxkPntOKmeuP3onklJLcE57rsNhw2uxEZyUSmRzD4EvGYTNYUEZp0CREIdccHVzo0LPyyY+wGY8NLnVWt7DqqY8Zd9eFVG8qxXXUJLh5fzVimYQJ91xEy8E6TJ16YnOTUcdEsPvjNdj6mBmbOw0YmjvJm16CTK3A5XQhEouwm21+qQ1yjYKkwZk07qvyu//MMQVse8cbX9ib3R3U2FgoQNonCtDY2sPyv/3PNyHscjgpX72H5gPVTH7g8pMW0gCG1i4/UddLR2UzdTsO92vaHebcJizswoQ5CyhVCi67eh5Dhhbw2gvv0dLYSvHwQVx36xWkpiWd7dv7Tmxcsy3k2r7dB7FabBDlzRf++5/+E3CO2+3mT79+gve/epn4hNOLsgrz3ZFplGSMKaBqQ6AlT/LQHGQar7AQCAW+vrUzjdVgxu1wIRAJkGtV/QoKm9lK5dp9gd52o/IpvmyCT9R5PB4adpf7ibpe3E4XVRsOkDY8j6qNx153/Y4jNOyqYNSts9EmRyNXK6jeVIqhpcvv8THZSUgUsoD+vqFXTvb7s1Qpp+SaqQg+XE3DngpvJVDg7cPrrZQ27a8mbVQ+NZsPBtxn1rhBvm1Yh81B6ZItPlHXF2NbD21HGkgfmR/iXTvu9bvcHFm9J+R6+eo9pA7PC2/JnqeEhV2YMGcJbYSGYaOKyB+Ui81qR6VWIpOdf9FVyWmhe/WiY6N8PmdNja3YbcG3/dpaO+ju7AkLu7OARC5l0PyxiCViKtbvx+10IRAKSR+dz+D5Y5F+jz2QdrOV9oom9n6+Hn1jB4ooNQVzR5FcnO0TaOCNAHM5XIjlEoyt3QGiDqB2SxlJgzJJG5EHgMvupGl/dcjn7qhsIi9IxJnH7UYik6DQKlHqtJRcPZWcKcVUrtuH2+UibXgeNpOV7Ucrbr0IRULi89OwW2xI+xgjK6M0jLhhJkOMZhwWOxKFDHcfcVa5bh/Db5iBVCnz9rrZHIhlEnKnFpM7pRiJXIrTZsfcoae5tCbk66nfeYS43GQUJ1G183jc/W7BO20On3mzy+k6mtAhQKZRfG8V2zBnjrCwCxPmLKNSKVEFGTA4X5gxZxLP/fP1oP2CN91xlW9bWSjsv9pzvHVGmB8ORYSKwZdOIHd6CU6rV1jItUrEsu/HxshutuGw2mgprWX7u8cEkqXLyI73VqBvbKdw/ljweNA3d1G2bDuWLgPZk4toOxTcbB28cVjxA9OQqRUIRcJ+rUJkGgUuR+CgRP6s4TTsqUSmVjD4orGAd7AiJsdbSbeZrOz9ZJ1f5UwskzDs2mns/HAVUWlx5M0Y5idMpUoZUuUxsWczmIlMjaW7rg2Px8O2t78huSib4ddNRygREZEYjTJa6+vVa69sQt/YiUQu9Xn2HY9EIaN62yFyJg4J6X3n8Xiwm2wIhJA1cQhNx20R95JUlI1EKcfU3kPFun3UbjuEUCQkc9wg0kflf6ct3zA/PGFhFyZMmNMiLjGWp158jF/d+xjOPh9202ZNYO5F033f8BMS41Ao5FgsgR9MCUlxREYGWmH8lHFY7ThtdkRisV+G7feFWCpGHcSO5Eyjb+5k10dryBxTwN7P1gU958jqPeRMLqbpQDW7P1rjO95Z1YylnxxTm8GC+6iNkFAsIndKUdAtToC8GcNQRKopnDea9opGpCoFKSU5dFY1UbluH8nF2bjdbt/f397/KzRKhi6YRN6MEtoO1yNWyBDLJBxesZOOiiZay+rQZSSQ2k+voEyjZPQtc1j19CfYDGbwQMPuCloO1jLpF5eijo3EYbXjstlxuz3seG8liggVGWMKOLBoc9BrZo4toH53BXaTNaiwM3XqadhVTs2WMoQSETkTixhzx1y2vrnMT+BK5FLyZgzDZjCz4smP/HJj932xgZqtB5l43yVhcXcOExZ2YcKEOS0UCjnjJo9i4cp3ObDnIHq9kaKSQuLiY4jUHRMKMXE6Hnvi1/zm54/75wtLxPzf048GzeL9KeK02dG3dFO6aDNdda2oorUUzB1FVHocMtX5HfFm6tCz6p8fYzNayJk0xGcdEoDHO81authfxPTUtxNfkEZrWfCqXVxeChL5scqYOiaSIZeOD7BFyRhTQGxuMpteW4LH7SEyJRaHxc62t7/1bVHG5CaH3HaUquQcXLqV2m2HcNqdOI57HaWLtxCbm+xXtTsebaKOGY9cTUd1Mx2VTcTmJqNNikaAgLodhylfswe3003ayDyKL5/IjvdXMHDuSGJykmkvb/C7Vu7UYpr2V2PpMgSNWDN16ln99CeY2o/ZyXRUNBGbl8r4ey9m86tLfNY2BXNHodRpKF28xU/U9aJv7KT1cD0Zo76fdJwwp09Y2IUJE+a0kctlpKQlktJPv51UKmXitLF8tOQ13nntI6or6ygcks9VN1zcb5/eTwmPx0PbkQbWPf+lz3LD0mVk7X8+Z/DF48idXIT4e4iYOh5ztxGHyZvFKlXL+xUoJ4vH4/EOEAhgzO1zg5ob90UoEfkmVnvpqGpi4NyRyDQKvylV8FboBs4e6bd9LFXJyZ4wmOSibFoO1eFyOEnIT0MeoUKmVjDk4nGseuoTOqv8I9DEcinJRdl+x1wOr4ATikWIZRKkKgWKKE3AYwHMXQZsBq/xb382JL2TwLE5yTTuraSjssmbnHHkmHDrrG5GFRPB8Oums+XNpUy87xLMXQaaD9QgkoiIy0ul7XA9Zcu2A2A32xlz2xzf++t2uahav99P1PXSdqgO1/QSZv7+OjxuN1KlHLFM4jVWPhLcWBmgemMpyUXZ30vcWZjTJyzswoQJ84OhVCnIK8jh9397CJvV5s0XDsfR+bB0m7w9Z0HStfYv9OaUqr/HD1OnzUF7RaM34P5oEoI2KZqRN80iMjnGNwhzKrgcTpoO1DDyxpns/ngtGWMKfH1mxyNVyrw2IkF64HZ/vIZRN83myOrdNO2vAg9EZyUy9KopqGIDt5IlChkShQxNfGDaTmRKLGNum8PO/632Tc9qE3WMunk2qqPpEm6XG1N7D4dX7MTcZWDAtBL0TZ30NHYQn59G4QWjKFu23U+MRaXGUr2plKb9VQy7Ziq6zERfv9zx2E1W9n6+ntayOgouGOV3nV5M7T10VDYRk5WIpduIVK3A0m3EaXNQsXafnx9fa1ktVr3ZJ+xsRgs12w6RODgTTVwkVoOFxj0V3gEJoHL9PsbcfgEisQhLt5HOmhY6q5tJH5lP3vRhlC7ZQletv52RUCIK98Sew4SFXZgwYX5wZDLpeTkB/H1jN1sDMlZ78bjdGFq7fBmn3weGli7WPfuF31a5vrGD1U99zMzfXYs6NvKUry0Ui0gsTKdxbxWGli6OrNrNiOtnsPWtZX6WJEKxyJuhqlYG9dcztnaz76sNjPvZfDxOFx6PB4lSjuwU+hAlChnJJblEZyVhM1kRioS+aC3f62/qYMU/PkQeoWTogslsfGkRjj4TpUKxiFE3z8JhtXtFqgByphSz470V2AwW1jzzGTN+ey0RScEj9ix6E9WbSskYU+CtaIagdvshxt11Ifu/3EjejGEhBx/AWzH0PZ9AwPBrp9Gwq5yO6maUURpG3Tybxn2VXosbD4AHU0cPa//zhZ+1i1guZdRNsziweLOfAM+dXIQ4/IXsnCU8txwmTJgw5wgnqoKcTsXsRDisdkoXbw5qlOu0OajZUhbUxPhkEQqFxA9Mo277IcCbubr74zUMv246RZdPJGNMAYMvHsfkBy6nZvNBKtbuZdpvrgqotAnFIoYumIwyUo0qJgJ1bOQpibq+96XUaYhKjSUiKdpP1NlNVnZ9uBqXw8mA6SXs+XSdn6gDryfezg9WkTe9BEWkmhHXzaB+xxHfVrHb5ebQ8h047YH+cwBdNd5q2Am9gD3QdqSBxr1V3t7Efs7v9R4EMHcYWP/8l5Sv2UtHRRN12w+z4aWv0CboSCrKInvCYNwOFzs/WB3g1+e02tn29jfkzxrhO5ZUlEVUatwJbjbM2SRcsQsTJkyYcwSpUo4mPirgAxa8EV2nUzE7EU6bnc6a4Aki4BUVTocTyUlYoDitdqwGM501LbidLnQZCci1KsQSCa4+24aGli42vPQVmvgo1LERKCLVHPpmuy+btmLtXiY/cDn7v9qEqbWb6OwkBkwdGnTL9fvAbrH5tkaVUZqgPxfwbncqdRoKLxzNkdW7fdUtoVhE2og8UopzMHX0IFXIAqK6xHLv+9lyqJ6iS8eHrMSlDh9A84EatEnR9DR2kDAwPaivnTouEkWE9zmsehPb3v4m6Jb2vi83MuG+i9EmRGHVm2k6EPx57WYbAgGkjswjc3QBEckx/drIhDn7hIVdmDBhwpwjKCJUjLx5Fquf+sQ/YUAAI2+a6VdNOtMIxd5sV0t3YLA9gCY+EpH4xBVDu8VG7dZD7PpwlV+FL29GCQOml5BclE3ttkN+jzG0dGFo6SJ12ACqNuw/di2TlbJvtjPiuhng8SCWSxBJfpiPLbfbjUgiRqyQ4rI5EYbokevFYbGz84NVvn43iULGqFtmU7u1jI0vL8LtcqOM1lJ06Xji89N8FjaRKbEIxSLMHXrUcZFEZyfSUdHkd21VbARpI/IwdejprmtDLBVTdPlEbP/9hq6almPnxWgZdvVU359tJiv6ps7gr8/pwmV34Ha5MXcZgvZ19uJxexh5wwxE4rBkOB8I/5TChAkT5hwiKjWWWb+/jurNpbRXNKGJjyJ70hDU0VpEkv7FxekgU8kpuGAk6577MnBRANmTihCKTvz8prYedn6wMuD4oW93EpOTwqCLxtK0rypgSzM6KxGXw4VVb/Y7Xr/jCEMuHnfKvmlWvQljWw/NpTVIVXISCzNQRKhCThebuwx0VjVTs7UMiULG6FtmI9MocdkcSOTSgPsGEAiFKKO1aOKj6GloB2DIpeOp3VpGVFocsbnJdNW2UrO1jE2vLmHMHReQUpyDQChAEaFi9C2z2fTqEtoO15M3rQTTUAN1Ow7jdrpIHJRJ+sh89n+1ifqdR3zPKVHIGHfXPDxuD8a2HlTRWsydera+/Q1THrjCe1KQbfW+eFxuNr+6hJwpxUhV8pDmx9pEHcbWHpr2V+F2uUkclIEySnPCyeYwZweBJ1hDxY8UvV5PREQEPT09aLWhR9DDhDmf6GjvorW5jYa6JuISYklMiiM2Pganw0lTYwsrv1lP6d5DFA0rZOLUMSQmxyM6iQ/oMGcXt9uNy+5EKBH9YD8vm9FC+eo9lC7e4uu1E4pFjLhhBklFWUhOMPDidrrY/t5yqjcFNwXWZSYw7s4LcTmclH2zncY9FYjlUjLHFqKOjWDrf78JsDgRikXMffymUxJ2lm4jm15bQnt547GDAhh+3XRShw0IsOswdxlY+5/PA6pcWRMGE5UWh9vpYteHqwOeZ8C0obhdHlKH57L66U+QqhVMvO8SmvZWUr3lIA6zjdgByWSNG8yBxZux6k0+I2Lw5sBaugw07qsiMjmGfV9uID4/DaFIiKXHhCY+KsCLr5fx98zHZrRRtmwbEUk6MsYU4jBbcbvcxGQnsfbZz4NanQiEAqY/fBXf/vUD4vJSiR+YFjSqLaEwnZzJRax/fqHf8fRR+RRdNuF7rSKHOcZ30S9hYRcmzHlMU0MLv7zz95TuO7a1lZyayGvvP01rSwd3XPsAtj75rEqVgtf/928Kh+SdjdsNcwZx2p1HMzyPWnqcIRsUh9WOzWCmp7EDoViENkGHXKs8qS1Qh83OhhcW0noouAeaMkrD4EvGodRp0MTrcFptRx/n4Nu/vBf0MRljCii5esp3nsJ0u1yUfr2N0hBJDbP+cB3ahGjfwIrL5aJ6YynWHhNul5vGvZW+6hvA5AcuR6aRY2jupnTxFnoaO1DHRpAzuQinzcG+LzYw/ZGrEcu8fYR7PlkbYKQskogYe+c8try5jEn3Xxp0CMHtcmNs66Zq4wE6KpvInTqU/V9uDNnflz1pCAmFGTTurkCTEMW+Lzb4tsC1iToGXzSOja8sChh8GXTRWARCAfs+94q5grmjkChlHF6+A0u3CZFUTNaEwWRPGMw3f3kPt9OFRCEjfVQ+kamxOK0OIpKjic9PO8mfSJjT4bvol/BWbJgw5yn6HgOPPfJPP1EH0FDXxIH9h/nbH/7tJ+oAzCYLD939R97+7Dli48JJD+crxvYeypZtp2bzQTxuN8nF2QyaPxZ1bORp+4tJ5FIkcukpDWqIJRLi8tNCCruojHhaD9XRVdPKkMsm4LI7cFodiGRiUkpy/bYawRu9VTB3ZICo680l7i+Q3mqwUL5qd8j1+l0VxA6wEpkci1Qpw9JhwNjWTdP+akRiERmjByLXKtn+7gpcDie1W8uw9JgwtHRReMFoIpKjaStvpGLtXvSNHYDXhFmqlNFd1xY0HcPlcHF4xS6yxheG7Gmz6k1sem0Jigg1UWlxiCTigO1pv/N7TDTsKie5OJsNL37lt6Zv6qRyw36m/upKjqzcRWdNC0qdhoGzR6KK0fpV6EqXbCE6M5HCeWOQKKQIREKisxPZ+cFq3E4XcXmp5M0ooXz1Hmo2H0SqlpM5dhDquChUunC82LlEWNiFCXOe0tXRzcY1W4OuiYQiOtqCN0031DXR1dETFnbnKaZOPaue+hhL17Ehh7odR2gurWXGo1d/r5OzJ0IgFJA2Io/qTaWkluSiiY/yGuRuKaOnsYOs8YOwmyxo4qPY88lanFY7iYMySCrOJnFIJgmF6dRuO4TDYic+L5WEwRlI+/RxWfUm9M1dVKzbi8ftIWvcICKSY1AEm9J0e7CbA3vGUocNIH30QGwGM6Z2PTKVHIfZyqqnP/EbHOmqbSUmO4niBZPY8d4KnHYHQpEQY2s3W95cijoukoK5o3yiTqZRIlcrsPSYgk6r9tJSVsvA2SP8EjL60rivip76dnrq22k+ACAgOjMh5DXj8tNQxUTQuKc86HrTvirsRgtj77oQPN5MYIlChrG9h+SibOq2H/ad21HVREeVd3BjyKXjiRuQik1vRh6hIndqMRte/Aq3yyuqHVY7+xdupL2ykZE3zjwj6SRhzgxhYRcmzHmK2WwJelwoFOJ0BvfM6sVhd3wftxTmB6BpX5WfqOvFYbFxZNVuhlwy4XsdsjgRUpWcEddPZ9+XGzm8cheKSDU5k4qIyU3C1NZD1cZSv2pW+Zq91Gw9xJjb57Lzw1UkDExHLJXQUd1M2bfbueDxm5EqZFh7TOz4YKXPCgW8gxVxeamMunlWgI2ISCYhNifZL8khZ3IRcq2SDS8u9G1NCgQC8mePIGNMAQe/9v+i1F7RSMbYAhSRauLz0yhdsgV1bAQOqx1jazcetxu5VonVYGb4ddNoq2ikfscR1HGRId8foUiETKsMOtdgM1qoWr/f71jN5lJG3jSLlrLagO1UuVZJ0uBMZFplv9VJi94MHg8CoRDBUS9E2VEhljGmgOpNpX7n6zITSCnJRSKXkjQ4E6fdQdnS7T5R15fm/dWYOwxhYXcOERZ2YcKcp2i0asQSMU6Hv4hzu93IZFIkUklQAadUKYiKifyB7jLMmcRhtVO340jI9ca9leTPGhG8gvUD0V7eyPrnj03WGlu72f3xGjLGFJA5rjDoFqXDYqNi3T7iBqRSvnrPsQXBsR3LzpoWP1HXS+uhOlrKaskYXeB3XKaSU3TZBFb840NvOoVcSlxeKhtfXuR3nsfj4eDXWxl18yyvSDtu27NpXxUZYwrQxEdRdPlEDM1dyDQKpAoZxrYecqYWk1KUjcPqwONyo02KJi43mcPLdwZ9f9JG5OGyO+Akt8ztZu97M+Gei9jz6Tp6GjtAAAkD08mbOQyX3YFILCKhII3mA9WAdztdplVi05tJGJRB1rhB7P5kHfrGDrSJOnImDcHY3kN0ZiIOq42kwZk07a/G5XSSUJCBLjMBdYzXKzB1+AC669soXbwl5D02HahGlxF/Uq/nx4TH48HaY8LldCEUiVBEqM6JqLWwsAsT5jwlOlbHlddfzHtvfBKwdriskp/94kaeffK1gLX7H76T2Njg8UZhzm0EIiFSpSzkukQh+17TKU6EudvIzvcDrU4AqjeVkjm2EIFAEDTdomlfFSNvnEnlun2+Y/H5aUiVMhw2O4dX7gr5vEdW7iZxUGaA/YY2KZopv1rArg9XE5EUTc3WspDXqNpYStqIPA6vOO55BAKyxhey/Z0VCMRCUocNQCwV09PQQeLgDIQSMTv/t8rXVxiXl0LioAwGXzLON5jQizJaS+rwAWx/dwVjbr8g4B5kagWZ4wfRddx7aDdZMbbryRhTgDJai0AgoL28gY2vLEYAzPjttSQXZ1O5fj95M4cjFAkxdxpQx0WijNKw8dVFWDq9Vd6ehnbqdhxm2NXT2PXRatJH5qNNjkEV6/UplBxnoqyK1uJyOBEIhXjcgRU7AIn8pxcvZjVYaNpbyf6vNmHpNiLTKBk4ZwRpw/OQa89u9fK8EnZr167lySefZMeOHTQ1NfH5559z8cUXn+3bChPmrKBQyLn17msRi8X877+fYbPZEYlEzJk/jYuumI1MJiUzO43nn3qD2poGsnLSue9Xt1FUUogknPN4XiKWiMmdOjRo5Qq8thtn01vMYbZ5zW5DoG/uRB6hCmqC7M2FPSYcJHIpxVdMQqqUYzfb/A2bj8PlcAaNOxNLJcRkJTLmtrlYDSZ2f7w25DUs3Ubi8lKQKmVkjh9EdFYiuD2oYiKo3XGE7MlDaDvcwJ6P12C32IjNSSF5aDYrn/wIZx9vu9ZD9XTVfMmk+y9Fc8cFNOypxG62EpeXilKnYdvb32LtMYWMZ0sanEVF8h56Gjp8xzLHFrD/q81Ye4LnCHdWNZMyLJcxt1/A+ue/xNRxzN5EFa1lxLUz2PrfZceqkR44sHgz4++ej7G1m6r1+1FEqUkszAg6Xa2M0pA6LDfAWLqXhMKMkO/rjxGXw0nlun3sX7jRd8xmMLP7ozWY2vUMmj/mjE2pnwrnlbAzmUwUFRVxyy23cOmll57t2wkT5qwTE6vj3odu5aobLsZsMiNXKIiJjUKh9H64T58ziaEjhuBwOJFKJeiiI8/uDYc5bbSJ0WRPHEzF2n1+xxMHZxA/MP0s3ZWXE1ULZSq5L5nheNJG5KGOjSQiJZbEwnSyxg9CFe3dDpQopKSPyKejogmRVEz2hCHEDkjG7XThtDm806gh8mLdThcSpQy3yxtt1lnVHPQ8XWYCsbkpR/3cNnLomx0AR7dgJ2Bs60amkpM3czjtFY0IRAIq1u7zE3W9OKx2qjcfxNJtRCAUMGj+WFoO1rDplcW+9ylUH6QySs2Eey+maX/10RQOAZEpsSFFHUBXfRtxBWlsfv1rP1EHYOrQs+ezdeTNGMaeT9cB3r7CkqunsOuj1X4pF7sFaxhx/Qxff10vYpmEQReNpb2iEXOnv3AvvmLi97r177DasR4dSHFYbMQPTEcVoz2rPX2WHhMHvw6+NV2+eje5U4rCwu5kmTNnDnPmzDnbtxEmzDmFTCYlOTUx5Hp0TFTItTDnH3KNgkHzx5I5fhC1Ww/hdrp8ouhsbwFJVXKisxLpqGwKWBNJRKhiI31bhn1R6jSklgygfnc5k35xCRKlzM+UWSAQkDQkC4fVTlJRFoe+3cmmV5fgdrqQa5UMumgsDqsNmepYtdJps2Ns11O+ajf6pk6iMuLJnjCYqvX7A6p/QpGQjNEDcVjtbH/nW78+O0u3EafNCQio23EYl9NFYmEG6aPy2f9VcI888A5eJBRk0Ha4nsY9FUQkH5tCTx0+oN/KqjJKQ/aEwaSU5CLAg9PhQh6hCinuolJisRssfr57felpaEcTf+z3QEJhOm2H6wOiy/DAtre/JTorEUmCzm9JHRPB1IcW0FbeQP3OIygi1WSNH4QyWotEEbo94HRwWGzUbj/MjvdX+Jot9y/cRPzANEbeNOus9ZLaTdag+bvgjV+z9JjO6nT6eSXsvis2mw2bzeb7s14f6L4dJkyYMOcbMrUCmVqBLu2Hb1j3fnAZcdq8TfsyrdLnMydTKxh+3TRWPfWJXzyVQCBg2LXT6axuJmv8IGIHpFC34wgytTfiS6pRsOX1pdhNFnImDglajRFKREQkR7P97eU+Sw4Aq97M9neWA5A5phCBUIDL6aK5tIaNryz2CYL2ika6alqYdP+l7Hh/pU8EaeKjGHTRWGq3H0YTGxkwPDF0wWQOL99JZ/WxSt+R1t3U7TjMmNsvoOVgTdBtVZlGCR4PhfNGs+WtZZRcPQUAdVwkg+aPRSgWYeo0YDN4n0+uUSKPVPl588mOViElR6+z470VAc8jVcrQZSb063UH4OpTKU0dNoBdH68JeW79rnIK5owMOK7UaUgfmU/q8AH9egieKcxdxqCvueVgLbVbyxgwreSsDCucaOr8u5ppn2l+1MLub3/7G4899tjZvo0wYcKE+VFgM1lo3FPJvi82YNWbEYqEpI3MZ9D8Mb7Ir4ikGCY/cBlN+6rpqm1FEakmoSCNyg0HiEqLx9DSTcXavQy+ZByd1S3U7y5HFR3B8OumU/bNdhy2Y5PcvSLSbrIe3W5VkD9rOOYuA4dX7MLU3uM7d98XG0gYmI5Sp8HaY2LrW98EmAC7HC4sPSZG3jQTgUCAQCSkrbyBfV9sICotjo5q/21apU6D2+32E3W9WPVm6nYeIakom4ZdgR5yOZOGgEDAjg9WINMoEIqEjLxpJrG5KchUchr3VbL9neVEJMeQM7kIc4ceiVKGKjoCRaTKL+lDIBCQXJyNudPAoW+O2Y6oYyMYe+c873263CEHUwQCASLxMTEikopxmG0B5/leWz/bvtC/MfSZpGZL8Gg6gMMrdpE2Ii/A5uaHQKZWok2K9nkY9kURpT7rlfMftbB75JFHeOCBB3x/1uv1pKamnsU7ChMmTJjzE4/bQ+OeSra9/a3vmNvlpnpTKfrmTsbfdaEvN1ShVSGSiBAIBPQ0tFO+ejcCgYDY3GQUkSryZ49g/QsL/cSFUCxi5E2zfL1JbrebrppWarcfQh0bwYGvNvuqgJr4KIqvmEjpkq101bQAYDNYcB4Vhd7tU3+rn8xxhejS49n90Wos3V7hEjsgmfxZI/C43NjNNjSxEX6Pic1NoWl/dcj3pH7nEYZfNz1A2GVPGoK5Q8+BRZuJSo9n4NyR1Gw+6DUTjtbSVdfKxpcXkTpsAHEDUtj232989yuSiBh65WRShg1A2meLU3506jJzbCE2owWRRIRMo/RtR8q1SjLGFQb44AFkjC3AqjcTmRpL/MA0tEnRRGcnBm7FHiVxcGbI13yyeDwerHoTHpcHoUR0Sj1x/Q3i2IyWoCL2h0CuVTLmtrms/tcn2AzH/EQlChnj755/VsRmX37Uwk4mkyGTfT97/2HChAnzY8NutuEwW/Hg3eKTKo8NJFh6jEFD4sE7lWlq1/uEnUyjJGNsIYmDMumoaiKlJAdllIaqjQfQpcez93+rAipGbqeLnR+sZMYj1wBg7jSw5Y2vGXTRODa/tsTvXENLF1veWMqY2+ey7jmvZ55AKEB4dIvs+K1RVbSWuLxUtryx1O942+EGDC3dlFw5mc2vf03ulGLK1+71Vfo8HjdCUeitPqFQiCYukll/uP5oMoSHmKwkWg/XIxCLGH79DNqO1NO0t4qUoTloE3Q4bQ4OLt2OSCwmfWQ+619c6FdZdDlcbH93BdrEaGKyk3zHHTYHNr0Zu8mCWCZBplH4iSWJXMqgC8cgU8k5smo3LrsTkVRMzuQiBkwrQSKXEjsghZayWqo3ljJ4/ljWPPNZgDjSJur8+gFPBaveTMPuckq/3oqly0hEcgxFl01Al5HQr13P8SQXZVO7Nfgkbmxucsj0jh+CiKRopj9yDV21LXTVtBCRHEN0ZqKvcn02+VELuzBhwoT5qeJ2ubH2mLBbbIgkYmRqRcgPVY/Hg6G5i92frKW5tBo8Xj+2oQsmo0nUedNMbI5++7haD9Uh1ypRHTW2lSpk4PGa17Ydqvc9NnNsIfqm4HF3dpMVi96EKkZLR0UTqcMGhExUcNoctFc0+ipPKSW5vteniFIjkoh8De6Z4wdx6NsdQa9j7TFh7jaijNZSu62M4ismseeTdXjcbloO1lF02XjqdwaP60ofPRCJQopcqyIiyesN6XF7kGkUbH93Ba2HjpkxH/p2BwUXjCJr/CD0je0kFWVRt+NwyMzY0iVbGHPbXCRHUzdKl26lYs0+nyVMZGosY26fiybu2FCEIkJF4bwxZE8cgtPuRCwVI9eqEIqFdFa3sOaZT32VQUNrF2PuuICDS7fRVdOCSCIiY3QBA+eMRHmKFSeH1Y7dbOPg11v9/Ah7GtpZ+5/PGXXLbNKG5510X1x0ViKqGC2mdv/+eIFQwJBLxvt98TgbqHQaVDoNKcU5Z/U+jue8EnZGo5Hy8mP/wKqqqti9ezc6nY60tLSzeGdhwoQJc+5gM1qo33mEfV9u9G5fCiChIIOSq6f4EgX6YurQs+LJD/2qaK2H6lnxxIfM+O21aOIiEYpFCEXCoLFSADKNgs1vLWXs7fN824Muu4O2ww1+gtAVwu7Et273TqzqmztQxUR4K2gh6GnsQB0TgcvuJGN0Aa2H6kkoTEcRoaL4iknsOGr0q4mLpLu+LeR1uuva0MRHUbv1EE6bk/H3zMdusGDuMRKRFENycXaAd6AmPoqUoTm+aC4fAmjaX+0TdYpIFRKFDHOngdLFW0ganElkahxyjSKgp68vxrYenHYnQomYinV7KV+1x2+9u66Ntf/+nCm/WuAnxEQSEapord+55i4DG1/+CqfNQeyAFNJH5iNRSLF0G8meOJjYnNmIJCKkaiVi6XeXBU67A2NLNwcWbyZ74hA/UdeX3R+vITY3OaCqZekxYe0xYdWbUR7tUZNplCijNEz+5WXsX7iJuu2HcbvcRKXHU3LVZLSJuqDPEeY8E3bbt29nypQpvj/39s/deOONvPXWW2fprsKECRPm3MBhsWE1WGgtq/WJGgA80HygmrX/+ZwpD1zu1wPkdrmp3nwwaDO90+agfLU3f1auUZI6Io+azYEN7WK5FKlSTkd5EzaD2SfsRFIx2vgov2Z8j9uDRCHDYQl8PoFQgFLn/dDXZSTQU9+OKlpLtzm4KNPER5E2Ig99UwebX/8ah9XGrD9cT0RiNKnD89AmRXNw6XZvmkKEytdbF+w6EUnRCMUidGlxeFxumg7WkjI0h5VPfsT0R68haUgWdTuP4HY4SSjMQJcejyxCidPmOOpL5/04tenNHF6xi+jMRPJnDceqN2E1mIlIjMbSbaRqUymF80ax97P1RCRGh+xzi0iKRiQWYdWbOLRiF/ED00ganIlAJKK9vIH6XeWYOvQYW7tPWGGzGSxY9RZG3TwLfXMn+77ciM3g7bnLnzkcj9uDUqft9xqhsFtsmDv0NOytwNJjwtjWE/Jcm8GC3WzzE3aG1m7WP/8lhpYu37GYnCRG3zoHZZQGVXQEw66ZxqD5Y33RcGfThPt84LwSdpMnTz5rzZJhwoQJcy7jsNio2lSKWCqmdMnWoOcYW7sxtHT5CTun1U7z/qqQ1205WItjjg25Rsngi8aib+6iq0+lSSyXMvLGmRxcug3w9un1IlXKKbxwNK1PHYu9q1y/j4K5I31muX3JnjjEN70ZlRpH2bJtZE8cEtTyQiAUklKSy8ZXlmBq6/Ydr9pwgKLLJiBVyojOTKD4sgnU7y4na8IQDny1Keh1IlNiObxyFzKVnLqjlU6AuAHJxOQm0dPQhkztnch1O11I5FIEQiENO8tp2F2ORCEja8JgVNFaBEIh6rgIssYNYsubS/2GOHSZCQy5ZDwyrYq0EQOQKORUbyoNrIIKvO+FsUOPSCpm1E2zaC9vpHztXkRSMZGpcYy/Zz67PlyNoaWLuAEpIX9+4E1KKJg7ktrth2nad+xn3V3XxubXv2bsnfO+cwXMabOjb+5i/8KNvunnnMlFJxRdfU2sLT0m1r/gL+rAmze844NVjL55FhKFDLFMclb76c43zithFyZMmDA/VVwOJ1a9GXOXAYFAgCJSjfzo9Cl4Pb92f7SGMXdcEDSyq5fOmhbi8o65AwjFosDtxD5IVQqER82ClVEaxtw6m666NgxNnci0SmRqha9PC0BxnNVDRHIsw6+fzu6P1uC0OWgtqyM6M4GxP5tH6aIt9DS2o4qJIGdSkfeL+9H2K6VOw4jrZ9J6pJ68GSUcXrHb118mUcgYumASBxZt9hN14BWvHpcbgViEvqmTFf/4EJfD6UtUqN95xHeuSCJm2DVTObJ6Ny2lNQGvvaumhWHXTGPlEx9i1Zu9AkMuZfStc9j61hK/FIbGvZUMuXQC8QNTKbp0ApteWxIwmdtZ1UzN1oPoMhJIKs7B1NbNuLvns/2d5b6fmUyjYPBF46jaeICGXeXM/MP1VK7bR9qIPCJTvQkUqmhv31nJVVMQCPrvV3PaHMjUCiLTYjmwKLih8u5P1hKdmfCdpjnbyhtZ99wXvh5Bm8HC9neWM+XByxHLpUETOXSZCX7Cz6o3YWjuCjgPoGlfJVaD+XszP/4xExZ2YcKECXOO47DYaNhdwY73V/pSE8QyCcOunUbSkCwkcqlPsHhcbsQySYCo6EV1XI+dWCYhb0aJXyWnL/mzhvsNXci1Kjoq99K0vwqH2ebXP5dcnB0gEqVKGemjBpJYmIHVYAGPxytSDWYKLhh1dMjDSNXGA2gTdWRNGOx7rCJShVAkJLk4m7SR+Vi6jAjFIjweD6WLtwRNuIjLT0UoFmE3Wdn14Wrf+7X93eXkzRzO+HsuwtDShTo2Ak18lHdgZH81cq2S7IlDiEiJweP2YDOYEUklOK1232t02hwkDs6kdtshP1EXmRrLkEvGU7+rnKoN+5GqFORNL8Fpc7D7k7V+AxI1m8somDMKVbQWl8NF2bLtjL1zHpYeI3iObn+v2UNnVTPquEh6GtrJmVzMtne+9dvSjkyNpeTqKahCbKE6rXYMrd0cXLqNqPRYxJLQEVfmDj0Oq52T3eA0dx81Dg6ygbb38w2MuX0uG15Y6FeJlGkUjLxxpp+w62sVEoAHnNbgf4fD9E9Y2IUJEybMOY6+pYut//3G75jT5mDLG0uZ8eg1RKXFYTN6PyTrdhwmY/RAytcEDh2IZRJ06YFpFRFJMeTNHM6hb7b7Hc+eOBhdhv/5YpmE/JnDEAgFvoZ+oVhExuiBFM4bHZDZau0xYezooaOiCblWiTYxmsoN+2neX010ViJZ4wdTub4Kc5eBsXdcgKTPlptEIUOqkLHyyY8Bb8+eVCFj6NVT/NInfOcrZSQNyQK8vV9tRxp8ax6Ph7Jl2xB8K0ARoWbA9BISB2WgS4vD3Gmg6NIJHFi82VfVUsdGUHL1VETHDRMkF2f7ki7AG6M2+KJxbHxlsV+Vqr28gbSR+QycPZKDXx/bGnc7Xb68XIVWhSY+isp1e6naWBrwemKykxBJRGx/b3mAaXB3XRsHl2xl2LXTAh7ndrtpKatjw8tfgQc6qpopvnxCwHk+BN4t6ZPFYbYFZMb20lHZhMvuYPw9F9FR2YS5y0DcgFRicpIChjr6qxAKRcJwte4UCQu7MGHChDmHcdgclB3tXwvGoW93MPz6GSQXZ1O+eg+NeysZfescDG09ftuLUqWMCfdejCIq8MNUplYwcNZwMsYMpPlADR6Ph8SCdOSRal+sVV/kWhWD5o8hZ9IQnFYHIpkEeZ9osV7MXQY2vrSIzqPbtOAVgSOun+5tuN9dQdO+KsbfezHahKigH/TR2UkkFGbQfKAal92Jxe6kbvthRt08m31fbPAJjKj0eEZcPx2X00nZtzuIzUkOmsTgcXswdxm8iRK1raSNzCcuP42NL33l1x9obOth3bNfMO3hq0gflU/NljLf/fetRGWOLeTwip1Btx5rt5Yx/u753sccFXPKKA2io+JVHqGi8IJRHPp2B7qMBHImD/G+h0IBlm4jpg4DeMDSFXxrvelAddCqlrXbxLZ3vvVV1NSxESgi1X730Zf4gelBY7JcDieWbiMtB2sxdRqIz0tFm6g7oV2J3Wxj+7srUMdGoo6LJHZACsogf+/kWiWxeSm0HaoPWMsaP+isJzicr4SFXZgwYcKcw7jtTgyt3SHXDS1duOxOtAk6otLi6KptZcubyxg4ZwS5k4swtvegjY9Cm6hDHqkOGQclVcmRquREJEaf1H2JxGJU0YHWKb047U4Ofr3VT9SBt2K17Z3ljL3jAloP1ZMxthCBAFrL6hCIhOgyEpBrlUjkUp8P3bBrpmLtMXFo+Q48eMVUZGoccQNSsJttCIQCRFIJh77ZQfnq3QDkTikmoTA9ZHKENkHHqic/IuaocLQHmQr2eDzs/2ozw6+dilgmpWrjAVrL6kguyqJuh3frW5eZwKHlwT3yANrKG4hMifXFkg25dLzfFKsiUk3WhMFoE6PZ+9l637avOi6SoVdOxmkJFIzHbpCgQs1mtPhl9YplElqP1DPs6qlsf2+5n4GzMkpD3rSSAAHscjhpKatlw4uLfL2NZUu3oYmPYsJ9FxOZGkt3XeC0skgiQqZWYDdZ6TQ101ndTExOEjkThwBgNZi97QJHp1tH3TSLXR+toXF3BR6PB6FISNb4wQycOzI8MHGKhIVdmDBhwpzDiGRiIlNig+ZSgrdSJZaLEYnljLvrQspX76Vi7V4OLNpM/MA0ii6fiCY26oTB5Wcam8Hs215Ux0UyYFoJ8gglHrcHj8uNw+ag+IqJmDoMrPn3Z77qkkAgYPCl40kZmsORlbtp3FOBWCZhwLShDF0wGZlWicfl9lWSzF1G4vJSkShl1G47WlU7mgFbdNkEOqtbfNvUvQyYNpTmA9V43B5UMRG0lzcQiq7qZhAIKLp8Ivkzh+F0OL32MaW1QS1bjsc73OBBEalmyCXjiC9IDzjHYbax/b3lfj1rxtZuNr26mCkPXBHy2iKpGEkw0+njCmo9jR0kDc6ifnc54+++iPaKRqw9RqLS4pFpFFSs30dycTaeLA/qo7Fqlh4TG186Jup6MbR0cXjFLkbcMJPVT32Mo2+lUgBFl02kYq2/j13TvipSS3JpOVjLwaXbsOrNxOQkUXjBaDTxkYy4YQa2S8bjtDmOGj4HVn/DnDxhYRcmTJgw5zBiqYT8mcOp23YooKoiEArJnVKMSOz9Va6M0lA4fzQ5U4rA7TnqL3dm+5TcbjfWbhNOu8ObaKEJbmrrdrlxO11eP7fZw9nzyVqfx5lUJafo0glEpsax++O1fo/zeDzs/XQdqmgt1ZtLff56295ZTvzANEbeNIuumhY29BEdB7/eijZRx6hbZtNR2YwuPY6ehnYsXUYm/fIyGvdU0FJWh0ytIH1kPp3VzRxecdSexWTtt9dLHuEd4BBLxYhjInA7Xbicbmb87loOf7uDnsZ2Egq8W8XBSB6aQ1RGPA6zje7GDmIHpECf7W27xcb+RZuDDiI4rQ6sRjNx+Wm0ltUGrOfPHO6LceuLTK1ArlX6qn/mDj1iuQRDSxfrnv8CXXoCUrWc1uU7MHcYGPuzeWx/dwUCoYBpv7kSlU5LZ2VTSDPqijV7yZsxjBm/u5b6HUdoPVKPMkpD0pAsaraUBbwXyig1tdsPset/q33HGnaV07inkikPXk5MdpJfLm6Y0yMs7MKECRPmHEcdF8H4ey9i23+/8X1YKyJVjLxxlq/C0otIJDrlSKgTYTWYqd12iNLFW7CbrIgkIjLHDWLg7BEB4kgsk6CKjaBg3ig2vrzIlygBXjG17Z1vGXfXhX4CpC+1W8tIKc6hauMB37GWg7XYjBY2vhxYSdI3dVK7tYyo9HjWv7DQd1woEjL69rmklOQCsP6FhRj7bG03l9Yw9s55VG7YH1RcDV0wEZfDRVddGwIBdNW20rCngsTCDAZMLwEBpAzNpbOqKWA7N2v8IOp3HPGLM+uubWP0rbN906Eum4OeflIxylfvZeQNM9j/1SZqt5bhPrqNmT9rOFnjBgWtxCoi1Yy8eTbrnv3C9z7t/ngNI2+aRd32w9RuO4Tb6SIqLY6iSydQteEANoP3Z9C0t4rsSUOwGkNPrHrcbtwOJ5r4KPJnDSdzwiA6q1u8k7BBtoYzxw1i1T8/CnqdHe+vZNL9l/rl3oY5PcLCLkyYMGHOccRSCQkF6Ux/5BrsRgsIvP5yikhVUB8zl9OFtdtId0M7NqOFqLR4r++d5tQd+11OF1UbDrDviw3HjjlclK/eg6lDH2BloYhQMfLGmTTtrfITdX05vHwnGaMLKDtuGhfA0m1CHRvpd0wdF0n7kYaQlaS67Yd9U7G9uF1uNr68iEn3X0bTvkqUOo2fsHM7XdRtP0TxFZPY++k6v2uPvXMePY2dbHx5sVe0CSBhYDq504ay9c1llH69lSkPXO4NhH/0Gmo2H6RpfxVStYK04XmYuwzsP2p23EvLwRpsBovvvXJY7aiiI0Lm8KpjtMgjVZRcNYWCC0bhsNgRSUT9mvYKBAJic5KY9ftrObJqD111rWgTdSgiVQyaP5bk4mzcLjdCsQiRWET6qHyyxg/C2N5D6+E60kcPJCYrMei1wTuMIZZLsZutdNW2sn/hJrLGDyJpSJafTyACKLlqCnaTxdcveTw9De04zLYzKuzMnQa66lrprm8nIjmGqLTYkLYwP0bCwi5MmDBhzgMEAgHKKHXQ6cK+uJwu2o40sOGFhT4PN4CEwgxG3DDDF/fVi9VgxuP2IFXJfakPwbD2mPxsO/relzbBGxvWXt6IRClDFa1FEakmIimGsmWBoq2XnsYO0kbkBV3TZcSjb/LvKxTLJNj6DAUcTyjBhwca91Ri7tSTM7mI1rI6v+WaLWU47U5m/PZajK1dOB1OYjITaTlUx64PV/tdp7m0BlOHniGXjGfbO99yYPFmSq6cijomgoFzRpI7pRir0czqpz4JKdYsehPaRB3mbiPb3v6WrAmDgtq3CAQCsiYMRigU4nQ76K5vY8/HazF16BEIhaSOGMDgi8YGFS0iiRhtYjTFCybhsjsQScWIxGJsRgsHFm0hb/pQ6neWU7fjkK9SqU3UMezaaQjFQpQ6LbEDkmk7HNh/WLxgMlKVnJrNpWx/15sK0lnVzMA5Ixl314UYWrqQquTE5qYg1ypp2F0ecA2/13mCKdvvQk9TB6uf/sTPI0+qknsFeHLMGXuec5mTN64JEyZMmDDnPJZuI+uf/9JP1IE3K7Z89R5cLpfvvPLVe1j99CesfPJD9i/ciLE9dM6nw2IPano87LppmLtMLHv8XTa89BWrn/6Ebx5/l/aKRkQSERFJoadsVTERWA2B4kcsk5A0OIvmA/5pEMbW7n7js9RxkSHFlLXH5I0B21XB8Oum+VlpaOKjyBg9ELvZQnJxDukj8hGIROxfGBhBBt4BAqFEhFQpo277Eax6r8ecUCREqpIjQBDyPgCfhYxNb6ajsglTew/5s0b4ecmJZRJG3z7XJ9rajzSw8aVFmDr0gHcbs3ZLGeue+6LfpBGRWIRUKff1YcrUCoZcNp72yibqth/y237WN3Wy5Y2l2IxW5Folo2+ZQ/6s4YjlXnNjbVI0k35xCbE5SVh7TH79kR6Ph9IlW9j06hLqdh4hoSADTVwkErmU6KykkAkZcfmpAd6Hp0rvwMfxxsd2k5UNL32FpSd4VvCPjXDFLkyYMGF+RLQeqgva5wRQvmo32RMHIxAI2PjKIjoqj2W+HvpmB9WbSpn2m6tQxwTamIgVEsbddSFupwuBSEjjnkqM7d1YuoxegdAHh9XO2v98zuw/3kDm2EIOfbszoCcOYMDUYpQ6DfXJMfQ0tAPeKd+hV06mbOnWgGGRlGEDUEVric5OpKOyiYSCDOIGpOBxu2naX82AGSUBW59SpYy0kfkkD82hq6aFIyt3Y2jtYsil45GqFIgkIvSNHVSs3eftmTuKy+4IMAXui76pA6VOS3dDW0BvnUyjIKEwPUCYAkQkRftEZa9QLl2ylbSReYz72TxsJitCkRCRWIQmPgqxTIKlx+RNsMBb3eprV6Jv7MTQ2v2d4sBUOg3VQQyRwbuNaWrrRhmpRhGppvDCMeRMKsLtdiOWSnz3bmjpDir03U4XXdUtWLqNvuqyQquk5Oop7Hh/pd+5UpWckqumIFWeGWFnM1oCcmd7Mbb1YDOYAyrWP0bCwi5MmDBhfkSY+qu6We24XW70jR1+oq4Xm8HC4RW7KLpsvK/CA97q3oGFm6ndVobH7UEoFpE+Mo+iyyayoc+gQl/cThfNpTVkji1g/D3z2fz6174JV6FISMEFo1DFRVK//TAl10zx9py5oaOqiZ3/W0XB3JFEZyXRcrAGsVxKakku2qRoPHgonDcaiVxK3fbDVK7fh0AkJGNMAeqYCNRxkeibOgFIHZ5H2ogBVKzdx9a3lqGK1jL44nHomzrY+tY3ZE8cgqXHiFgmIXdKEZ3VTSQMTPPeo1iESCoO2R+oiNRgM1pIGJiOobWL6MwE35pUKWfYtdPZ/NoSv9gzbaLu6MCIV1zII1Q+E+XarYeo3XoIsVyKx+UGPMz64w2AV2QmDc4kfmCat8dOKsbSbeTQtztx2hx0VjWjTYjC2NZD0/4qbwLH4CwUEaqg6Q0uuzOgotsXY1sPsbneyqhILEKp0wScIxD1v33ad10sl5I6Ig9dZiIVa/Zg7jKSUJhOclF2QBrF6RDqZ3Wy6z8WwsIuTJgwYX5ExOakcJDgSRWa+ChEErHfpOnx1G0/TP6s4b7JWpvJyo73V9K4t9J3jtvpompjKemjBva75Who7kAkEROfn8qEe+bjtDlxOZ0IhUKqN5dRumQrKSW5OK0O1DGReFxuX2LCxpcWEZUWhy4zAZfdye5P1pI5bhAxWYkIhAI2vrLYL5Fh3+cbqN16iDG3zUXf1IlUKSN+YCobXvrKt91o6TLSXt5IwdyRpA4fQOa4QkztPTTurWLDS4uY8eg1vuvJI1RkTxjM4RW7Al6XRC5FHqHEYbGRO3Vo0NQJlU7DqFtmY+kyYGjtRqZRIhSL/Ayi5RolWRMG+fm+9V6rYO5InygTCARYuk2se/5L8HgrXcWXT2TUzbPobmgnMjmGtvIGdv1vte/nsffT9Qy9ajIZowb6iTubyYLNaO03T1gdF+n3Z5vJisPs7W2UKOXIVHLkaiXyCFXQqqZcqwwYhpAqZEhTYym5eqq3+ic58/JDplYgFAmD9loKhMKAHOMfK2FhFyZMmDA/IrTJ0ahjI3yecX0punwiMo0CYT9mxUKx0M/f1mYw+4m6vnTVtaJJiMLQHHz7KybHW/Vxuz30NHXhtNnZ9/kGv63i2q1lmDv0jLplFgKhEIlM6jO97aptpau21XeuKkaLw2qnq6YlaMxWT0M7nTXNTLjnIjweD6uf/iSohUnZsu1Me/gq9n2xkebSauLz05h0/6WIZGLsJqtvkCRvxjD0LV0090mvkKrkjLhxJh2VTYy9cx5l325nxHUz/K5vN9uwW2zs/ngNTXurEMulOG125FoVOZOLSCnJRSyXoNCqKLhgNIpINYdX7MJu8va25UwpRiQR07CngtRhAyhfs5e6HYcBbx7uqFtms/ez9b7tawBNQhQjb5zFlreW+axLdv1vNXG5KUQkHxN21m4T5Wv2kDm2kCOrdge8N6qYCN9WvNvtxtDcyc4PVvlyd2Nykii5agqaBB1jbpvLmn9/5vfzFIpFjL5tLoqI4FvDQpEQoej7ae+XRygZMKOEsqWBAzu5U4qQ/UQiysLCLkyYMGF+RCgj1Uz6xaXs/mQtjXsq8Xg8KKLUFF8+kZjsJIRCIdkThlC37XDQx2eOG+RX2bAFGW7opXLdfgZfPI6NLy8KWJNrlegy4rzX0JuITI5m3bNfBO3/a69oxGayEpEUQ/akISEnaWNzknHaHBxYtDnkPVVvPkjy0FxMbd0hq4lulxtLtwlljJapDy6gpayWjS8vwm60EpObTNGl49EmRaOIVDPqpllYe0z0NHUgkcuQKmUYWrsxdxo4sGgzI66f4dtOtHQbaT3SQMXqPbhdbpIGZ5IxpoAd760gY+hA4gsyOLJyF6WLt6DUabzbzdlJdFa3UHzFRERSCU6LnapNB2gvb0QskxCTnUT5mj2+ex8wdSgHl2z1E3UAhuYu9n6+nsEXjWX7u8uPvR9bDlJ06QTfn1sO1dGwu5wR188gY0wBNVsO+nr2otLiGHXzbF+/nrldz4onPvKrSLaXN7LyyY+Y8dtr0WUlMOsP11O79SCdNa1EpcWRPmogSp3mjE66nixiqYQB00pQRKgpXbIVm8GMTKNg4OwRpI3MR/ITiSgLC7swYcKE+ZGhiolg5I2zsBktuJ0uJAqpX3O9NkFH6vAB1G33F3ea+Ciyxhb6VVQk/TS2G1q6iEiJYfj109n3+QZfdFd0ViKFF4zG0NqNVKOkflcFSp0maB6r71rNXejS4smZXERLaS1dda1+60OvnIwiQoXNaO234iMUiRAICDmF2YvTZichL429X2zwixRrO1zPiic+ZOpDC4jOSkSmViBTK4hIjvGlboikEnQZ8b418Iq6Ta997XetzupmNPFRjL5lDsa2Hja/tsTvvdvy5jJyJhehjFKz9a1vgtyjA5fN4dcbFpUWF1LYdte3oU3UMeb2uez60Lsta+3xF7dCsQg8sP2d5WSOK2Tczy7E5XQhEovoafRunQO4XC4qN+wPus3stDmoWLOHwZeMRxMXSeG8Mb5rnG3kGiU5k4q8Xn1OF0KxCEWE+qwIzbNFWNiFCRMmzI8QiUKKRCENuibXKhm6YDKZYwo4smYPLruTjNEDictLRRnl3ygv13hFzfEVIoC4ASmIRCLajjRQfMVEbw+ZSER3fRtb3lqKy+5kxqPXULpoMyNvmhUw0Xn8PYE3Fm38PfPRN3fSuLsCqUZBSkkuykg1EoUMsVxK5rhB7PlkbdDrpI3Io3TxZjJGF4bckhbLJIgkYtxOV9CcWI/bw84PVzPxvov9TJeFQiFKnSboMEFHVXPQaxlaumivbKKrtiXo/Zav2cOEey6ifO3eoNvGQrHIu5V7VGCFMvrtxdxlZN+XGxhxw0w2vPQVyUOz/dbj81K9r9HjoXL9firX7/etJRRmkDNpCABOi53m0sCp3l5ayurIt9gQHa3unguirheBUBDw9/inRNjHLkyYMGF+YthMVrrr2ziyZg+auEiShmQRlRoXdIJSrlUx7mfz0CRE+R2PTItlxI0zcdjs1Gw+yJY3l7Hp1SVseOkrDizajM1gwWlzYGrvwePx0HKwhsTBWQHXB2/fmibu2PUVkWri89MYetUUCi8YTURitN8gQeqwAUSkBJrNxuWn4rI7aNhdidVopnjB5MDIraNB9c2lNX4Tq8fTVdPiH3DfD067g4p1+0Ku124tIzozRJKDB8xdBj8B2YtUJUeqlJE345gNiypa2281UiyTYGrroXbbIbInDUGXHu+3LtcqGfL/7d13fFT3mT/6z5kzM2f6qPfeJVABCQmJIoootmPjhp3EBTu5TuzgxMSbYm82cXJvcp27N5v1xnFiZ5OYbNaOncTGuGBsg+lFCISEEOqo9zq9z/n9MTBm0IyQQGjQ6Hm/Xvyhc2bmPOdIoIdveZ77Vk16H6eQouCB1e7nLBCyXvvQul+vknptZ0b8j0bsCCEkANmtNpi1Rjisdgg5ESRqOVghC7vFivaj53Fu11EAgDu1YYAVT96JmLyUSYmDIjwIa757P0wTeld9shAlpGo5JCo5Jnomj+RdyWFzQMAK0H7iAsq+cQeMo1pMXNEbVSTjsPo798yoDpssWIFVT9+NkdZetB+rB8MKEFeQCt7J4+zfD2HFk1/Cidc+gjIqGCuevAv99e3Q9I5AHqpG6uo8NO2vhm5gDLH5qT6vIRCyszZ9d3U9vqtJ1YpJI5mMgEHJ1zaDU8mQuioXNqMFvbVtsJktiF+Wga5TTZM+JyY/BSOXNjl0n2nGpp88MmnkSiTlkLJiESIy4tByoAZmjQHRi5MQW5DmUXpEJBEjc2MhBuo7vMacvXEZRJLJ/xEg/keJHSGEBBjThB71H55Ex8kGOO0OCDkRMjcsRerqPNgtdtRdVcQXAMADZ97Yj+CECK/TWFK13FXc9aoRILGcg0Ql87pRgWEYqKJDoIoNxUhLH07+aS9y7y4Dp5BCNzgOaZACYWkxUIQFzTiJkgUpkFCUiZDESDR/XoMLH52CcVyHsLQYjLT1w6I3wdJqwpHfvofI7AQoI0Ng1hrQcrAGDMNgomcYuVtWAAy8ToEmFmd5HUXzRigWIXXlYgz6mLpMLM7yWV9QyIkgEAlR8rXNGLjQBbFUDEVEEEJToiFVyyEQCCBRuXq8ZqxfijN/+xyJxVlgxSJ0Xvr+MgIB4osyEFeQipN/3gsAcDocEAi9T8qJZRKEJEqw7OEKOJ1OsCKh11HAoNgwZG9ehoa9nuVzMjcWIig+fFrPhsw9SuwIISSAWAwmnH5jP/rr2t3HXDtJK+GwORC3NN1rFwgAMGuNsOjNM1qfJA1SoPCr63Ds1ck7Y7M2F0GilqP4kY04+F/vwjiqRfXfDkDIiaCIDMayhyuuK6m7zDShh2FEC6lajvytq8E7nLCZLOi6YlMIz/Mea8XkoSqUfG0zRBIxeKcThV9djzNv7Pf4XEVEEHLuKIFQ7H0XpcPmgN1ihUDIQnSp3VZoSjRCU6ImFX5WhKuRVJYDu9mKnuoWjw0kjIDBkgfXoGFPJVTRoYjNT0FnVROGmnugH55AYnEWZCEq8DwPIScCGNf6v8rX9yJ55WKs//4D0I9oIGBZ9J9vx8k/feyu4RaZneiOzReBkIUAvqdTOYUUqeV5SCjOxFBzj+tzsxIgUclht1ihHRhzTdkqZa74yC2BEjtCCAkgFq3JI6m7UvP+s0gozpry/YJrdBS4GsMwiMhKwLofPIjzu49jonsIslAVcm4vQXh6LEQSMUQSMdZ9byu0fWMY6xqEMiIIIUlRkAZ7361o1hpht1jBsAJwChmcdgcsOiOsRjOEnBgimRhmjRGskAXP8+ipbsF41xBYkRAFW8vBKX2PtIkVUigjg1H41XUAXN04wtJi0H26GaYJvWu9oY9RS4fdAeOoFi2fn8VIWz+kwQpkbSyC+lJplLJvfAmDDV1oPXQOTocDSaU5iCtIgyxECZ7nseFHX0X/+Q4MNfdAHqJERGYCWg/VglPJIAtR4vDL77mvJVHKoBuaQMvBWleP3Mw4xBakIWN9AQbqO3DxcB3UUSHoOdvqrjF3GStikX/vqhtq1WUzWTDWOYjafx6Bpm8EocnRSFyeDYGQRd+5Npx79yjMWiMYgQAJyzKQu2WF100lZO5RYkcIIQHEOK7zec5pd8Bps/vsOqCICAInn97045VEEjGUkUFYtm0jwPNgxcJJnQdkwUrIgpWIWpTo83NsZivG2gdw9u8Hoe0fAytikViSjaTl2Tjyu/dhN1mRf/9qiKRi9NW1I6kkC8de+9A9leqw2XHuvaNY9ugG9Jxp8XqNrI2FHlOsIokY6uhQyDcVwWG1wengfSZEEz3DOPCrf7hr8U30DKO/rh15965E6uo8SIMUSCrNQUxeCnieh1guAe9wukuByEPViMlLwVBzD8Y6h9C87yx4nsfK7Vtw7PdftGaLyklERGYcjvz2Pfe99de148JHp7Dm2fsQnZuM/rp21L57FMXbNiIiMx4dJxtgM5oRmZOInDtKoLyqe8RMDbX0erSLG2nrg9PpBO90ovpvB9zHeacTnZWN0PaPYeXTWyCdYsMFmRuU2BFCSAARy6cepRFKxCh+bBNO/OEjj0X9rEiIksc3QzLDJulmnRHDLb1o3FsFs9aAsLRYVzssCTflrkme52E1mN0xMwyDsY4BHPqvd92vcdgcuHj0PEbbB5B/7yoYx3UYbe9H9+lmLL6rFBf2nJq0Ps5mtGCsfRDZtxWj4eNTHucSl2cjPCPO45jT6YR+cAJ17x9HX+1FsCIWyWWLkFGx1GMzgVlrRNX/fOa1wHLdrmOIW5LmnvoUyyUwa40Yau5B26FzcNjsSC5bhNDkKIikHHgnj+FLU5vSYIVr5/AVmydSy/NcNe+uvjeTBaf/ug9l3/wSBvJS0Hb4HC7sqUTmhkKUf+ceCERCV5mba0zBXotpQo+zbx+cdDxlxWLUf3jC63vGu4Zc0+KU2PkdJXaEEBJApGo55GEqGEa0k85FZMZBIBIialEiNv74YbQdPgftwBjCUmOQVJINWejMptKsRjMufHgSrYfOuY91n25G79lWrPmXrQhLcZX4MGuNME3ooR0cgzIyGCJODIvBBJvJ6p5CjcpOwNm/H/J6HU3vCFiREKFJUbjwUSUAQBkVgvEu70lG4ydVKH5sI8p33Ivh5h44HU6EpkRDEaaeNJJoGNZg3y//5h7BtFucaDlQg/7z7Vjz7P3uKVmr0Qxt36jX6/E8j/GuISjCg9z3e/btg+42YIBrxC04IQIrnroLBfevhqZ3BPqhCTACz96mYrkEFr3JZ7268a4hOGx2pK7KRWxBqqt3rELi0YP2RtnMVhhHJ//8iKRimCYm94Z1x9Y56P6eE/+hxI4QQgKINEiBldvvxuHfvOvRT1UdE4rMjUU48vIurH76bqhjQlGwtRxOu8O1K/I6NjCYNAaPpO4yp8OJM2/sR/mOe+G0O3DiDx9htH0AmRsLYdEa0fjJadf6LIZBdG4yUsvzYBzX+0ycALjX7rmvcWm3r69G9vqhCbQedK11YwQCNO8/C0W4Gmu+e5+7PpvdakPDJ1VeP0M/rMFwSy8Sr7Em0RtN74hHUnfZeNcQes62IH1tAdY+ez80/aMYae1DeHqs+zUCVgCHzT7pvVe6nPRdnaTOFgEr8LlbWCBkvY5aAq7RR+J/lNgRQkiAUUeHYOW3tkDbPwrThB7yMDUsOhMq/7wXVoMZbUfqsOjOUrBC9oYaso+09fk8p+kdgd1iQ917xzDaPuDakBCixNm3Drpfw/M8+s5dhG5oHCWPbQYrFnq0z7qSWCH1mDruqW5BQnEWLnorDMy4dqle+NhzqlbbPwarweJO7KxGC/rrOrxeTxokB6eQorf2IoZbehCbnwp1TCg0XpJPhmEQHO/qi+uw2dFysMbnc2k7dA4JRRmQBikgDVIgKjsRVpMFWZuKXAmvzghFmNpnYiULvrE+rDaTBWadCU67HSIJB0mQfNJon1ghRUxuMvrOeW7C6TvXjvjCDHRWNkz6XCEncj8D4l+U2BFCSIBx2h2o//AEhpp6XFN7WqPHKFBnZSPS1xbMqCiwN9dqI+WwOdBT7drEkLIyFw17T3l9nW5gHDaLFYklWbh45Pyk84yAQVBcuKvP6SV95y6i7JtfwnjnIMa7rugrywBLtpaj/cQFr4mR0+HAYGMXRFIOYrkE6phQDDV51uATSTkse2QjTr+x3z0l2VvTioL7y3Hij3smjVjl3rMC3KWWaDzPT9n2y2F3wDiuh8VghkQlByeXQCzlkLmhEGFpMWj4uArDbX1IW1OA1gM1Vz0IYPFdpRjvGkRQ7OTOG9diGNGg+q2D6K9vB3hXOZPcu1cgtiANnOKLtZliKYeCB9ZgonfUY0q252wr1v/gAeiGxjHW/kVZFyEnwupv333DP09kdlBiRwghAYhhGNjNVq9N3BkB4xoRukGhKTFgGMZrZ4XwjDjwDod7U4BYzsE45nvH7uCFLiSWZGO8awjjnV8kaoxAgGWPbkDroVpEZMUjZeViXDx6/lI9t0+Qf98qiCRijPcMQyzlEJ2bjAt7Kr3uilXHhmGwoQu17xwBAMhClFj+9dtQ9T966AbH3a9LXrEITfur3UmNgBUgoSgTYoUE677/ANqP12P0oqvcSfbGIqhiQt0bFoRiEZJKc3wWK45enIQLe06hr7YN0bnJKHpoPaRBCnAKKWJyUxCWEgOLwQxt/yhU0SG4eLgOxnEdguLDkb62AF1VTYhbkn6tb80kpgk9Dv1mF/RDE+5jFr0Jp/93H1ixcNKUsyJMjXX/shWjHQMYvNAJiUqO0JQonP/oJJJKc1CwdTU0vaOQBsmhjgmDNEhxQ6O/ZPZQYkcIIQFGIGSRWp6H3po2r+eTyxaBU9z4+iyJSoYlD65B9VsHPI6LZRwKv7IWrFgEkUQMm9kK3slPOdUqUcugGxxH5vpCiBUSjHUMQKKWIyIjHkKpCCFJkbBbbIhelISEogw0fHYGVr0Z+qFxRC5Kgs1gRtLybHRUXoA6OhQ98EzsWBGLxXeVouaKDRrGMR2OvfoBirdtcpUWuSQsLQbN+6sBfNHaq7OyEQ17qyBgBYjJT0H8skzELUmD8tKGiSuFp8VAFRsKba/ntC2nlCE2LxVHXnFdq7+uHR2nGpBUkgMBKwCnkEIsl4AVi9B2qBb95ztcHTCUUuiGJnD6r/vgsNmRd/eK6X6L3LSD4x5J3ZXqdh1DREbcpBE3WYgSErUcYakxGG3vx0B9BxKWZiA0JRryUBXCUmJmHAe5+Rj+Wk3sAohWq4VarYZGo4FKpbr2GwghZJ4yaw04/b/7Jq2TUkQEoXzHfZDPUjFZq8kCs8YA07jePXKnigyGNEQJp9OJln1ncW7XUcQtTYdYLvG6Jo4VC7HiyTthNZhRt/sY1v7LVvduVJPWiJ7TTWg7UueqbScWIq08HwnFmeg524qJ7mFwCimyNy+DQCyEw2xDd3UzVFEh6DzVCNOEAWEp0a6RvI8qva4LXLl9C0QyDp2VjRCKWSQsy8K+F/8GAIgvyoRIIsLFo5OniCUqGSqe+4rXwrzGcR06Tzbi4tE6OB0ORC9ORtySdFS/9Tn0wxpwSimKHqrAeNcgemsvghEwSFm5GDF5qZAFK2Ca0KPqfz7z6JohknJY9e27EZIYOePRsYa9Vah775jP87f934/dcO07cvPMJH+hETtCCAlAEpUchQ9VIGXVIFo+r4HD5kBSaTaichJn1DLsWuxmGy4ePY+LR+pgt9gQmhrt6v6gkoEVCZFUlgMAaPzkNIoeqYBucNxdww1wrc8q+8Yd4AGMdQ95lBgxjGox2t4Pw5gOKatyIQ9V4cKeU2j67AysRjPS1uQjNi8FEpUMkiCFexNAyorFMI7rkLFuCcRyCYScCB+/8D8+W6kZRiaQUJKNiPRYdFY2QNM7AmmQK7mKW5KKUzs/8fo+s9YI3dCE18ROFqxE5qZCJJVlwzCiRdO+ahx5Zbc7hqKHK1D7zhGPUbTqvx1A25E6rPrWFshClCh+fDPMGj00faPgLnXMuN4pT3mY2uc5ISfy2VeWzD+U2BFCSICSquWQ5qYgPCMevNMJsZS7oc+zW2ww64zgHU4IOTEAHsd+9z7Gu79YEzfa1o/P//1trP/BgwhJioJEKUN6xRLEF2XAbrFh2SMbYDNZMNE7Ak4hhSoyGCwnAu/kEZEeC1bk+rWkH57AwZfe9Vi8L+REKHl8M85/cAIdxy8gNj8VR3/3PoScCOU77kNIUiQYhnHvOL3MOKaDSCp2F0S+mjomDAP1Haj8014AgFlnQs7txTjz5ucAw0y5GUI/MoFIxHs9JxAIIFUrYBjRovdsq/t4WGoMxjsHvU6NanpGXFOeJVmQKKWQKKUIigv3ef3pCk2K9FkeJrU8z71TmMx/lKITQsg0mSb06K/vQNVfP8O5XUcx0Tvi0dT9ViXiRDec1BnGtDj95n58/JO/4OMX/oJjr37g2uhwRVJ3Ge/kUfPPI7BcSqRYloU8VAV1TCgU4WoEJ0QguTQHMbnJUEQEQaqWQxascCd1FoMZVX/dN6lIrt1iQ9VfP0PWpiLX7tNLu1PtFhuO/f59mCb08EailiP7tmKv5+RhKshClah794tpyvHOQUx0D6N420YwAmbKTg7q6NApntql66vkUMV88bqIrHj01l70+fqOygaf93K9pMFKrP7OPRBd9XMQvTgJGeuWeOxwtposMIxqYRjTwuZl8w25tdGIHSGETINxXIejr7yPiZ5h97HGT04j9+4VSF2dB7HsxhInf3I6nVN2LjBp9Djy8nvQ9o8BcO0SDU6IQH9du8/3jLT2wm6xgvPR4szpdMKiNbo3VVzZv9WqN3lM117JajCDYRiwIqFHMuLqbmHwOs0sYAVILMmCzWRB06en3SNwoSnRKHl8EwQCwaQeu21H6sCpZYhenIyMDUtR/8HJSZ+rjAz2aDvmC8sJseSBcjTsrcJQYzfAu3Yt+8IwjKuTRVjQDdWsu5KAFSAkOQqbfvwQdIMTsOiNUMeEQaKWu5897+ShHRxH7TtHMFDfDoZhELckDbl3r3B31SC3PkrsCCHkGhwOB1oPnfNI6i6re+8YYnKT511iZzWYoB/R4uKR87AaTUgoykRIcpTXxEjbP+5K6hggc0MhwtNiYdLoYRz3Paok5EQ+kxeTRo+OEw1o3l8Ni96EkKQoFNy3GkFxYRBKxNfsvGA1WhCSHAXtwJjHcV9dKABXl4bszcuQVJoDm9HiTiY5hRSmCT2kQXKPdlmsSIjg+Ajs/+VbWPqVtUhfV4CLR+rcSWFYWiyKH9s4rdptUpUcQ009CEmIRPraArBiEcRyDjX/mPzzBABxS9Iw2NiNmPxUCAWz92taIBBAFqKCLMR7MmoY0WD///eWu0QOz/PoPtOCoeZeVDz35WklscT/KLEjhJBrsGpNaDs8uXXWZV1VTci9joKx/mIxmNG8rxoNH1e5j/VUt0IZGYzyZ+6dtBlgqLkbAJB3z0roBsZw9HfvgxEwWPmtu3xeI2VVLjgvLa/MOiNO/+9+j9G+sfYBfP4ff0f5d+5FZHYCRDIOIikHm8n7NLciXI0lD5TjyCu73cdca+vk4J28z1EuViR0dXW4ikQtR87tJa41dZdELUp0l4up/tsBxBdlouTrt4F38hCwAhhGNBCKRT7v/2pR2QnQDYzhxB8+gtPhRNk37oA6Ngya3hGP14UkR0Ekk0AeqrpmAejZ5LA50HygxmvdQ4vOiJ7qFmSsXzprI4jk5pl3a+xeeeUVJCUlQSKRoKSkBKdOea9kTgghs4UH7/UX3mUWvWkOo7lxhhGNR1J3mW5wHM2fn3WvXbtMHqJ0F9FtP34BgGvarut0M3K91FQLig9HxvolXhMT07je+xQuD1S/dQAmjQFStRyL7yr1GntcYQZYIYvOU00e3ReSSnPQVdWExk9PT1kI2X05nncXT2YYBrFL0pC1sQjMpSlpkZTz+L52n27C8Vc/xIk/fIRjv/8ADR9XwW71PUI46XpOHgnLMrHxxw9j008ehjIyGGXfuAMFW1cjLC0G4emxKHigHGnl+ah95wgSijKmnK6dbVaTGQP1HT7P99a0wWbx33o7s9YITd8IRtsHoB+eoLV/U5hXI3Zvv/02nn32Wbz66qsoKSnBSy+9hE2bNqGpqQkREdSjjhByc4gkYkRmJ/r8xRe3dOadAPzFOK5Dx4l6n+fbj55HxvolHlOyEZkJ0PSPTeoR2nmyAYnLs7Fy+xaMtvXBbrUjJi8ZqqgQn1OUU/WX1Q2Ow262QqqWIzovBTzPo/mzahjHdRBJOaSsWITgxEgcfOldxBakQsiJIVHJXLs6lXKc+dt+gAfaj53Hmu/e77UMiUVngm54HBePnIfdakPy8hwExYdDGqRAzh0lSFmVC7PWALFcgqGmbp/rCENToq85ZQwAdqsNY52DqH7zc/d0dlROEpY8uAYStQzquHBYDWbYzDb3qPCqp7dANsfTngKWhVjmfT0kAIgVEr91ltANjuP4Hz5yj266av7lYtGXSmg3rxfzKrH79a9/jSeeeAKPP/44AODVV1/FRx99hD//+c947rnn/BwdISRQiaQc8u5ZiaGm7kl9QoPiw6GOmR/TsGadEY2fnobd4jshsXvpDCENkiNhWSZON3RNOtd5sgFdpxqRWJKNggfWQCwVg+d5mLUGOJ08xDLOY8pyquSBETBgLiUPnJyDcUyL7NuKIZZzcNgc6DrdhKb91QAPxBakQh0TisjsBIx3DcGsNSKhKBN9de3QD2vQXd2CjHVLPKYOzTojzr9/3KMfbc+ZFoQkRqLsqTshC1JAEa6GItw1XStgBZCoZDBrPXvJClgBUlfnofVQLZY+uHbKkTVt/xgO/fod8DwPabACaeX5UEYGQ9s/CoGAQURGHJQRQbAazEhZuRicQuKXZIWTS5C5YSlO/Pcer+cz1i+d0dTzbDGO63Hov971GIXlnTzaDp8Dp5Qi+7biOZ2yng/mTWJntVpx5swZPP/88+5jAoEAFRUVOHHihB8jI4QsBMqoIFQ8/xWc23UMgxc6IJKIkVqeh9TV+ZAGzY9RA4vehJ4zLci7dyU6Tlzw+pqYvGSIpJ7lPViREKroUETmJELTNzrpPbyThzRIAaGYhUljQG9NK5r3n4XNZEX0okRk3VYMRZgaAlaA0JRoMAKB12LBMfmp7h2aIgmHpNJF2Pf/vgmnw/O18jAVQlOiUbf7GJJKcqAf1mCsox+cUobibRsx3NKLjhMXkFiSBckV6/x0A+MeSd1lY52D6D7dhIx1nmvIWLEIxY9vQsv+sxio7wTP8whOiED27cXoPtOEiMx4mDQGiKUchNzkpMdqNKPuvWPgeR4hSVHIub0Y9R+exHiXq0SMOjYMRQ9XICg+fFaLRl+v8PQ4JCzLQFdVs8fx9HVLoI65dlmXm0E/POFzar15/1kkly2iTR1XmTeJ3cjICBwOByIjIz2OR0ZGorGx0et7LBYLLJYvFt9qtVqvryOEkGthhUIExYah9OubXet7GAacUgqWnT+jBQ6rHWatEQ6bAyHJURhrH/A4z4qEWLylDCLJ5B2+Ik6EtPI8XDx6ftJ6Q5GUQ3LZIlgNZpza+QkGrxjZ6zjZgO7qFlQ8/xUoI4PBCBis/8GD0PaPouNkA4aaXBsz5KEq5N+3yqNmnDIyGOt+8CBq/nEII619EAhZJBRnYtEdyyGScUhdmYvjr33oUUuw+3Qzcm4vQUxessdImtPpROsUG2BaD55D4rIsSNRfJOmudXhA0vJspK7Og8PugH5wHBatESFJUWj5vAZ17x1HWFoMcm4vhiI8GKzoi58Hu8WG0Yv9YAQMFt9ZimOvfeDRK1fTO4ID//EPbPy3h6CKCvEZ21yRqGRY8sBaZFQUoq+2DQzLIjY/BbJgBcRy6bU/4CbQXbXz+Up2s3Va0+ELzbxJ7K7Hiy++iJ/97Gf+DoMQEkBEUm5Skdf5gpNLwIpY1P7zMIq3bcRY5xA6TzXAbrIiIjsBi760fMp+obJQFdZfSrQGG7oABojMTkTB1tUQSkTQ9o16JHWXOax26AbH0X++A02fnIZFbwKnkCJ9/RJkbiyEw2ZHSGLkpFErVsgiJDESK566E3aTFRAw4BRSCMUiWI1m1O+p9Fog+sLHlah47isetfF459QbYBxWm7vXrVlrxEB9Bxo+qYJ5woDgxEikrytA9+kmyEJU0A1NeIx4dp9uRk91K9Z+byvCUqLdxwUCATilDKroEPSea/NI6i5z2h1o3n8WSx4odxdo9idOKQWnlCIkMfLaL54Dyshgn+eEnOiWeGa3mnnzRMLCwsCyLAYHBz2ODw4OIioqyut7nn/+eTz77LPur7VaLeLjvbd+IYSQQCdRy5G1qQj1H1bi+B8+QnhGHLI2FYEVCcEwDGQhSgimGIEUCARQx4Si9Ik7YDWawQBgORH0wxq0fF7j831JpTkYvNDlUTLGojfh/O7jyKhYisV3lnqdyryMk0vBXTViZDWYMdzkvYgxeGCie8gjOWGFLBJLsnxuhogpSIVYLoHVYHatwzv6xZTtUFM3hpq7UfL4ZkiUMhz6r3cnX9LpxJk39qN8x73u6d/Lz1s/POGz4DLgKuZsM1kpSfFCEREMWbByUgFpAEhfv8RjhJW4zJtyJ2KxGIWFhdi/f7/7mNPpxP79+1Fa6n1bPMdxUKlUHn8IIWShYkVCpJbnY+mX14JTyjDc3IP690/ArDEienHStNuOiWUcFGFqyMPUMI7pcOD//zv0Q+M+F7HHLUnzSJSu1PJ5Dcxag9dzU7k8uubL1evyAFePVlX05ClPkYxD0vJsOGyuqWqvsfJAx4kL0I9ofF5T0zsC21UjiDH5KZCHKKdMQCRqOXinE06H7560C5UsWIHyHfd6tGRjGAapq3KRviafNk54Ma/+e/Dss89i27ZtKCoqQnFxMV566SUYDAb3LllCCCFTkyhlSF2dh5j8FDhsDrBCFhK1/LpKWViNFpzbdRQ8z2OkrR/p65ag5UDNpNc5bHavmyUA10iXWWucccsqkVSC4IQI90aEq4VnxE0+yAD5963GYEMnuqqaIBALkboqF5GZCTj9xj6UfuMOjHUMTH7fJYYRDQTCqZ/T1TtkpSo54osyoYoJQ5+P/rApKxfj5OufIDw1Gklli7wWUV7IlJHBWLPjXph1JjisNojlUkhUsil7+C5k8yqxe/DBBzE8PIyf/OQnGBgYQEFBAfbu3TtpQwUhhBDfGAEzK7sw7RYrRlpddemcdgdGWnuRVp6H1kOemxTYa5TJuJ5uBhKlFEu/ug4HfvWPSSVoUlfnQqqa3PXCarDgyCvvIXpxMkq/cQccFht6z11EZ2UDFn1pOWwG85RTwvphDUKSosAwjNcRw/D0WIi99MblFFIExYUh//5VOPfO0S/eywAZ65ZA2z+G4aZuDDd1o+1wHdb/4EEopljr6C82sxU2kwUMw4BTyabsLzzbJCo51aybpnmV2AHA008/jaefftrfYRBCSECwGszgeR5imWTGCRbDMJAoZe71T02fVSP7tmUofeJ29Na2wWayIn5pOhQRQVBGBkM3OD7pMxQRQe4OEDMVFBeODT/6Khr2VmGkpRfcpX6wYakxXndxskIW4IGEZZk4//4Jj3VvLQdqkLlhKZLKFkHACrxO5Yanx4KTS1DwYDnOvnXQ45xYxmHpV9d5Texc5yVIWZmLmLxUjHcOwmG3Q6KUu0vDXGbRm1D/0UkUPrTeL3XjvHE6HNANTeDChycxUN8JoVSMtDX5SCrJnlavXDK3GP5aCxUCiFarhVqthkajofV2hJAFzaQxYKi5B62f18BhtyNhWSbiCzNmVBOM53m0fF6Dmn8c8jgukogRtSgJ+fevwljnIHgnDxEnRuXOT2DRfVHsl1NKUbxtIyQqOYITrr97kN1qg81khUAomLTJ4koWgwm17xyBIlSN8x94r39avuNeaPvHcPbvB4ErfjtyCinWfm8rVFEhsJosMAxr0HKgBsZxHaKyExFXmA55qGrabcDqPziB+j2VHte4TCBkcfv/89gtUdsOADR9I9j34luTSouEpsSg7Jt3QHoDGxh4Jw+LwdW6TeKltzBxmUn+Mu9G7AghhNwYk8aAU6/vxWBjt/vYRPcwWg/UYu33tk47uWMYBvFFGRhq6kLfuS92m9otNkQtSgTv5HH2rYNQRgUjriANS7+8BlajBfrhCSjCgyCWcWg9fA5FD1Xc0P0IxaJpjW5xcimyNi3D0Vd2+3xN+7F6BCdGYuW3tmCwoRPGMR2ichIRtSjJ/VzEUg7ihAgUPVwBp90BViyccV9Xq8niNakDgDlsEXtNVpMFdbuOea0XN3qxD9qBsetO7AxjOnRXNaGjsgECgQApq3MRk+uqm0euHyV2hBCywEz0DHskdZcZx3VoO3wOi+4qnXbhZalajqJHNsI0ocNQYzdEMg7h6XGQql2tuEwTepgm9IjKToRZZ0T3mRaIJCJ0nWpCcEIEln557Q2N+MyUiBPBZvJdz85mskDTO4K6XUcRvywThQ9XQKLwPgooYAXX3T81YVmWzxIx8UWZYOZw/dpU7CYr+n30SAZcLdkiM2deRswwpsXBX78DwxW7jKvf/BztCeex4lt3QUZTvNft1vjJIYQQMiecDicuHq3zeb6zsgFWnWlGnylRShEcH4HMDYVIWbEYyoggCDkxBEIWYpmrhMq5XUcx1jGIRXeUIHNDIZZ+eS2yNhZBHjK3y2JEMg7RixJ9no/IjMd45yCcDic6TzbAeamosHFcj8HGbrQcqMHAhU6vddVmQh6mQmJJ9qTjEpUMCcsyceild9B37qJrZM+fGGbK+npXt5+bDqfTia5TTR5J3WXjXUMYaemd8WeSL9CIHSGEkCvM3jygRCVH5oZC1O0+DgAYqO/AwKXRH5FEjI0/fnjWrjVdQrEIWbcVo7u6ZVInCHmoCvJQlbsfrjIyGAIRC93gOA699K5HMidRyVD+3fuh9lIXbzokShny71uFhKIMNO2rhs1sRWRWPMLTY3Hmzc9hGNHg6O/ex8pv3YWYvJTrv+EbxCmlSF65GC1XbPC4UsKyzBl/plVvQsdJ772KAeDi0TpE5yZTOZPrRCN2hBCygAhYAVJX5fk8n1SaDbFydvqCClgBklcsQlJZjke+6EqK7pvVzQE8z8M4rsd41xCGW3qhH56Azex9tEsRpkbF819x95NlRSySSnOw9KvrUP32QffrcreUAQBO/HHPpBE6s9aIY79/HybNzIsrXyZRyRCdm4wlD5QjMjMeo+0DOPLb3R4jWTX/OHRD17hRrJBF5vqlXlt75dxRcp3fQ2bKNYmMQHBrLTScZ2jEjhBCFhCe56GICEJkTgIGL3j2dZWFqpCyKnfa6+umQ6KSo+D+cmRvWgbDqBYiqRjSIAWkQYoZbzjwhXfy0A9P4PBv34Nh2JUUMQIGaWsLkL1pGSRX1bQTsAKoo0NR8rXNsBotcFjtuHj0PCpf3wupWgGRjEPa6jyEZ8bDrDFgonvY63X1QxOw6IyQquVwOhwwa4ywW2xgxUJIVLJptwjrr+9A46envV9jWAO7xTaDpzH7ZCFKlH/3Poy1D6DrdBM4uat0izxU5bO8y1Q4pRQpKxej5h+HvZ5PLc+DaIp6gmRqlNgRQsgCYdGb0HfuIi7sqUT2bcWIzU9FV1UzHDY7EkuyEFuQelPWvIllHMQybsqG7tfDrDVCPzyB7jMt4J1OFNy3GqPt/Wj85DR4J4+W/WehCFMjrTzfa40+kYSDSOJaA5i+tgCx+akY6xiANFiBkMQoCDkRHNapkyq7xQazzoiO4xfQ8EkVbEYLWBGL5BWLkb15mbvOm9PpBMN4H6maavOIQMhe9waN2SQLUkC2JA0x+Sk3XJiYYRjELU3HxeP10PaOepwLT49DaLL3/u9keiixI4SQBcDhcKCzssE9SnL6r/ugiAhCTG4yguLDEZOX6t7oMB+YNAac/t/P0F/X4T7WerAWKSsXY9GXlqP+w5MAgIaPTyG2IG3KEhrGcR1O/OEjjHUOuo+xIiFWPb0F8lC1z4LFDMNAGqRA68FaXPio0n3cYXOg9WAtjON6LHmw3DXSVdUETiFByso8KMLVHiNdoakxEAjZSR00ACC5NAfcLVTfbba6TciClVj99N0YbOxG+7HzYAQCpK/JR2hqzJzukg5E/v9vACGEkJvOPGHA+Q9OehzTD02gef9ZnNr5Kcxa/63juh4D9R0eSd1lF4+ehzIy2J2kmrVGOB2TE6bL7FY76j886ZHUAa7+tkd+uxs870Ta2gKv701asQi8w4mmT894Pd9X2wbdwDhO/HEPemvacPFoPfb98m9o2ncGFqPZ/TppkAIrnroTgqsa2gcnRCD79mIIxYE5BiMLViK5NAcrt2/ByqfuQtzSdErqZkFg/rQQQgjxYDVaYDf7rt+mH9ZAFXV9OzznmllnRPO+ap/ne862IDo3GZ2VjZAFK12txHyw6IzorGz0es5hs2O8axjZm4rAySVo/OwMbEYLhBIxMtYvQerqPJi1Bq/Fey8zjusgknCwXVG2pOHjKsQXZoCTuUbtWCGLiMx4bP7poxht64NJY0BYagzk4WpIF0B/VLF0/owUzweU2BFCyALAiqbeEDGfpmF5h/MaRYat7tZii+5aPmU/U6fd4XUK9DKTRg9OKUPmxkIklGTDYbOBFQohCZKDZVnYpkiWAVfS4m2dXldVE4Liwt1fs0IWijA1FGHqKT+PkGuhqVhCCFkAOKUUYWkxPs7JIAu5eX1JnU4neOfstSUXySSIWpzk83xERhwmekeQu6UMMblT14ATcqIp7z0kMRJmnREOmwPyECVUkSGQh6rcO4clCikifHRekAUrYTVZvK7Pu1ZCSMj1osSOEEIWAE4uRfGjGyclMUKJGKu23wWpevZbOJk0evSf78DJP32Myp17MdzcA7POeMOfKxQLkblhKYReSmLIgpWIXZKG5V+/DRkVS8H5aAd2mTRIgfz7Vnk9F5wYCavRgoO//idO/uljjLT1wWr0rI0nlkuw7JEKKKM8d/xyShmKH9uIxr1VXj87fmn6lHERcr0Ynudn779RtzitVgu1Wg2NRgOVam7b2BBCyK3AOK6Dtn8MY52DUEYGIyQxErJgpddyIDfCNKHHiT/uwUhrn8fx+KIMLHlgzaTacjPldDqhH5xA3e5j6Ku9CIYVILEkCxkVS6EbHIc8RAVpkGJa17EazBhs7ELtP4/AOK6DQMgiYVkm4pamofJPez1G15Z+eS2SSnMmJZUmjR6GES00/aNQhKmhjAyGw2rHpz9/Y9IavLC0GJQ+cQdtFCDTNpP8hRI7Qgghs67tSB3OvLHf67nV37kHUTm++7XOhM1khdVkhsNqR8vnNWg/Xu9eMxeaGo3S/+v2aXdHME3o3cWAWw+fQ9uhc5PW3wmELDb/9NFprYVzOhzQD2tw4aNK9Nd3QCTlkL42HwlFmVOu+5sJm9kKhmG8jl6SwDGT/IU2TxBCCJlVZp0RrQdrfZ5vOXAWYWkxEIpvPBkRScWwmSw48B//gEVn8jg32taPc7uOovChiml1MricbE30jvjsjeq0O6AfnJhWYidgWaiiQlD4cAVsRgsYASBRymdldNQ4rsNgQxc6TjZAwAqQvrYAwYmRNApIKLEjhBAyy5z8lB0b7Bb7rG6m0A1PTErqLus+3YLFd5VBxE1/t+k1O53NcHW6iBPNaoss45gOh37zLnQD4+5jgw1diF6chKJHNlByt8DR5glCCCGzSqSQIG6KzQFJy7Mhkohn7XrmCb3Pc7zTCYfVd505b8RyCeQ+RuQEQhbK8KAZfd5scjqd6Kxs9EjqLus/3wFN74gfoiK3EkrsCCGEzCqWZZGyKheccvKOVEVEECKzE2b1esopCiuLpByEkpmNlknVChQ/tnFSJwgAWPrVdeBucOPHjbDoTLh47LzP862HauGwzyyRJYGFpmIJIYTMOkWYGut/+GU076tG9+lmMKwAyWU5SF2VN+3NDNMlC1YiJCkKYx0Dk87l3FF8XVOTIUlR2PhvD6H1YC1G2wegCFcjc0MhlBFBs7I28Prx4J2T6+K5zzqcWDhbIok3tCuWEELITeOw22HRmcEwriLJAnbqDhjXyziuQ+07R9BT3QLeyUMk5ZBzezESl2dDorz+ETaH3QG7xQpWJPRzQncpHocD9R+c9Fkfr+zJLyGuIG2OoyI3G+2KJYQQcktghULIgme/+PHVZMFKFD1cgdwtZXDY7BByYkiD5DecSLJCFqxw6iLHc4llWaSuykXnyQaYrlpbGJIchdCkKD9F5j9OpxMWnQm8k4dYLoFQvLBTm4V994QQQgKGSCKe1U0Ztyp5qArrvv8AOk5cQFdVEwRCFqnleYjJS5m1+njzhXFcj87KBrQdPgeHzYHYglRkbSiEPFwN5prbmwMTTcUSQggh85DT4YTVYAbDMF43qgQ604QeR195H+PdQx7HRTIOFc99BcqIIP8EdhPMJH+hXbGEEELIPCRgBZCoZAsyqQOAsc7BSUkdANiMFjR+ehr2GZa5CRSU2BFCCCFkXnE6neg4ccHn+d6zrbAazHMY0a2DEjtCCCGEzCsMGAinWE/JioTX7iASoCixI4QQQsi8wggYpK7K9Xk+dXWuXwtJ+xMldoQQQgiZdxQRQUhZuXjScXVcGJJKcyAQLMwUh8qdEEIIIWTekShlWLylDEmlOWg9dA52ixVJy3MQmhQF6RzUTrxVUWJHCCGEkHlJopRBopQhJDkKcPJe+/suNJTYEUIIIWReEwgEtLjsEnoMhBBCCCEBghI7QgghhJAAQYkdIYQQQkiAoMSOEEIIISRAUGJHCCGEEBIg5k1i94tf/AJlZWWQyWQICgrydziEEEIIIbeceZPYWa1WbN26FU899ZS/QyGEEEIIuSXNmzp2P/vZzwAAO3fu9G8ghBBCCCG3qHkzYkcIIYQQQqY2b0bsrofFYoHFYnF/rdVq/RgNIYQQQsjN5dcRu+eeew4Mw0z5p7Gx8bo//8UXX4RarXb/iY+Pn8XoCSGEzBaTxoDh1l7Uf3ACrYdqoRuagN1i83dYhMw7DM/zvL8uPjw8jNHR0Slfk5KSArFY7P56586d2LFjByYmJq75+d5G7OLj46HRaKBSqa47bkIIIbPHOK7H8T98iLH2AfcxhmFQ8rXNiM5LgYgT+TE6QvxPq9VCrVZPK3/x61RseHg4wsPDb9rncxwHjuNu2ucTQgi5MQ67A837qz2SOgDgeR6Vf96LzT/bBlFEkH+CI2QemjebJ7q6ulBTU4Ouri44HA7U1NSgpqYGer3e36ERQgi5ThatEReP1Hk9x/M8+s+3z3FEhMxv82bzxE9+8hP85S9/cX+9ZMkSAMCBAwewZs0aP0VFCCHkRvBO55Rr6cwawxxGQ8j8N29G7Hbu3Ame5yf9oaSOEELmL5YTITghwuf5yOzEOYyGkPlv3iR2hBBCAo9EKUPBA+UAM/mcOi4MqujguQ+KkHmMEjtCCCF+FRwfjjXP3o+gONdmOlbEIrU8D6u2b4FUrfBzdITML/NmjR0hhJDAJOTEiEiPw+pn7oHdYgMjYCBRysCK6FcUITNFf2sIIYTcEiRKGaD0dxSEzG80FUsIIYQQEiAosSOEEEIICRCU2BFCCCGEBAhK7AghhBBCAgQldoQQQgghAYISO0IIIYSQAEGJHSGEEEJIgKDEjhBCCCEkQFBiRwghhBASICixI4QQQggJEJTYEUIIIYQEiAXVK5bneQCAVqv1cySEEEIIIdNzOW+5nMdMZUEldjqdDgAQHx/v50gIIYQQQmZGp9NBrVZP+RqGn076FyCcTieampqQk5OD7u5uqFQqf4c057RaLeLj4xfs/QP0DBb6/QP0DBb6/QP0DBb6/QPz6xnwPA+dToeYmBgIBFOvoltQI3YCgQCxsbEAAJVKdct/I2+mhX7/AD2DhX7/AD2DhX7/AD2DhX7/wPx5BtcaqbuMNk8QQgghhAQISuwIIYQQQgLEgkvsOI7DCy+8AI7j/B2KXyz0+wfoGSz0+wfoGSz0+wfoGSz0+wcC9xksqM0ThBBCCCGBbMGN2BFCCCGEBCpK7AghhBBCAgQldoQQQgghAYISOwAWiwUFBQVgGAY1NTX+DmdO3XXXXUhISIBEIkF0dDQeeeQR9PX1+TusOdHR0YGvf/3rSE5OhlQqRWpqKl544QVYrVZ/hzanfvGLX6CsrAwymQxBQUH+Dueme+WVV5CUlASJRIKSkhKcOnXK3yHNmcOHD+POO+9ETEwMGIbBe++95++Q5tSLL76IZcuWQalUIiIiAnfffTeampr8Hdac+v3vf4+8vDx37bbS0lJ8/PHH/g7Lb375y1+CYRjs2LHD36HMGkrsAPzgBz9ATEyMv8Pwi7Vr1+Lvf/87mpqa8M4776CtrQ3333+/v8OaE42NjXA6nXjttddQX1+P//zP/8Srr76Kf/3Xf/V3aHPKarVi69ateOqpp/wdyk339ttv49lnn8ULL7yA6upq5OfnY9OmTRgaGvJ3aHPCYDAgPz8fr7zyir9D8YtDhw5h+/btOHnyJD777DPYbDZs3LgRBoPB36HNmbi4OPzyl7/EmTNncPr0aaxbtw5btmxBfX29v0Obc1VVVXjttdeQl5fn71BmF7/A7dmzh8/KyuLr6+t5APzZs2f9HZJf7d69m2cYhrdarf4OxS/+/d//nU9OTvZ3GH7x+uuv82q12t9h3FTFxcX89u3b3V87HA4+JiaGf/HFF/0YlX8A4Hft2uXvMPxqaGiIB8AfOnTI36H4VXBwMP/HP/7R32HMKZ1Ox6enp/OfffYZX15ezj/zzDP+DmnWLOgRu8HBQTzxxBP461//CplM5u9w/G5sbAxvvPEGysrKIBKJ/B2OX2g0GoSEhPg7DHITWK1WnDlzBhUVFe5jAoEAFRUVOHHihB8jI/6i0WgAYMH+nXc4HHjrrbdgMBhQWlrq73Dm1Pbt23HHHXd4/HsQKBZsYsfzPB577DE8+eSTKCoq8nc4fvXDH/4QcrkcoaGh6Orqwu7du/0dkl+0trbi5Zdfxje/+U1/h0JugpGRETgcDkRGRnocj4yMxMDAgJ+iIv7idDqxY8cOrFixAosXL/Z3OHOqrq4OCoUCHMfhySefxK5du5CTk+PvsObMW2+9herqarz44ov+DuWmCLjE7rnnngPDMFP+aWxsxMsvvwydTofnn3/e3yHPuuk+g8u+//3v4+zZs/j000/BsiweffRR8PO4bvVM7x8Aent7sXnzZmzduhVPPPGEnyKfPdfzDAhZSLZv347z58/jrbfe8ncocy4zMxM1NTWorKzEU089hW3btuHChQv+DmtOdHd345lnnsEbb7wBiUTi73BuioDrPDE8PIzR0dEpX5OSkoIHHngAH3zwARiGcR93OBxgWRYPPfQQ/vKXv9zsUG+a6T4DsVg86XhPTw/i4+Nx/PjxeTs0P9P77+vrw5o1a7B8+XLs3LkTAsH8///O9fwM7Ny5Ezt27MDExMRNjs4/rFYrZDIZ/vnPf+Luu+92H9+2bRsmJiYW3Eg1wzDYtWuXx7NYKJ5++mns3r0bhw8fRnJysr/D8buKigqkpqbitdde83coN917772He+65ByzLuo85HA4wDAOBQACLxeJxbj4S+juA2RYeHo7w8PBrvu43v/kNfv7zn7u/7uvrw6ZNm/D222+jpKTkZoZ40033GXjjdDoBuErAzFczuf/e3l6sXbsWhYWFeP311wMiqQNu7GcgUInFYhQWFmL//v3uZMbpdGL//v14+umn/RscmRM8z+Pb3/42du3ahYMHD1JSd4nT6ZzX/+bPxPr161FXV+dx7PHHH0dWVhZ++MMfzvukDgjAxG66EhISPL5WKBQAgNTUVMTFxfkjpDlXWVmJqqoqrFy5EsHBwWhra8OPf/xjpKamztvRupno7e3FmjVrkJiYiF/96lcYHh52n4uKivJjZHOrq6sLY2Nj6OrqgsPhcNdyTEtLc/+9CBTPPvsstm3bhqKiIhQXF+Oll16CwWDA448/7u/Q5oRer0dra6v76/b2dtTU1CAkJGTSv4mBaPv27XjzzTexe/duKJVK99pKtVoNqVTq5+jmxvPPP4/bbrsNCQkJ0Ol0ePPNN3Hw4EF88skn/g5tTiiVyklrKi+vMQ+YtZZ+3ZN7C2lvb19w5U7OnTvHr127lg8JCeE5juOTkpL4J598ku/p6fF3aHPi9ddf5wF4/bOQbNu2zeszOHDggL9DuylefvllPiEhgReLxXxxcTF/8uRJf4c0Zw4cOOD1e71t2zZ/hzYnfP19f/311/0d2pz52te+xicmJvJisZgPDw/n169fz3/66af+DsuvAq3cScCtsSOEEEIIWagCY0ERIYQQQgihxI4QQgghJFBQYkcIIYQQEiAosSOEEEIICRCU2BFCCCGEBAhK7AghhBBCAgQldoQQQgghAYISO0IIIYSQAEGJHSGEEEJIgKDEjhBCrpPD4UBZWRnuvfdej+MajQbx8fH40Y9+5KfICCELFbUUI4SQG9Dc3IyCggL893//Nx566CEAwKOPPora2lpUVVVBLBb7OUJCyEJCiR0hhNyg3/zmN/jpT3+K+vp6nDp1Clu3bkVVVRXy8/P9HRohZIGhxI4QQm4Qz/NYt24dWJZFXV0dvv3tb+Pf/u3f/B0WIWQBosSOEEJmQWNjI7Kzs5Gbm4vq6moIhUJ/h0QIWYBo8wQhhMyCP//5z5DJZGhvb0dPT4+/wyGELFA0YkcIITfo+PHjKC8vx6effoqf//znAIB9+/aBYRg/R0YIWWhoxI4QQm6A0WjEY489hqeeegpr167Fn/70J5w6dQqvvvqqv0MjhCxANGJHCCE34JlnnsGePXtQW1sLmUwGAHjttdfwve99D3V1dUhKSvJvgISQBYUSO0IIuU6HDh3C+vXrcfDgQaxcudLj3KZNm2C322lKlhAypyixI4QQQggJELTGjhBCCCEkQFBiRwghhBASICixI4QQQggJEJTYEUIIIYQECErsCCGEEEICBCV2hBBCCCEBghI7QgghhJAAQYkdIYQQQkiAoMSOEEIIISRAUGJHCCGEEBIgKLEjhBBCCAkQlNgRQgghhASI/wO6abIDyIEpMgAAAABJRU5ErkJggg==\n" - }, - "metadata": {} - } ] }, { "cell_type": "markdown", - "source": [ - "Then we create an instance of our clustering algorithm and look at the resulting labels per datapoint" - ], "metadata": { "id": "X9DlHWImFqnw" - } + }, + "source": [ + "Then we create an instance of our clustering algorithm and look at the resulting labels per datapoint" + ] }, { "cell_type": "code", - "source": [ - "dbscan = DBSCAN(eps=0.25, min_points=5)\n", - "labels = dbscan.fit(X_blob)" - ], + "execution_count": 7, "metadata": { "id": "MVfm7q2QGO18" }, - "execution_count": null, - "outputs": [] + "outputs": [], + "source": [ + "dbscan = DBSCAN(eps=0.25, min_points=5)\n", + "labels = dbscan.fit(X_blob)" + ] }, { "cell_type": "code", - "source": [ - "# each point is assigned a label by the clustering algorithm\n", - "print(labels)" - ], + "execution_count": 8, "metadata": { "colab": { "base_uri": "https://localhost:8080/" @@ -356,11 +339,10 @@ "id": "d5LwuDAjHDVq", "outputId": "19df04ad-9f0f-45e5-ddf6-adc5da9658c4" }, - "execution_count": null, "outputs": [ { - "output_type": "stream", "name": "stdout", + "output_type": "stream", "text": [ "[ 1. 2. 1. 1. 1. 3. 2. -1. 3. 2. -1. 1. 1. 2. 2. 3. 1. 3.\n", " 2. 2. 1. 3. 1. 2. 2. 2. 2. 2. 3. 3. 1. 1. 1. 2. 1. 3.\n", @@ -420,20 +402,45 @@ " 3. 1. -1. 2. 1. 3. 1. 3. 1. 3.]\n" ] } + ], + "source": [ + "# each point is assigned a label by the clustering algorithm\n", + "print(labels)" ] }, { "cell_type": "markdown", + "metadata": { + "id": "ewP8gzQ4FxF2" + }, "source": [ "Finally, we put all datapoints that belong to a cluster into an numpy array (i.e. all labels not equal to -1) and similarly for all noise points (label equal to -1).\n", "Then we plot all clusters and noise points" - ], - "metadata": { - "id": "ewP8gzQ4FxF2" - } + ] }, { "cell_type": "code", + "execution_count": 9, + "metadata": { + "colab": { + "base_uri": "https://localhost:8080/", + "height": 472 + }, + "id": "S26MBwddYz65", + "outputId": "7ec12eeb-843b-4947-b7b6-5c69c571147a" + }, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wcd33//5yZ7fX67jXdnXrvvTdbGNtggwErEMBg83Vigw0h3/xsElwImMDXhCQkNsYJJdiYZkxxk6xq69SLJVn9JF3vZXudmd8fq1vd3u7enU4nq3iej8c9HtqZz2fms7Ornfe8y+stqKqqoqGhoaGhoaFxnSNe7QVoaGhoaGhoaIwEmlGjoaGhoaGhcUOgGTUaGhoaGhoaNwSaUaOhoaGhoaFxQ6AZNRoaGhoaGho3BJpRo6GhoaGhoXFDoBk1GhoaGhoaGjcEmlGjoaGhoaGhcUOgGTUaGhoaGhoaNwSaUaOhoZFk5cqVrFy58movY1hs3boVQRDYunXr1V7K+4IgCDz++ONXexkaGtcUmlGjcd3xs5/9DEEQkn8mk4mSkhLWrVvHv//7v+Pz+dLmPP744ylzRFGkuLiY2267jV27dqWNP3LkCHfddRcVFRWYTCZKS0u56aab+I//+I+0sbIs89Of/pSVK1eSl5eH0WiksrKSe+65h3379mV8D//1X/+FIAgsWLAg6/vsXevTTz+d9RpkO35/Wltb+frXv87EiROxWCxYrVbmzJnDP//zP9PT0zOkY4wE3/nOd3jllVfet/Nda8yaNYtHHnkEgK6uLkRRvCaNsKamJh5//HEOHTp0tZcyZBRF4ZlnnmHmzJmYzWby8/NZvXo177777tVemsb7iO5qL0BDY7g8+eSTVFVVEYvFaGlpYevWrTz88MP84Ac/4E9/+hPTp09Pm/PMM89gs9lQFIX6+np+8pOfsHz5cvbs2cPMmTMBqK6uZtWqVYwaNYr77rsPt9tNfX09u3bt4t/+7d/48pe/nDxeKBTiYx/7GG+88QbLly/n0UcfJS8vj/Pnz/Ob3/yGn//859TV1VFWVpayjhdeeIHKykr27NnDmTNnGDt2bNb3+f3vf5+/+Zu/wWKxDOs67d27lw9/+MP4/X4+85nPMGfOHAD27dvHd7/7XbZv386GDRuGdexL5Tvf+Q533XUXd9xxx4gfe/ny5YRCIQwGw4gfeyQIBoMcPXo06V3ZtWsXoigyb968q7uwDDQ1NfHEE09QWVmZ/H9xrfOFL3yBF154gc9+9rM8+OCDBAIBDh48SFtb29Vemsb7iaqhcZ3x05/+VAXUvXv3pu3btGmTajab1YqKCjUYDCa3P/bYYyqgtre3p4w/evSoCqiPPvpoctuHP/xhtbCwUO3u7k47fmtra8rrBx54QAXUf/3Xf00bG4/H1e9///tqfX19yvazZ8+qgPryyy+rhYWF6uOPP57xfQLqzJkzVUB9+umnh3wN+tLd3a2WlpaqLpdLPX78eNr+lpYW9Vvf+lby9YoVK9QVK1YMeMzLwWq1qp/73OdG9JihUEiVZXlEj3klePvtt1VAbWlpUVVVVf/xH/9RnT59+rCPB6iPPfbYCK0ulb1796qA+tOf/nREj+v3+0f0eL38+te/Tv6f0vhgo4WfNG4oVq9ezT/90z9RW1vLL3/5y0HHu91uAHS6i07LmpoapkyZQk5OTtr4oqKi5L8bGhr48Y9/zE033cTDDz+cNlaSJL7+9a9n9NLk5uZy6623ctddd/HCCy9kXd+SJUtYvXo13/ve9wiFQoO+n/78+Mc/prGxkR/84AdMnDgxbb/L5eIf//Efs87vDXOdP38+ZXum/JXTp0/z8Y9/HLfbjclkoqysjLvvvhuPxwMkwmmBQICf//znydDa5z//+eT8xsZGvvCFL+ByuTAajUyZMoX/+Z//yXjel156iX/8x3+ktLQUi8WC1+vNuKaVK1cydepUjh07xqpVq7BYLJSWlvK9730v7b3W1tbykY98BKvVSlFREV/96ld58803LytPJxgM0tHRQUdHB9u3b6esrAxJkujo6OCdd95h2rRpyf19CYfDPP7444wfPx6TyURxcTEf+9jHqKmpyXquz3/+81RWVqZt7w299mXjxo0sXbqUnJwcbDYbEyZM4NFHHwUS17jXe3TPPfckP6uf/exnyfm7d+/mQx/6EE6nE4vFwooVK9ixY0fG8x47doy/+qu/Ijc3l6VLlwLQ0tLCPffcQ1lZGUajkeLiYj760Y+mfM88Hg8nTpxIfn8G4gc/+AHz58/nzjvvRFEUAoHAoHM0bky08JPGDcdf//Vf8+ijj7Jhwwbuu+++lH1dXV1AIv7e2NjIt771LUwmE5/85CeTYyoqKti5cydHjx5l6tSpWc/z+uuvE4/H+eu//utLWt8LL7zAxz72MQwGA+vXr+eZZ55h7969WcMQjz/+OMuXL+eZZ57ha1/72iWd609/+hNms5m77rrrkuZdKtFolHXr1hGJRPjyl7+M2+2msbGRv/zlL/T09OB0Ovnf//1f7r33XubPn8+XvvQlAMaMGQMkcn4WLlyIIAg8+OCDFBYW8vrrr/PFL34Rr9ebZjR+61vfwmAw8PWvf51IJDJgyKm7u5sPfehDfOxjH+OTn/wkv/vd7/iHf/gHpk2bxi233AJAIBBg9erVNDc389BDD+F2u3nxxRfZsmXLZV2X733vezzxxBMp2woLC1Ne9xq1qqoCiRyt2267jU2bNnH33Xfz0EMP4fP52LhxI0ePHk1es+Hy3nvvcdtttzF9+nSefPJJjEYjZ86cSRolkyZN4sknn+Sb3/wmX/rSl1i2bBkAixcvBmDz5s3ccsstzJkzh8ceewxRFPnpT3/K6tWrefvtt5k/f37K+T7xiU8wbtw4vvOd7yTf48c//nHee+89vvzlL1NZWUlbWxsbN26krq4uaZj94Q9/4J577uGnP/1pivHbH6/Xy549e/jbv/1bHn30Uf7jP/4Dv99PVVUV3/3ud1P+b2t8ALjariINjUtlKKEXp9Opzpo1K/m6N/zU/y8nJ0d94403UuZu2LBBlSRJlSRJXbRokfp//+//Vd988001Go2mjPvqV7+qAurBgweHvPZ9+/apgLpx40ZVVVVVURS1rKxMfeihh9LGAuoDDzygqqqqrlq1SnW73cmQ2lDDT7m5ueqMGTOGvL7+4afe85w7dy5l3JYtW1RA3bJli6qqqnrw4EEVUH/7298OePxs4acvfvGLanFxsdrR0ZGy/e6771adTmfyffeed/To0SnhxUxr6n0/gPqLX/wiuS0Siahut1v9+Mc/ntz29NNPq4D6yiuvJLeFQiF14sSJace8FGpqatSNGzeqGzZsUM1ms/r3f//36saNG9V//dd/VQH1N7/5jbpx48bk90FVVfV//ud/VED9wQ9+kHY8RVGS/6Zf+Olzn/ucWlFRkTan97vfS++5+4di+5It/KQoijpu3Dh13bp1KWsJBoNqVVWVetNNN6Wdd/369SnH6O7uVgH1+9//ftbzq+rF795gIbADBw6ogJqfn6+6XC71v/7rv9QXXnhBnT9/vioIgvr6668POF/jxkILP2nckNhstoxVUL///e/ZuHEjGzZs4Kc//Snjx4/n4x//ONXV1ckxN910Ezt37uQjH/kI7777Lt/73vdYt24dpaWl/OlPf0qO83q9ANjt9iGv64UXXsDlcrFq1SogEZL51Kc+xUsvvYQsy1nnPf7447S0tPDss88O+Vy9a7yU9Q0Xp9MJwJtvvkkwGLykuaqq8vvf/57bb78dVVWT4ZiOjg7WrVuHx+PhwIEDKXM+97nPYTabh3R8m83GZz7zmeRrg8HA/PnzOXv2bHLbG2+8QWlpKR/5yEeS20wmU5qn71IZPXo0a9euxeVyEQqFuPfee1m7di3xeJzKyko+8YlPsHbtWtauXZuc8/vf/56CgoKUhPRe+oeRhkNvWPWPf/wjiqJc0txDhw5x+vRp/uqv/orOzs7k5xQIBFizZg3bt29PO+b999+f8tpsNmMwGNi6dSvd3d1Zz/X5z38eVVUH9NIA+P1+ADo7O/njH//I3/zN3/BXf/VXbNq0ifz8fP75n//5kt6jxvWNZtRo3JD4/f6MN/Ply5ezdu1abrrpJj7/+c+zadMm7HZ72g1k3rx5vPzyy3R3d7Nnzx4eeeQRfD4fd911F8eOHQPA4XAAZDSeMiHLMi+99BKrVq3i3LlznDlzhjNnzrBgwQJaW1vZtGlT1rnLly9n1apVl5xb43A4hry+y6Gqqoqvfe1rPP/88xQUFLBu3Tr+8z//c0j5EO3t7fT09PDcc89RWFiY8nfPPfcApFWwVFVVDXltZWVlacZAbm5uyg21traWMWPGpI0bqCptMCKRSPKm/9prr+FyucjLy6Ojo4O33nqLBQsWJPf3NQRqamqYMGFCSp7XSPKpT32KJUuWcO+99+Jyubj77rv5zW9+MyQD5/Tp00DCqOz/WT3//PNEIpG0z7z/Z2U0GvmXf/kXXn/9dVwuF8uXL+d73/seLS0tw3o/vcZtVVVVikSCzWbj9ttvZ8+ePcTj8WEdW+P6Q8up0bjhaGhowOPxDOmGZLPZWLBgAX/84x8JBAJYrdaU/QaDgXnz5jFv3jzGjx/PPffcw29/+1see+yxZOLtkSNHhlT2unnzZpqbm3nppZd46aWX0va/8MIL3HzzzVnnP/bYY6xcuZIf//jHGZOYMzFx4kQOHTpENBodVqlzNs9AJq/S008/zec//3n++Mc/smHDBr7yla/w1FNPsWvXrrRk6b703kw/85nP8LnPfS7jmP7l+UP10kAiYTsT6oX8jivFr371q6RR1kv/fJpf//rXAJw7dy5jku+lMNTPymw2s337drZs2cKrr77KG2+8wa9//WtWr17Nhg0bsl4vuPhZff/738/6nbfZbGnn68/DDz/M7bffziuvvMKbb77JP/3TP/HUU0+xefNmZs2aNdDbTKOkpARIJL33p6ioiFgsRiAQSHoTNW5sNKNG44bjf//3fwFYt27dkMb3PsX5/f40o6Yvc+fOBaC5uRmAW265BUmS+OUvfzmkZOEXXniBoqIi/vM//zNt38svv8wf/vAHnn322aw37BUrVrBy5Ur+5V/+hW9+85uDng/g9ttvZ+fOnfz+979n/fr1Q5rTl9zcXIA0gb7a2tqM46dNm8a0adP4x3/8R6qrq1myZAnPPvtsMgSQ6cZbWFiI3W5HluWUMMz7SUVFBceOHUNV1ZQ1njlzZtjHXLduHRs3bgTgYx/7GF/60pf40Ic+xMmTJ3nwwQd56aWXyM/PBy5W4UEieXr37t3EYjH0ev2Qz5ebm5tRSDHTZyWKImvWrGHNmjX84Ac/4Dvf+Q7f+MY32LJlC2vXrs1qIPUmKTscjsv+rMaMGcPf/d3f8Xd/93ecPn2amTNn8vTTTw+parEvJSUlycT0/jQ1NWEymd6XEKzGtYEWftK4odi8eTPf+ta3qKqq4tOf/vSg47u6uqiursbtdifLtbds2ZLxKf61114DYMKECQCUl5dz3333sWHDhoxKw4qi8PTTT9PQ0EAoFOLll1/mtttu46677kr7e/DBB/H5fCk5O5noza157rnnBn1vkMhnKC4u5u/+7u84depU2v62trYBcw56b2Lbt29PbpNlOe38Xq83zcU/bdo0RFEkEokkt1mt1rQbryRJfPzjH+f3v/89R48eTVtDe3t79jc4Qqxbt47GxsaU6x8Oh/nJT34y7GMWFxezdu1axowZg8/n4zOf+Qxr165FkiTcbjef+tSnkvk0JpMpOe/jH/84HR0d/OhHP0o75kDepTFjxuDxeDh8+HByW3NzM3/4wx9SxvVWAPal1+vS+1n1Gvf9P6s5c+YwZswY/t//+3/JXJa+DOWzCgaDhMPhtLXb7faU78qllHR/6lOfor6+PmlEAnR0dPDHP/6R1atXI4rare6Dguap0bhuef311zlx4gTxeJzW1lY2b97Mxo0bqaio4E9/+lPKjaKX3/3ud9hsNlRVpampif/+7/+mu7ubZ599Nvl0+uUvf5lgMMidd97JxIkTiUajVFdX8+tf/zrZ/qCXp59+mpqaGr7yla8kjZbc3Fzq6ur47W9/y4kTJ7j77rv505/+hM/nS0lE7cvChQspLCzkhRde4FOf+lTW97xixQpWrFjBtm3bhnSNcnNz+cMf/sCHP/xhZs6cmaIofODAAX71q1+xaNGirPOnTJnCwoULeeSRR+jq6iIvL4+XXnopzYDZvHkzDz74IJ/4xCcYP3488Xic//3f/00aLL3MmTOHt956ix/84AeUlJQk8yC++93vsmXLFhYsWMB9993H5MmT6erq4sCBA7z11lsZb8Qjyf/5P/+HH/3oR6xfv56HHnqI4uJiXnjhheR3qK/nYuvWraxatYrHHntsSL2XduzYgd1uZ9q0aUBCsXqga/7Zz36WX/ziF3zta19jz549LFu2jEAgwFtvvcXf/u3f8tGPfjTjvLvvvpt/+Id/4M477+QrX/kKwWCQZ555hvHjx6ckWj/55JNs376dW2+9lYqKCtra2viv//ovysrKkjoyY8aMIScnh2effRa73Y7VamXBggVUVVXx/PPPc8sttzBlyhTuueceSktLaWxsZMuWLTgcDv785z8PeD1OnTrFmjVr+OQnP8nkyZPR6XT84Q9/oLW1lbvvvjs5bqgl3QCPPPIIv/nNb/j4xz/O1772NZxOJ88++yyxWIzvfOc7A87VuMG4eoVXGhrDo7fUs/fPYDCobrdbvemmm9R/+7d/U71eb9qcTCXdVqtVXbRokfqb3/wmZezrr7+ufuELX1AnTpyo2mw21WAwqGPHjlW//OUvpykKq2pCOfj5559Xly1bpjqdTlWv16sVFRXqPffckyz3vv3221WTyaQGAoGs7+vzn/+8qtfrk2XN9Cnp7ktv6TJDKOnupampSf3qV7+qjh8/XjWZTKrFYlHnzJmjfvvb31Y9Hk9yXCZF4ZqaGnXt2rWq0WhUXS6X+uijj6obN25MKXU+e/as+oUvfEEdM2aMajKZ1Ly8PHXVqlXqW2+9lXKsEydOqMuXL1fNZrMKpJR3t7a2qg888IBaXl6u6vV61e12q2vWrFGfe+65tPeeqXQ8W0n3lClT0sZmKn8+e/aseuutt6pms1ktLCxU/+7v/k79/e9/rwLqrl27kuP+/Oc/q4D67LPPZrvcKdx///3qmjVrkq/Hjh07aDlzMBhUv/GNb6hVVVXJa3HXXXepNTU1yTFkUBTesGGDOnXqVNVgMKgTJkxQf/nLX6aVdG/atEn96Ec/qpaUlKgGg0EtKSlR169fr546dSrlWH/84x/VyZMnqzqdLq20+uDBg+rHPvYxNT8/XzUajWpFRYX6yU9+Ut20aVNyTDYV746ODvWBBx5QJ06cqFqtVtXpdKoLFixI+3841JLuXmpqatQ777xTdTgcqtlsVlevXq3u2bNnSHM1bhwEVb3C2XIaGhoa1yk//OEP+epXv0pDQwOlpaUA/N//+3/51a9+xZkzZzAajVd5hRoaGn3RjBoNDQ0NEs1J+yZph8NhZs2ahSzLKflI8+bN47777kuqImtoaFw7aDk1GhoaGiQqlEaNGsXMmTPxeDz88pe/5MSJE2m9ufbu3XuVVqihoTEYmlGjoaGhQaIC6vnnn+eFF15AlmUmT57MSy+9NGDitoaGxrWFFn7S0NDQ0NDQuCHQivc1NDQ0NDQ0bgg0o0ZDQ0NDQ0PjhuADlVOjKApNTU3Y7fYR6XaroaGhoaGhceVRVRWfz0dJScmACtEfKKOmqamJ8vLyq70MDQ0NDQ0NjWFQX18/YIPcD5RR09vUrL6+HofDcZVXo6GhoaGhoTEUvF4v5eXlgzYn/UAZNb0hJ4fDoRk1GhoaGhoa1xmDpY5oicIaGhoaGhoaNwSaUaOhoaGhoaFxQ6AZNRoaGhoaGho3BB+onBoNDQ0NDY2RQpZlYrHY1V7GDYFer0eSpMs+jmbUaGhoaGhoXAKqqtLS0kJPT8/VXsoNRU5ODm63+7J05DSjRkNDQ0ND4xLoNWiKioqwWCyamOtloqoqwWCQtrY2AIqLi4d9LM2o0dDQ0NDQGCKyLCcNmvz8/Ku9nBsGs9kMQFtbG0VFRcMORWmJwhoaGhoaGkOkN4fGYrFc5ZXcePRe08vJU9KMGg0NDQ0NjUtECzmNPCNxTa8ro6axsZHPfOYz5OfnYzabmTZtGvv27bvay9LQ0NDQ0NC4BrhujJru7m6WLFmCXq/n9ddf59ixYzz99NPk5uZe7aVpaGhcx3zjG9+gvr4+4776+nq+8Y1vvM8r0tDQGC7XjVHzL//yL5SXl/PTn/6U+fPnU1VVxc0338yYMWOu9tI0NDSuY+6//37uvffeNMOmvr6ee++9l/vvv/8qrUxDY2TZvn07t99+OyUlJQiCwCuvvDLonK1btzJ79myMRiNjx47lZz/72RVf5+Vw3Rg1f/rTn5g7dy6f+MQnKCoqYtasWfzkJz+52svS0NC4zikvL+f5559PMWx6DZrnn3+e8vLyq7xCjRsVVVWJ+b1EujuJ+b2oqnpFzxcIBJgxYwb/+Z//OaTx586d49Zbb2XVqlUcOnSIhx9+mHvvvZc333zziq7zcrhuSrrPnj3LM888w9e+9jUeffRR9u7dy1e+8hUMBgOf+9znMs6JRCJEIpHka6/X+34tV0ND4zqir2Hz2GOP8cQTT2gGjcYVJerpJtBUh9qn0kfQ67GWjMLgvDJpFbfccgu33HLLkMc/++yzVFVV8fTTTwMwadIk3nnnHf71X/+VdevWXZE1Xi7XjadGURRmz57Nd77zHWbNmsWXvvQl7rvvPp599tmsc5566imcTmfyT/uB0tDQyEZ5eTmPPfYYS5Ys4bHHHtN+LzSuGFFPN/7amhSDBkCNxfDX1hD1dF+llaWyc+dO1q5dm7Jt3bp17Ny58yqtaHCuG6OmuLiYyZMnp2ybNGkSdXV1Wec88sgjeDye5F+2ZEANDQ2N+vp6nnjiCXbs2METTzwx6O+FlmCsMRxUVSXQlP2+BSQ8OFc4FDUUWlpacLlcKdtcLhder5dQKHSVVjUw141Rs2TJEk6ePJmy7dSpU1RUVGSdYzQacTgcKX8aGhoa/embQ7N48eK0HJtMaAnGGsMhHvCleWj6o8ZixAO+92lFNxbXjVHz1a9+lV27dvGd73yHM2fO8OKLL/Lcc8/xwAMPXO2laWhoXMdkSgrOlDzcHy3BWGM4KENUyx3quCuJ2+2mtbU1ZVtraysOhyPZ1uBa47oxaubNm8cf/vAHfvWrXzF16lS+9a1v8cMf/pBPf/rTV3tpGhoa1zHPPvtsRiOk12gZKG+vr2FTXV2tGTQagyLq9SM67kqyaNEiNm3alLJt48aNLFq06CqtaHAE9VoI3L1PeL1enE4nHo9HC0VpaGiMGNXV1SxZsoQdO3awePHiq70cjStIOBzm3LlzVFVVYTKZLnm+qqr0nDg8YAhK0OvJmTh9xFsx+P1+zpw5A8CsWbP4wQ9+wKpVq8jLy2PUqFE88sgjNDY28otf/AJIlHRPnTqVBx54gC984Qts3ryZr3zlK7z66qtXpPppoGs71Pv3deOp0dDQ0LgWudQEY40PNoIgYC0ZNeAYa8moK9Jbat++fcyaNYtZs2YB8LWvfY1Zs2bxzW9+E4Dm5uaU4puqqipeffVVNm7cyIwZM3j66ad5/vnnr9lybtA8NRoaGn34xje+wf33358xfFJfX8+zzz7Lt7/97auwsmuT/jk0Wk7Njc/lemp6uRo6Ndc6mqdGQ0NjRNEqeobOcBOMB0OORomHQsjRq58oqnHlMDhzyZk4Hfvo8VjLq7CPHk/OxOkfWINmpNCMGg0NjSRaRc/QuZwE40zIkSjBljaat+2k/o0ttOzYTbij65qogtG4MgiCgN7mwJibj97muCIhpw8aWvhJQ0MjjV5DRmsZ8P6gxGW8Nedo3/du2j73soXYykoQRO2Gdy0wUuEnjXS08JOGhsYV4VJaBlwJZd2rodarqipyOIIcjrzvaq5yOEzHgSMZ97XvOUD8GlVv1dC41tCMGg0NjTQupaLnSuThDPeYSjxO1B8g0u0h5g+gxONDOl8sEKTn5BkaNm2nYdN2ek6cIRYMXvK6h0ssGEJVlIz75EgUuU9jXg0NjexoRo2GhkYKl9oy4Erk4QznmPFgiI79h6n985vUvfYWtX/eQMfBI8RD4QHPFQsEadr8Dh37DxPt8RLt8dJx4DCNm94hFnh/DJvBcimu1VwLrf+VxrWGZtRoaGgkGYmWASOlrHspx5SjMdoPHMFz5hwoidCRqih4Tp2l4+CRASuJAk0tRL3pfXZiXh/+hqYhe3suB53FjKjXZd5ntSAZjVd8DcNBq5bTuNbQjBoNDY0kl9syYKh5OENlqMeUwxH8tZkNLt/5OuRw5vCNHInirTmf9fy+s7X4G5uveE6LzmTCtXg+9HPICKKIe/E8dJZrs8+OVi2nca2hGTUaGhpJvv3tb2e9EZWXlw8ovHcllHWHeswBc05UUKLRrLsHDO0IAtGuHjoODOztyYQiy8QCQaI+/6BGkSCJmN2FjLr1JpwTxmB2FZI7eQKjbl2LMf/a1i3R+l9pXEtk9ndqaGhoXAL9n857b3KXc3O7lGNmC90Mtl8yGnCMG024oyvjftuoUnzn6on2eMibNhnJMLQmg/FgiO4Tp/GcPosal9HbrBTMno7ZVYBkMGRei06H5HRQOHs6qiwjSLrrpoy7r0dtx44dmkGjcdXQPDUaGhqXxZVQ1r3UY0omI8bcnIzHMuXnDZiTYnUXZfSGGPNy0FssRHs8wCDeoD7EwxFadu6l5/hp1LgMQMwfoHn7ToLNbWnjlViMiMdL5+H3aN25j0BjM3Isdt0YNKD1v7peeOqpp5g3bx52u52ioiLuuOMOTp48Oei83/72t0ycOBGTycS0adN47bXX3ofVDg/NqNHQ0LgsRlpZdzjH1JlMFC9bgN5hT9lucNpxL52PZMpu1OgsZkqWL8K1eC7mogLMRQUUzJlOzsRxtO0+kBw3mDdIjkQJd/UQ6e4h1NKecUzHgcPEgxdDUUo8jr+ukbq/bKTryAm8Z2tp3r6Lxo3bifkDA57vWqG+vp4VK1bw5JNPZqyW06qgsqMqKsHWdnzn6wm2tqMqV1Yfadu2bTzwwAPs2rWLjRs3EovFuPnmmwkEsn/XqqurWb9+PV/84hc5ePAgd9xxB3fccQdHjx69omsdLpqisIaGxg1DPBQiHggRCwbRWy3oLBZ05ovKpHIshhqPI0hSWhgoHonirTmHHAwTbG5NqYgy5DgoXbMMXRYFWTkSpefkGXy1DTiqyul891jWNVbcvg7RoEcOR1DiceLBIL6zdQQam1PG2SvLKVowG1F37WYJ9HrUnnzySb75zW+mNfbsv/1GYKQUhf11jbTvfzfFyNVZzBTOmYFtVOlILHVQ2tvbKSoqYtu2bSxfvjzjmE996lMEAgH+8pe/JLctXLiQmTNnDuuBZSA0RWENDY3rnpHUOtGZzZgK8rCPKsOUn5c0aJR4nHBXN63Ve6l/cyvN23YSbGlDjlxMINYZDdjLSwn0M2j0NivFyxdlNWgA4sEgXUeOo8RiiIbsXiG93YYqyzRufpu6VzfS8OYWWnfux5jrJG/apJSxvrqGrFVb1wq9HrUFCxakeGjKy8t58sknWb9+/Q1l0IwU/rpGmt/elWLQQCIXq/ntXfjrGt+XdXg8idBqXl5e1jE7d+5k7dq1KdvWrVvHzp07r+jahotm1GhoaFxVrrTWiaqqhFrbqX99M4GGZuKBIKG2Dho3vY33XG2KDo3ebqNszTLK1q3CvWQ+ZTevpOymFRjstgHP4T2fWLscCqMzmxAkKeO4ovmzaNz8NtFuz8X1xeN0HT2BaDCk5gUp6vveruFS6Vst178K6pvf/Cbbtm3TDJp+qIpK+/70Hl99ad//7hUPRSmKwsMPP8ySJUuYOnVq1nEtLS24XK6UbS6Xi5aWliu6vuGiGTUaGhpXlSutdRIPhWnddSDjvs6DR9O8ITqLGXNBHvbKcsyF+UPSiFH6lHt3Hz+Fa+EcBDH159XsKky0PMjifek5cRrH2Mrka2Ouc9A8nmuNK6FVdKMRau9I89D0Jx4MEWrvuKLreOCBBzh69CgvvfTSFT3P+41m1GhoaFx1rqTWSaJJZWqrBEuJi+JlC3EtmUc8FCYWDF6WV6RvDkS4vRPPmXMUL19Iwaxp5E4eT+nqZRQvXUCkqyfrMeKB4MWEZgEK584cMOR1LaJVQQ2OPEjbjksdNxwefPBB/vKXv7BlyxbKysoGHOt2u2ltbU3Z1traitvtvmLruxyur8cADQ2NG5YroXUSD4VRY6miec4JY9BZzLTs3JssuZZMRtxLF2AqyEPMEjrqRY4mvC2qoiDq9egsZow5Doz5eUQ6E3o3odZ2Qq3tGHIcFC9flAxfGZz2rMeVTEaUaAyzq4CCWdMwOK+vYoYroVV0IyKZh2aoDnXcpaCqKl/+8pf5wx/+wNatW6mqqhp0zqJFi9i0aRMPP/xwctvGjRtZtGjRiK9vJNA8NRoaGtcEI/2UH49EaN//LhGPD73NCiRuFOaCPDoPHk0aNJDw5jRtfof4IA0sYz4/zW/vpvbPG6h79S3q39iM71wdgihRvHwh+dMnI5kSOTW28lLcSxegt1qS881FBQhZqplyJ0/AUuKmeNkiTPl513TVU3+uhFbRjYq5sGDQkKbOYsZcWDDi537ggQf45S9/yYsvvojdbqelpYWWlhZCfRSvP/vZz/LII48kXz/00EO88cYbPP3005w4cYLHH3+cffv28eCDD474+kYCzajR0NC46lxqZ/ChIIci+Gsb6Dl5hoJZ0xBEEUfVKHpOnc04XlUUvOfqsoahYoEgDZveJtRyUUBPDkdo3bmPUFsHeouZ3CkTKL9lNRUfuZmiRXMwOh0puTU6i4XSNUtTdXMEcI4fjb2qHL3FjGTMrDh8LXP33Xfz5JNPZtQVevLJJ7n77rsHnP9B6vYtiAKFc2YMOKZwzowrIr74zDPP4PF4WLlyJcXFxcm/X//618kxdXV1NDdflBdYvHgxL774Is899xwzZszgd7/7Ha+88sqAycVXE02nRkND46qSLSn4cpOFvWfraN25FwBTUQF5UyaCqtK6c19WdeDeXJtMXhJ/YzPNW6szztPbbZTdtCJFE6c/cjRKqK2TnlM1OCrLk0nABqcDyWQacguGa5HL/Qyv1HfgSnAj6dRca4yETs3149/U0NC4IRmKevBAjTSzIfYxEsJtHTS176Bw3iz0Dhtye2ajxpibk7UcO9zemfVcMZ8fVZaz7ldVlWBzGy3v7AYg1NwKgoAgipiLCnAtnjeUt3RZyLE4ciiMt7aOmMeHpdiFxV2UEh4bLplyaC7FILnc+dcjtlGlWMtKCLV3IIfCidBoYcF11R7jWkQLP2loaFxVLqcz+EAYcxwIUp+fOFWl68gxcsaPzjheEEUcoyuydu3uzcvJhGQxoQoCUZ+fSI+HWCCYojMih8J07D+cOklVUWWZYHProF28h4scixELhogFAsS8XoLNrRjtdqylxfQcO0X9G5tThAYvh8utYPsgdvsWRAGLqxB7ZTkWV6Fm0IwAmqdGQ0PjhkQymyhetpCmbTvhQpRdDoWJ9HgpnDuTjkNH0qqfdAN4LSzuIgRRRFWUlO2i0UDJ8sV07DuUaHWgJrYVzJiCdVQpOqMRJRYb0HCJdHVjdDqRY1EEQbzsUJQiy0S9PjqPHMdZVYHnVA3BPrlAksmIa+EcOg4dpW3PAYqXLRqRXJ7LrWDTun1rXC6ap0ZDQ+OaRY7GiAWCxIOhS1ZYFSUJs7uIittvJn/mNBxjKimcPwtTYT6CTmLULWsoX7eK8ltWU37LasxFBQOWc+vMZkpWL03Lt3EtnEtr9V4CDQmDBkCJRGnbc5BgY3Mi8VgUIctDuN5mxZSfR/exkzRtfofmbdX4G5qIX6JOSTwUTlyrcIRIVzf1r29GFEUCjc0pBg0kEpxbqveSN3USodYO5GgUVVaIh8KX1ZrhcivYBpr/QUom1hg+mqdGQ0PjmiPpaTh0lFBLO6JBT86EMThGVw5J4bcXUZIw2G3kTh6XuNl3dxPz+okHQwiSiMVVNGByb18EScRcmM+o29YS9fpRIlEMuU7kUCRrCKfj0HtY3C4koxFraQmBhqbUY4oihfNn0bjp7RRjItTWga2i7IIAX/ZeUpAwUIItbXQePkbM56do/ix6TtWAqmIrL00mS/dHicZQYjFM+bmgqnQeOYa/rhFBksiZMAZrifuSrvXl6tQMNr+3ncZAycQaGpqnRkND45oj6vFS/8Zmgk2tqIqCHI7Q+e4xmt/ZfckeDEgk8tb9ZQPNW6rp2H+YnuOnad2xl7Y9By7peIIoordasRa7sFeWY3Q6iHT3ZB0vh8Io8TiSQU/hnOlpeTm2ynJ85+szekf8tQ3E/P4B16PE4/ScPkvLjj3EfImxotFAtMebHKPKSrbpxIMhCubOoGHjNrrfO0nM5yfa46Ft94HEtR5Ezr+Xy9WpGcr8K91OQ+PGQDNqNDQ0rinkSJT2/YchQ7gp3NFJPBy+kPwaROmnFpwJJRan8/CxlP5MvQQamon5AxnmxIj5/ATbOgh3dg/YRkFvy56HI0hSUqdGb7NSdtMKSlYtIXfKBIoWzCZvygT8tQ1Z5/vO1Q343uRwhK6jx1PP2SfOpcrygLkyxlwnvtrM3cDD7Z1EPF5UVR009DeUCraRmP9BTCbWuDS08JOGhsY1hRKPE25Lb+YnGgy4F8/FV1OL91wtalzGWlpM/ozJ6O22tAaSvcjRKP76xqzn89XWYy7MT76OhyP0HD9F9/HTyQRjyWSieMUiTHk5aecx5uYg6nQp3b57cYytSpG711nM6CxmrCWJvjmxQRSMB1MRi4fCacZfuLMLs6uQUGs73rO15EwcR+e776XNNTjsGJwO2nYfTD+wIJA/cwpqPE5r9V5UWcExphJjnhOdOT0kNVCF2lAq2C5lvpZMrDEQmqdGQ0PjmiOTVkzh3Bl0HDxCz8kzKNEYqqLgr2+k7vXNxHzp3paU42Up007sS/0ZDDQ00X3sVIpFIYfDNG7anjEco7OYKVmzLEUXB8BS7CJv8vgBk48lowFbRfaGgo6qUVn3Aakl6xfwnDlH7uQJSEYjodZ2EATypk5M6fhtKXFRvHJxIuk5QxlxwaypRDq6ad6+C9/5evz1jTRt3UHz9l3EhhiSulJoTTM1BkLz1GhoaFxTSCYjjjEVePq0M9DZrCixGFFPekKuKst0HjlO4dwZoKqIel1KhZJkNGCrHIWv5nzG89krLz7px4Mhuo4czzhOjcsEW9pwjk1tAhgLhhB0EqVrliGHwsiRKMbcHCSzadAkX1GnI2/qRIJNLWkhIGt5KXp7dm2cxHszIZlNKR2dlWiM9n2HcC2eS9TnJ9TcitldRNlNK1FkGVGvQ2c2Ixn0CQ/M6Aq63zt58ZgmI5LRmNG7Fe7oIlDfhHP86AENxSuF1jRTYzA0T42GhsY1hShJ5E6egN5xsaO1KT834XXIQrCpmXB7Jw0bt9G6az+R7h7kC+EgUacjf+rEjF2PHWOrUnJiVFUdMDm2f1Jw1OenY9+71L/6FvWvb6alei+e02dRVXVQg6YXg91G+bpV5E2fjCHXiakwn+LlCymaNxPdIDL8OouJ4uUL0zxbcjiMzmJB1OkRL3hs6t/cTMObW2h5e1cyF0mQRJzjRqckMFvLS/DXp1Zp9cVzquayyr6Hi9Y08/J55plnmD59Og6HA4fDwaJFi3j99dcHnPPb3/6WiRMnYjKZmDZtGq+99tr7tNrhoXlqNDQ0rjn0Vgtla5YR7urGX9eI2VVEuD09z6YXUacnHgwR8/mJ+fz46xooWbkES7ELQRDQ26yUr1tFoKEJX20DkkFPzsRxGHKcSMaLxocgiuht1ozJwwCmgj65N8EQ3cdOJQT3LqBEY4Q7umja8g6lq5fhq2vAVl6KzmpGZ8xu5OhtVvKmTMA5bjSCOHTxPUEQMOXlUnHbTQQam4l09WAqyMNS7EKJx2nbtS9tTtTjo+fkGfJnTEGUJPRWC6VrlxNsbk28f4edrgw5OMn3KMskBXneR65UO42riaoo9JxvIeILYrRbyKl0Z80NGwnKysr47ne/y7hx41BVlZ///Od89KMf5eDBg0yZMiVtfHV1NevXr+epp57itttu48UXX+SOO+7gwIEDWkPLawGtoaWGxvVLqKOThje3ZtyXO3k84c7uFG+OZDZR/qHV6PtoraiqihKLI4hCxqaVAL7ahmSPpr6IBj2jblmT9GpEPF7qX9+UtWS6eMViWnfuQ4lGcY4bTd70yUP23vQnHg4T9wcJNLciGfRYil3ozCZEfWbjR47H6T56IiWs1BdBp6Py9pvQWS56qeKhMG17DxHz+nCMqaDjwJGMc3MmjUsaRB9ERqqhZdt7Zzn9l2oi3osGtNFhZdxtiymakrmVx5UgLy+P73//+3zxi19M2/epT32KQCDAX/7yl+S2hQsXMnPmzEEr2obDSDS01MJPGhoa1zzxUJhojxfnuPQfe2NeDqaCvLTwlBwKo/Trxi0IApJBn9WgATC7CymYPR1Bd/GmrXfYE124+7RRUOPywBowgWCynNpz+izRbs/AbzLbcYIhWnfspf7NLXQdPkb7vnep/fOGhL5Nv5J2RZaJ9HjoPn5qwBCRKsfTKqtCbe0E6huJerzoLBb0dlvaPNFoIGfc6MsyaGLRGEFfEDmevQHojU7be2c5+uLGFIMGIOINcPTFjbS9dzbLzJFDlmVeeuklAoEAixYtyjhm586drF27NmXbunXr2Llz5xVf33C5bsJPjz/+OE888UTKtgkTJnDixImrtCINDY2RpldoT4UU4yPq8dK2+wC5k8dTvHwRweYWlLiMxVWIZLWkJBWnMIxkVp3RiHP8aGyjSpAj0UQ4yGhMUx4WdTpEvT6rVo7BaUfoU3HUfeIUpoK8ZBWSHIkiRyKoioKo16OzmNOSb1VVxXuuLq3NAUDbnoOYCguQci56a6I9Huo3bEUyGCiYNQ1vluRoi9uV4uWRI5FECfsF2vcexLVoLsHmNnx1DaiKgn1UKTmTxqMboLHnQIQCYdoa2tjw0mbaGtsZM3U0K+9YSkFJProBjMwbDVVROP2X6gHHnH61msJJlVckFHXkyBEWLVpEOBzGZrPxhz/8gcmTJ2cc29LSgsvlStnmcrloaWkZ8XWNFNfVN2nKlCm89dZbydcfpP8IGho3OrFgCO+Z83jOnEWVZawlxeRNm4jOasVzJmG0dB87hSBJmF0FCKJEx4Xcj7wpEwn0q9bRWS1IhovCc/EL6r69Roqoy+5tECUJ0WpFbx3gBi4K5EweR9e7x9J26R124qEwOeNG07b7AABKJJZshhn1+WnbfSDpXZJMRgpmTcNaWpwilhcPhek5eSbrEnzn6zDOTOQ2yJEIbXsPgaImDENFwZiXS6SrO2WOIIoUzJqWkrejKmqKOKEcidK0rRpLsZu8qRORjEbM7sIB84IGIhqJsn/rQf7n2/+b3FZz9BybX97GP/zoq4yZWjXA7BuLnvMtaR6a/kQ8AXrOt5A7umTEzz9hwgQOHTqEx+Phd7/7HZ/73OfYtm1bVsPmeuO6Cj/pdDrcbnfyr6Cg4GovSUNDYwSIBUM0bdlB15FjibBRNIbvfB31b2xBiUZTBOZUWSbY1EqgoSlRyqyqaR4ZQRRxL56HzmJGicYINLfS+NZ2av/0JrV/fpOOA4cHFb4bDEEQsJWVkDNxbEr1kbmogMI5M+jYfzglCdlaXoJo0BMLBml8a3tKuEwOR2jduY9Q/2RoVUWODBRGUoj0eIn0eJAjUSKdFw2Y9v2HyZs6kZyJ45BMRgRRxFLqpvyW1egdqaEl0aDHWlrc7+AQbGqhfe8h4sFQioF4qXg6vfzie79K2x6Pxvnf//crejo9eLu9hIOX3gKjL9dD08uIb2jfu6GOu1QMBgNjx45lzpw5PPXUU8yYMYN/+7d/yzjW7XbT2tqasq21tRW3231F1jYSXFeujtOnT1NSUoLJZGLRokU89dRTjBqVXZwqEokQ6fOD4PV6s47V0NC4ekS6uon2pOac2EaV4hhdief0OazlpVnLjG0V5VjchdhHVxDz+jDm55EzfnQy/yXc2U3T5neS41VZwXP6LKGOTkpXLR1yQ8v+CHodcV+iOaZ78TxUVARRJNzZTcuO3UmBQADJaMReUYYgCES6PFnLxjsOHMGUn5dck6jXYS4qJNQv/GSrKMNRVUE8GCTQ2Iwxx4FoMiaMuwvJMmo8TvP2nVjcReRPn4Ih14nBYc9YWSVKEs7xo/HWnE8Lp0kmE7byksvSpWmtbyMeS1dcnrd6Nos+tICXfvhb6s804Sov5NbPfYiSSjdm69CbafZyPTS9NNqzt9UYzrjLRVGUlPtkXxYtWsSmTZt4+OGHk9s2btyYNQfnWuC68dQsWLCAn/3sZ7zxxhs888wznDt3jmXLluHzZe6OC/DUU0/hdDqTf5o4k8YHhevhibUXVVXTehxZStyYXYU0bU14b1RZxtSnlUEvkslE7sSxGBx2iubPomTVEgpnTcPgsCNKEvFQmPb9hzKeN9rtITrA70c25FiMYGs7TVt2IOn1BBqaaX57Fy1v76Z52066j55AicaSfZ9sFWWUrVuZrJoaqDQ95vOjyhcTaBO5MVNTPFGOsVUYc5w0bdtB256DdB46StPWarynzuJeuiDtmMGWNtr2HEAy6AcsFdfbrJR/aBW28tLE+UQBe9Uoym9ekdaIsy+qqtLd3kN7Ywfdbd0oSnrytJKhd9ToKZVMXTiZ//iHZ9mz6QDNtS0ceucI377v++zfeojYEPp69ed6aHqZU+nG6Bg4L8notJJTOfLekEceeYTt27dz/vx5jhw5wiOPPMLWrVv59Kc/DcBnP/tZHnnkkeT4hx56iDfeeIOnn36aEydO8Pjjj7Nv3z4efPDBEV/bSHHdGDW33HILn/jEJ5g+fTrr1q3jtddeo6enh9/85jdZ5zzyyCN4PJ7knybOpPFBofeJtf93vvcH/v77779KK8tM/9Jk57jRdOw/nHzdvu9dnONGkz9rKsbcHPQOO3lTJ1Lex1gQJQnJYEhpHaDG4xlViHsJtWY3MDKhqiqh1g6at+8k0tlN94nT5Ewal3Fs3vRJGPNycS2Yg6FPJVGmqqJeRIMB+rVtMDgdlN28AmNeLoIkYS1xJ3o59bMTvGdrUWUZc1F6WL5w7gykQcqPBUHA4LDjWjSHyo9+iMqPfIii+bMGXK+vx8e2P77Dt774L/zDJ77JE1/4Fzb/fjve7tRr7h5VhNSvpcOau1byu2deydgo9JdP/xpPx/A869d600tBFBl32+IBx4y7dfEVSRJua2vjs5/9LBMmTGDNmjXs3buXN998k5tuugmAuro6mpsv6i4tXryYF198keeee44ZM2bwu9/9jldeeeWa1aiB6yz81JecnBzGjx/PmTPZk+iMRiPGYSa2aWhcz2SSkL8Wnlh7FXvlcCSpuiuZTTjHViUrdSSziXgwmAzdGHOdGHKc+GsbiIfCWEvdWEqL6T52Eu+5OpxjKtFZsoQqRBFBklK8H30ZTLE3Ze2KQiwQRJXjFMyahs5sJtDUgqiTKJw3k54TZ4j5/OgddvJnTE5UZmX4/bG4ixBEMfn++pI7eVx6lZUkYS7Ip3TVEhRFoetwemJyLz3HT+FeuoBAUwuh1g4kowF7ZTk6m3XIgn6iXp9V/6Yv0XCUTb/bxp/+56LCrLfLy4v/+hu6Wrv4yBdvxWROvH9nnoO7/vYOfv0fLyfH6g16fN3+rMfu6fBQUJzunRsK13rTy6Ipo5n6Vzel69Q4rYy79crp1Pz3f//3gPu3bt2atu0Tn/gEn/jEJ67Ieq4E161R4/f7qamp4a//+q+v9lI0NK5J+ho2jz32GE888cRVNWgUWSbc3knLO3uSya+CJFEwZzrW0mKcE8bgOVmTMELiMnqblYLZ04l6vYQ7uhI9ocZWJRKEgyEC9U0E6psItrRSvHRhxtyYRB+pSjynatIXJAiY3YVDWrsqK4Q6OmnevjOlSsgxugLR4MBzqgbnuNGYXYXozKbkWnrLtpV4HEmvT/SDMpspWb2U5q3VKZ29baPKcIyuRMjQYLL3vQjx+IBtHOKhCEosjvfMeYy5TuRwhKatO9DbbJSuXprd+BsGni4vr/3vhoz7Nv56MyvvXIapNHF9jWYjS29dROXECv7889fpbO7CZB3MczT8tfVvenkteWp6KZoymsJJle+rovAHgevGqPn617/O7bffTkVFBU1NTTz22GNIksT69euv9tI0NK5ZrqUn1nggSOOWd9Iqmdr3HMSwxkbOxHFYXEX46xsx5udRmOOkdefeFBE5b8158mdOhT4//OG2TmL+QEajRpQkcqdMINzRSaSr5+IOQaB42cIh3+RjwSBNm99J8654z9aSb7ch6nR0HDhM8crFmPJyEnMCQVp37b+Y5CsKCWXhKRMxF+Yz6rabiHl9yNEYhhxHwms1iGdZkCQsxUUEm1sz7jcV5BLxeIh6vEQ9F8M3UY+XqNc3okaNr8efMfkXQJYVvN0+ikovGo1Wh5UJs8YxanwZ0UiMeDROToGTno50UUKTxUROQc6w1nU9Nb0URPGKlG1/kLluTMKGhgbWr1/PhAkT+OQnP0l+fj67du2isHBoT1oaGh9E+j+xXq28MlVV8Z6tTTFo+tJ5+BhKNErnkWMXvBcqPSdOZ1TF7Xz3aJrGTKApuxiY3mKmZOUSym5eQd70KRQtmE3F7TdjKXENWRk32NSSMVwE4Dl1FvvoCgRJxOhMyLfHQ2Gat1WnVi0pKp6TNXQfP42qquitFizFLuwVZRidjqRBEw9HiHq8RLo9iXBXn5wTQRCwlZcmcm/6IEgS9qpR5E2fQqSzJynw15dQ26XlDw2GwThwiMpgzFwCbraaceY5yHPlcu8/fS4t10YQBO559DM48y+9lY3W9FLjuvHUvPTSS1d7CRoa1xXX0hOrKsupnpJ+xHx+YoEgFncRPcdP46gcldUbgZoo09Y77MS8iYRUKcsNtJfekJC5sAAlHkcOhYl5fYg6PZLZOGDbBIDIAMnG8VAIyWjAvXRhshN4PBQikqUtgudUDTnjRyP2qyhSVZWox0tr9b5kN3DJZKRgznSMeblIen3ifVgtlN+8grY9Bwm1dWAtK8E5fjS+s7W0Vu9Bb7PhWjSXQGNLiqKwzjxyXhoAe46d4go3zbXpBmVhST6OXHvKtmg4iqfTS+2pOkKBMKMnV1I+rpQnfvENNv1+K7Un6imudHPz3WsoLClAl8EwG4wbsemlxqVx3Rg1Gjcu3/jGN7j//vsz3mjr6+u1H6IsDHTddu/ezfr169m2bVvGJ9b327ARJAljfm5WQ0XvsBPp7MbiKsRf34Q6SBdoVZZTck8s7qIhrSMeCtH57jG85y54jUQBx+hK8qdNGjA0Yy7Mx3s6cysGg9OOMdeJzmJJen6ydflOrl9RiYfDCeXiC0m58UCQho3bUpV9wxFad+zFvXQ+PSdrKJg9DVNuLgang+Lli5BjMaI9Hpq2vJOshor2eAk0NFEwZzqWYlfimg+SPyRHIsSDIUJtnYh6HabCfCSTCWkAw8KZ7+Bvv30v33vwh/h6Lib8Wu0WHvzu/yGnwJncFglFOFx9lOee+FlKz6dFH1rAJx+8k7sfuotoKIrBZEA/xITmTAz0O1FeXq79jnwAuG7CTxo3Ltdb+fG1wkDXbf369fzqV78a8In1/SAejhALBJFDYRxVo7ImQeZPn0zMH6B11wEK58xA1Okw5DgzjoVEE8uYN3EjzZ85BW9NLfHQwGq0cjRG+/4jCe9FbxhMUfGeOUf7wSPEw2GiPj/Btg7CXd0pCbnmooKs+S75My/o4vQJiWUzkKxlJRQvW0Dnkfdo3Lid5h17CLV3IkejBJpaUgyavvQcP4PFVUjjW9uTSsiS0YAgCok2DBlswM5338M5tgpEgeLli7KuKR4K07bnIHWvbaJ93yFad+6j9s8bCNQ3Zu1r1Uvp6BK++dP/jwee+hK3f+HD/O237+Xxnz9K2ZjSlHFdbd08+83/SWtiufON3Rzc/i56vR6rw3pZBo2GBmhGjcY1wPUgmHUt0F9Qr+912717d3L/vffey7Zt21iwIF2IrXfelX5ilXtbE2zazvlXXqfutU2EO7spWb00GaKBRFPIooVzMOY6yZ0yATkSoXlbNZ6ztRTMnp6xBMY2qgwlLuMcP5qSlYuJef30nDg9uFETjuCvzZxT4T9fT8zrp/bPb9K4cRv1r2+mfsNWwt09yfyXspuWY7yQBAwJTZmihXMwZxAF1FssaY0fjbk52EaV0LStGv/5BqJeH8HGFho2bMV3vj7RDiILkR4PersNVVbw1pxP5vfI4WjWbtxqXEbQ66i4bR2W4iJESUKORon5A8T8AeRIFFVV8dc34q9r7DdZpXXnPmIDVFr1ku/KY86Kmdx5723MXTWbfHdemvrwrjf3ZtSjAXj9lxvo6RxeB3MNjf5oRo3GNcGVEsy6npR1ByOTZ6a8vJwnn3ySW2+9lblz514ThqCqqgRb2mja/A7RnkQFjhyJ0Fq9F39DE2U3r6T8ljWUf2gVo267CUflKCSDAYPDTvm6lZgK8gjUNtBz8jRlN63AUupGNOjRO+wUzJlB3rSJRLp7iHR7aNq2M5GADMjhQYya+MBeh3g4nOLxiAcSPZp6PTYGp4OSVUupuO0mRn14DaM+vAZH1aiM+Tw6i5nSVUtShOtyJoyh4+DRjF6Vjv2HMbuyh9B0FjPyBS9OuKMTpdfjMUjZs6jTYbBbESWJqNdHS/Vezv/xDc7/8Q2atlcT6e4hkC13CZLXdijEonE6mjtpqWulq5+ycGtDepfxXno6vChy5iRsDY1LRcup0bhmuBLlx9dDL5ihkk1Q75vf/CY/+clP+NjHPnbVy7YhEc7o2Pduxn2eE2dwjqlKlj33RZQkTPl5lKxcjBKLgyAkEnAXz0eJJrwKntM11L12ONnfqC/9wytyJEosEMBbU4sSi2EbVYpr4Rza972bog/TiyCmV0Ip0VgiKflCHymdyQimoQl6igYDxcsWJjuDq6qaaMCZAVVRUGIxBJ0ONcPaciaOTVwTEorEwoVQl2Q0IplMGQ06QadDZ0l4xWL+APUbtqJELnqDwm2dNGzYRvGKRYSaWjNWd8X9AVRVHbTvU3dHD2+8sJFtr7xDNBLDkefgzvtuY/aKmdhzbExfNIU9b+3POHf0lEqMQ7ymGhqDoXlqNK4ZrkT58Y0W2srk0XryySd59tlnr3rZdi9KNEY8lD1s0VvZkw3JaERvs6K3WhB1OiSDHr3Nis5sQpWVjAaNqaggpQ2AHInQfewk9a9vxnOqBt+5Opq37aTnVA2uxfPS5hvzc4n2eBAkEVt5Cc5xVZhdicTavnovQyXq9dG05R3qXnuLhg1baXhre1ZV417UuEzR/FkI/SqxHGOrQBCSScg5E8YiXshN0plNuBbNzRimK1owG8lkSvTWqm1IMWiS55RlfOfrsY0qRe+wUzhvFsXLFlK8bCFF82dhrxw1qEHj6/Hz8+++yMZfbyEaSXiTvF1efv4vL7Jrw15kWWbCrPEZS7QFQeCuv70Dq+P9ad6oceOjGTUa1wR9DY3FixePqK7Etd4L5lLp69G6//77+eY3v3lFrtuloMTjySd9Ua+jcN5M3MsWULxsIY4xlQh99GDEYSaDijodeVMn4Rw/GvpUPlnLinEvnpfwolwg5g/SfexU2jEiXT2EOzox96mWMjgd5M+YQiwYxL10IYJeT9QXwJiXS8mqJZgK03spDUQsEKThre0pJexqPE7M5092Du+PIEkgCHjOnMO9aC6uxXMpmj+L8lvWIAgCvrO1xCMRXEvmpzSXFAQBc1EBoz68BvuYikTeTkUZ5besxlbqRpQklFh8QB2fcFsHlmIX+dMn03P8FM1v76L57V10HTuFqNehDGKMebu8HK4+mnHfK8//hZ52D/nuPP6///oak+dPTO4rKivkq//6IKVVmvjc1eC73/0ugiCkdODOxG9/+1smTpyIyWRi2rRpvPbaawOOv9po4SeNq85gglkjYYBcS8q6l0uvR+vll1/mvvvu49VXX71qZduxQJBAYzOBhmYks4ncSeOI+QP0HD+dKGsWBGzlJZSuXoociSY8DjodUZ8/ETq5RANHZzZRMGsauRPHIcdiCZ0ZkwGpnxid58y5rMfwnqujdPUyYj4fOqsFndlM1OvD7CqidefeZAVSqKUNz+mzlK1dnjJfkWXkYIhQWwfxSARzYQF6uzXZRyrS48U+qgxjfi5qPI6vtoFQazs9J89QMGsaLdV70kQI82dOxXPmLOG2DprbOhB0OsyuAmKBIJ7TZylesQhjbg6CLtF5XO6JIOp1SCYjOpMJY46TonmzUOLxRJl4H2+PIIoDKhWLRgPG/DzqXtuYsq64P0Dj5ncYdevapKhgJpprs+fkhPwhQoGE185VXsTffute/J4AsixjtpnJyc9e4fZBQFEUmo/XE+jxY82xUTypPOmFu5Ls3buXH//4x0yfPn3AcdXV1axfv56nnnqK2267jRdffJE77riDAwcOXLNNLTWjRuOq834IZl0PvWCGQl8D8Nlnn+XVV19Nemr6GzbZrpuqKMRDYVRFQZAk9MOUzo/6/DRs2JbM5zDkOIn2eGnZsafPyVT8dY1EerzkT59Myzu7E9sFEvowM6ZkbG8wEKJOh2i3kc0cUlV1wEoiNRZHNOiwlZcix+LI4TCRbg/xQBD3kvmIej3xUAgBgWBrO237DlGyYjE6kxElLhNsbqX57V3JMJi1tJjcqRMSTToVBVGvI+r14TlzFlFvwDF6FM7xo2mt3oe35jzlH1qN5/RZIl096O02csaNxltznmDTReNA1EnkjB9Dy8595E+fjKkwH2SF9r3vplRwGXOduJctRBBF5HAk0aHcmComKOokcieNI1Dfr8LpAnmTJ+A/X5dZ7VlV6T5+mqJ5M7OqL9tzsnfxFgQhpUzbYrdgsWuhJoCaPSd4+2cbCXRdFHa05tlZ9vmbGNPHozXS+P1+Pv3pT/OTn/yEf/7nfx5w7L/927/xoQ99iL//+78H4Fvf+hYbN27kRz/60fsmC3GpaOEnjavOt7/97awGxkiUH1/J0Nb7SX+P1re//W0WLFiQ8f1ku27xUJiuoyepe/Utav/0Jg1vbsF7tjbZYLIXRZaJBYKEu7qJ9HjSyqXlWIyOA0eQw2EMTgeFc2fiWjibrqPHM6495vWhyjJSb4hITfRx8pyqSeTJXCZyNEqkx0vnkeN0HzuJbVRZ1rGW0mIkvQElHifQ0ETtn9+kY/+7KLEY8WCIlh17aHl7N83v7CIeCJI/bXLCy0RCvK+vQVMwZzo5E8fiPX2Oxk1vI4ciNG7aTrC5FVVWkMNhuo+douf4aQpmTyPc1U20qwclEsVeVUHetImg12EbVUbOxHHYKsoonD+LklVLUWJx3AvnYCktRpQkuo6eSC1JFxJeoaYtOwg2t1L/xmbqXn2Lxk3biXhT84AMDht50yalXQvH6EqM+bkEGrOHpyKdXQPq1RSUFGQ1bKYtnIy9n7JwNm6kSsXBqNlzgjd+8HKKQQMQ6PLxxg9epmbPiSt27gceeIBbb72VtWvXDjp2586daePWrVvHzp07r9TyLhvNU6NxQ/N+hLbeLy7XoyVHorTvfxd/bUNyWzwYonXnPgrnzsA5bnTiiT8SxVdbT+fBo8kqIYPTjnvJAgw5DgRBuJB0qlKycgmIAv7aBiSzkegA7QTCXYnWBn11VXpOnMExtipZXTQc5EgUz6kaOg8fS25zLZ6HwelIS/IVJIn86ZOS3pTW6r1AoqLI7CqgtXrfxcEqBBqbiXq8FK9YRMznJ9zemTRoLCVuEEVC7Z14z9aSO2UC3cdOZvR4hDu6yJkwlpwJY/GeryfU0oa/rhFRr6N07XLkWIyYz4cgSXhO1dDhO5xI0BUFStcsJx4MJVsemF2FibyiC6cRRAFRr0eQJHQWM/nTpxBq6cBbU4sxx4m5MB+d1ULOxLHYq0ZdMNBUJL0B0WRAlCR0NkvWBG691YooZb9V5BY6+eoPHuD7X/l3Qv6LCeLuChef+frdWGxD8wTeSJWKA6EoCm//bOOAY975+VtUzR0/4qGol156iQMHDrB3794hjW9pacHlcqVsc7lctLRkN4KvNppRo3FDcyP1grlcCfiE+FxDxn2d7x7DWlaC3moh1N5B+95DKfujHh8Nb21j1C1rkomqlmI3rbv3UzBrGt6a85hdhVlLkiFRDh3qFxZS4vFBq4IGIh6OEPMHUgwagPZ9h3AtmkeorQPf2fMocRlriZv8GZOT6/c3NCXHO8dW0f1eemIxJMqho14fXUdO4FowO7ndUTUKRY7TfSrRPsGYl0P3eyezrjXU3oml1E1Xn7UqsTi+s3VYR5XiHDeacGf3RSE8ScQ1fx5tu/dTOG8WqqJgryzHVFhA2879SYNTkKSEx2jKeMz5ebRW70vxvIm6hOEkGg10HzuF71wtqqxgLiqgYM4MDE47eZMnEKhPXA9RrydnwhiM+XmosozBObCnRRRFRo0v54lfPErDmUbamzoZNb4MV1lRSquEwcgmWXC9PXwMRvPx+jQPTX/8nV6aj9dTOqVixM5bX1/PQw89xMaNGzGZLi3kez2hhZ80bmiudGjrUrmaLvaoL/sPqRKLoUSjCY2Zg5krWZRojGBbe+LfskL7voNYS9zJkIi/rhHH6FGZTyAIGHNzkmJ8vYgGfUpl1FBRVZVwdw9dR49n7MmkRGM0b69GjkQoW7eaittvxrVoDganI9mqQQ6FEQ16bBVlmArzs3bhBgi1diAZDQTbOjAV5F1YvICo01/UiFHURE5LFkSDnu4M4blQRyeRrm5CbR3I4USFU970yRQvW0jPqRoiXT2o8TiiXo+topz2vQdTdHZUWaZ9z0EshQV0HT2eHkqMx2naVk2kswvvmXPJcF+orYOGN7cQ8/rRO+wUzU+UgLuXzifU1kHztmpa3tlN3Wub6Dh0ZEDFZlEUKXDnM3PpdG765ComzBx3SQZNLzdapWImAn36ZI3EuKGyf/9+2tramD17NjqdDp1Ox7Zt2/j3f/93dDodcoaHC7fbTWtraiJ4a2srbrd7RNc2kmhGjYbGICjxOHIkjBwJD9oLZzCuZp8rncWCa/E83EsX4Fo4B3NRaqmyIEmoipLsfJ2JcHsXQKJJoprwAvQq3QYam7G4ihJJrX2PK4q4Fs6h51RN2vFyJ41HZzahxOJEPT66jp6gbd8hAk0tA0r0xwMBGjckmj8qikrB7OmUrllG8fJFFM6bhSHHkQgfNTQhSkJC80afmlpsrxpF0fxZAHS/dxLnhDGJROEMCsGSyYgcjRJsbMZSnHDHC4KAHAqneH5sFdlvvuaCPMId3YnjGY0JsUBBQDIaiQdC6KwWPKfPIul1BJtaaNpaTbitI3G9WzvInzUN3/m6rMfvOXEGY05Oxn1yKJyx75aqKHQcfu/C9Sin7OYVdBw8SujCeRODVDynztJ97OSg5d0jQd9Kxccee+yGMmgArAMkVg9n3FBZs2YNR44c4dChQ8m/uXPn8ulPf5pDhw4hZXi4WLRoEZs2bUrZtnHjRhYtWjSiaxtJtPCThsYAyOEQgaY64v7EjV4ymbGUViCZzFmrQQZiuC72y+1kHg+FCTQ20XP8DEoshmQykjNhLNayYjoOHEmI1xkNqIqKzmohfqFpYn+MuYmnb/mCuF64K9FZuzfXpKV6L/kzppA7MVHajSgkmj3q9alquqJAzvixOMZUosoK/roGWnddVJz1nKzB4LRTsmppWr5NQkyuESUex5iXg6XYReeho3QcPAwq6GxW8qdOItTWjiLLacYMJMJWiUTli16eQGMzeocd96K5NG2rvtjOQBAw5eXSdfgY1vISHGOriAVDBJvbECSJnEnjaN97CH99IyUrFhNu7yTmS33Kzp85BX9DM2ZXITnjxyCHIyjxOAaHDUGnp/v4yaSXx1/XmFaCHQ8GsZYV463JXqoe9fkx5udm3a/E5YSycT+PVKi5DSUeQ2+xoEQTXb8z4Tl9NiH816+n1Uhzo1QqZqN4UjnWPPuAIShbvoPiSSP7nu12e1oZttVqJT8/P7n9s5/9LKWlpTz11FMAPPTQQ6xYsYKnn36aW2+9lZdeeol9+/bx3HPPjejaRhLNU6OhkQU5EsZbczJp0EDCyPHVnEQOB5Ej4QFDFtkYjov9cjw8cjRK56GjdB0+nvQ0yeEIne++hxyO4BhbhWvhnIT3wGzKWCUDIEgilguidRZ3wlsRbu/EVJCXVPNVZZmOA4dp2bmXcHcPlhIXntPnaH57J7bKckrXLKPs5pVU3raO/BmT0ZlNxEOhFIOml6jHR/d76d4BVVYItbWTM3EsxtwcmrdWE2hoThohcX+A1l37sBQXkTdjMogiMX+AcOeFSq5wmHggkGLQ9BLz+gi2tJM/Yxo5E8ZiKXElvEwnzwAJNV+9xUzR3BnkTh6fSNgF8mdMRpQkWqv3kj99EkULZmGrLMM5fjRl61ZhzM/DmOvAXlFGy47dtO05QMeBwzRtrcZbc478aZPxnU14YRRZTvWqCAL2ijJ6jp/GOFDn8hxHSmfx1A8PJIMh4/dVMhgQLjSRivkDWY+vykqyVcOV4kapVBwIURRZ9vmbBhyz9HNr3xe9mv7U1dXR3NycfL148WJefPFFnnvuOWbMmMHvfvc7XnnllWtWowZAULO1Tr0B8Xq9OJ1OPB4PDkd2MSkNDUWOE+lsJ9SSWdtD78hB1Okx5Oahtw6tZLU/1dXVSTHAxYsXDzq+v0dnqEmUUa+P2j9vyLhPkCRGfXgNBsfF9xAPh+k5dpruE6eTlT6S0Ujh/Jl4z9VjLy/B7CqgaUs1UY8Xnc1K0fxZeGvO469vBFXFWlZCwYyp6B02lHg8KWgnGQ0pGioA3SfO0LE/c68oQRKpuH1dirdGVVTaDx7GWuwiHgzRtvtAxrmGHCclKxfjr22g8/CxZEKyc/xoVEXFm0GgzzluNJZiF766BuKBIObCAqzlJcQCASS9HlN+broXJRxOlnwnQncC8VCYSFc38WCIcEcn7qULkYx66t/cmrHNQ8Gc6fjO1RPp6qZo4Ry6Dh8jHgwhmYwUzJ6Gv7aBYHMbxSsW0bS1Ov0YApSvW0WwtYPOg0fSju8YNxoBFc/p9PecP2MKuVMmIAgCoY4uGt7ckvF6IghUfORmDLaRDYv0ku37fK0lC4fDYc6dO0dVVdVlJdxm0qmx5TtY+rm1V1Sn5lpmoGs71Pu3Fn7S0MiAKsvEA9ndw/GgH3NRCYG6czjGTkTUp+dhDMRwXOx9PTyPPfbYkOdlfXon8T77Jp3KkQiokDt1Ao5xVYmSaEVFkWW6jp4g2u0h2NBE7tSJFK9aQveR48m+SjkTxzLqljUJcTyjAelC2EfS65P/zkTfEu/09aX3ehJEgZwJYwk0NA2Y/xPt8SCHI3T0u8nHQ+GMoUPbqFJ0FjPN2y9qcITbO+k5dYbipQvoOHQUi6sQ5/ixGOx9WhWIIr5zdQiSlFLZ1JdwR2fWvlUAPSdryJ0wFi8q5qIC3MsWgqoS8/vpOXEm2XKh52QNxcsW0rb3YDKcJ5mMFC1IJEHrLGYkoyHFKMqZMAZLsTthcPbDVJiPvbI82d9JbzGjt1kzemzsVaOSqslD4VJDpjdSpeJQGDN/IlVzx18VReEbGc2o0dDIQKJjcvYbsajTJwyCWDQhTX8JRk3/J89L0cwZTruHTDklfRGkhPR+qK2d7uOnUWJxrKVunGOq6Dp6InFD7Xcz7j52EseYSgrnziBv6kRUVUXU6S5ZHRjAWuKi+73MYmPGvNw0zw4k2iXIkWhKE8v+iAZ9Wm4LJDRjCmZMwXc+NaThGF1B07Z0UTE1LtP57jEKZk1DiUQINjUjlJcmlZjlcASd1YIoSeROHo+vtiEtJykeDKPEsyeZy8EQxvxcisuKad9/mEBDE6bCfPKmTsKYl3vhPZuxV40i6vNTOHcGeqs12clcZzET8wcItXWgs5gpnDszEcKSRARJIurzo7fbKFm5mFBbB0o8jtlViDHHmdJLSmcxU7JqKc3bqon2MRitZcUUzJiS8bPIxqXqzlyuZMH1iCiKI1q2raEZNRoamVFVDI4cot2dGXebClyE2y9dgOpyxQCH4+GRzCZ0FnNGj02v0dC292BSpwSgx+vDW3Me95IFNL+9K117RlGRQ2EMNiuibfCfETkavdBCQJ/mJdHbbRgL8oh0dKVOEqBw7oyLKsR9ECUJc0E+CCQ6VGfwgORMGIv3bG36WkJhVFXFmJ9LpPNCNZLZRMwfzOpJ6RWm856rS1YsCcVFSPqEcRtu7yTc3olkMpI3ZQJKPE7HgYseIjkSwVJclFUnyJiXg85mpef4KQIX9HPC7Z00bd2BtawYS4kba6mbpi3VCIJA8YpFIIDeakYyGhP9tk6cQdTraOuXnyTodBQvnU+wqxtjTnlCbVlIJEsrsoIciaSE1AwOW0IQMBxGjkaRjEZEvR7pEg3WD4rujMa1hebn0rgqvJ96LaqqIkcjRHq6CLY0EvV0I0ezhzwARIOBmN+H2ZXeQdjgzEU0GJEjYQSdDmEAtdX+DMXFno3hJlHqLWaKVy5O646ts5hxL5mXqIzqY9D0okRjeM6cxVGV+eYzkCZLL3IkkuiVtH0XDRu3077vXaIeX0prBJ3ZRPGyheROmZD0KpkK8ym/edXFaqtwhEh3D96z5/E3NBPzBzDkOPA3NFO0YHZaubK52IVjdAWR7tRKHmNuDjmTxhH1BSiaP5u8aZPQ26wJI6VP5+9s71dnNmNxFSFIEoGWNiI9Hurf3ILvXF0iGbmji7Y9B4n0eMmdPD4511JchLmwIKOBBpA3fTKg4umvuaOqBOqb6D56gki3h4JZ0yhaOAdVUah/fTNdx04Rj0Tx1zdhLXVnFP9T43G6jp7AUVVB2+4D1L+xmfrXN9O8ZQf1r71F94kzyZygXiSTEUGnw9/QTNOWHTRufgfPqbMDhjIz8UHQndG4ttAShTWuCu9nUmA8FMRXcxJVuVhFI+h02EdPQGfKLOGuqgrxgJ9IVweGnHzkcOIpXjJbEHR6/OfPgKJgqxqXvBELkm5YZd5DYbjXKx4MEQ+GkGOxRIjC6yPq9WPMc2JwONBbLbTvP0zPidOZTywIuJfMv9iI8gKS2UT5h1YP2AxTjsboPn6K7qOpoSVBFCm7acVFEbsLqLJCPBIGFQSdhO6C9yAeCtG252Ciwqn3GJJE8crFGOw2Ak2t6C0mYr5AMqwS8wcwOO1EPD7aqvciGgwULZhFzBdIeEIEAeeYSkSTkZgvgLUkUc2VLaFa77DjHDc6mdAsGgyUrFhE17GTBLP0TSpds4zGrTuwFruwlhajs1lBUeg6eiJRAk/CsMybNolwZze5k8ZlPT9A7pQJRL1+AvWN5E4eT7izm1BrO6Nuu4muw8cx5ufQmUU4EaDs5pU0bNiacV/5LWsw5eUkX0d9furf2JxM8O7FVJhP8dIFCY2dS+BSk+KvZUYqUVgjnZFIFNY8NRpXhb5PcL2ehith0CjRKP7zZ1IMGkg8vQbqzmYV0xMEEZ3FhtlVkhDdk2VEkwlBEAk1N6B35mAfM4FwezOeE0fwnDhKoKEWOZJddfVyGI6HJ+r10bBxG/VvbqFp8zvU/WUjnrPncYyuwFrsvlhRJGT3UAgZ9gk6iZLliwbNn5HD4TSDBhKCb617DhAPp14rQRLRWyzorZakQaMqCp4z51MMGkgkODdteSfphYuHwkhWM6oKzduraa3eS+PmdzAX5OGcMDbRbPPwMToPHSXc0UW4vZPWXfvpPnoCY64TndmU1JzJcBHInz4ZTx/xQCUapW3PASyuoqzvP9zZzah1q7FXltO29xBqPE5r9V7MrkKKly/EvXQBedMm4Tl1Fu+Zc8jRGLo+n4mpIA+zuygZGjI47IQvKDoHW9owXdCkiXp8iAbdRV2dbKgqRQvnZPy8e/tKQUJssuvoiTSDBhIhsUi/flqD0T9keiOVZ2tce2hGjcawudwQ0vvhmlbiMZRYNOM+ORxCkbPrbgiiiGQ0YS50YS0uw+jMQ7JYsI2qwlzgwltzgpi3N7yhEvN04a05kQxtqaqKEosSDwWJBwPI0ciwdG3g0ts9xEMhmrZWp1WxBBtaaN21P6kCDGCvyN7R2lZZhqkgj6JFc3CMG03R/NlU3HoTxrzcjAZPX8L9c2T6EO32ZLxp9iceDmf3IikqSiRC17vHaNt9gJbtu+g6/B5yOPF5K5Eo8UCQvBmTE/2b+jbbFAVsFQkdGVGvQwW852oR9XpcC+dgKipAb7NiqyinZOVivDXn05KOox5fSpJtf1RFoWXHbuKhMM7xVUhGI3IkSvfRE7TtOUS0x4No0JM7ZQKOMZWIkkjBzKnYq0ZRsmIx5gtrKJg9DdeS+QDJMJGo16PKyoUmlibMRYUDa9jk5RBq7yBQ30T+9Mlp++U+PbnkaJRAhkqpXrxnaxmqg/9K6s58kLp6awwdzajRGDYjIfl/pSXRBzUiLtHIEKVEDk24ozXjXDUeJ+rpQVEU4sEA3jPH8Z4+hvfMcTwn3yPS1ZFSQn2liIfCGSt/AIJNLRf7FQE6qwXH2Mq0cZLJRP60yeitFpyjK3HNn4VzXBV6m3XQ/JMEg40ZwjEUNc34EfU6ciaOpXj5wsSGAW6w8WAIFCUlYVgymyhZsRhRkmjbc5CGN7cS7uii5/jphDfn8DHMBXk4xlXhHFdJ8/ZdibYQmRjgOpjycol6fXQcOELOuDHoLGZEgwGzq5CiBbMJtrbT8vZuWqr3JKrt9HrMrgKMebk0bd1B97FTeM+co3XnPnqOnUIyGpKXzF5Zjr+hCXtlOT0nzhAPBomHQuRMGJu2DkEUyZua8AgFGpsxOO1p/bbs5aXEAsGE8B9CxpYKybcsSYMatDB4Unw2g2SoxsrVbDmice2iGTUaw2YkQkhX2jU9YDmzICBcQomqosioioIqy8R82V3wMU83aiyK7+yp1PCWqhBsqiMezK7aOlIMpP0CCcn8XnQmI/kzplK6eimWEjemwnwKZk+jfN2qAT0Rg2EqzMu6z5ifi2QcuNQcErkzfYUBJbMJ99KFRL0+mrfvIur1pyVA92LIdWLMy0WJRMmfNjnZCbt4+SLa9hxMeBziic800dAz8VnFgyG6j52i8+DR5P6Ma9NJ6G3WjOfPmTQ+0QVcBVSVSLcHndlM8fKF5E4eT8vbu5J5NbbSEhyjKwg0NhMPhDIKEUa6ewg2t+JeuoCiBXMQBJF4INE6IVDfROeh94j5A9irRlG88oKXx2FPvu4+cTqZ5Bvu6Er0xuq9TjkOFDlO7V824q9rRNDpcIypzPqZDLSvL8NNih+qsTJSIWzN43NjoRk1GpfF5YSQ3g9JdEGnx5ifOe/BVFQ8JN0NORoh3NmO/3wN/vpzyJEwlpJRmIvLMBW60zRqdFYrUU83qJlvhqHWxgE1S0YCncWSdZ8gikj9K6FMRizFLoqXLqBk5RJyJo5Db8t+jCGtwWQkf+a09PPrpERHaGPmSqCUY5hNFMyennxdOHsabXsOEGxKeE58Z2vJmZieB5M7eTw540bTtHUHtX/eQOuufRhsNuyVowi3daTpyKiyktE48dc34RxblXFtuZMn0HOyBveS+eRNm4SpMB9reQnupQsQBFIUi9V4HEEUMOY48Zw+mzSUHKMrMBbk0rRtJ/7aBnx1A4d9UMFbcw4VlZLVSzA4Hckcme73TtKwcRuS2YQxLzdRtaaqNPdpjAmJJHmBRLKzc/wY8mdMpX3fu8mcn5jPh3P8GPT2dOVgx+iKjNszcakh0777hmqsjEQIW/P43FhoRo3GZTOcENJQXdOKIqPEY8PORRElCXNRMebismTptaDTYymrwJRfiCAOXK0kRyP4ak4SbKwl7veiyokn90h3B5GONuIBH6aiYszu0uQcQ07+gN6YRM+oK1t0qDMZMbsKM+5zjh+dtbRY1OuQDPohhRcGQ9TrcY6rpOzmlVjLSzDm55I7eQKjPrx2wPyP/pgK83AvW5DwusTlFIMk2NKGIArkz5iCaEgYl+aiAnQWM217DibHKrE43cdOEu7qyhhK8p2rwzludNp2b815DLlOiubPSlb86G1WCufNTIS1Tp+lacsODDkOLMUuRL2etj0H6D52KuU4xguVXoosE2pNGBiCJGItL01ULF0QL1SimfO/et8DJDwtbbv2E2rtQNTrcVSNSo5RZRnfmfPE/AE63z2G73x92v8di6uQ3CkTKFm9hHggQPP26pQQX9fRE0gGPaWrl+JaNBdLsQtreSmla5eTP2sauizfnZHkUoyVyw1hv19FC9cCjz/+OIIgpPxNnDhwS4bf/va3TJw4EZPJxLRp03jttdfep9UOD82o0bhs9+twQkiDuaaf+a//Ih4MEKg/j+/c6USn7HBoWMaNqNdjKnDhGD8Z54RpOMdNwphbgHhBMViORoj2dBFsbiDS3ZlI6FVVVEUh1NacTDQWDUZM+YX4a88Q83QnkoCDAYKNtSjRKMb8Ioz5RYh6AzpL9rCNZBhcE6U/l/oZSSYj7sXzkkJrkLiJ5kwaR+7kCZekDHs5iHo95sJ83IvnUbp6KfkzJmOw2y7p/UsGA7byUkpXLUlN9iUROjHm5iLodbgWzqFk5RIK58+i60hmheJIVw+CPv29B5tb0VutOMZWpVQHGZx2LEWFOMZWUXbzSipuvzlRsXT6LF19Krs63z2GwW7Fd642LQfIXlme8LCcr0OVZURjwviylLhTEnIj3R7MhflZr4OpqCApAggJz4wciZA7ZUJKibX3XF3CcM1QnZY7ZQLes7U0b99FpKObqNefUjUlSBL2ylEEmlpp232AYFsHuVMnUjRvJhZX4YAGjRyNEQsGBw19DpWhGisjEcK+Wno6iqxw4sApdm3Yy4kDp1Dk4T28XQpTpkyhubk5+ffOO+9kHVtdXc369ev54he/yMGDB7njjju44447OHo0u3TA1UbTqdG4LM2Y4TZZHAhVkYn0dBNsOJ+6QxCwV41HbxteA8lMxMMhfGdPpirmiiKO0RMQdHo8J48kE1EtxWVEujqylm07xk1G1CcaNsqRMJ5T72VMYrVVjsXgyLmkdQ73M5JjMeRwBDUeT6jCmkyIuiujpdOLIie8Kb7z9UR7vJhdhVhL3eislsv2APWcqqF97yEgET5xL5lHyzt7UnKX3EsXpOnq9CIaDbgXzU00hcxAyaolSCYjSiSGaNAjmQxIBsOFxO8QqBBqbcd79jzRntS8KmtZCc7xY+g5dpJwVzc6kwnH2CoESUQyGWl5ezemwnxs5SV0HDiCY0wl8WAoxXPkWjiH7hNniPakigYiCImeT3sOpBgNhXNnYCrMRxBE/E0tBJtakPQ67KMrMTjsBBqbCbV1IBkThmGorZ2eE4mO45YSNzqTEe/ZWkSDAcfoCuwVZUR9fjynalKq14z5eRQvX5hRl0iJxYl6vHS8+x6R7h70FjN5UydhKiq4LK9O73d7oD5nI/37MxQ9nZHSqdm/9SAv/vC3dLf1JLflFuXwVw9/gjkrZw37uAPx+OOP88orr3Do0KEhjf/Upz5FIBDgL3/5S3LbwoULmTlz5oBCocNF06nRGBGG634dbnXDYCjxOMHGdHn7hLrqOeQsJdqXfJ5YjEDd2QwtABR8588kcmL6GCW9KsLZkEPBpAdE1Buwjx6f2j9KEDEXlyFlEfwbiOF+RpJej8Fuw5ibk0hqvcIGjSorhFrbqf3LRrqOHMdf30j7vkPUvbYpzQgYDpZiV7LiyDGm8kKvqlTPyECVO0okiqjXYx+d3m/H7CpEjkSpf30zTduradq6g/Z9h4l4vITbOmit3kf9G5vxnD6LY0wV+bOmpswPNDQR7ujEUuKiYNY07KMr8J49T/veQ8kwZ7i9E8lswlzsIur1YbygNdNL+/7DFMycgnNcFcKFz8pUmE/xsoV4zpxN94IIAlGPj47DRzE6HRhznUgmE+17DxJqbcfgdJA7ZQLW8hJURcGY40x6dURJBFHEUuLGvXgu0R4PDW9tp/Pd97CUuHEtnpu81pHOzGE7gFBbB/VvbiHU0oYSiRLp9tD89i56jp9KkQ64FIaSbzfSvz/vp57O/q0H+c9Hf5Ji0AB0t/Xwn4/+hP1bD16xc58+fZqSkhJGjx7Npz/9aerq6rKO3blzJ2vXrk3Ztm7dOnbuTO+Rdq2gGTUawPDcr5cj+T8QSiSStUxXiUXTjZBhoshx5HBm2Xc1HkNVVPSX4lERhKR+hyAmxPsc4ybhGDsJ++gJ2CvHEA8G8J87TaSn85KTha8Hyfl4KETz27vTPj8lFqOlei/xywhNyBe+FyXLFiFIIuaCPEItbWnjQu2dWNyZk8NFvY54KJxoHbF8Ic5xVTjGVFKyagm28lK6T5zGvWQ+rgWzyZs6idxJ44h09SQqrXo8ic7ZPj8d+98lHgxhH12RCNmMriB/xmSsJS5URUUyGtHbrOROnoBz/BjCnRe9Hm0795M/bRKFs6djKy1OSVBWYjGatu0kHo5Q/qHVVHxkHfaKMtr2HEwmRycRBPRWC8HmVgRVQI5GCDa14q05j6ooGHIcdB48QuPGbbRs30XLO7vpPHKcogWz0ZnN2CrKsY0qJWfCGJq27STY0nahO32QrsPH8J1vSNG08Zw6SzyS+vnFgyHa9hzIeK27j51KfGaXyFCNlZH8/Xk/ihZ6UWSFF3/42wHH/OqHv7sioagFCxbws5/9jDfeeINnnnmGc+fOsWzZMny+zN3uW1pacLlcKdtcLhctLZfe9+79QmtoqZHkUjtAX7muuu9TRHSQ/BxVjmN2lxLze0FRkMMhJIsVOUsSsKDTIYeDSCZLMglP0huIhkP4z6UKyAXqzmHML8LsLkG8hN5Rw+nS/X4SCwSzGp3RHg9yJDJoSEKJxYkHQ/gbmoiHwlhLXOhtVlp3HyDc1oG5qAD3kuxS/d4z53AvXUDMH0gRHxQkiaKFc+g+dopIZzeCXkfJisVEPT4CTS2E2zrJnzaJ1t37US6I3LmXLqDzUOb8Ac+ps5SuXY59VBnes+fxnqsn1NaJY2wlobYOek6cRjQaKJgxhVif5GZVUQi2tOEcU4lgMFB200ra9hxIlnjr7TZyJoxNeNYkCaUgP6O2Uf7MKXhqzqO3WIgHQ/jO1mEpLsLj85MzYSyd776X0mkbIB4I0r7/MIVzZxALBFD9Kv7a+owPEcGmFpxjKxEkCVWWL3guU8fI0eiA/aCiPR4MQ6yW6mUoxsq3v/3tEfv9udwms5fKqXfPpHlo+tPV1s2pd88wcfb4AcddKrfcckvy39OnT2fBggVUVFTwm9/8hi9+8Ysjeq6rhWbUaCQZTgfoK4FoMGXtvNybszISCDodCGLW0mtRr0c0GHGOm0y4vZWotxuLuwx/7dm0tgtmVwnR7k5ifh+OsZOQLlTiyLEowYYMoTQg0tmGqaAILsGouVY+o2yocXngAYNUfSmxOP66Blr7dJrWmU10Hj6W7KgtR6PEQyFEo4Gym1cAAvFwCEGQiHR103Oqhtad+yi7aTmxQPBiyKcgD19dA6iJ0JVjdAX+hibkUBglHidv2kRad+5NVhkBIJD6ug8Gpx01FqdpW3Xyuxrz+gg2t5I3bRK2ijL8tQ207TlI0YLZGBz2pJGht1mpe2Mz9opycieNo3jFokSCsaIiGvQpLSgMTgdla5bhq2sg0tWDzmzCNqqMSHcPAmAbVUrPqRrMrovVfMa8HLqOHM+47pjXh2Qy0vzObtxL56c1/exLuLM70UOrqwf76IqEAGAfBsuR6i/yNxSu3MNSZoZqRI0UPR3Zr/dwxl0OOTk5jB8/njNnzmTc73a7aW1N9RC2trbidruv+NqGixZ+0gDeX/frYIg6HZaSTDdqAWt5ZZouzPDPo8/YhRvAmF+IoEuUNktGE5aScuyV4xBNFhxjJ2IqcKGz2jHk5GGrGIMSjxHt6ULt15ZBVRT0dmcijJXhBhAPBdO2ZeNa+oyyoXfYsgoFSyZjVqG8XuKhUIpBA2DMcSQNGseYSnImjqPn+GkaN26j4a3t9Jw8gyjpaN25j2BLG+7F83GMqUAyGrEWu8ifPhlbeQnhbg/mogKKFszGVFRA94kzoKo4xo3GUlJMPBROM2AEIftPZM74sbTtPZjR+O5670RKqXX3sVM4xiX0bgw5DgxOO6b8PHpOnKZt3yEEBAx2GwanPa2nlhJLJC0rspzYb7UkjAVVRZAkwl1dlK9bScHsaZhdBYnk5EGkCuLB4EWDZADDRNTpUGU50TKivDTNiBGNxmQn9f4IkpginHitMlw9neGSUzA0OYOhjrsc/H4/NTU1FBcXZ9y/aNEiNm3alLJt48aNLFq06IqvbbhoRo3GFUv4HS6CJGHIycMxZiJ6ew6S2YIhrwDH+MkDlkoPB4MzF2vZRUNJuGBQmYtKUjpuC6KIqDcg6fWoqko8HEwm/PrrzxHpbE+OVaKRRNVRJEy0uxM5GkaQJGwVYzDkpKrsDpTU2pdr7TPKhmQykjsxs8u8cO6MQbs7B/p1vBYkKdnvSO+wYy4qoG3X/othJUXFX9tAx4HDFM6eRri9k7Y9B3CMrUr1Kigqcb8fUaenYeNW2nbuI1DfSM+JMzRu2o65qCBjGCUeCKLPcmOWTIY0Eb+U84XCSSMu5vOjs5ixV5ZTMHMaTVt3ordacC2aS6ChKa25Zy8xf4DGzW9T9/omrCXF2CrKMRcV0Lx9J11HTxD1+jA4HHQeeo/61zbRvH0XSjSG3mpOdAXPgqg3JCQLWtqxlmZ/6jbm52KvqqB07fKLDVD7oDMZcS2ah5ihTN61aF7GsvIPOuNnjCW3KGfAMXlFuYyfkd7y4nL5+te/zrZt2zh//jzV1dXceeedSJLE+vXrAfjsZz/LI488khz/0EMP8cYbb/D0009z4sQJHn/8cfbt28eDDz444msbKa5bo+a73/0ugiDw8MMPX+2lXPdcqYTfy0GUdEgWC5aScizFZRiciQaKI6VAoMRihFqb8Jw6SrizDVORG1vlWOxjJl7QmsnuURAkiXgwQKSzjWhPV1pujqDToUTCeE4dI9zWTNzvI9rdif/8GXQWG3rbhXJEQUAyDq0S6lr8jDIh6fXkTB6Pe8l8DI5EjyFTQR6la5djKXYPGq5Q4vEUT49kMmLIcVC8bCHuxXPpeu9kxnlRjw9EAcmYMDRiPj+KfDEUFmrvwFpeSuvOfekhMkXFd74Oe0UZ7qULKF62MFEdJQh0nzhN4expaTdtQRSRBinnFQQhmYMiGY3orVYQRZrf3okcCtFz8kwit2bcaKIeX1qlkByJ0FK9l2iPFzUu07ytGlGno3XXflRZRhBF8mdOpfntXQR7E6ZVFX9dAw1vbce9eF7GdVnLigld6Pad0LQZk9HYLJo/C4PTTu7k8RkNml4MOQ5GfXgtBbOmYSlxkzNxLKNuuwlrqTvlwUAjgSiJ/NXDnxhwzPqH70pUp40wDQ0NrF+/ngkTJvDJT36S/Px8du3aRWFhQqizrq6O5ubm5PjFixfz4osv8txzzzFjxgx+97vf8corrzB16tRsp7jqXJc6NXv37uWTn/wkDoeDVatW8cMf/nBI8zSdmusHVVGIBfwEamtS8ldMhS5MBe6BezoNdmxVIdTWSrg1XZJeNBhxjJkwYIhLVRTCHa2EWtLn6x05GPMKCTbXo2Qq/xZEbKOq8NfWYB01GoPDOWio4FpEjkRRlURrgWw3rng4jKpc6CQ9QEsEVVWJh0LEgyHiwTCiJBLu6CLY2k7upPGJhFePd0D9GYCciWMJd3YTbu8kf+ZUzMWFmHJyUOIy3cdPYXEV0rjp7dRJArgWzCHc1ZOoGrpgLNgqy7GWuGmt3oveace1YA7BlrZE4muOE2OOEzkWo+vwsYyNQwVRxL1sAc3bEqWveVMnEmrrINSnXUHv+UtWLEaRZfRWC6b8i568qMdH7V82pAwvXr6I5u2JY9oqyhAkCd/Z1Jwt0aDHOX4M1hJ3oq9VNIqvtoFAfaIBpqXETUv1HlBUDDmORAdwWSHc2UWotR2dxYxjTCU6qwXpEv+fKReu30goUl+rXEmdmryiXNY/fNcV06m51hkJnZrrLlHY7/fz6U9/mp/85Cf88z//89VejsYVQolF8Z8/nZavEG5vRTJZMOZmV14d/NgxIu2ZSxKVaAQ5EhnQqBFE8UIYSSDc0ZKo9hFFjLkFifCYqmQ2aCCpfeMYn5D1v1SDRonHUFU1EQ67hATjkSIeDhNu60yU60ajWNxFF/pEpXfu1mX5wVdkGTkcJh4MgygiAE3bqpFDF6+ZpcRN0byZ1L+5NVF5A6AqCDopazKyZDIm2wzoTEZCLe3ojKaEonRebtITYsh1YsrNIRYKobdYCLV1pHTxVhUF39mESnTOlAkIgkCgsRl/QxNF82YRD4Vo2roDvd1GwcyptOzYk6Z0nT9jCt4z5wGwV45Cb7OmKBBfPFmixFeNxek+dgrXornJRPhMFU99z2PKy6Xn9NnUa2A04lo8j+73TtB94XyCJJIzcTyjbrsJBIGek6cx5eZiLMjFMbqSxo3bUKIxDA47hlwnUa+fmD8w5B5PfdE8M0NnzspZzFo2g1PvnqGnw0NOgZPxM8ZeEQ/NB4nrzqh54IEHuPXWW1m7du2gRk0kEiHSRyfB67188a8PCt/4xje4//77MybQ1dfXj3hFQH8SDSEzOxFDbU3obY7he2sUJa16qS9yJDy4arGqIkg6LO4yBFFEVVWini4C9W3YRqX3EEpBFNFdogCfEo8R8/sItzWjxGJIZgsWdymiyYR4GZ4eJR4nHgoTam1HjkQTUvhWCzqzKdG5WlYQ9TpESUKOROg4eATf2YtiXR6fH++5WsrXrRpSPyclGsPf1ELb7gOo8TjupfNp23soWULdF+/ZuosGDeCva8RRNQrP6XNpY7nQLLLT40sYi3odekkk5g8k3pPFTDwcpnzdKlQg6vFi0eswOB207cksdBZoaCZv2iS6jhxHjsbImzIxoQlzweiI+fz0nKqheMVi/PWNRLs96KxmciaNQxBF9HYrBbOmgUCax6UveouZluqjCDoJJS5fFHA06NOqAAVJTHzfLnQWlwx6+po++TOn0L7/XWJ9SrlVWaH7vROIeh25k8ZRMHPahe7jMk1bLvZ9inp9yeqsUGs7FbfdhHgZXdo1BkeUxBEv2/6gc10ZNS+99BIHDhxg7969Qxr/1FNP8cQTT1zhVd2Y9HauHUiWPxPKBdE6QRCGZHSoqooSiyXE7lQFUdKDJCEPUBWkRKOXl1sjigOWckuGzKESVVESgnkX+kJJBgP+hnOo/RRtVUVB0OvTtiePb7w0l7Uiy4TaWoh0XCytjPu9eM94sVWNw2AfXpWEHIsTbGqmZcfe5I2zEyicNwuDw0b38VPEQ2HMRQXkjB+DEpdTDJpe1LhM+/7DFC9bkCxlz0bU76d1xx4g4VVQYvGMBo3BbksRrAPwNzRTvGwhkW5PioS/IIoULZhNz4kzSGYT7iXz8JytxZyfh3DhOyhZTAg6iZ5jp1K8MoJOomjeLESdjmBTuvcuHgxjLSkmFgjQvu9dlFiM0tVLk/tDre2E2jqwlhZjKsq/IIhnTVQw5SXUguPhMAanM731AYmy8IjHS8znxzGmMiV3R2cy4RxbhaePNybQ2ELOpPF0v3cCX10jznGjiXT1AIlKJVGnSzFo+tJ97CT2yvJEfowkEfX4UnpJ9UWVZWI+P3rNqNG4zrhujJr6+noeeughNm7cOOQ45iOPPMLXvva15Guv13tNaXpci/T10PQXn9q9ezfr169n27ZtaddRiceJBwOEWhsTInUGIyZXKXqbPauujKqqCYXd2hrUpLqugLm4BMlqA093xnmSyTzkqqFMiDo9pvxCwh3psu+CTo+YwehQYlHCne2JORfyREyFxdgrxhJubyHq7QFVRWdzIOiNWEsq8Nemaz+YXCWprROGgBqPpRg0fQk21KIbO3FYZe5yKETLjj0pgmqOsVXEfH7a9170XkS7PUS6PVlVeoGERH40NqBRo8TjdL+X6F5tzM8ld+I4JIuJ4mULCTS34jt30TMjRyLpyauqSsuOPeTPnErulInEfL5EaCk/j1ggSO7UiYh6HcHWdkxOJ3q7LXlTFkSJYFNDikEDCYOsddd+SlYszmjUAGmKuaLRgKW4iGDzxeTcQEMTAKVrlqWVZOtMJoqXLaBx8zsp1VI6i5mC2TNo3bUPBIGcSeNSwjeiXkfetEkIOglfbX3CwyLLiAYDrkVz6X7vJKIkYi0rJtDQjGQxp4gNpl3/aCxFGFHNYtQnxw+mOaShcQ1y3Rg1+/fvp62tjdmzZye3ybLM9u3b+dGPfkQkEkHqF881Go0YB0hQ1Einv4em17C5//77ue+++3j11VfTDBpVUYh6ugg2XnyKlyNhAnU1mNwlmAvcGY0QJRrBd/ZUP4+JSqi5EcfYSYRFKWOYyOIuuywBPkEUMRW6kGMxYp6LT/ymomIMOXkokRBKLNEjKFH6KhNsaSTa3XlxlbJMqKUBpdCFZLVhdeYiQKIqqqsNvc2BfcxEwu3NxENBJL0Rk6sYndlyyXkHcii7YqsSi6LIMuIwInH+hqY0hVhbeQlNW3akjVVleeAO6UPIC1XiMlGvL6GWa7fRceAI8VAIBAFbeQnFyxbSUr0nEaJqaMK9ZD7+2oa0dXTsf5fSNctwjh1NoKWVutc34RxXhc5ipvPd91Lek72qgoJZU1FiMTynajIvTFUJtbVjKsxPqvoCGBx24oFUIyGRtxOjaMEcfOfq6DlxGjkSxZSfR8Gc6Vk1WwwOO2U3ryTm8xHt8SY6dasqbXsOIIgipauXZvSK6Mwm8mdMwTluNE1bdiSTkvUOO84xlRhyczDkOnGMqSTc3pXQCcqCIIkpYniiwYBkNqXkMqWs2WlHicUzlmtraFyrXDff1jVr1nDkyJGUbffccw8TJ07kH/7hH9IMGo3hkclDc//99/Oxj32Ml19+mQULFqTNUeIxgs0NGY4G4dZmjDn5GUM6MZ83awgo2NKIrWocwcbaZH8mQUpoyEiW7OWlQ0XUG7CWjkJ1lyTEzXR6wp1teE+9lxwjSBK2yrEIOn2KQQOgs9gw5hUkEnYNxoS3xtOD3uHEmJtPqK0ZW8VYrOWjURUZQRCHb4iJg6i2Du+oiUTdPujtNiIZQiQAke4e8qdNIrPvDKylJYkb9QCIOglrWTE6sznFE5QoQ24k6vVRMGvahXwbGVVWKJg9nY5DRy4qEQuQN20Shlwnol6HpdhFxW03IUciNGzYlnZO37laLMVFmPJzB5TzjwWCKe0bdDYrBXNn0LpzX3KbICVCVW17DlA0bxa5kyfgGF2BqqqIOgnJaERVlET4MYMRr7eY0VvMWFxFxIMh5EiUkpWLkQyGgfV7VJWuo8dTqqxiXh8dB48kq6daduzBmJuDqTAfyWRMb3wJOMZUpRg1OrOJonmzktVUfXFOGEOgqZVgYzP2qlGYXYUDlnVraFwrXDdGjd1uT6uNt1qt5OfnX9M181eaK5HQm8lD8/LLL/Pss88yd+7cdE9NPJ69j5KqosSiGY2agdR0434van4RxvxCdJbE06cg6RD1+hErFxV1OtDpEA1GIl3tRDpTmyOqsozv7CkcYyelbDe7SkAQCXe1Y3DmAgLG/EJMrhIi3Z3EQ0FsFWMvhmKGYHD35uso0SioCqLBhKDXIYpSQuQvS9sIyWxJJq5eKtYSF56TmeXR01BUgi3t5ExKqPn2RTQaKJg1ddDyX1Gnw15ZntETBCQ8GDoJyWLCUTmKeDBIqK2T4mWLkENhVFXB4LCjd9iTJeKSTodot9F9InVNCGApdmPKy0kYM4X5GHKdSWXi/lhchehsVkyFBRhyHEmRxZzxY4h6fehtVkz5eXS9d4Joj5eu907gXnqx/1QsGCTe1UM8EkGNx5HMpou5NRnQWcyDChEq8XiydJ4LFW9p3jIVoj5/IgepvZOOQ0dwL1tAa/W+lFCXtbQYc1EBjVveoXDuDEx5uQnlbnchZTetoOPQUSLdPegtFpwTx6LGEx4xgGBLG3qHPeFNumDYJJPIddKItS3R0BgJtG/jdc5wE3oHo7+H5s4772Tu3LmZG7wN1v8li9S83moj2t2RcZ9oNCFHw0Q623GMyb0sXZrBUOIxwm3NmXeqKnG/D8lsQQ4F0V0QzpMjIUz5RYTbmpEjidJkY04+pkJXovpmAHn9tPMrMjGfl0D9uYvGoSBgdpVizCtA1OmwllcRqEst3xVEKaGGfIk5Or0Ycxzo7bakByDm82N0Zk86DrV1kD9jMqaCfHzn6pAjEaylxdgryoacUCoIQnYVXiDqC1C8dCFyJJLUeAk0NCEZExVNxcsWou9nDKiKQjxw0Qujd9gpnDODYFML/oYmRL0eQ46TghlTaNz8Tto5RaMBU0E+kW4PxlwnPSfOYHDaCba0J9pcWC0EGpvx1TaQM34MuRPHIUhSIodIryfq9dG+712CzYm8J73NSt60SYTaOnBUVWQ1bAYi6vPTdfREIvwmgK28lOIVi2nbcyDt+qlxmZKVS5AjUQS9hM5kovzmlcQuiBBKRiOhjs6kNk3jW9spX7caU37i/5W5qCChlROXkaMRWnfsJepJrRSNeX14a86TM2EsUZ+P7qMnifn9GHNzyJ0yIdF8UzNuNK4Brutv4datW6/2Eq46mcJFmST1L5Xdu3dn9NBk6lwrXPB2KNF0l7eg02VNjNXZ7AhZ8mZMBS7CHa0YcvKRY1EQhCv3o6kmnjyzEY+EsZSUE25vweDMSygQ5xcmjJBeFIVIVzvxcBB7xRiES0jcVaIRArX98j1UlVBLQ6JFhN2B3uHEMX4Kkc52lGgEnc2OwZGLOEi10UDoLBZK1yyj89338NXWg6IS6ugkd+rEpMZJL4IkkTdtEm27DqAoMqWrlqC32y7ZcyZI0sWuzxkQ9Tpaq/diKsijZOVi/PVNxANBTEX5WEtLkKNRYv4AktmUzE0SJQlriZtgUwuCTqJw7gxa3tmT1KwBaN66g4J5M3EtmU/H/sPIF9oSGPNycS2ag95uw1/fSOvORGWlZDGRM2kcSiRC1OdH0EnYyorpPHwxDGQqzE+Eo/YdItxHVC/mD9C6cx+lq5cSv5CvcimGTcwfoOHNrch95Ch85+oINrfhWjiHpq2pni6zuyjN8yPqEgnT7XsPpevdqNBx6GhKtZpkNCDqVToOHUkzaHqJ+v346xtp230xcTrq8eGrradk5VIsxUU3tOiexvWBpvJzA9DX2Kiurr5sg6a+vp7169fz6quvcuedd6b0F8okyy/pDQltlv55BIKAbdSYrF4WUW/APmYCYt/QlChidpWgxKIIgoDObMZ35jih1qZEOfUAqKqa6OAc8BPzeZEjYRQ5c4fl1GUKGSueetEZjQQa6xD1RiSTGWNOHqEsnh05GEi5mUIijKDEohkTbVVVIdynb1R/wq1NKPF4IgxlNGEqKsZaVom50I1kNF72TURvtVA0fxaVt6+j4iPrLngixlK6ZhmWEhfGXCeOsVUUL19E93sniIdCKJEoXUdPJAyUSzy/ZDLiGFOZcZ8giVhcRZgK8/Gdr0/0MYrHKZg9nVBrB/Wvb6Jp09uc//Ob+OubUm7W1tLE9bBXjsJz+mzaZwDQsfcQRqeD8ptXUH7LakbdupbSVUsw5jgT3cHrExVM+TOnYsrNpef4abqOniQeipAzYSwt1XtT8lrC7Z00vLWNvMmZdUY63n2PQEMTDW9tJ9zRNXCi9QVURcF7tjbFoOlFDocJtXdgLipIbjMVFWTNdQk0NGUU8Otde/o+FbIYmwD2inLa9x3KsGho3bUvkfStoXGV0YyaG4Ty8nIee+yx/5+9Pw+T7CyvfNHfnveOOYfIearMrFkzktAASGABpg3Gx7dtn3NMY24f3FYbD8fdfTmN6UYWbkzb5/FtjvE1eOhjm2vT13a3abeNMcbYCCMJSQihqebKysp5zow59nz/+CIjMzIisrKqslRVUqznEQ8Vw44vdkTGt/b7rnctHnzwQR577LGrIjQf/vCHeeKJJ6qi4J3BiY2SaxUrQvLgcSJ9g+jJNqyeAZKHjqNGok03PkFaIiTGDpMYP0Z89DDx4XGCIEBWVMyuHgozkwDYq0sNN6pNhEGAV8yTPXuC7PlT5C6cIXP6FUqL85ckQ7KmEekZaLxGpVKFKpewV5coLc2hWFGCBpvOJtyC2PgCVxjmOdl1yqvLFOen8culmlHaMAibuw8DvmsThgG+Y1NeWSQ/eZb8xXPY66s1aeBXA1lV0WJR9HgM1TJRDAM9EcdoSxHp78Uv28x948kabxiByydUsqLQdvwwZrrWEVpSFLrvu5ul73wP1TJpO34YxTRIHRpj4ennKC1uI35ByOKTz+IWinilMvZ6BrdQpP+RtxIb7KMw06SVCGQvXESLxzDb2zBSSZSKOFhWZBEPMH4Ar1hi6dnvYq+t45fLaJbJ2ssn6ybFlIqPDIpC55tuqwtvtFfX0ZNx3GyOmb/7Ju4ubbdN+I5Dfro+fmMTxfklzM52ZF2j/Zaj9D54b3PdTrR5S1Ax6zVukiwTb0Y4ZRmCkNBvTMz8Urmh31ALNx5mZ2f5wAc+QEdHB5Zlceutt/Kd73xn1+d84xvf4K677sIwDMbHx/mDP/iD12axV4Cbuv3Uwhamp6d5/PHHefLJJ3n88cevuFKzl+DERsJjSZJQDAPF6IbO7st6TVnTkTUd33Gq2hY7uyG0Kttgb6w1TekOXKcyHl6789griyiGiZ5q33WUWo3GiPQPU1qYqbZGFNPC6h2gOLc1qu5mNrDSvfXCXUlCUlTCwEfWVHzXwS+XsVcW8e0Ssm5gtKcpry5jtHeiWuLqWpJl1EgUL9/YME01IxCG5M6friExXvECaixOdPAAyhV41FwKimmIQMdG1v5A8uDoFdu5axGL3rfdh5vLU1xYRjEMVMtk/eQZysurlJdW6Hv7W0iMj7L87Hdx1usnsmRNJXQ95p76DvaaEP/Kukbf2x8UXKvy0WjxGG1HD6KYJmEYVPUlasRC2zZFJ2sabccPEbp+XXtHT8bJTtaaDiYPjmJ1d5I5M0F2QhCl9F23Ul5ZZ6MivlZMk8AR1ZDQ98lOXKTj1mN1cRLbIdLgm2ukZE0leWiM5OFxVNPY1a8pfmCQjZNnGt6XGBupI2kAZlsKo7MdeweBlQ29Ndp9DeD7Pt999iWWl1ZJd3Vw1723XdNJ3vX1dR588EHe/va385WvfIV0Os3Zs2dpa2tr+pwLFy7wAz/wAzz66KP88R//MV//+tf58Ic/TG9vL+9+97uv2VqvFK1v6esAOzU0jXQve8Vuk1KNKjT7DXt9pWk8wm7lezeXafq88tK8CFW0Ik3dfGVVxWjvQIsnCD2XwHWF18705DZjQAHfddDbOnHWlkW7rKuv4o7rIKkaqilExfnJrcmiwHHw8jmsnn7s9TVB5FQVSZIw2jopLy82XL/VOyB0NA2qMl4+h18qXhNSI8kyyfED5C5M1QlTre40Rlvqqo4vaxrZs5OUV9fwXbfOK2X95Gm67ru7QXVIIHXkICsvvFwlNCDM5bLnJokN9JGfmsXoaKP9+BGWv/sSXsWUTlZV2m45QhgEJEaHa1o3RjJJYba+yuPbDqpl4lQqEZGeLrR4lIVvPbv1mLLNQiVIM1LR9yTHR2rIUHlphcD3UJqYCnmlMoHjkjw0WuOXU/O+jx7c82h1GIR03nWrGP3e9tWK9PWgRSP4ZbvuWGrEEmaI03Nkzpwn8H1iQ/2kDo0BNNVDqRELpeUJdln4u698k199/DdYnN+qQnb3pvk/Hvs5HnnP267Ja/7qr/4qg4OD/P7v/371tgMHDuz6nM9//vMcOHCAX//1Xwfg6NGjfOtb3+I//af/dEOSmlb76QbExz/+caanpxveNz09zcc//vGaf+8kMDvbRTcLJEVBSzSfvjFS7U3v262fv0kIchMihLHp60syim4gyQr5i+cpLczWERoQG6OV7kaxIsSGRnGzG+Qvnqc4N01haoLsxGlxxd3gR760OIcWjdaIo2VdJz5aqy2SVE145MgyzkbjDQ7AXlvZk1bjSqBFIwy88yE677oNM91BpK+HngfvpefBexq2PESyehF7PYOTze16rkPfx8mJrKFG5m9eoYSEcB5uBKO9rT7xGshNTpMYP4BiGHTceoyFp56tEhoQ+qbV772CFo2Qm5yqaacoht5QeJ27MEVybOuHPzF+gLWXTlZjCbZj7eWTJMdGiPb3oiXiNQJiLRGrq6wEvo+bL1BeXcNe32DjzDlCzyfS11O3jtjwIGaT89EIkgTllTX6HnqQjjtuof2WI/S+7X6sdDuL336+xrNmO7SIRfLQKP2PvI3Bdz1Mx+3HxXSbqtB1b4P0aEmi+/67Lzmi3sIW/u4r3+Rf/8t/X0NoAJYWlvnX//Lf83df+eY1ed3/8T/+B3fffTc/8iM/QldXF3feeSe/+7u/u+tznn76aR555JGa29797nfz9NP1/kY3AlqVmhsQlzOmfaXtohsRsqIQ6e4nk8vW+d6osfiuV4K7jYcrhkngOASug18qXDKfSFI11GgMr5Cvv09RkTUdZ2ONSM8A9voKXrH2caHnkp+6QKR3oHZCCkRu1I6KjCTJaNEY8bHDVRv7TU+eS+mBrjVU0yQ22IfeliD0fPRkAqlBOrhv2+QuzrD64qvVgESrp4vuN9/VcNxbVlWsrs6mlRizow3F0Om8/TjTC0t19zcjcqHvs/zc9xj4/reTn5xumui9cfocsaGBujgGI5Wo84PZDHmMjw6Tm7iIYhp0P3iPeJ9hiGwYZCcmKUzPiRgDQ8foaKsx7gNIHRqvaYF6pTLrJ8+QOXNekCtJIjbQi9JrEunpIjE6RHF+CUmRRdJ3PFZjEHgpKKZJeWWN/NQsWjyGpCisnzxD6AcYbcmGuppNCL3bFnF1iyJSQ4tF6X3ofnIXpnDzBYz2NtqOjKO2MqL2DN/3+dXHf6NhYTkMBRn9tcc/y9vf9eC+t6ImJib43Oc+x7/6V/+KX/zFX+S5557j537u59B1nZ/4iZ9o+JyFhQW6u2slBd3d3WSzWUqlEpZ1Y5HZFqm5AXE5Y9rXu12035ANk+TBY5SXF3FyG0iygtnZhZ5I7ZpvpEZjTUvjZrqH0rJoK7j5XMUwb5c1qCrRgRFyE2dq2z6yTGxolFCS8R0HxTBxNhqbuW1WeBqNrEuS3JAYKJoOO96jrKrobR2UlxrnEhkd6avKwdoNge9TWlxm/h+fqckMSh05SNvxQ6iVDLYwDCnMzLP83Pdqnl9aWGL26/9I/zsfqvOWkWSZxPgBNk6fqxefShJtxw8LAXMyQd/b38LScy9UKy5mugM90TxF3c3lkSSpaVgjiFFkNWLVbSyKZdJ135tYfOo5jPYUqSMHkVWFMIS2ni5SRw8Kk7vvvFglPpIs037rUVTLElEMYVgRFouDS4pM131315C7wPNYP3mm1sgwDMlPz4m09L5ulp59ASvdQfreuwTBuMwQVy1i0fvQA8x+/Zs1U1uKZQrjwD0SpMB1WXnhJcpLK5SXVshPzRIb7CPS04VnO8IksuXovmd899mX6io02xGGsDC/xHeffYl77m9QGbsKBEHA3Xffza/8yq8AcOedd/LKK6/w+c9/vimpudnQIjU3KLYTm8cee+yqxL83CqpjzZKErGrVzdh3RAXFyWwIo7S2DqyePsyuXuGkqu7+oxl4HnZ2g+jgKKWFma1YBVnB7OrFL5eq00pykwTunVAMk9iBg/jFAr5droiZNZx8FsWxhdA3DGmotqyuyxVEazupkWUU09zzJiBJMkZ7Gmd9rU5Xo0bjl534fTnwCkXmvvFU3Wa6ceosRnuKxIEhQEy+rLz4aqND4OYLuNlcHamBrfbW4tPPV71RtHiMrjffhRYXLtKKphLt62bwnQ/hu25l/F6YG8ZGBslP1rdXo/29yJqG0Z4iP9V4kkhULiQUQ+hbfNsW7r2+j5XuYPj978ZZz7L07HerkQOSqtB556042VxNJScMAlZffJWet76Z4twiWizKyPvehZPNI8kSWjxW46sDQoOTOd04i6q0tELbsUMEroueTOAVCqy9fALfdogPD2CmO2pEzrvBaEsy9E++j/LqBk4mi9GewkglLyvywC/b5C9uncfQ88hd2NIKJUeH97yeFmB5qXk7+Uoedzno7e3l2LFjNbcdPXqU//bf/lvT5/T09LC4WBuou7i4SCKRuOGqNNAiNTc0to9pP/nkkzctoQl8D6+Qpzg3LQz6JBmjoxMr3UMYhqIiss24L/R99GSK8vIivmOLKaSuXmSjMRkIHJvy/AyypmP19IsQSs8lRGhOAtepmgPqu2h2ao7puRSmLxA4DrKuE3oegesSGxkjP3mO6OABMfHUxDwQQLUilHcQgtjACDSo0lwKkf4hvGIBN5dBkmT0VBuSrOAV8g0jKHZDGIYin0iSdq3y5C7ONK0OrL1yikhPF6plEvh+01BEgPLaesOEb0mWMTva6f++txI4DmEodC2N9DpqxEKl9gc0feetSLIsNtgwFM67QwN03nUbiq4RGxpg7aWTDVtVqcNjGO3tyKqKk82x+PR3qq0wWdfouOMWvHyhJkMp9ERrq+fBe8lPzda959zERXreei9qNIIkSVVi1giB4+6qhQp8n/Zbj+GXazOtCtNzaPEY/d/31j0RE0mS0KJRtGgU6K+5z3ddvGKJ3OQ0frFEdKAPoyNVR1AC39+1StTyp7k8pLs6Lv2gy3jc5eDBBx/k9OnTNbedOXOG4eHhps+5//77+eu//uua2772ta9x//337/v69gMtofANjJ1j2jeT6Hc7vHyO/OS5LeISBtgrS+QvnscrFWsIjRZPIhsGuQtncfNZAsfGzW6QPXdS5EHt+HENw5ByJbMpcB1KC7OV8WpFWMB392Gk2jE60iQOHmsqjtyJ0A/wS0VC38MvFQlcR+hsKqPXxblpJFXD6KzfrEH49viOQ2x4DDWWQG/rIH7gIJ5j42ys4ZWKexb4eoU8+clzePkcWiyBGolSXl2iMDNJaXEW37Hx7TLllSVKi/N4xUJTLY7v2JSXF8lfOEt+agI3n2to0BaGIU6TcEuxpkJN+2W3/Ckt1nxzB+G2qycTGKnEZTnvqhGLrrtvZ/h972LwPd/H8PveLao8laqQGrHoe8dbarRYkizTdsuRakCjWyhWzfE2ETguy8++ILx7kom61904c75apdoOt1BEMc09GRJeKq9LkmVig30Nk8XdXJ71k2cF2bhCBK5LfnKaqb/6GuuvnCI7cZH5bz7N7N/9Y52fjqyqu3++u5C3Fupx17230d2bbpouI0nQ09vFXffetu+v/Qu/8At8+9vf5ld+5Vc4d+4cX/ziF/md3/kdPvKRj1Qf87GPfYwPfvCD1X8/+uijTExM8NGPfpRTp07xW7/1W/zpn/4pv/ALv7Dv69sPtEjNDYrtGpoHHnjgppxmAjH+XJxrvGavWEAKwxonYqO9k9LCXMPHF2Yu1o82hyFhxTVYSySJ9A1SnJsid+EsuYkz2KvLKFaU8tIC2bMncDIbdS7DYRgS+H4tyZDYyrSqbNqSIlefG/oeuYnTKFYEs7uv5j1oiRRWdx+luWlKC7MY7Z2EQUBu8hzlhVkUTSN77mS1TXYpeKVC5XzlKS8vUF5ZrLbTAsch9Fwyp1+hODdFaXGW7LmTFKbrz5Vvl8meO0lpYQavmMfNbpCbOE1pqd55VpIkrAbVlU0YqRSSKgiiMMkbbfg4WVUx21N7ep9XAlnT0OMxzPYUejxWE6opKwpWVyeD73kHg9//dvofeYihH3iEtqMH0eMxobtZW29aZVo/eZbEeP24q5vLo8VjxEcGxVh4Rd9jdLRdUoS+CcU0iPT3NrxPi0XxSza5yWmiQ/3V87wd2fOTuxpAXgpeqczSsy/U3e7m8qy+fAKvtHVsxTJpO9rYNdnoaLvuU0+XMy16I0BRFP6Px34OqI/N2/z3Rx/72WviV3PPPffwpS99if/yX/4Lt9xyC7/8y7/MZz7zGX78x3+8+pj5+XmmprbaiwcOHODLX/4yX/va17j99tv59V//dX7v937vhhznhlb76YbEpca0byptTRDs6nzrlUsoulHd4MMwhLDZZItH6HmEml69GpZkGT3ZjlcsYrR1kt+eoRSGOBureKUCkb5BCtMXKM5eRI1EkS1VkBnHwcms4+YzyJqO2dGFbBhIqorR2SXM7yTRepANk9BzcdZXq8cvXJwgPnYIxTCFv64k4eZz5C9OQBjgFXKY6W7czHrNughDCrMXiQ2PEfq+8NmRZPR4AknTa9psqhmh2fYla1rDtHM3t4GTTWB2CGIS+D7FhZkawe8m7JUljLaOuvHkaG83q7pWnWbajo47b6kmZcuKUgk6zFOY3iKksqHT9/CDqNdRbyHaL5GmrZpSEz8YEBu8GtlROZJEjIJi6KKa57gkDx4Q1aZUCrkBAWkERdfouucOFso25dWtKpEai5K+506WnnkeQuh7+4O0HT2IX3ZYfenVqhFh6PuXqxuuQWGusfAcIH9hmthAP16xSGygDzVikTx0AAhZP3FGiPEliA70kX7T7VXB+PXCtQr1vZZ45D1v49c/98v1PjU9XXz0sZ+9Zj41AO9973t573vf2/T+Rm7BDz/8MC+8UE+Cb0S0SM0V4uMf/ziPPvpoQ3IxPT19VaPUN9qYduC5WxoM9fICDMWlxzaL1x2QVa1mYulSRw5cB98uoyVS1Y1fjcYxO7uEgV2j59hlwjBA0jRC18VeW0bpG8K3y+TOn6r8SAuHYGd9VUQ9pDowEm3kJs9VK0EAsZHxmvBOSZYJbLsa59B4AVskTVLUagvNaE9TnJ+pITylebB6+jHa01WSocbiohLUoF1lpnuw1xpvzOXlRRF6qWmEvoeb2Wi6RGdjDUnVaoz81E0h71PPYVc2U8U0SN99R535nhqx6HrzXfi3HcfN5pANHS0WRY1Y1yXk0C2WcDJZSgtLqBGLSF8PqmVVSYdXKuMWiqi7CB2FoWItCey47TilpWVyE1tXssW5BbREnP53PHhZa1QtEZopyTJeqYRiGgSOy9Izz+MVxb9LyytsnD5P5x23kL7rVla+9yr26jrR/p6rSq5vRFQ3EQYBYSD0Q9nzk/Q99ABqxKLt+GESo8MEroekKsJBXL/yNewXrlWo77XGI+95G29/14OvqaPwGwEtUnOFuJZXB9d7THtTSEoY4peLFOdn8EtFJEXFTHeLq/o9uthKioqeasPZaOBHIkmosTjBXK0FfTPxrVQhQIWZSWFWFxNlf0XX0ZJtQk/TBF4hj2pauK4rprB8n+LsFEZ7GjUaJ/Q9QVA8l/LSPGosQe7C2bp1FKYniR8Yp7y6jLOxVolF2OWHXZJqasxmuht7bUVMLQV+bQWngtLCLFosUSU1sqaTGD0sCNY2rYyZ7kFSNfxSoe4YIKZU9no5H4bUuRNLkoSRStL3jrcQ2GJyTTZ0VKsxUVENA9UwMFL1OpTXEm6hyOzffws3uy16QnqJ3rfeR6Svm8BxWPr2dynMLdD38ANIikzoiwgFxTLxSyV82yF19CD5bTlSqmVhtKdYbTDp5WZzZM5N0nHr0QpJKVcm95SmLSmhRVKYf+JpFF0ncGvFw9H+XkpLK7jZHAtPPkPvQw/QfvwIC08+S8ftt1wVoYj0doux8wYwOtpwMuLc2WsblFZWiQ8NICsK8g3qR3OzTosqirLvY9tvdLRIzRXiZr062A2iHWNjb6wRODZaLElhemLrft+jtDCLV8gTHRxBVi/9oyorClZPP36pWJvlJEmi6qFpJA4epTgndB7l9VUi/UP1pnVIRHoHKC+LsnlpYRZlZLy68Uuy3NSnBoS2w6toELR4kjDwMTrSOBtr1WMCyIZBZGBEkDhVJXS2jqfFkyimhb22itXdh9Xdty1jKClaSDtgtKerVRAz3U3o+3iFHFZ3H/Z689ZHeWWR6MCIeF+ShGJFSBw8SljZ+GRNQ1K1hqRoE2osBpWrPklRUGMJvHy24WO1aAx7fRUtnkCSaqV2qmnCdW4x7BXCMfjVWkIDEIbMf+vbDL/3Xdhr69X2y9qrp+l5632Enk/gebj5AnosihKxBOm2TJKjQhSsJRNNs7AAsucmSYwNU15eqySa25idbcKRNxFHaSC2NdtSGB1tdVlLimEQGx6o5lCFfkBhZh6rt5uhH3ikaTst9APcYrES/ioJCwFDQzXNmkk3LRbF7OqscTwGQJJoP36Y5e+8WPO+on09de3JGw2vl2nRFq4ON/a39AbHzXp10Ay+XSZ37hRh4BPpH6K0ONPwcW4uQ+C6eyI1AIpuEB89hG/beIUcsqajRmPImi7iBCxVaEuCACRRqUkcPEZ5eYHAsZENCz3Zhr26WNXe+Haprq2jt6exlxtrBdRogvLyIpKiokZFhcfLZ3GzGzWPC2yb4swk0aGxaoVFsSJEevpxshncfBZZ1QgcG8WMIKsqgedhdHQhqaqoSIUhkqxgdKTR29oJfR8tnsRe23IflirPa4bQ8wgJq+04SZIamvOpsbhwHnZ3tBMkCau7v9qikxWVSO8A2fOn6tpYWiKFXy4J7yBpb7MDYRjil8qEYYikiGqEVyoR+j6SLNf5srxW8Ms2uakmYvogpLS0QnGbnsQrFJEVhYVnvlsjGFYsk+7778bJ5DDaksJgcHahKWkGCAMfN1tg8annqrcV5xYpzi/S/4631oy1h0GIVyxSWl4hfddtlFfWyJy7QOj7RPt6iA70CTPDYKvSZq9vEOlJozeZNvJsm/zktHB1rrTNjPY2Ou44jlcsYbRta9laJr0P3kt24iIbp8/h2w5WVyepI+OUV9aI9Hbj5gsiHf06tA+vBPsV6tvCzY0WqblKvF6uDgLPozg7hd7WLlofmla52msMr1ioJk3vBZtJ3FqssRPszqtA2YqgxhIE5RK+Y5O/eK6mlSLrRs3EUeDYGMkUfiGHV6xtx1i9Azgbq6ixOGa6h/zkOWLDo00rJYHrQuATuh6SqmJ195O7eL5KBnwEsTO7+jDT3WLtFU1ObFBMy4SEOOtrZM+cIHHoOIqlIFsWmqqiJ1KialLIN27LISa5ZPnSpEAQxsMUF2arVRvFihLtH6oz5lNMi8TYYcory3iFHJKiYrR1gATF2SkSh45f8vVA6FHyF2dYO3Eav1RGTyXouPUYpZVVNk6eRVIUkgcP0Hb00Gs2GRMGAYHnEwKyrBAEjQmjVyzVqLvajh1i6bnv1U1A+aUyK8+/RPutR1l48lkR8HnwAPGRwaaGftGBPnI70rzF4mDp2RcYeOdDqJZJGIbYa+vMfP2b1RgHs6OdzrtuJbAd8tNzokKzo3WoRSO7iq6L80s1FRYAe22dxae+Q/qeO1CMUg0hUiMWbccOEx8dwiuWcNazSKpC4Lp4pbKIQDh2CBTlhq/S7Geobws3N1oj3VeJ14uXTOh7mOlu4V9x8Xz9lf8OvBZX4VokRnllSVRTdvzAW9191R/a6po9Hz3VQXRoFKOzC6t3gPj4UVQrgp5sQzUjFKYmCBxbELZd9Ca+46BELIz2NOWl+YYi3fLSXFW4rOg6WiJFfvoC+akJClMXcPNZooMHRGXKihDtGyI6eAA1FsfZWMVoTze8CpZUFS2R2tM52hRxG22dJMaPkjh0nPjIGGokWmesJ1WcnGXDxGjvRIsnKK8uUpydIjIwvCfhqe84rH7vFZaff7FKBJyNLPP/+G20SAQz3UHo+2ycOsfSsy/gla987HgvCIMAJ5dn9cUTzP3Dt1j73qt0P3gvyYONR8yNthT6Nt8cNRqpb1VV4GSySIpcsQ0Q7ynwfIzO+mBVWddIHR4jf7FZdTNfvUjwiiXmnniqJpeqvLrG0jPfRZJlCjNzDb+b8ZHBpj4+XqncUOsD4JfL+GW7YQCoJEtokYgQdKsKc3//JJkzExTnFtg4eYb5b34b+RrFcOwXXk+hvi1cPW5s+n2D4/V2dVBanK+KTt18rqlOBElCiVxbwWAYBKAqxA6MU5ia2Cr7SxJWdx/qttcPfI/ALmOvLaPFEhRnL6IYFnp3kty5xmLIcNMfp4kBnmJaROMjwtRuab7hYwDc7Ab2+qpwK27rIHnoOL5dFuZ/uomsyEiVioskSfiuU524UiMxYsNjlJcWqm0pLZEi0juwJ5fgwHUozFys/YwkiejQKHpMaWg0KGs6ZnsngevgFfJY6V6Rm6Vpe6oM+SWb7MTFhvetvXqKzjtvpVwZky7MzovAyCYZQ77jikkaSbR7rmRKyl7PMPO1J6rfj/LKGrmL03TccZzYYD/56a2qipnuwM3nsbo7yU5M4pft+typHdh5/9KzLzDwyNsozM6Tm5wm8Dyi/b20HTuEk81htKeIDQ0gayrl1XWRBL5JXirkwCuVa5yKq+ejVMbeyNBx+3FWXzqxlR0ly3TedSt6It608hX6fk0a+U44mQxqdJe/2RCWn3uhjkyFvs/iU8+JKtMNmsJ9o02LtnB90SI1V4jXlZcM4sdr+xSNvb5CfHhM5Cbt8JmJDY1ds3J04HmCSCwvEnouensHifGjQn8Shsi6XpMbJRYvfog39TGxkXG8Qn7XwR9nY02MgTcIipQNA0UX7bJmpGcTkiyjxRPYK0s4aysEnk+0tx+vkMdeX0ONRCrtPL0ycXWxugF7xTyFmYsY7Z2YnV0oplXnUVNzbnxfjJeHIiTRzqzXk84wpHDxPOrhW5qOhsqqiqyql9U+3ISdaSw0BqFn2Umk3FweY4crb+D7uNk8Ky+9SmlhGcXQSR0eIzrYj6zIu45Zb4dXLrP47e801LmsvniCvrc/SH56FllViY8OE+lJs/DkcxW9zD3kLk7XtA7rUHGm3o7Q81h98VXMrk6S4weEE3JHSghxJTFVtHHmPIHjYHWl6X3rfay9ckpcCFSmoEK3uZZq/dXTDL33EWLDA5U8LAk9EUXWjd0DKGUZxTDwmxjyadEoWqK5869XLNWNr2/CzRfwbeeGJTXXe1q0hRsLLVJzhXi9XR3UTCYBBAH56UkifYMiKqBcQtYNkZatatXqw34i8D3KK4s1lRGvmEdSFBJjR1DMxj+qkiJs3EPPw81u4BVyIpuJsOl4uFfME+kdJAwC7NXl6qamRqJEB0erI+uSohIdGq1WEULfo7yyVBUsy7qJrGmoEeFQK2s69voa9uoSoe/hrAGyTGL0MJKq4hXyNesIKyPkANHBEYwm79G37W26mRDFimJ19aK3dVZJkJvPVtflZNaxuho71l4NLjVGvLPlpRj148xOJsv0V/+hKoL1PI+V775MYWae+IEhYezW33tJUzffdnA2mpCsMCR0PUZ+6D0Evk/m9HlKiyskxoYpzC4w/8RTRAf7kBSRFp49O1F3iMTYiGgF7YCsacInRlVRTANF0/BKZRafeYHSwlL1cYWZOYpzC/S+7X60eLR6LtRYczIpwltVEdFwGfEDqmXSdvwwK999qf6YioKeTKAnmyebXyqyY2c8yX7hWvp9tfDGxI3dLL2B8alPfappJeZmvDpopKcIPZfC1ATlpUXMrj6sdI9wzr1GeprQdRu2ekLfpzA3XRdvsAlZ04j0D9U83reFT0hs9BCRgWHUWG21IDpwAFkXAZjJQ8erepTYyMFqVlDg+3jlIqX5GfIXz5O/eJ7S4jxmugctnsToSIsqlqwQuA5uPkvuwlm8QpbY0IGtRPAgEELnYPeNIfB9nFwG37EJt7kq+45DbuI0bmaNzRlyv1Qgf/E8RnsHXrmEV8yjp9oFAVMUfOfaaFm0eLRplc7sbMde2xoxV0yjTtjq2zbLz7/Y8FyUllaQNY2V519m7ZXT+LsYxO0FIUJcK8kyWjRCeW0dJ5un/fhh0nffTmF6jsLsPB23HKH99mPVvwFZ12i/9ShmexvZ85N1x00eGsVsq41lcPOFGkJTXUMQsH7qLMq2KotiGCSbxEp03H4M5TLyrzYhSRLxkUHiYyM1tyuGTs9b3owWj6Lt4jGjRi2QG7f/ZENvSE73A5t+Xzt1L5uV8EcfffSavG4LV4Zf+qVf4o477rjey9gVrUpNC8KMLgir1Y6dUKP1otNrAaeQw0z3CL1MxQCwvLqMXyqIMEvPb5hwLUkSWixBfOwIpYVZJEVGMS3Kywt4eVHpMTrSRPoGCTwXSVJwcxuokYgYSzeatHscm/xk7dRV4DoUpi+QGD8CkhCRllcW8UtFZF0n0j+EXyyQn7pAdGC4GtsgjNV8FNNqmvmk6Ab5C2dBkokfOCjOuyTjFXJNoiZCykvzmJs5U4vzKIZBtH/4mo3hqpZF70P3M/sP36ohJopp0n7rseo4s6zr9D38QF3LInA9ykvN/XlKyyvobUkyp8+ROjxWVxnybQevVKIwu4DZ2Y4Wj+Hm8vUHksBoS+KWSpQWllAsk0h3msz5SZaeXSLS00XvQ/djtKVQLZP2Y4dJDA8ReC6+4yJrKivffbnusImxEZxMFj0eq3lv+QYVnep7WlgicL1q+0nRNdpvOYoWj7H+6mn8so0ai9Jx+3GivV1XLMJXLZP0XbfSfuwQTi6PoqpitF7Xd29dIbyIOm47zur3Xqm7r+ueO/bcErxcvB79vl7P+Df/5t/wsz/7s9d7GbuiRWre4AjDECezTnl1iejAAQozkzWutWokitXTT+DYlDdWCXwfI9mObJo17rP7Ac2KUtxYr5rhSaqG1d2LX7Kw11ZoFrUAwodFjsZQhscq8Qenq48PfY/y0jxePoue6sArFdCTbYLANfHaEYRqqemEVHllCaOzm9z5U9XH+HYZN5fF7OpFi8XFVNR2EhOGRPqHyU2crjuu3tZRTQAnDMhdOEvy8HFkTcfZ4aWzCcWKYrSnCV1HuDzrOoFj47sOeqqj6bm6GkiyjJnuYPi976IwM4+TyWK0JTE7O/BKRZKHRlEjVsWdt4HzsCQhyXLTdoesqlWNjJvN17RgvLLN2isnyZwWRFFvS9J135soLS7jFUvkL85Up/babz2GJEkUZubZOHFG+LS0p0i/6XYh8r0wReroweo0Uej5FObmqyPRHXfeSnx0mOT4CMWFZSRZJtLbRXl1neXnvoeeTNSQmt00Zo0uCFTLJHV4nPjQgIggkeV90awouo6i6+iJ5q2mRpBVlcT4CEZbktWXTuDli2JU//bj6KkEUpMqzn7gavy+Wu2r1xaxWIxYbO9t0euBVvvpDY7Acykvi9Tn4vwUkd4BokMHiPQNEhsew+zqxc1lyZ49QXl5EWdthdyFMxQuThC4DoHn4pWKFBdmKM4LV+DAu/y2ge84OLlMTWsr9FyKs1Oo0Thaog2pQZWm+tggIPA9wjCkND9NIwLkFQtIqoKb3aC0MLurTiAMAvwGQZHV9ZaKeIVcQ9JTXloQJKVU3PKKkSTQNOGgPH6U2IFDGOkelEiMSP8QqmlRXtmWXRUG+MUikiShJ9qIDY8RGxolOjCCEomiRKJYXT3kpy9QmJqgODdFfvIc9sYaihm5pn5psqKgx2PED4iNZOP0eab/5u9ZfOp58lOzFfM3F63BJq0YOrGRQZBAT8bRU4maqpKV7sBe2xCnTKv9vO31jSqhiQ0P0HHbMTZOnSU/OY1fKtP9wD103H6cvne8hWh/D6svnWD52Rdw8wVBUlfWWPjWM1hdnRjtKTJnLxBUppu8crnG40WLRVh6+jssfedFkROVy7Pw5HOsv3oaEJ4w2xEb7G96vuIHhhq2byRJQo1Y1Yys6w3VMIj29dD39gcZ/CffR+/b7sNKd9Qkn18rbPf7euyxx/ZcoblZ21fXK1n84Ycf5ud+7uf46Ec/Snt7Oz09PfzSL/1S9f6pqSne//73E4vFSCQS/OiP/iiLi1u/SzvbT9/4xje49957iUajpFIpHnzwQS5e3JqO/Iu/+AvuuusuTNNkdHSUxx9/HG8X09H9QIvUvNERUnW2DWybwvQFCjMXKS0vkJ+awFlfbWit7xXzeOUypcU5QXiWFigvL5A9d4rC7BT+JXxuNhF4Lm4+S3F2EjezjqxqxA8cRLG2+v/l5QWsnr6GV8OB7+GVChRmJslfOEtgl+vM92rWXSigmBH8cqlhq20TkixvaWIaQNaNXVpyoXBc1g2CStUhOjiKX8yTPX+K7NkT5C+cIXBson2D2KsrFOfr/U38QEyC2evLQtMzNUFxYRYj1UGkd4D89IW66Sy/WBAp4pch7Nz02vHtcnW9e4FqmrTfcgSjLYkai4qx4lKZjtuOEenvafgcWVXpuOUofW9/C/GRIWKD/fQ9dD+powdpv+UI+Wnh0SJrWk0UgO+6rJ84A4jR7EhPF/NPPE1heg4nm6MwO8/8E0+hRiycbB6/ZJO70MAID1h7+aTwsQlDNslvYW5HGGognJID26E4t0BxYalmykq1ar8basSk/bZj9ecoGqH9liP7Mi3oX+PNYBOqYaBFLBRdf8023yv1+2rkR3MztK+uJxn7wz/8Q6LRKM888wy/9mu/xic/+Um+9rWvEQQB73//+1lbW+OJJ57ga1/7GhMTE/zYj/1Yw+N4nscP/dAP8dBDD/HSSy/x9NNP8y/+xb+oVmf/8R//kQ9+8IP8/M//PCdOnOC3f/u3+YM/+INrXjlrtZ/e4JBkGbOzC6+Qr3qlEATV9oAai1NeqRdACv2NKyaHdsDNrOMl21BS7SIc0/cAqe6HPfB9yitLNeJgv1zC3lglNjRKYeYioefil0sNCUTo+7iZjZqE7MBzmo/oVt7v5ntzi3m0eOPwRXFeuptmKxntnUJTswu0WBx3Y43YyDhhEFCYqs2zcjPrBOUSZrqbwkyt94saS6BF4uQmztToaULPpTg3RWx4TLg+NxjhdTJrWD19u64NIAh8/GKBwuwUQWX6reqTY1xarLp5HhOjw0R6u4UNv6GjRaymhM+3HXIXp+uM4hIHR7G60qw98RSSLNP7tvtqjOZCP6i+19ShUZZ2OOduYvm579H9wD04ucaGeiDGl0XFbKSqX9lpNpmfniU+MthQKIwEkb5a0qboOqlDY0T7e8icvYBftokN9WN1dTbNadoLfM8nt5Lh7FMnWDo3R+eBHg6/5Rbi6SSKeu0NMK9lcG+jY12JLcbNGFdzPbVEt912G4899hgABw8e5Dd/8zf5+te/DsDLL7/MhQsXqq//hS98gePHj/Pcc89xzz331Bwnm82SyWR473vfy9jYGABHjx6t3v/444/zb//tv+UnfuInABgdHeWXf/mX+ehHP1p9/WuBFql5A8N3HfxSkcDzUCNRzK5enI3VqnW/pGkohlnd8LZDT7WL0MtEUnjC7LjCLy8volpRnOy6CHSUZIzONFo0Xh2X3j7OXIMgEALYjjSlxTkkVWtozBZ4HoXZWjLgZjPoqXZRrWgANRqranYu5aArdBQDFBdmt0hSxfzPzWfrJqq2niihRiJIikp8/AiA0N40gG+XQaoN4zTaO1Ei0V0EwoiKTXuaUoMKz6YDru/YIl+rSS/KL5XITZypuc3NbpArFYmPHWmaLg2CZJRWVpn7xlM1Fa/46BDttxylvLJGcW4BLR4jPjKIErFQVBUnm2vofJs9O4GVbqfrzXdhdaeFw+02YqToGpG+Huz1DLJpEtiNz4uoOoaXrIzImoqRSlb/He3tZu2lE9V/56fn6Hvofuy1dez17eaG0PPgvQ0nlJTKlJBxb6qS/3V1hfAwDFmamOcvfvmL+BUPmcnvnuO7f/E0P/ix/5m+o0MU1nOszayweHaWZE8bPYcHiLUnkJX9KcJf6813v/y+bsa4mutFxm677baaf/f29rK0tMTJkycZHBysef1jx46RSqU4efJkHalpb2/nQx/6EO9+97t55zvfySOPPMKP/uiP0tsrrCRefPFFnnzyyZrKjO/7lMtlisUikV0iP64GLVLzBoXv2KIKsH30d2WRSO+g2BTDkEjvAF55B6GRRFq2rOk4mQ0kRSXSP0zgOJQWtjbY0Pdwsus1m643lUeNxYkOjqJoGm5+t6vpAmZaXA2b6W6kBoLewCnXVWSczDrx0cN4xUIdGbO6+3GqlRcJLXppMaWbzxEbGq1WJSRFwV5bwc1uoKfaG1aFIr2DIuuqsmbfLu+ao+U7tiAxuSySoqIl2iivLKDozaslgV1uKtSWNA2vVKA0P0OkfwgtlqyvknleY0KEaEd5xTyKXh8HsAmvVGLuH75V47gr6xrx4UFm/vYJ/G3fm7VXTtLzlvuI9Haxfups02Nmzl6g7+EHGpIpSZZJjo2Qn55D3oNgSDGMpqntZmd7nTuvGosQ6emiuDmWHYYsPPks6bvvxEglhJ1AJbVbNoyGidvVtUrSvkyfFdbzfPUzX6oSmk0Ens9Xf+O/88O/9M/4H7/yX8gtb5Eu1dD4wY//L3SP9+1bvMG13Hz3y+/rZg2zvB5kTNtxMSdJEsElfIqa4fd///f5uZ/7Of7mb/6GP/mTP+Hf/bt/x9e+9jXuu+8+8vk8jz/+OD/8wz9c9zzzEh5UV4MWqXkDIgh8SotztYSmguL8NIlDYupGVhSQZGTDqJb+o/1DOBvruNt0Ns76qmhb9A1SnBM9Yi2eqDOaA/DyOfxyEUVL1t3XCFqqHSPV0bDa0EjoG+kbEu2Xrl7CIKgJbrQz66KCI0nV9k0zhJUrbaO9U0yIZTdwsxmo+MdIqkbgecQPHMTJbOAV88i6gdXZg2wayNtFzZJUGf9uEsmgG5htnYI4yRLF2SlCz0OONl/fbqJpK92DvbYi/H2mLhAfPYy8I0g0DAJ8u7w1Qo8gX/bqEoHr4uYyGKnmpKa0tFIXIZAcP8D6iTM1hEa8GCw++SxD73tXXXDkdlwqtkCNRel7+H6cTK6pe66saUiaxvqrp0nffTtLz9Za/yuGQfd9b6rzbFFNk+4H7iY3Oc3GKZFanTw8JgTDz71AeWUNSVVIjo+SOnpwV1LTCEEQXDbJKGULFNYaE/9SpkBmca2G0AB4tsuXf/VP+bFf/d+Id+7tb2wvuFab7364Ad/McTU3Ehk7evQo09PTTE9PV9dw4sQJNjY2OHasXi+2iTvvvJM777yTj33sY9x///188Ytf5L777uOuu+7i9OnTjI+Pv1ZvAWiRmjckQs9rmg4NgniYnV2A0ArEDxyivLKIW8gTBkENodmEm90QydKVOAA92VZtbex09bVXl9GicbRo89FAJRIV+UvReNNWgtB9SGyKPbVYgsCxsVeWsBE5R4oVIfBK5CbPExseRTVM1GhMbH5NXJEDz8VeX6W8tCD0QLKM0dZBdHCYwtSkyFcaGCYMQTZMIr0DVUIiSTKB6+K7JTG+rKrIqobR0YndQJuEJIn1VKoTgeviO7aoxPQMNNUHGZ1dyFZEtNo2hMuwpGpY6R5xjG1i6dLiLIo5XnMeQwmiQweqAm8AxYoQ6RuivLK0q0gawC3UT4aZne1VMe9OhEGAWygS6e2uZkPthNXVuSvRFIGcKpmzF+i861YWv/183bnpfNNtqJZJeWkFWVXoe/gBivNLeKUSke4uIn1daE0ykFTLInXkIPHhQULAKxaZ+dtvVAfpQs9n49RZSotL9D78YHW6KwxDvGKJ8uo69voGZnsKo70NxTTwCkWyF6Zw1jOY6XZiQwNVQ8BLIfR3F3u75cZifLtQJrOwvq+k5kbafHeu62aNq7nRyNgjjzzCrbfeyo//+I/zmc98Bs/z+Omf/mkeeugh7r777rrHX7hwgd/5nd/hB3/wB+nr6+P06dOcPXuWD37wgwB84hOf4L3vfS9DQ0P803/6T5FlmRdffJFXXnmF//Af/sM1ex8tUvNGRBjuOh0T7nDuVXSDSM+ASMOeqreT34SzsY6R7kGLxSnMTWNVBKeh5yIpKoHrUFrc0tBImobZ1Vuvq5Fkov3Du4pVwzDEd2zMrp7q8/W2DopzWxMvgevUimx9Xwh8d0EY+JRXlyhvWyeVKIXAdYmNjIm2kqajbtuAJVkm8Dyc3BrF+emqzkSLJYn0D2F2duMXi1ti7Mr7jB8Yr7apAJHhYwodU3llgejAiBARb6vyaIk2zPZ0xUl5GKu7D9+2hXB7bblu+ssvl2scigGkIKwNCkWMqeenJoiNjF/Sg8hskFR9KSt9v1AgPjLExsmzdcJcSZFpO3oI+RLiV1lVkRS5onl5gNzFaZxsDi0WJXFgCM9x0KJRht/7TgrzixTnF4n296Knkpc0oIOtMWvfdlh5/qWG1kj2egZ7bR1JllBNE2cjy8zffbOmxSgbOv1vfwvz//htvAoBLMzOs/byKQYeeVvD87cTViKCZuq45frWpaqru+pmSrnmdgSXixtt892OmzWu5kYkY5Ik8Rd/8Rf87M/+LG9729uQZZnv//7v57Of/WzDx0ciEU6dOsUf/uEfsrq6Sm9vLx/5yEf4qZ/6KQDe/e5381d/9Vd88pOf5Fd/9VfRNI0jR47w4Q9/+Nq+j/BahXrcgMhmsySTSTKZDIlEE5HnGwCB55KbONPU2TYxfgQ1Ul9FCTyX3PnT9TlRFSiRKLHhcWRFwS+XxGj3tpBMxbREVUOS0Csi28Dz8MtFSksLhJ6LGotjdnSJkelddAm+45A9dwKjrRPFtLDXVzA7uqoOvo1g9Q5gpRuPGlePa5fJnDnRtFUUHz1EbuIMycO31JEuJ7Ne9/qSohIbGqW0PI8WT6LohsjR0vRKxUivu2r3igVyk+cw2jtRI3FkTRXRCZ6LGhFVpu1EKAxDSguz1YrLTihWtIY8hWFIeXmB0sJsw8frqXYifUO7im3dYonZv/tmjZtv1713snbiTNO06KEfeCd6Mo6TybH8ne9RWhSTc2ZHO+l778BIJfdUwSivbTD9N19HkmSig31o0QhesURhbpHB7387ejyGVypX07DVqIVqGDVRBZeCWygy+d+/0vT+5MEDaIk4scF+cR4avGctHiN1eKzG/wZAi0X3lHrtez6nv/ky//A7f11334MffISliXnOfqtedA3wo5/+56QP7P5d3wuaiYJvhrHpa4VyucyFCxc4cODAFWtDWqaBjbHbud3r/t2q1LwBIasiK0m47tZCjcaRtcY//pKioCXb8BtNLAF6sr3qCFucn6khNCDGtYsLs8SGx7atRUWOJYQvTRggycoeS/MeoedRXl5AUlX0VLsgQk3EoQCKsfsmEgaBuNpuQmgAAsdBsSL4pVINqQlcp6HXjNXTh72xhtGepkrRZJnS0jx6sg2ru370WtJ1QYQWZkQVSpIxOjrRk20EjlPXopEkCaOtk/LyIo1KC1Z3Xy0JCgLcXPO0ba+Qv6TPjRax6H/HW1h6/kWKs/MQQm5yhvRdtzL/zW/XPT42MohqCaJqpBL0vvU+/EplQ9G1at7WXqAlYvQ9/BaWnnme/EVxzvVEnP63P4gWjeBk88w98RRudkuPYnWn6X7gnoaGgM0gqYqI5mgAWdfJX5zBSnc2JDQgEsrVBuPce029VlSFsTcfIdGV4pk/fYL12VVSve3c+0/fSrQjQeD5nKWe1IzcNY5q7I9h3s1aCbnR0UoWv3ZokZo3KFQzQnz8CKW5mUoStorR2YXZ3lzXIElCOGuvLte1qCRNQ0+mhJLe84TbbgP4pWJDi3zhF1LfegjDsKZiE3hetYWjxRIgy3jFAk5mHT2RItI3hJvL4uYyNWuUVPWS3iuB69a1abbD7OxGMS30REpkBNnlaqpyGIT1wmtJRrUiBK4rvHS2ef9E+4fIz1zE6Eij7NCvhJUAy60bAuyVJbxcFjPdQ2lxHqu7t4aoyLpGbPSgaCltjlhLElZPf1UIXF2WJO2uXVG1PU3vaLEoPfffI1pfQYCsasiaysC7Hmbluy9RXltHtSzajh0iNthfQ1yUqwhJVFSVaF83g+9+O74tfIkUQ0e1TDGV9Y0n6/KgSovLrDz/Il33vWlPDrmKaZAcH2WjybSWle5k/cTpqnFlMzT8ruuaEIQvLlNaWkWLWpjpTtSIWZf7ZERNBm4ZoXO4G891UTQVKx5hfW6VMAh56//zXXzvr54ht5xBjxgcffh2+o4Oolt7J4m7obX5tnCzoUVq3qCQFAUtEkMZGScMfCRJqvGDCTyvKu6VVBW5IqpVdIPE+BFKywvCfwYJva0dM91T3Zy3i4IbYSchagTfsfGKRdzsugikbE8jazpuLoNfLqHGEsi6QRj4wizOtPAKedzsBsiyCK90XUoLMxUxr7Dm33VdgY9XLKBGYrXaF0Tryi+XyJ47WXt7z0DFiK9eEK3FE7iFQp1myMvnKHgu0f7hSryDv2UC53kU5xu7qW62/ZzMOnqqjTAIUXSdwHVFKKnnERsaQ1JUwsCvtql2Vr42jQW9UhGzs6tKjgLPw15ZxOrq2bMDrqJrdaGTVrqD3ocfIPR8JFlGMXdvJV4p1IhVV+3wiuXGAZcIQ72OO27ZE6mRFYXU0YOUFpdqfWqAzjtvJTc5BaGYpmom5pZkuf7cKzI9D97LwreewdnI1jy296EHsLo764iN7/nVsW7NFEQw3pmk79gQT3/xH7jrB+/HjFv4rs/Ed84QTyeJtt3Y+TwttHCt0CI1b3CIzWvbVEzg45XLFDf1MJKEnmrH6u6rkhbFMIn2DWF19YEkwiS3/3hLl0gZlncZRwa2LPtdGy2WQJJlCjOT6KkOZE1s2PkLW1M2eqqd/NT5Gndd4SPTQWL8KF4xT3F+mvjooV1fV5Jl7NUl4WY8O1WtvGxGIjQy9CstzKDFYihmBKOzq4bA6MkUxbn6lpQajWN19WBn1vGLBWRNw0z3ophWZQy98aYM4BbyqJYgcF5piUhPP/mpiZqcKrkysbazAlTzXjWdSO8gxblt71MTKePbIyquFKphwP4UCy4Ldb5K2xGyazTGTmgRi5633Y+9skZpaRlZ17HSneQmp8hNTqOYJrKu0nb0YMOpr+ThsWp7bBPx4UGyk9M1hAZERWf+iacYft+7kLeNm+dWMrz81ec59c2XCfyAgw8c5c733keiK0X3eB/vePQHmH31IrOvXqRrrJcHf/wd+zr11EILNxtuGlLzuc99js997nNMTk4CcPz4cT7xiU/wnve85/ou7HUG37bJnTvF1hxrKPKfCnnio4erxmiSLDd1nJVUrTJqXD82rsWTVSO9MAhEyyfwhR+OIhOGIYXZi1uJ1YgKSHRgmNLKItG+oZq4AS2exM1lG8cFbKyiJZKUFuYwOtO7Vh822whqJEZ+epJITz+SouA7Nmok2lAvs4nyyhJmdz9GeyeB61TJjyTJdVUpWTcwO7vITZ7bSvcul3BzWayeAfRUW13Fp+b5ioJnBxUjuEhFjF076RI4DrkLZ4mPHW46xRT6HvmL52oqDIHrkJ88T+LQMfxKLpIkK/uSW/RaQdvFpVSS5bqQTBCic992ROaUrtdMSemxKAQBuakZ/LUM6ydOQyiql30PPyDGwI8eRI1YrL1yCr9so5gm7bceIdrfi72ewcnmcPMF9GSC1JGDTP3N1xuubzN0c9NDJ7eS5b9/8o/JLm1UH/PK336X88+c5p/+8k+Q6EqR6mkn1XPpSaoW9h9voBmb1wz7cU5vml+rgYEB/uN//I8cPHiQMAz5wz/8Q97//vfzwgsvcPz48eu9vNcFAt+rbN71X6zAsS/pMrsJWVGwegdA2qxuVHxkkm1E+gaRVRW/Mm7trK3glUsouoHRkRZGdjuchsPAJz89SWzoAE4ui2Ja1cktLZGktDjXdC1uNoPe3oHR0YXUIKspDENRGSqXkCQJq6cP33aQZFm0oCrGeeEuAZ2B62CvLOIVckQHRjA6ewjKBWTDrDPdMzvSYuqowR9vaWEGPZXC6ExTXmo8ySSyuBYxu3qBsOkEU+DYhK4HDUhNGAiNTmMxcFh9bWdjFTUSI9I3iGI2z3O6kaBYJmZnO+WVekKdODiKau6cWMux9J3vUao4CeupBF333oXRnqq2gfREnPSbbsde26C8uoaeTGClO0QUhiTGupOHxogO9oPvIykKimUiSRJaNIKVbif0fSRFFYaBQfMf7u2VposvnKshNJsoZQqc/MaL3P3/eAvKJaqiLew/Nh15i8UilnX909VfTygWxQXaTtfjy8FNQ2re97731fz7U5/6FJ/73Of49re/3SI1+4TQD5oKfEEEMO7mMrsdkqxgdfdhprurOTiSqlU3Cr9cIr+9WlEsoCWSDQMyxeICAtcR+tXtra5dwis3n2d1DSCrGmEQEG5OWFU0Hr5j4xfzlBbnq542WiyBme7GWV8RehXHRo3GmhoWCg1OQWhuJk6TGDsiRrVVtSKs3jLdk3Wj6Ug8iMkjLZ7CzWXrKjBWj4h5EBlda+iJ3dsMod+YiIWBj1dqPLED4JeLaImUWE8xT/bcKRIHj6DuQ1vqWkM1DXre8maWnnuB4myFGMoSyfEDtB8/VFN1cvMFZr72DVGlqcDZyDLztScYes/3YbRtnV8tGkGLRogNNg4KlSSp6WTVdoF06PuosWjTsXerswMAu2hz5snG49oA5759ilvffTeR5I3/mbzeoCgKqVSKpSXxdx2pkNsWrhxhGFIsFllaWiKVSl0VWb9pSM12+L7Pn/3Zn1EoFLj//vubPs62bextbYlstvkYawsIsauqNq1KyLsEHG5iM0ixtDiLVywgq8JgT4vFtwiNbVOcuVhHRiSk3cepXRc92UZpm27FzefQ4skq4ZArFR9F0wnDELki5PSKBcoriwSOgxqLY7R1IGk6Qblcl5Dt5rP4dplI7yD5qQmcjXXiI2MiN2rnmhUFNRrf8ogJApyNNbxiHi3RhhaLEzg2bq5WbNr8/AXkZy5gdfYgyTJ+qVh5jRheqYieSOEWcjgbq+jJ1K6J5HIzAz1ZRtb1OtK0/Xm12pOQ4vwMsaGxfW9F7bdfh2/bSJJE95vvInA9As9D0XQUy6hbe2F2vobQVBGGrL58gu77796TqPhyoEYs0nfdxvw3n667z+xsr46Ay7KEqjc/16qutjbS64ieHuEBtElsWtgfpFKp6rm9UtxUpObll1/m/vvvp1wuE4vF+NKXvrRrJsWnP/1pHn/88ddwhTc3ZFXD7OiuCabcDjWawF5fRYvXBiQGvk/ouYRhSOi65LaJeH3PozA1gdHRhdXTB0FIGAQollWXQB34PrKmN02mVqwIISGKptdMAsVHxnFzGfRkmyAYS/Ni3FpWMDq7kBIS9tqyCKAMApBlnMw6WiJFaalx6ypwHQLPQ9Z1Eda5tEBsaIzS0lyVDKjRuBix3nG+/FIRWTdRIxFyk+cwO7owOtKi0lRJPm9WrZF1g9C2Kc5eFOGW8QRWZzf2+gqBXRattiAAJCRNw2hP11SCqp9VPNEwBBRAlhWsdC9uZqPh/UZbR136uZfPNRxPvlo8+uijlzR32wt826a0vMrayydx80WMtgQdt9+Cnko0JCaB51OYa9ziAygvr1bad/tLagCs7k56H3qAle++hJvLIykKifER2o4dRq2kf2umzu3/5F6mX7rQ8Bi3vecerMS1STlu4dKQJIne3l66urpwd2lNt7B3aJq2L+3Um8pR2HEcpqamyGQy/Nf/+l/5vd/7PZ544ommxKZRpWZwcPAN7yi8G3zXoTB9oU7XYnX3E7g29toKkf4hYSYnSfiuQ3FuGjezTqRvkPLKUsOgTKOjCz3VRnl5kcB1Ua0IejJFaXGuauuvWBGMto5qKOZ2yIZBbHic/OR5In0DuLkMzsYaYRCgt3WIGIJSkcJ0/SYQGx7DzWWw17b0PYoVITowQu7CWUKv8Y+S3tZB6LlVozpZ04kNjxK4IvbBL5coLc7ViYGN9k7UeJLQ9ysia3EuJUUVqea9YmJpZ4XF7OolcOy6Nlfi4DGhQ7Jt/HIJxbLEBJksgyRjryxQXlmuVLnEtFqkp3/Xylrg+zgbayJWYnMdkoTV3UfgunVESVIUkpWg0/3GTnfay3WrDVyP9VNnWXvpRN19PW95M7Gh/rqqRhiELD33AtlzjUmDnkrQ/31v21O0wpXCK5UIto297xzlLmYKfPP3/5bz3661Eeg/Psw7f+b9rbHtFt5Q2Kuj8E1FanbikUceYWxsjN/+7d/e0+NbMQl7gwhVLONkNpBkGTUSw8msbU31KAqJg8eQZJn89AW8yqYfGx5rGFOgJ9tQTKte0CvJxIZHKc5OVaszZroHWTcoLcxWyYIWT2Kme3Cy6wSOI8Iz40n0ZFultZRHMSOUl+brqjxaIoWsG9gri3XrknUDq7uXwvRkw/NgdvUKQhMG6Mk2EfIoKwR2GVk3CDyH0vxMHTmJHTgocq7mZ4kODNedEzUaw+rqxcluVFt0elsHfqVFthOJ8aOokWjV1LA4P0PgOuipDoz2DkGWJIkwpOI3pNZtkI0Q+j5euVidHFOsCKXFOeH10+BcWN29DcXW+4FNIvPYY49ddmCik8tz8S//tmEbTjEMBt/zDrQGzr7ltQ2mv9J4Eqn7wXtIjAxd3pu4BihmCmzMrXLi779H4AUcffvttA+liaZahKaFNxbeEDEJQRDUVGJa2B/ImobvlJE1TYRY7hj9DX1fRBEEQZXQ7Aa9rUOIgnciDCgtzGJ0dlOqGM7Jmo6WbBObuF0GScLN58hNCmfXzarL5n+biA2PNWxb6al24ebbAIFjI21WPBq0VtRIDNkwhGOw71Xzl4SuZwFZVYmPjFNcmKt6+kR6BwlsBye7RuiLNPTo4AFKi3M1FSxJ1TC7+oQkJgjJnjvR2EOlQlLCMMTNZ8Q4uywTGx7D2VgXSehhiKzpWL0DaLFEHaERo/MOTjaDb5fQognUaLTiYyNVK2N6qg3VitSRGsWKYnakrxmhAeFO+9hjj/Hggw/y5JNPXlaekJcvNNUV+bZNYDvQgNRosSjpe+5g+Tvfqxn4S4yOEOnputy3cE0QSUaJJKP0HhkUo+TyjaejaeUYtXAj4aYhNR/72Md4z3vew9DQELlcji9+8Yt84xvf4Ktf/er1XtrrCmHg4zsOzsaaaHUYJrHhcezVpRoSsRmHsB1+uYQSieJvS4mWVK0mvXgn/HIJLRrDb+vAaBfhlLKi4jl2w0Tw8tI8seExyksLFddfCS2ZEuPTDSBBQ8KyicB1hafO2sq2J0lEB0dAkpAVlfLyIr5dQtFNjI40bjaD2dlFYXoSJ7NBYuywOBehSPNWrAihL17TyayDrBAdPFA5wUJTFAYBoS2CLSVFxWjvotxA3yNym1QCz60a+UV6BigtztUIfQPXoTA1QXTwAIphCJF05dheMV8zaeasrSCpKomxIyi6gRpL4GbXsddW0Ns6iI2M4xXyhGGInkgJYncN2k7bMT09zeOPP86TTz552ZUaLlWVakIEFF0jcWCYSG835eVVAs/H6upEtcwrjnC4VpAk6ZKO2NcL+6WL2o4WUWrhSnHTkJqlpSU++MEPMj8/TzKZ5LbbbuOrX/0q73znO6/30l43CMMQt5Anf2Er78Yr5LHXVokOjoi8o1IRNRITkQo7ro7Lq0tEB0YoTF/YCpWUoJHvzXYEroPV1VuTzSSpmqhQ7CBOXiFPKZwnNjRa83x7dRktkWrYOtnpFVNzl6Kg6AaxkXHhVaMoqJEYbqmAHDg1VR7Py+MV81jd/biFPEZ7p0i7XpwjMjCCXyrg2SXCMECLxfHLJWJDBwSpuHiOMAhEhSWzhrO+Vj0veqoDq6cPxTAoLc6K0ErdwOruE2aFsgKOI7Q/siz0NU0ml0oLM5hdfUJoLCtEhw5gr63UVTJCz6MwPUlsZJxI/xB+W7sgb6UinqZjdHZVjfvCMKzL4NpP7NTQ/N7v/d5laWq0aKRC/OorXVoivmtYpqyp6FoMPd5q51wpGn1mV5vifS2IUgtvDNzUmprLRUtTszt8xyZ79mTDbCZJVYn0DlJamCU+egjFMAkqk06bRnggIhSs3kG8Yh6/VEDSDcyOLrJnGntuyIaJ2Z4GWcbsSFdvD8MQr1iotFe2CIkkK8THDqNaop0QeC65iTP4jk1seEzoc7a1efRkG5KmCbO5na+t6Vg9fUJTI0nImo7R1oGbF8GRhakLjZ19JZnY0AEkRcHJbuCXSkQHR8QotOsS+B6SJOEW89hrK9XKldHZReC6uJn1ukNqiRTRgRERqFkhENurI75dJnP6FRTTQkuk6vKktiM2NFpT5YqNHCQ/2TiYMXn4liqZFNWmEEkVGp3AdfDKJVHFkiSM9jSKYe4ahgmXd5XdbPPbeXvg+9Xxa9UwkJStVljoBxQXlph74qka8iapCgOPPITZ0bbrelvYH1yNLmq34+0XUWrh5sYbQlPTwv4i9LymYZOh51WygYaro8Kypglx8OS56oiyXxk7jg6Poqi9IEmEgY/Z3Ue5TigsEenppzg/g2JaGO2d1WqAJEmokQjJQ8dwc1m8UhE1GhWakW2bfRiGor0VBBSmL4jgyjDEKwkBrhqNizFpz8fZ2Mpukg1TbP6bWp9QpGwrhikEzeldgjnDQFQuQvCLRdRorEpEJF1HRqwvcN2aVpwWSzTWFiGyqkLPQ6k43gqjwK3qiKRqaImkGBdvMqq9eU7rjp3bQIslcPP1+qft1zTbx/R916EwdaHGjNHZWENLthHtG9qV2FzOVfbnP//5hpvU5tX/5z//eX7pY7/I+smz5C9OgySRGB0meWgULVoxnpNAiZj0vf1BCjPzeIUieipBbKgfNdbYnM4r25VYhG2GkK6LVyxRmJ7Ddxyi/b3oiXh1zLqF3XE1uqhmx9usAO0XUWrh9Y9WpaaFKrxioS6FejtE62QDq6cfWd0KsQxcp2J05iBrOrKq1W16InW7gL22XB3pNto6KC0v4OVzmOluQUgaYDPJGkR+z3YhbOC55CfPVcfCQVQ9VCuCZ5dRzQhmR5rAcwl9X3jPqAooKoHjUJydrNH8RAdGKM5NEx0caTjJVT0XI+O42Qz2mnBAlhSVxPiRmhZaYW66ZupqZwVlJ+Jjh5FVHa+Qw8msCzFxR7oaqLlZlYr0DpCfutCwpaan2kGSasI3Rd6WWhfIKakaifGjDTO87LWVpgLr2IGD6PHd3Yz36yrbzReY/uo/4JdrBwLUWJSBR96GFo3g5PJMffnvCIOASE8Ximng5guUl1fp/7631oh+vVKZ4sISGyfPErgukf5eUofHUAyd7MRFVp5/qeZ1zM52et96X10aeAv12O9KzSaeeuqpKlF64IEH9mGlLdyM2Ov+feOHubTwmkFS1ZoIgu1QrCiybiDrOoXpCyJ0slioGuapkQh6hUw0uopXdAPCUFRkKlELuclzVT8co62z4ev6tk1hdorMqZfInHyJwswF/HK5WmGQVQ2rpx8ALZ4gNnIQRTfwSkUU3UBPpHAKOTKnXyF77iT5ybNkz52iMDUBhET6hsUEVAVOZl340/g+UpNqhKSoyJqOva3yE1ZyswLf31rbTgHrJbKTQt/HL5eQdQO9I43R1i6yqcpF3EIOO5shNjJOWBmFZ8c0kmJFGgaJKmakoXdQpG+w4WcVeG7D0fJN2CuL+I6DVyqKNHW/vqK1/Sr7qaeeuiJCEwYBmfOTdYQGxMRTsWKel784IzRcYUhxfpHchSnKy+KzWX3xVbzKhKRXKrP0zPMsPvUc9voGbr5A5vQ5pv/2G7j5Yh2hASivrJE9P3lNjAdfT9hOWh944IHqZz89Xe85dbnH3S4gv9rjtfD6R6v91EIVsqqJFOwdV+iSqhLpGyR3/vRWS6YAzvoqkb4h9LaOPfmiaLEEXj5HaWVbG0qSiA6MgFz/fN+xyU6cqoltcDMbZHM5EgePVqsiihUhOjIOvl9p7whS4WY3KK8sEhsarXMq9ktF3Mw6oSQR7R8i8D2R8RSJo5gmpRUhet4+NVRZMNHBEYoLszVTVVoihdGerroZa7EEerJNTJFttuZKRdRIVFSVZBkj1Y5iWlW/GEnTKC/MQgh6eyf5mYtVY0BJUbC6+ykvL6BG4wQSxEbGCD0xaq5FYvhOWYx8b1+vJGO0dSBrwrxPi8XRU+2CmKkqYRAg7fzsQnbdxMMgoLy8UDXo01MdWL39dYngV9uO8G2H/FTjwE6A7IUpYkMDlFcbZ3KBCKzcnERz83kKs/UuwkYqSXbiYt3tm9g4fZ7E2EirWtMEjapwVyL4vtRxr/Z4Lbwx0KrUtFCFJMtoyTYhxK1oV7RYgvjIQUrz0w01JsW5qaaOvDshaxpW7wCJg8ewegeI9A9V/FbWyF8QYt9NhGEodCYNLMjDwKe8ulTdeGVFRTUtirNT1E1aBQHF+RnMzu6649jra2jRGPmpCcpL87j5vGj1qBp6PIG9ukx87DBGuhstlsDoSBM7ME7gOjXBnmosjhZPkp88S3l5ATe7QXFuiuz5U0QGRpA0HT3VjmxaRPqH0VMdwlfH9yktLYjqUDwliFYuh5HuFhNk285r6PsU56bQEylK89NoZoT8hbOUVxZQrQh2Zl289W2aGlk3SIwdRjYMjI4uEuNHkBSV/MXz5M6fInP6FYqzF+v8fSRFEcaGTaDFk5VxegFnY5XCzGTd9NFVX2VL0q5kebMFarSldllrFLkiKs5NNo7/kFW1akDYCL7jcK269B//+Mebnpfp6Wk+/vGPX5PX3U/sRRd1ubgUUWpVbFpohhapaaEGsqKgRePEhseIjx0m0j8MklyjWdkJr8l4cSOEYUB+8iz2yhKlxXnyk+dwcxl8WwRLbm6MYRDgNMkmAnBz2YohniM2Hd8Xk0MNENhlEWxZt5hAhGhSEfWWCkBYTRAPgwAvn8MvlaoZUPkLZynOTom07LQIXjM7ukTcwM7DV4hIYvQQSBKFqQnyUxMY7Z3ifWfWCT0Xv1yiMDOJl8sSGRgW01FNNlGRYdUhAjNTHfilEoQhztoyzsYasZExEuNHSRw8RmLsMGokWnEb3lZd2XZsZ2Ot5ryDILdGR1q0I3dA1g2RXbXjM/dy2RoSth/tCNU0SB4ea3p/6sg4sqYSHxms6rt2ouO2Y9WR7mbGdfb6BlZX4/YnQKSn65ITX1eKTVH1zvOyef4effTRa/K6+4lPfepTTSsng4ODV+Qncy2IUgtvDLRITQsNIVf8WxTDaDRQU4vL0BuEjkPgugSuU1fh8fLZ6vSVJEk1Y7s1a9N0ov3DFBfnyJx+hczpVygvLxAfGRdRBg0gVVx4twt5FdOqqQ5JqoakKNWAyk0fGi+fxV5bqTEfdLMbqNEYkqJU9RyN4JeK+LYtRLphiJFqp9ggWgGEnkcxm4ddAvjlMrKuE/o+qlVph0gSajSG2d2HYliokWhF27RtSsx1hV9NA7i5DMGOipiiGyTGj4qML0VBUlUh5u4bqgu73MTmMfbzKjva143ZXU84ooP91QqNGo3Q94631BjmSbJM5123YXZuVdTiTWIPvEIRLR5DS8Tr75QlOu68BUW/NqSm0XlpjS5fG6LUwhsDLU1NC5eEpKq7JkurkcZjs40QNBkZ38RmS0mSZczObtxspu4xkf4h8lMTNaTI2VjDzWWJDh2oMQ8EIewNXJfi3BTRwQMU56YJHBurZwB7dUsQGx0YBqRq5UmCLRPBRu/FdavJ4Zd409X/K6ocjZPBQYzEy4YJhXzD+2XDEC7I8SROdh3ZMFAMi9jweM1I9k7sRrwA/HIRSZEr0QmVteoGkb5BrK5eQgkIQzKnXm56jM3Kzl6usve6KamWRe+D92JvZMmevwCSTHL8AHoyjloZf5cVBSvdyeB7vg+/bBMGgXAFNk0x6VaBFouQGD9QF2KpRiy0WJT+d7yF9ROnyZ6/SOj7mF2dpN90G3ojsrOPaI0ut9DC/qFFalq4JGRVIzIwTO78GXZqVozOrqZTQg2P1aSSAoAk14hWhXdNujo2DSIM0isWGup4Qt/DzWXQ4olqsjaA1d2LvbYs2kGzU2JaShKVEaM9jWxYGG3tyIZJ6HrIqiamhSRJTH2pqpjy2TFBJGsaWixZU/2pe7+ahqTpyIZZzbLaFZ6P2Z6ujW3YBrOzR7SnJAknmyU+PLqrY+4m6sTADe4vrywS6RmoaeVIsoxUGfkOPA81lsBr4HcjG2bVv2g3wnIlV9mqZaFaFpHuLpBo6GwsyRJaNNIwuHITimHQcftx4sMDbJw+R+C4xIYGiA70Vp/XeddttB07LN6Tqr5mcQn77fHSQgtvVLRITQtNEYYhgedCKFo+iYNHKS3N4xcLSKqG1dUjQh+VvX+NZFVDiydrWjmbMLu6a4zlxLh2H0Z7GmdjlTAMMdo7Kcw0n1Tx8jmMjnQ1+0iLJ/HyWbxK5SNwhZdOYWaSwLFxNtZIHjqGYpiEQYCd3cDoSOPlsoK0JBIEjoMZ70LWdFHlcR0kRUHWTSRZtJ+M9s6G7R2ru4/S0jxWV68I4SzkmxrhASjRGPb6ivDLmZ/eFjchY3X3IakqWqqNMAxIjB7cnSRug6SoqLF4dYR+O2TDJHAcnLVVzHQPitx4I5dVtZo6vl1TI+sG8ZFxlGukO9nEfoQ5qqaB2tOF2SnG5eWKe/ImZEVB3oUYXStcVfZVCy20UEWL1LTQEIHrYG+sUV5ZJPQ81EgMs7MLNRpDT7ajWBZqpULhuw74vkiUrowKN4OkKET6h3ByWez1ZULHhSDA7OrBaOusE3zKqiacgSOVWATfb6q1QZIx0z3ImoZqRZEUUfnZOZ4ceO5W1SUM8Ar5auxDaWGG6OAB9PZOsudOs1mZctZXkVSN2OAI+ZlJon1DeMUCiq6TnzxHpHeQSO8g5bVlAtdBtSKYnd04mXW8XAYvlyE6NEp5cZ5I3wBeqVjn3mz19iNJEvbqMn6kKNybJUm0jSSpQppC9LbOus34UhCEZKQhIYn2DZKfnmwqtN4ORTeIjxysnkNZ04Th4jUOvNxv7PYdfa1xs48ut8InW7iRcOP8ZbdwwyDwXPKVaZxNeIUc+UKO6NAopYUZIbwdGccvlynOXay68qqxONH+4bqWTFiJIbDXV/HyOSRNI9ozQChJKJXwyr1UfCRZxuzoJt+g4hAbOiCEvTsmtazeAXSomtLtJE6b2VWh71XjDvJTF9jZags9l1IlJby4OIcRT4mNXdcpzk+jVN574NhimmtumnDbuHR5eQE91U5hdoro0Ch+uYiXyyJpGmZHl4hzqOhvvGIBr4H7sJZIXXFFRNENogMjBI5N4LrImkbgeYLQeC5asl2EZ14CgshoYL32FY3XG66Vx8trie2xGJ///OerBGdnLEaL4LTwWqA1/dRCHQLHqSE021FemsfoSBN4wqwuP3m2JmbAy+fInj+NXy5hr69gV8zn/HKRzNkTlJfm8Yp53My6CKLM5ygtzuEVC7ilPL5jNzV+CzwXJ7NO4DloiVTNfVo8iVvINxw9L83PoKc6ADHRtDPJW41WEppleds0U+M1eIU8EhJ6pYUW+D56mzi2hISTWRMxENEYkZ4+kYLdO4ikiGRtNRqrxkzIukF0eIxo/zBqRGh3JEWte2817zN2daJVSdUoryxRWpwjPzVBcVYY/EmyQqSnb08mii3sH6736PJ++ORsJ2E/+IM/yIc//GGeeeaZhjEZN8OIegs3N1rZT68DBL5X1V5Iqoq8h6vt3VBaXqA039ioDESGkVcuCa1KE/+aaivGLmN191XSrBv72cRGxslfPC/CMacmiA6MoMWT1Q028H2RL2WXq3lMVk8/sm6IMfAwxOzsITdxqum0kpnuRtZNIKyY9AlIqlrJPxJTRfmZCxjJtl11O7GhUZBlSovzRPuHkHWDwCnjFPJo0Til+emqhgeE4DnSO0BhZoro8Cih54lJI9NCVlQRreD7IAkjwcB1yU2cqhuzFsZ97VdNPHzXqbgtLxEGPno8VTk/xmW1tFq4+bHXlPTLOdajjz7KT/7kT/LlL3+ZN7/5za0R9Rb2Bfue/TQ313wMtYXrgzAM8col8hcnyJx6WTjEzlzE38UddS/YSwtCMS28YnPTPa9U2IoxMK2mhAYgsG1kVRPjzJpGYWqiqnkJAx83u4GbWae0tGVxX1qYpThzkcB1Rbp4GOw+fu0HqNE4pfkt233FipAYPVwdY5Y1EROxm/hWUjXCIKAwPYnV1YukaciqKjRHbZ2UF2drCA2I9lZxfoZI/yDlxVnyk+cIbJswBK9cojB9gczpl8meflXEL0gQHzsitD3JNsx0N4lDx9FTbftSSVE0HbOji8ToYRLjR4n0DaIYZg2hCcMQ37ax11Ypzk2LiluD/KgWtnAzugPvp0/O5gTXD//wD/O7v/u7fOITn7ji3K8WWrhS7JnUHD9+nC9+8YvXci0tXCYC2yZ79uTWiG0Y4myskT1/ak8b0OZ00057+91aHFoihZvPEXreri6rsqbVCWGbroMQJGEQt6mrEVWEgMD1KMxMIusGfrmWGIWBLyaKchkCu4QaiTVfdyRCeWWBxMGK2+6h48QPHEQxa/N8fLuMm8s2jQmwuvsory4T+l51DHozZkCMlDdu2/nlErKiVu4PKcxOEboO2XMnRTssDAkDH3tlkdyFs4CE0dZBdGhUOBcHAfb6Kvb6WqVF15zA7RWypqFoep3GKAxDvFKRzNlXKcxcoLyySGFqQnzXKvqjFupxo7kD75Vk7Uf46OYxNye4NrU1Dz74II899ljTY92MRLCFGxt7JjWf+tSn+Kmf+il+5Ed+hLW15gFyLbw2CIOA0vJ8Q+1H6LkNR6a3w3dsSovz5M6fJnfhLPb6anVzllRNhEzugKzpmB1p7MwasmVVYwIaQY0mqhUL37F39XJRDIvAcVAsq1plCuwSYRjgO2Wx4XverhM2vu9h9TX+4ZQNE2QZWVGrY7yKYdaMj4M4p/bqMuXlBbR4sjJCLR6jmBbRwVHhWVMSLbfQc7GXFykuzIqK0SVInF/xvpFUDaO9k9LSfEM35sAuV7OVQs8lPzVB9txJSnPTFKYnyJx+RRDLwCcMgj3lEgW+VyVsXrGwa55R4LoiyHPH2kLfE1W0BnlcLdx47sCXQ7K2++TsRkKaYWcsxic/+Ul+8id/kj//8z/fNffrRiOCLdz82DOp+emf/mleeuklVldXOXbsGH/5l395LdfVwiUQ+F5DE7RNOJkNgiZX875tkz13ivLSnBDxlgoUpi+Qn57Edx2R/5RsI3noOGZXL3qqnejgAaJDowR+QHL8GJoVRU+2oW0LdgRAkoj0D9cY5tmryxXDu3q9htGRxs1tIBsmihlBrVSJlEgUSZIhEBuvvb6C0ZFu8m4ljHgK1TCJjx1G2ZzKkST0tg6iA8NIsoJXzJM986oQLC8viFH07efU86obfWFmEjeXxeruIzY0ip5qx15b2mrtSXL1/TgVQriz4rUTsqYTGx7H6upFjUQx2jqaioKdjTUC36e8slTvLROG5CfP45fLQuw7N4VXKjZ9/cB1KM3PkDn9CrnJsziZdXy7hJvL4BULdYGWoec2DSn1y6VLukK/kbFfVY/9XsulSNbVhI/uPOb09DSf+MQn+PKXv8znP/95PvnJTzaNx7jRiGALNz+uSCj8m7/5m/zCL/wCR48eRd3h9/Dd73533xa333g9CYUDzxXTQ03aAXqqnejASH1rIQiERmIb6diO+IFDaPG9n5vN9pVXLCDLCoppUpybrjOXU2MJIr0DlJcX8Yp55Eq1InBdvFIBoyNNYXoSsyNNGAQYbR1Ci2OXyZx+BYBI3xBeqYizvs3krpLppEVjSLJC4DjYG6soukEIuIUcejROvsF4tBpLEBs8IFplQYCTyxB6bo2QeDvMdC+SplKam8bq6ccr5KsVsdjQKG4hR+j71dHxmteKxjE6uyhUhM6AIIA9/XjlksiG2ga9rQOru4/smRNNW01Wd58gKJXvQKRvCL2to0Z3E4Yh5eUFSguzgERs6AD2+mpNJU/WDWIj46iVVpybz5GbON3wNQES40cvKxrjWuFG9kd56qmnqu7ADzzwwHVZwyY2SUJPTw+Tk5P80R/9UR2h+cAHPsBtt93GZz/72csmFds/h0YEZ7MV9eEPf5hDhw7x0Y9+tO64m2sYGRlhYWFhXwnNjfw9aWHv2Heh8CYuXrzIn//5n9PW1sb73//+uv9aeG0gqxpmZ3fT+42OrobJxaHn4WSatw/t9ZU9tTO2r0M1Lcz2TvRUG8gKZmWUOTowgmJFUCJRIr0DooUzMCzSvwdHkBQVxYqgxZPYFZ1KaXEONRqrinUlVcPs7gOgODdV8cc5SKR/iNjIOMlDx9Gi8aq4WVJVkaY9NUFhagJFM0SbpwG8fLZapQg8T4RoykqdzgaE/kRva4MQEoeOA9S2+GQZe20FLZFC31G90uJJIn2DFKZrM4cIQ4rzM0K/I9V+VmalKrWbdibwXKRt3j7Fuam6CkvgupSXhcBaT7Xh5LJ1rcnAsQVBrozm75pILcsN07uvB27U1sXVVD1g/3Umm62lL3zhC5TLtfltm2QC4KMf/Wj18ZcTPro9fHLniPpmLMbmMYGmxy2Xy3zhC1+4ovbXbrhRvyctXBtcFqn53d/9XW699VZSqRSvvvoqv/zLv8xjjz1W818Lrx20eBItnqq73Uz3NM8Dkqr/0xRX0l4Ig0Bc4Z8/Re7cKfKT5yguzGJ19REbHke1IhXSICOrGvbaCmHgEzg2Xj6LrGrEhkYxOrooLy1UvWpkRcHsSBM7cBA1EsPNbmCvLaNGYmjROIpu1GUVmenu6mavGEbTahaAm8+KkfjAR1IUkQ3V3YfV3YdsmMi6gdnZTXRoTAiXHZvy4hySJCpEsqajWBHxGmFIYeoCkqIQGxknNjRKfPQwVu8AxbmppmnmzsY6eiJZ/ffWeLXckGBtQrWidSGjboNW1eZUmJ5I4WzUVoSqD9vmsiypGkZnV8PHWd19dVqk64UbsXWxU1tyJcnk+70JbydZpmnygQ98oHrsX/u1XwOoq95cqU/OpdK1P/vZzzb8zD7wgQ9gmuYVE8HdcCN+T1q4dthz++n7v//7efbZZ/nMZz7DBz/4wWu9rmuC11P7aROB6xK4Nk5mA0mW0ZJtlWiBxlfTYRBQXJjFXllseH908AAoMkai8fRPM/jlEpmzJxomQScOHkPd5j4b+L7Q8cxeJNgxfm6me4TvTLobZYcwOPA8IYyWlV1Hm33HIQx8nLVV1Gis4m3T+Gse6R/Gt8vYK4vCJ+fiBBCiRqKCMEoQhgGyrFKcr/2hlTSN2OABkGTyk+caCoVFG6mf3PlTddqVTajROHqqHd8uYbR1itiByufn5DJ1qeMg0rojPQNV355NWL0DWNsE3IHrkDl7ktBziQ2NUlycQ5IkQYZ2fFaRgRHM9s7K84TRYWlpntBzkTUdq6df+AfdIJWaTWxuUNc74fpaeL7sNK+73PfW6DiblZlPf/rT1+18bf/MPvaxjwFbxOpaEY4b5XvSwpVh39tPvu/z0ksv3bSE5vUKWdNQIzEivQNY3X2oprV79pIsY3Z2NZwk0uJJEQUwP3tZEy5hEFBeXWpIaABKS/O1omVJwt5YqyM0QHXyqJFXjqyqYsPfhdB4pSK586fInnkV3y4REqIlU00fr5hmleC5uYxooSFiCkqLs5QWZlGtWB2hATGCXl5ZRFbVxm0iScJM9yApypZ4uQHUSBQtkSTSO4hqRWo+P1nTiQ6MbPPOkdCSbUT6hhomb2uxrT/2MAxAUbF6+9GTbciGURUnx4ZGsbr72V612z6hJmsaRkea5PhRkkduJT5+BKOt44YjNHD1kzv7hd3cgQ8dOlStiuxEo5bSfgiOm0Uw/NEf/RHlcrnp+Xotxqy3f2blcrmmUnS57a8rec3r+T1p4dpiz6Tma1/7GgMDA9dyLS28RlB0g+jQAUGCIlHUWJxI/zBaPElxfpbALl+WriYMArxdzPX8cgn8rdZL6Hk46811PV4hd0Umc75dJnfhTLUi4uYyFKYuYLR3Iuv1JC4yMIK9slT9t722KjQx2zxqZN2oa/Fsh5sV+pT46OEa0z5ZN4gfOISiG8iKglXRBdVBljHaO4VfzI7psDAIsNeWKa8sYnZ2ExsaJTY8iqwo5CfP42Q20OJbbSst2Yas6fiug5NZJ39xguLMJIphocYSZM+epLQwS3lpnvzF83jFPNHBYbEMw0RpcI6kCpHcWTW7kXC1Gpb9wm6tl49+9KOcOXPmslpKV7sJNyNZAKZp8sEPfrDh+XotNCibn9kHP/hBTLPe7uFaxETcKN+TFq4tWjEJb1CUV5ZwNlZRIzHCMMTNblTJgGwYJEaP7C4Y3YYwCCjMXGyq19BiCaLDY1Wi4jsOmVMvNT2e0ZHGTPfil0vCmVg3ROq21jz0MgxD/HJRVH8kCa+Yx15dIQwD9PZO0VYJRURA4Njo8SQhkD3zau2BJAmjPS0ms2wbSVVE1WZhtuHrAiQP31JJ+XYIfB8IkRStJngy9H28UoHCzMWqdkV434ygmJGG8QSB65K70HzCbVNk7WysYaV70BIpwjAkP3l26zmSJNpqk+caHsPq7sN3bKzuvqqzchD4YopsVcRcqLG4qPTcgDEK+9WmeS1wuWu9Fu2Sva7hWp7X6/GZ3UzfkxYa45pNP7Xw+oAWT+CVS5RXFrFXl2r0HlZ3/54JDWyJc5vB7K4NSpRkGTXa3LVYjcTwykUKUxOUF+coTF8ge/5kxSOlvs0TeB72+gq5ibPkpyZEFaJUIjY8RmzkIHge2XOnyJ47SXlxToiWN510d27SYYi9ukRh+gKSrlNanLuEcaC4L/R9ZE1HNS1UM1KXpB0GAUgSVk8/sZFx4mOHKwLqaHOiIMs10011dysqRnsnibEjGB1pJFXF2VitIUFaNL6rEaO9toLVtUVoRCxFhuyZV7FXl3DzWUoLs2TOnthVcH09cKmE6xvpSnyzZdOopbT9/k3sh+B4Jy7nfF0rv53r8ZndTN+TFq4eLVLzBoWsG8RHDyNt33wlCbOnv0aXcTnHiw4dqB1NliQi/UMoO8rLsqoS6R1oaMa36X/iFwvI2ya4Qt8nP3m+oSmcm89QnLlYI9T18lkKs+I2J7Ne1fv45VLF36eIpKrVhO06hCF+uYzVM4CsaU1N8qzeQfxyifLqEnZmXUQY7Ch+Bp5HcWGW3PnTFKYmyE+eI3f+tCBqu7S2ZEXZ1bXZSHeL9pamiciLinOz2dVbdUKWFGVXU8DA82o+h8Dz6kfPAYKAwvSFG8pN+HonXF8ONls6QE1LCahr6VyrTfhyz9e10KBcj8/sZvqetHD1aLWf3sAIw5DQdcUIdxAgqRqypjX0t9nT8YJAmPE5DhAi6wayojYUtHq2Db5LaXEeN59DUhSMtg5BaiSZwHMoL81XjrWF+IGDNToS33XInWs+WRQdGKG4MEO4Y2NXrCjxAwcJw4DS/AzOxhqSpgs/HcMESSLwPcpLi3i5DNGBYQLXwV5bIfA81EhUmN/lstjLWz44kqwQHz2EYm21lLxigey5k3VrU6woeqoNoyPdNFk98FxKi3PYq7VmiUZnF1ZXL7KqVSaV1igvLxC4Ym1muhsns45XKmK2d1JskrquxuLEhsaqAmA3l6lkTzVG4tDxqklfC5eHnZNHO6d+NnGjmMW1poVauJHQaj+1sCs+/vGPMzMzg6zrqFYENRpDMYTny+VMOIS+L0aiN9awN1YJgwDFtNBiCeEh04DQhEEAvkd+ckJUeAaGsLp78YoF8hfPU1qcRTEjdYQGqK86BEFTQgOiMqM0SN32SwXCwEfRdCL9QySO3Ep8ZFwEgp49Idovi/NEuntRolEKM5M4uQxmupvowDBqJIq9sUpg17ZkwsAnd+FszZp2Ogxr8SSxkYNo8QR+uYSbzVSN73ZCVjWs7n4Sh46Lce3eAfH/u4RfTOB5FGanKM5NV6ooIV4xT/7i+Sr5k3WjtiK3DZHegZqJpjC4xDXOG+Aa6HqHLF7K62UnoQn8gNJalplvv8rJLz3B3HdOUlrPXvqz3AXXov3VQguvBW68+cwWXhNslsN3EwheCoHv42Y3KExPst0HRm/rJNLTXJcTeh6+UybwHOzVJewd+mK/VGwaDqkYJoHvb2l0Ki7AzZx3ZU1v2H6RFKXadpEVVYhyJ87UvK6bz+JO5EmMHSF79iR+sUCxWKjeb3R0NczXCn2PwHW2dCrb7lOjQnQrhLviHmd9FUnTSIwebqjfkVUVWVUbVkgC18HNrjd876XFOczObopz08QGD1BeWRKJ4AiRcqRvCEWvfb2drcKadWhaU6H26wn78bexE5vP/aM/+iOmp6erEQqDg4NXpVcJw5Dc7DIv/N9/ReCK7+78d06hGDp3ffh9xPs6r3itzdpfrYpNCzcyWpWaNyj2w2UzcJ2K/qL2itBZX7lkSnjoN3bXraKBIFiNxUGWKcxdxC3k8EolwjBsHnQpyciGUZ022rpdwuzqrVYofM/D2VhrTKQqyd16R/3moMUT9WGTm+/P21q/kdoaETc7uyjMXmTnOQtdV5gRXiIUcye8bSSrbumOLfxm2juRdZPo4AGSh28lefgWkfEVi9dV0iRVxezqbXi8SP9Iw9H41xuuhQPtpq4DqBkrBq5K12FnC7z8xb+tEhoARVfpPDLEyumL2PnmVguXWuuNoEEJPA/fcS/LYqIFgetdcbxeaGlq3uC4mr55YW66qTOxbJgkRg83rNZs+trkzp9q+FxJUYmNjJO/eE5oYSpp22Z7mvz0BLGhMUqLcxhtHfh2GcW0sFeXa4iUJIuogiAIKEye3bwRq6cPxbAIXAdZ00QMQQiF6Qt4xXzj96IbWD19FKa2BLSRgWG8fL7pGHvy0PFqxEHguhTmpvAKOazufoqzFxs+B7bGw/cKe2ONQoOwzk0kDh1HMczLGsUOPBevUKC0NCcqTmZEVN5Ms6n25/WI/daUXIux4uzsMt/5rT+v/rv3rsN0Hhth6aVzlDbyJAa6GHjzMcxUHFm9eT47p1imuLzBzNOv4BbKpI+P0HlkGDPVfGqyhVrsp8P1jYC97t8tUnONcKOI/faCK0kUDsOA/MWJajtjJyRZIXnoeNMre9+2KS/PY6+t1N0XHRzBK5fR48lqi8jJrFeM8kKiQ6OVnKaLQncjSVhdvShWRJAV3UAxTOGaXBEvu4UcqhmhOD+NV9hGXmSZxPgxSvPTTatLSiRKdPAAbi4jksitCE4+C75PuUFYppZIER0YrslIEmnkRXy7TKmBO/EmtpMhEC2+cHs8hKbVEBTfLpM582pDrYsWSxIdPnDFLaPAcwmDEEnZPZbi9Yz9Stvezw3GzhUJgwDV1CksrvP8b/93ADoOD9E+NsDZv36q5vFaxOTOD78P1RQGj3rMuuJhgNcCbqnMxSe+x9Q/vlhzux6P8KZ/8X6s9tYF6V7xevLnaQmFrzNulmTYK3XZlCQZLd78i6VEoqA0/3ophoHZ1Uukb6jqxKtYkUpwZRR7eYHcxGkRkHn+VKUiVNm4N80CN8W1YUhpcY785HlKS/MiCLJiFCcpCophYqQ6sDdWawkNQBBQmp9u3sICzM5uVMPE6uzGaO9EtSKYqQ6Mtg4RV7BJXmQZM91DpH+ohtCEYQiyjBaLo8WaX2mKybMt8uA7DsXZKTKnXyFz5lWyZ09gry3XtKhkVRN5XTsgaRqR/sGr0sDIqoai7x5L8XrGfjrQ7kdLp5wtMPPMq3z3d/6CZ3/jz3j1T76OrMi0HxRO7333HOX83z5T85zEYBfHfvQdTPzdczzzf/0pz33uz7n4jy9iZ5u3La83yuu5OkID4OSKTPzdc3jOjWMrcKPjWvkN3choVWquIW50lny16/Mdm+zZkw21KInxo1XPmd0g/FUEOZEUkeDtO7aoPjRJtY6PHdlqTTWAnuogOjhSW9FwbDKnXxUVjwZIHDqOvbJYVznSkm1EegcbRghU1++5Yq2ShKxujcSHYUjgOjgba7i5LLKmYaZ7KC3N42bqxb2x4bFqREPguuQmz+I3iJ+I9A9htKer7y/wfULXwc6sEzg2WiwhptkaTH21sDfcaH+7TqHEqS99k5WTkzW3S7LM7R96D2f+8kmG33YHJ//bN6r3KYbOLf/zI3WaGxBk59YffxdG/NJ/o68lnEKJi998kelv1ZMaEO/3/n/9P7faUJeJ/ao4Xk+0KjU3AG5klrwfBl+KbpAYO1zjDiwbhvBp2aMuRJIkFMNAMYxqdUNWNcyOrsaPVzXRkdqNizciLmHYlNCAmEDSU+3Ex45gdvVgpnuIjx0RvjW7iGMlSULRdBTDFNWhbWV93y6TPXuC0sIsXiFXGRc/idnZjdU7gFQRKiumRXz0UM15DFynIaEBKC3M1ZjgyYoippm6+4gNHsBo62gRmqvAjehAW17P1REaEPq08199lqM//HDdfb13HmTm26/UERqA7PQShcXGU3PXE26hTNhgSGATYRi8EVwF9hVvtMyrm4bUfPrTn+aee+4hHo/T1dXFD/3QD3H69OnrvaxL4kZNhr3ScnjgCW2Ivb4qNCiyTHR4jOThW0geOk5i9DBaLFE3VRO4Dl4xj5PdwCuXdp3yEUni3eipWrdfWTeEl0w209ThF8Bo76wXxspyw2TyTSimRf7ieVEB8n3CwCc/dQGJK8s6CjyP4uxUgx/okNz5U2iJNpIHj5E8chvx0UNosUSNX8xuAaGh70GTEfYWrh430vTPJtbONc8ey80uoxgaiaFupG0t3+RQD2vnGpsuAiy9fH5f17gJO1ckv7hGYXmd0lqWzNQiiy+dIzO9SGktSzlTwG/iTF3eyJMaaTx9B9A+PoBmvf4n8PYLb0S/oZvGdOKJJ57gIx/5CPfccw+e5/GLv/iLvOtd7+LEiRNEozdWCXU7drLkG6VSs5tIuZHBFwj33uLMxfopowPjqJEoktSYI3vlEvkdhnRqLEFscKQp0ZArmhCrp4/AcZBkWbj/Li9gVvQvbjZT1/pSo3HkBn4uiqZj9Q40nBSSDRNJUasEZLt7b7hLdWc3hL6PV2g87g3gFbKY7c11PLsRMJBq4yha2Fdcyd/GtYZiNP+plmRBvM1ElPHvv4+zXxZC4cD3UTQVz29s7KiY+1vN8z2f3MwSJ//bN/Bdj6M//DBn/vJblNay1cdE0ikO/sADrJycZOgtt9eJfo1klNXTU3QcHmL19FTtenWVsXe/GXWf1/16xRvVb+im+WX8m7/5Gz70oQ9x/Phxbr/9dv7gD/6Aqakpnn/++eu9tKa4mVnyTo+DMAiwV5ZwcxlmFxb4D5/9rcrtPrmJswRNxHu+45CbOFPn+uvlsxQXZhua14nn2fjFAm5WEChZ01AjMaL9QyiGhWyYxMcOY6a7xbSTaREdGCE2dAClCSFQrQiRvsEtYS9iUinSO0gYBvXj51KDwMs94xI18ku4vSqmWSMa3g491U4ojdJvZwAAjwRJREFUy5RL5ZZ/x00Cr2zj2c2dry+F9rF+mhUNOw4Po+gaiq7Rc+dB7vzw+2gbHyAzvUj3HQebHrPnjvErXk8jlNeyvPB//xWltSzDb7uDc195uobQABSXN7jw98+jxyM8/9v/nfJ6LfHXYxZr52dJHxth/D33E+vtwEzF6LnjIHf88/didSRpYW+4ESuOrwVumkrNTmQyYrNrb29v+hjbtrHtLeO1bDbb9LH7jZudJe90VQ08l/LqErMLC/z8L32K/+uXthk3hQFeMY9i1F9BBY7dMIQSRHyA1dULRu3m7ZVL5CZO1wiBZd0gfuBgrVZHA6W7H7OzByRqJo4awSvkcTbWiPT0VxO63XyW/NR5FNNCb+usGdE22jsvecxmkBQx+t1MF7PbFBSISk1s9BD5C2dqWliKFUFOdfIfH/8sMxfnuP+td/PIex6ib6CnoRdNZiPL+lqGcqlMPBGjs6sDw7iy8n1mI4tjO0RiEaLRyBUd442GcibP+vlZ5p8/jSRL9L/5GMmhHozE5VWXtbiowpz7yrdrbjcSUUbefhd6TPxdaJZJ24E+4r2d+K5H4PmsT8xSXNqoed7wQ3diJmNX9d62I/A8pp96uWqqabUnKCw11uxkpxYZeehOnHyJpVcnGHzgNiRZIvB9Aj/gyPvfysTfPUdhcY308VEUQ0ePGpipOKp+ZX+Pb0TciBXH1wI3JakJgoD//X//33nwwQe55ZZbmj7u05/+dNW187XGXljyjfyl2knA+rrSzM7NVQlNf09tenSda+/m7bvkMhGG9YnWrou9toKsqPjbSE3g2BSmLxAdHqupxEiyvGfPDTefxSsWGrrw+qVijThZjcWxunqu2M9DVjWi/cNkz5+qEzUbHemaalEjSJKEakVIHDyGb5cJHAfFtJhbWOXH7vsRigWROfXUN5/jdz77/+ULf/7/YezgSM0xZmcW+KWP/hrPPCmqmYah889+8kf58f/nP6Wjs23nSzbF+toGL71wgt/5jS+wtLDCLXcc5dGf/wlGRgcxWq2Apihn8rz4h39dI8hdn5gjdaCX4z/2fZc1eaRbBj23j5Mc7mX++VM4hRKpkV7ax/oxklGUHVVG1dRRTfF3cseH3ktudomFF8+hRUz67j6C1ZZAi+zfZ+fZLtlpYcQpyRL+JcauA89HkmXsXBG3WCIMYfrpl5n/zilAYuzd9zLy8F0iS87QMOKRGs1ZCy00w0050v0v/+W/5Ctf+Qrf+ta3GBgYaPq4RpWawcHBlqPwZWCz4vTvPv6L/NIvfozPfOIX6wgNIGz3G/jWNEuoBkCWhdmcbhB4Ln6pRHl1CYIALZ5A0vSK2HaL3MQOHBITR5a1Jw+WwPerz/dKRRHr0GBUXNYNYiNjBJ6PrKpIqopyhVWaTYRBgO/YlJcW8Ao5JFXD6upBjcauqAI0Mz3P+x76cfwG0yFvevPtfOZ3/gPJlPgMVpZW+cn/9V9x/uxk3WN/5l//b/zzf/m/omqXPn/5XIH//Ft/zH/+rT+uuV1RFH77j3+de++/87LfxxsBYRgy89TLnP3rpxvef+uPv4v0sXp/ob3AtR1CzxNeUZG9u0+HQVjV39TeHmBnCxRXMjj5EtHudoxEBD269zR233F59U/+npVTkwDc9sH38NIXvtLwsZIscfuHfoDQD1g5dZHC0hpWR5L0sQPMPXeClZPCcVu1DO756R9ume21ALyOR7p/5md+hr/6q7/iH/7hH3YlNACGYZBIJGr+a+HysDm99baHHubf//tPNCQ0sm4gNwlCrEYRNICZ7hZJ065LYW6a3IUzuNkN3HyW4vwMpcU5ooMjtU/yPXITp0VW0y4TQGEY4ttlCtMXyJx6mcypl3HWV4kNjyE3GDePDh4gcBzKi3MUpi/grC7jN6k+7RWSLKOaFpGBIRLjR4kfOIiebLviltbLL5xoSGgAnn/mRTIbW+3VuZmFhoQG4Pd/+7+wtNQ43mEnVlfW+b8/98W6233f55P/9v9kZY/HudFwrXNx3EKZue80jgEBmPn2q5esZjSDZujo0chlERqgIaEJ/IDszDLPfva/8r3f/zIn/uzvee43/yuv/unfX5ZBn6JrDD90R/XfGxNzdB4babAGmUPvewt61MR3XNoPDhBJp1h44Qwv/9HfkD52gMRgNwBeyWb66VfwvdakXwt7x01DasIw5Gd+5mf40pe+xN///d9z4MCVXeW0cHnYPr31K7/+/2ZV0qr+KgBaPCl8aZpOMenERsbRYtsEfpKMme7FbO9CkmV8u4y7sVb33MAu4+VzaLEKGZWkqnC3ODdTCbuzRYTCxppo01SqMoHjkD13sibGwc1uUJiaINJX2xKMDo9RXl0iP3kOr5DDLxUpLc6RPXcS3y5fyWmrPQeVeIOrLZ87lxCa+ttCQicnmovRC/kipWJpT6956tWzTcXIU5OzZDLNJ7xuZFx7x+/61mrt3Ze4/xIIfB+3WL5qd107W+B7v/9lvHLtd2v93AwXv/k9/AYeN80QTac49L4HkRSZ6adfpvu2cXrvOlwdM1d0lTv++Q+QnV3mud/6c175L1/jlS/+LV7J4fiPPYIky5z966cZuP949ZgrJy7gla7+b7CFNw5umiblRz7yEb74xS/yF3/xF8TjcRYWFgBIJpNY1t7LpC3sHTvFzv/5P/9nPvzhD/Pbv/VbDIz2iRgCVb1kG0jRDaLDBwg9jzAIRJZQxXk3DEPs1aWmz7Uza1jpXtx8FqM9jVNx4tWTbbi5LMW5qRrNitHZjZXuxl5faWjiFfo+Xj5PfOwIoeeimBaB5zUkVaHnUVqaF7EHN0CQ4613Hmt639jBERJJIT7eWM/Q3dt8XFw3dMw9amG0SwgzlZs0QqGRaH8/XYO1iEnPHYeY+NqzDe/vvfso6hUItgPfp7yeZ/bZV9mYnMdIxjjwjjdhtSeu6Hi5uZWmFaO575xi8C23Ye3RvVe1DHrvOkzHoSEKyxsAjHzfmxh++E58x0PRVS58/Tssvniu+pwwCFl6+Ty+4zL4wK1c/Ob3ULa1RRVdu6ww1mYIgxA7V8Ar2SBJaFETI9YSu78ecdNUaj73uc+RyWR4+OGH6e3trf73J3/yJ9d7aa9L7Da99VM//dPML6+I0Mg9ZgvJiopimKhWZIfz7iWuWIMQJAmzqxfFMHA21kRqd6pNpF3veK69sohbyDedOgJwcxsohoGebEMxTHHMJnA21ghvkPJ3Z7qd/+Un/qe62xVF4d//yr/GMA2e+/b3ePSf/b9YXlol3dXR4CjwQz/yHjrTzacGt+PQkdGm2ptjtx4meRPb1V9Lx29Jlum54yBmW/35ifV27mowtxvyC2s8+9k/Y/rJl/Ftl967DrN6epqT/+0bnP/qMxSW1i+rrVVebz4RGrjeZX/3FV3Dak/QeXiIzsNDWKk4kY4k8d4OCGHxpcaGf6unp0iOiNa2auoc+Z/eRqyvk/77jqNfJfnwbIeV0xf5zue+xLOf/a88+xt/xgu/95dkZ5cJm0SxtHDz4qYhNWGlXLvzvw996EPXe2mvS7xWHgeSJGO0dza9X0u2IesGfrFAcU60CrR4Eiez0fQ55eWFXR2HJUW9Kc3rEsk4P/XzH+LXP/dJjt5ykHRXB+/8Jw/xJ1/+XY7ffoTnnn6B/+3Hfp4TL5/mc//pD3j8//w/6Buo1UA9/M4H+Rc/98E9Ty11pjt47NP/pu72aCzC47/2UdraU/vx1q4brqXjt5mKcdeHf5Cxd7+ZaFcbsd4ODv3gW7j9n30/RiJCOZunuJohM7XA3POnWDs/SzmTb0rynXyJU3/+DQLPR4uaHPyBBzj937/JxSe+y/KrF7j4ze/xzG/8KatnpvfcNor3N6/oGYko8h5HqAM/wM4VsLMFgia6L7dk7xpv4jsesq7hlhwu/P3zDD14K51Hhvf0+ruhsLTOy3/0VZzc1oVOcXmDF37vf1DayO/yzBZuRtyU009Xitc60LKFvSFwHXKT5/FLtcJESVGJjx0W01PbrqiM9k4Cx8HNN77KlFSV+MjBplNXsZFx9G2kxyvmyZ5rLOrUUx1EBva//fTxj3+cRx99tOEmOj09fcmR//W1DJ7rVj1jlhZX+PH3P8ri/JYbcv9gLx/+yAdItiXQNY2B4T46OtuqE1KrK+ssLawwOz1HuruT3v5uurrrCWY+X2R2ao7/3xe+xMzUPHe/+Xbe/d630zfQg36Fnjc3CjYrko899tg1c/wOgxC3WAYJ9KiFUyyzdmYKPRbh3N98m/z8lthai1rc+c9/gFhPfZWtsLzBM58RlemD730AMxUn9AN8x0WLWvz/2/vv6LavM8H/f6N3gAR775RIsao322qWe4m7U+w4sSfKJJlkM7Mzk81uvJ7f+GTOzOxsZvLNxmlOcxz3EnfJKpat3igWFVax94Legd8fECFCACVZJkWJvq9zdI6JDwhcQLTw8N6njDV30XOgCalMxorvPnBJVUMeq4Njz76N8+xx0VRl960nvabkosc/7gk7/UdP0X/kNKEQpNeUkLm8LObYyjE0zoH/fGnax6n6ys04hieYaO9ltLkbJLDkG3djOps4fDn8Lg+NL3w47biIwhuXkXdD7YwccQmza95WPwnzj1ShRJ9XhDYzB6lKjVShRJWchrG4LDw0s7gMVVIqcp0BlTkZRUISsgtMAJdrdUgUCpSJsR/QysTkmOnhUqUKhSm2b4tEJkeTljEr+TSfNVE10WwiJS050gTPZrVHBTQAvd39PPWP/8bff+t/43S4KCzOiwQ0/X2DfOur/8CDtz3O97f8iK984a959N5vx00w1uu1mBKN5BZkk1eQzcF9x3jw9r/it8/8mbGRq28o4qW6Uh2/JVIJSr0GpU5DMBBkqL4NW+8I3XvqowIaAJ/DRd3v3sVtmX4HwZCdgj49iVOv76bxz9s4+eou6v/4Hn6PjwV3XU/QH8A+OP2R6lQqo47qR28luSw/koSv0KpZcPf1JC3IvaSA5tizb9Gx/QjuCTsei53Oj45x9Jd/idst2JQXWz0JoM9MRqHT4B63hQMagBC0bT0Y3uG5TH6fH1v/yLTXJzoHCF4lx8vCzLhmEoWF+U2mVCJNSkVpMgMhJDJ5JJHYb7cS9HqQqdUEfT7sHc3o84qRSGVxy7o1aZnIFEq0GVmok1OjkovDVUjnttSDgQChYAhtehbB5FRcg32E/H4UxkRU5tmbdj3TiaqKC/Sc8fsDqKc0WrNZ7fzTP/4fTjRED4Tt7e7n24/9A799+adR+TijI+P87ZYf0VAXvfP1s/94FqlMyle/8RCK80dMXOXmquO31+ak/cNDlN27ju59DdPexz1hj+n4q9Co0KUmUrB+CfV/eI+Ad8oRUwgGjjWjSTSQkJ9BwHPpeTWaRAPl96/Ha3cR9AeQq5WoDNpLajw52tyFazR2x9RjsTNwvJW866sjj6PQqim/fwMNf/ogKpjTpSay4M61nHx1B85hS9Tj2HrDicwKzeX9fyiVyVAnGPA54ldQ6ZITkF6jye5CfGKnRrio2e7pMUkikYSDDoUy8g9hyO/DNTSAz2bBMzocLtEOhXAN9KDLLUCmObfrIlWqwuXlSjWhYDDcbEwmR52SjjY9C7lGGxXQBDxuHD2dWE43YGluwjM6jC4rD0NhKZq0jFkLaCbNZKJqQqKJFWuWxL2mUikpWVAY+XpsZJw9Hx2Ie9+uM70xvWeGBoZjAppJz/78eYYHZ65XzZX6WZuruTh+txe/yxMeJ3CBg3+fPbbkXqnXUP7ABhzDE9EBzRQ9B06QXlt6wVyZeOQqJdokE/o0M2qT/pICGr/Lw8Cx5mmvD9a3xuyyaBIN1Hz1VpZ96x4qv7SZpd/8AsW3rqL+jx/EBDQAapMOyWcIOpQ6NQUb4v9/gURC5rKyuP17hGuXCGqEi5r9nh7TC4VCcWdHBdwuHD2dqFPTMS2owFS6CEPRQhR6I0G/H0dfVzhYOVWPo7uDgDt6+GPA68HaegqfZSycvBgK4Z0Yw9p6Klx2foXO2GcqUdVoMvC/nv5+TMWTTCbj3//fU6SknbvdeZEeNeNjE1Ffn2nrin9Hwj1vHI7pK80+rSv1s/b0009P+17P5lwcqUIWHkwZCiG7QBKuJil+zoAuNRFvnIBnks/hQmM2otTHb3Phc3txjlgYbupgtKUb17jtos3tPDYH1p4hhk+ewdY/cu75pRKk8ukDDqk8/kBYpV6LITMl3GgvOxW1SR/OOYojf91iVOe9Fo/NiXNkAte4NTIkNBQM4nd74iZIm3LTKNi0NCp4kSnlVH5xM+qEmZt/JVwdxPGTEOP8JNapOwr/9E//xF/+8peYgZezRSKRIlWpCcZpghfy+8IfDlM6BAe8Hmztpwj6zgVCPusEVrsNY0kZMpWaUCiIZ2wkavxC5DEDfrzjo6hTM65IYDO1ueFnTVTNLcjmuTd/zvEjTez/5DB5BTlsuOk60jNTUCrPJfQajHoUSgW+aUp/0zNSo75OTZ/+t365XIZG8+k6217IbPePmWtKrRpzcQ4Dx1vIXrmIzt11MfdJLMpCaYhfxiyVyTDlpjJd1o860YDKpGOiox8koE81ozBokCsVeB0uOj+qo3tvPZpEIzlrq8LHTeM2VAl6VAZtVI8YAOeoleO/fxfX6LldFENWMpVfvAl1gp7sVRWMt/fFXUv2ygqU53U9DoVCeG1OQsEgUrkMpV6LOkFPxcObOPHSjnP5LRLIXlVJYnFW5Hv9Xh/WrkGa39qDc2QiPCB05SKyVyxisL6VsZYelEYduWuq0CYnRGZbKbRqclZXklZdjGvEilQuRZ1oRGXUiqOneUhUPwkxpvsQOXDgALfddhu/+tWvpt2+nw1eywT2ztaY2yVyeSSZeJJ7ZCjckC8OVVIK2owcQoEAto5mAu74v/HKNFoMBaVRHYBDodCMBznnv88X+/AeGhhhYtxCKBQiIdFESloS0ssYuOl2efjpv/2KP/7m5Zhrq69fxr/81/8iIfFcB+jB/iG+eOcWhuOMRLjt7k386Md/h0Y7sw0wr0RV0lxxjVup++27ZK0ox+9007O/Cb/bi0QmJb22lMINS1GZpk+Ed0/YOPT/XsfniP35XXjvOnr3N2LrDSfHSqRSim9dRUZtKaPNXTS9uB1dmpmizctpeWcvrrFwPoxEJiX/hlqyVi5CppDjtbuwD4zitTtRmQwMN7XTf+RcDlbWinLyrq8lGAgwerqT9g8PR+XxmPLSqXhoU9Q0cq/dyVBTB2d2HUWXkkjW8vLw5G2tEqVei8/hwjlsIeD1oU83o9BponJpJjoHOPqrNyPHdgqdmvL71tP04vaYjsiFNy4ja+UiFGLg6rxxqZ/fIqiZBz5reXA8033gbtmyhXvuuYc9e/awevXqmXoJFxT0+/FaJ3D190R2V2RaHfrs/Ki5UsFAIDLqIB6pQomxeCFIpWfvF7/CRK43nE1ElhL0evFaJ/A77cg1GpQmc1TOz+WaLoCZvL20tJS///u/JycnB6/Xy/GjTfyP7z3NYP8wXr8bV3CCPz73O5atqrmsgGJ0eIzf/+pF/vy71/B4vMhkMm65cwPf/cdvkBZnZ6bldDvf/Mp/Z2jwXCXJ0hXV/Pg//9cFuxd/Fnv37mXNmjVX9GftSgkPkJzA63CjTTKBRIJcpUAZZ7ckHsfwOE0v7cDeF/77kKkUFGxYgt/j48yOIzH3X/6d+2l68UMcQ+NUfmkzJ1/dFRMIACy8Zx0KrYrGP28L5/0ASCTkrK5ErlJwZtcxFtx9HT6Hm/4jp8PTwgsyyL+hluETHdgHx8laVoYhKzlqCrnP7aV96wF6D5yg5PY1+ByucDDn8iBTKcleXUH2ikWoptmh8jrc1P/xPazd57qP562rxXJmgIkz/bHfIIHl374PXZp5xn4Z8Xu8eG0uxtt68Xs8JBZmoU40fKrBn8LlE0FNHPM1qLnYB+Tl/pZ7/m/L//RP/8SPfvSjOfntORQKEfR5CQUCZ8czxM5SCgWD2Lvao+Y9TSVTazAUliKVK/BaxrF3xu9uOtnHxu9yYG07HT3VWyLBUFCCXGf4TP9YXiwQ/dd//Veam5v59a9/jd8T5N6bv4bf58frd9M71kKWuQS1UssL7/yKheXFl7UGj8fLyNAoDocTjUZDckriBQOkwf5h+vsGGRkaJSc/i5S0ZMyz1HxvPu/UzAS3xYFzZJygP0goEERp0CCRSah79t3wKIDzVH75Jk68vBOVQUPmsnJa34s/PVxl0pN3Qw3Nf/kk5lrZvevwuTxMtPcxcqoz6ppEJmXxE3dhyDDHnXHmHLGw/ycvkFZVjEKrpmdfY8x90heXUrBhCUqdFpky+jHcFjt7/+1PUcnVFV/cTOPzW+O+DoDCzcvJqC2N2i26XH6Pl6GGNk69sTtqDUmluSy85/qoAE6YHZf6+S1yauaB2cpDmJrE+tprr/GjH/0o8nizXfp6PolEctFqJIlUijo5bdqgRp2cFql+kmv1KEyJ+CzRfVYUCWbkGh0Bnxd7Z3t0QAMQCmHvbMdYUo5MefmN5y60c5aTk8NPf/pTuru7+frXv05t2eqYgEYpVxMMBvn1z57j//dv/4jmU05shnBVVFbOpbfrT8tImbVdmanO/9m90j9rc8Xv9eGzu/B7fGd3bTTI4pTKT/aGOb+UWpuSwMK7rqPxhQ+jblcZdagTDFQ8tIlQKIhMqSBpQS6jp2OPaT0We0wezKT+Yy3kr6+l9d3YgCgUCNL89idUP3IryjhBjWvMAiFIrSiMWR+AyqTDa3PisTrp+rie/PW10YGCRIJCq4l75DadUDCIe8I+I0GN22Ln1Ou7Y24fbe5isL6NnFWVoorqKiGCmnli6j/+M/Xb7WQS62uvvcYTTzzBO++8c0V7elwOmVqNKikFz2h0IzqFwYTCcC66lyoU6LJyCaak4ZkYAySoEsxIlUqkcgV+l5OgN37Tr1DAT8jng88Q1FyKnJwcfvKT/2TT+pvQSMwMWboiAc2k5hOtOB3OywpqrkZz1T9mrnmsDto/PMTAsZazQ1+lZCxZQMH6JVEfyqFQiOGm9ri9YZzDEzjHrOgzkyPHUtrkBBbcfR0nXt6B42xDPplSQe511Rgykzmz82jUY6hMerzTVCLJlHIsZwamfQ22nmH8Hi9KnTqyVo/Nic/hRq5RUXbvOqQK+bljLcJ5MSW3ribo82PtGWKio4+kBbkM1reRuXRhZEinSq8hZ00V7VvPtSJwDo1jyErB1hv9//okQ2YyrjErptzL70g8afBYy7TXuj+pJ62yaEaCJ+GzEyXd88hMzrGZ+uFy+PBh3nnnHX70ox9FldrOdk+PyyGVK9CkZWIsLkedko4qKRVD0UJ02flIFcqY+8q1enSZuegyc5Brdef62FzkVDYUujKD8IqLi9i84TbaB4+TasqNCmgAcvKyUM9g9dFcm6v+MXPJ5/LQ8s7e8JiBszuDoUCQvoMnaf3gQKRsGcDndNN/gd4wIyc7MReeqxgqumk5jc9viwQ0AAGvj47th1HqtejSogeb5l1fE5UQPJU2yXjBEm4kksiRbMDnZ7ytl8M/f41D/98rHHnmDdq2HiTkD5BcFp7nJFXIKb9vPR07jnDqjd30HT5F+7ZD1P/xfaRyWVTDPIlUSsbiEpIW5EZu6z10gvz1i+OuKWPpQsbbetGlxnYKvxwX6vDsc7ovPJRXuKJEUDOPnF8efLnt3s//bfnpp59mxYoVcdvIz2ZPj8sVDla0aDOy0WXlotDpkX7KjrcSuRzJeeMR/vmn/4/egQGQSGICpJlsDDfV4OAgrV2NFKXVMGTpwuuP/i36ie98Bd1nnGJ8NZmr/jFXWsAfwOtw4Xd78DlcDDW1x73f4PHW6L40EskFjzkkUgkydfhnU5NkxGN1TNsDpntPPZlLF4a/TyYlf/0SzCXZOIdjR19IpBLSa6KDivOllOdHyqhdY+FScK/1XA8jr81Jw/NbyV+3mIqHb6T267fTf7Q5qlwcgFCIlrf3RPWccY3bGD5xhtTKImoeu43iW1ZReONydOlmlnzjbtJrStAkGTHlpbPowY0Ys1Kw9gzN2O5Jcln+tNcS8tMv2HNIuLJEUDNPzOQcm8/jb8vnkyoUaDKjX/9j99/Dd//304z4gkimVKjMVhPCycd99rfP8rNf/wdFWZX0jrXg9btRqZT86F/+jqKSghl9TmF2hYJBnKMW2j44wLFfv0X9cx/gsTqm7y4cCkV15VVq1WQtL5/28bNXLiJreRkrvvsAtV+7HWecY6pJrjErCQUZLH7iTlZ+70GyVy2ia0895Q9sRJ9+bgdHYzZSft8G7IPjqEx6Sm6LrURTGrQU3bQCuUqJz+2h6+PjhIKxLyoUDNG9p56Rk2fwWB0MN3XEf9nBENauQSCcZHz456/T/JdPOPnKTuqf+4D+o6cJ+v0oNWpURh25N9RQsHEp5pJsBupakEillN+/cdomhJ+WKTctbqM+iVRC0eYVlz3GQZh5IqdmHpjpPISLJbHOl9+WL0QikaI0JiAtKMU10EPA7SY3v4Bf/uqX/PV/+1t+85vfzGpjuPMfNz8/j3d3vcjxugb+6Z+f5L/+88dU1VSiUol/TK8ljqEJjvziDQJTGh9ON/Jgkvy8XYCk0ty4uSSmvHQS8jNQ6jSRMuOpwcn5lEYt9oExzEVZqIw63FYHw43tjJ3uImvFIvI3mMKdth0uOnYeQZNoILWikPTaUhIKMug9eAKP1UlKWR6JxdkodRpcY1b8bg/2gelHZ9gHx0kpz4cQkeO2eHwuD36vj9b390UlCAd9fhyDY5x+42PMRVl4nR6O/vLNqFyd0dNdZC4rCwcc2s/+/4japKf28Tto33qQocYOQsEg+sxkFty+Bu0MHXEJM0MENfPApeysfB4CkZkmlctRGozINaWR0QkmhYLf/OY3s15ufP7fqVKpJDM7nczsdCqqF/LMM8+wbMXSiz7ObPQwEi6Pz+Wh+Z09UQENgGNoHENmMra+2GnSxtw0FOf1QVEZdVR++SYsZ/rpO3QSkJC1ohxTblrMcUtiYSYypTxu4JS9sgJjdkrke6RyGepEA7aeYdo+iJ0NllSai1QmQ6aQo9CoWHDHdZHOwD6nm75DJ2n74ABp1cVozMaYCeSTNGYjHpsTuVqFNiUB5/BE3PslFmbic7gZORW/mWbGkgUE/UFOv/lxVEAzqe/QSXJWV85IUAOgSTSy4O4bKNi4lGAg/LrlGtUl9RUSrhzRp0YQLsO10hjuUnoYPfPMMyLwuQJcY1b2/Z8/x9w+Ob265d29UR/wujQzVV+5GU2iYdrHnEwinqwSOl8wEMTWN0z9Hz84t9shkZC9YhE5a6pQJ+ijcnRGTndS/4f3Yx5HIpWw/Dv3h2dPOVy4xmwMHm8hFAyRVl2MTCnn8P97nVAwiEyloPy+9TT8KX4PmYovhpv/KfUaCjYu4cTLO2KO3xILM1n04Cb8Xh/747xn2asqkKuV6NOTaPzztmnfn9I715K9YhEAXocL94SdsdYeZEo55uIcVAYtcvWlVTEGvD4sXYOcemM37vFwg09DVgpl99yALtUsSrpnmWi+F4cIaoSZcK01hrvYOIbZat4oRJsuqAFQ6DRUfHEzMoUMj8WO2qRHZdRNOwPq0wgFQ3hsDrw2JwGvD5VJj1KviRsIeexO3GNWPFYnfreXvkMncQyPU37/BszFWQQ8Plre289gXXSJc9KCXJLL8jn9RriXS8aSBejTk2jbepDg2YRfqUJO4Y3LcAyN03/4FACplUWkVRZxZvcxbD3DyDUqMhaXkr1yERqzCZ/TzfE/RHcSlirkLHpgAw1/2nrRBnwL77mBzCUL8dicNL/1SUwOT/Gtq8hYvOCScmJsfcMc+n+vx1RGytVKln3rXjRm8Zkym0TzPUGYBddiY7iL9TCa70MkrxZyjQpzcTZjrT0x13wOF0qtKlyCnDWzDQ4lUglqkx616cITqd0TNto+OBDJGVEatRRtXkFCfjoqow6pTMZER39MQAPhHJak0hw0SSZcoxb6j5zGXJJD+f0bkEhAplIS8PjoPXSCseZzxQtDDW2klOeRXl1M3tpqAj4/g/VtBHzhwZYKrZrSO9Zy5BdvRI6YkkpzIsGJrWeIxMLM+EM1JZCQF24uOXLqTNyk5NZ395FQkIFCc+H33O/x0r79cNxWD363l6GmDnLXVl2RIbjChYnqJ0G4RBdLyL7cEvor4WI9jKa+jr1794qAZhYoNCpKblsd97gj97rqGdmVmSrg9eEYHqdt20EaX/iQ/qOncU/En4vmsTk4/sf3GaxviyTveq1OTr6yE1vPMFKZDL/HS/fehmmfb6CuldRF56rxxlq6aXx+K+NnBpCpFcg1SpxD58rFpQo5BRuXYh8Yp+WdfTS+8CEnX92FY2gs6j3Sp5tZ/u17SasuRmnQok1OjJSp9x0+Re51Ncjj7LQU37IKpUGDa9xK18f1066798AJfJ7YOVhT+T0+rN3xm/wBjLf3npswLswpsVMjCJfoWk7IPr+H0XSvYzLw2bNnjwhoZoE2OYFl37qX/iOnGW3pRqHTkLu2Cn160oyWBXsd4cGLTS9tj+SrDDW0odRrWPzEnagSDHitDqy94S7AWrMRx8BY3MdqfX8/prx0pApZ3CGYkwIeL9LzkmalchlJxdnY+0ZIrylhyTfuxutwEfQHCPqDdO85zsjJ6DlSBRuWMNE5gLkoC6VOg1QmQ5dqZsHd1xNwe5HKZQw2tDHa3I3P6abl3b2U378BS9cA1u4hlHoNOasr0SaZCHj92PtGp+3VA+Czu3CNWlBkTr9bI1PI0aUlMtEef0yDNiUBv9uDrXeYkZOdyDVKUsoLUBp1KC4xZ0eYGSKnRhDmuU+bQ3Ot5Apdy4KBAAGPH6lcOqON27x2J5buIWRKBcd//27cqqDEoiyKNi/nyNkyaENmMubibDp31037uCv/20NozEa69tTT9v7+uPfJva4a94SdoYbwoFh1gp7iW1bRs68RqVxG5Zc2R71Wr93J8IkzdO6uw2N1YMhIJmdNFWMt3fQfPU3R5uVkr6lCFqdjsGvcxpFfvIHXdq65nykvHX26mZy11WjP5rf0HTmNrXcIj9UREzxNKrltNY7hCYpuXIZiyriRgD+A1+pg4kw/bosdY1YKHpuT1vf2Rw8NlYTfn5Ov7sLSGT1GovjmlWQsXSj62MyAS/38FsdPgjCPXeqR2Uw2b7wW/fCHP5z2tc5Gt2ipTIZCq5rZgMbhpvWDgzT/5ROcw+NxAxqA8bZePFZH5LrP5bng0ZdUIUcilyKRSkitKIx7X4VWTUp5PslleVQ8fCOVX9pM3rrFtH94iIkz/cg1SiTS6I8bpV6LuSSbnDVVlN+7nqTSHFrf30f/0fCYhjO7jkYFLVNpEg0sfuJOksvzw12WZVKMuWnkrK7E7/LQvv0wHTsOo9RrUJydGyWRxX7cKY1adKmJJC/Mi+pgHPAHsHT0s/8nL3Ly1V10fHiY479/j+5P6ln0wIbIjpREJqX60VsZamiLCWggvMvlucCIBWHmieMnQZjHLuXIbMuWLZ/LIZJTxXsPIDrYu9p5LHYG65opvmUVXKS8eGq3X/e4DXWiAalCHqlUmipzyQJUZzvzahINLPmruzjz0TEGj7dCKERKRSEFG5Zg6xvhxEs74j5f9sqKqBlNQb8fpFLc4zb6Dp3EPW6N6aUT8PrxOVzINUoU6tidDm2SifL71uNzegh4fbgtdjp2HAmva4r02lICWT6qH72V9m2HsHYPIpFKSFqYR9byck69/hEeq4Pax++MJFN7rQ7qn3s/JjB0DI0zUNdCzVdvxefyok9LRCKVcvovn0z7Xvcfbabk1lXTXhdmltipEYR57FJmKYmxGBffvZrpoG42doZGTndSesdaJjoHUBunr3TSmI14HdG5IV0fH6fsnnUxOTEJ+Rnk3lCLVC6P+v7S29ew8r89yMrvP8TCu69Dm2QiIT+dxKIszpe1chHalAQA3BN2+g6fpP3DI1i7h/BYHKSU51N273pKbl0d8/xeu4vWd/fhGrPEPC6E+/O4J2w0/OkDvBZHTEADMHCsGb/bh0yjpOS21VQ8fCOLHgiPUGh8fhvuCTuhYIjmt/dE3hdr7zBIwoFPSkVh1IiEoYZ2VEYd5uIskEhwjkxQsGEJVV+5mZTy2LElXnv83SZhdoicGkEQhLOuVF7RbPQG6j10koDXR+u7+8hbV4trxMJQ43mDMiVQ9ZWb6dh+JGbMgjE3jYL1iwn4AvgcLgxZKajP9rS5VB6bE+fIBIP1rcjkctJqSlAnGFDq1LjGrBz99V/QJieQUVvKqTd2R1UMmXLTyL2umsY/f0goGMSUl05iYSZndh5FYzZS+/XbUSdENyJ0Wx0ceeYNUisKsfUOM3GmP+66zMXZ5G9cynhbDx0fHp52/Su//xDaJBOjrT0EvT5GTncR8PhILMpCKpfR8vYe/G4vK7//ENbuofBrOLu7JZFJKdiwFK/dSc++xshjVn5pc9xgR/h0RJ8aQRCET+lKVYDNRm+ghPyMSHfdzo/qWHj3degzk+k/fAqP1YExO5W8dbU4h8Yp2LCE0dNd9B48Efl+a9cgEqmU1EXTT+K+GJVBi8qgJbEgM+p2v9dH+/bDeCwOFtx1HQ1/2hpztGPpGmS0pZvksjxsfSMUrF9M44vbgXDjwvGOfjJqo4Mav9ONx2JHplJEDf48n8/lxto1cME+MhKpFIlUis/pYby1h66Pj0euDTW0oUszU3bfetq2HsTv8oQ7IU8RCgRp33aQRQ9tYvB4Kz6nG22yCcMM9x0SLkwENYIgCGddSun7TLlYU8QL8Xt9eG1O7H0jhEIhDJkp4RlMk8dKoRCnXt+NISuF7FUVKDQqAj4/oy3d9OwJ95opvnklqZWFDDW0ozEbKbltNcbs1Fl5rX6nm6GGNrQpCTgGp09iHqxrofbxO3EMjXPi1V34XR6MOalkLl2ISh/uOaMyaCPHYZPnDLa+EczF2TgG45elJ+Rn4hyxkFpZBBLiTkVPrShAoVXjGp2ICmgmOQbHGG/rZdFDm+j6qG7a19p/9DRpNSWEAgHyrq+9aNNDYWaJoEYQBIG56RZ9OTtDPpeHgWPNtL6371zCrwQKNiyl6OaVnHxlZ+S+tt7hyDFTwcalURU6bVsPsvxv7qdg0zLkSkXMMMyZEgwECCEhsSiLoD9wwR2VgNePx+qIvIb8dbXItWratx/Ga3UilcvIWLKAvOtrUCcYUGhVKPUaxlp6KNq0jP4jp2J66WQuLyO9toTRU114rA4W3LE2JrFXnaAnZ00VUrmU/qPN065v8Hgr2SsX4RqNn+MD4cTrBXesRWUKd2EWriyRKCwIwufeXHWLPn9n6FKexzkyQcs7e6MqmAhBx/bDqPQaVKbY4ESh04Qngfecy6MJBYM4hsbQJSd8qoDGbXUw2tzNqTd30/7hYRxDY3Gb8gW8PhyDY7S8s49Tr+5Em5xAyW2r4yYTT9ImmyJrScjPQGnUE3B7Kb11NQu/cAOm3HR6D5zgxCu7cFscqAw6Ft5zA6FgAI/TxaKHNpG0IBckEpBIKLltNdrkBA797FXaPzzEyVd2Yukeovbrt5Oztoq0qiLK7l1H8c0r6Tl4gqA/EN2D5vzX5PPjtjjQpSVOex9DRjJeu4vmt/dwZtcxHMMTMZPZhdkjghpBuAIuVO3yne98h+985ztxr81GjxQh1lxUgF1Ob6CAz0/XJ9O3/O/8pJ6ar99BQuHZnBaJhKQFuZTfv56Wd/bG3H+6Y6DpuCfsHP/dOxz//bv0HTzJmZ1HOPCfLzNQ1xyZGA7h3Zmx1l4O/PQVeg80Md7eR8/eBo78/HUkZ9cUT971tVi6B0nIzyBvXS1KvZrRlm4aX/yQtg8OYMhKZtGDm7B0DeCx2pFIJSQWZLLsW/di6xnBPjCKxmyk4sGNVDy0CX2amdZ390UdNw0ca6bud+9izEohpbIIv9uDTKVAm2ike28jKYumT+o1l2Qz3NRBakVR3L43EqmE9MWlHHv2bfoOnqR920EO/OeLjJzqJOATgc2VIKqfBOEKuFC1y5e//GUAnnvuOTEl+3PicquffE4Px3//LtaeoZhrEG7Xn79uMfqMJKQyKaFQiKGGdro+qSdw/nwjCaz83kNok02XtOaAP0DbB/vp2dsY9/ry79yPLjUBiVSKa8LOQF1zeFSBx8dgfSvj7b0QAnWigepHb6VjxxGGG9sJBYOoEw3k31CLtXeYiY5+Kr+0GfeEjeN/eC8m/yWxKAtzcTZSuYzMZWXIzpaB+z0+fC43zqEJOnYeQWM2IpVJ6T9yetr3atGDG7H2DNP8l48jO19l96yje18D9v7RqPtLFXIqv7iZxj9vw5iTStayMlo/OIB7PDxPS2XSUXLrKgbqWhlr7SGtupikkvDfocfqIKW8IKo0XPh0REdhQbiKXKgPynPPPcdzzz13xXqkCJ/eTPeVudydIZlKTkJBxrSPa8xKwWt34hgaI+D1EwqGMOakxm2ql3d9TVS5ts/lwWN1THv84nO46Dt0Kv7z5qRiGxjBOWLB53TjHrcyeqqLpskdlszwDotULsM9bsM5PI5MIaPySzey9K/voXDTMnoONNF36CShUAikElre2Rc3oXe8rRdtsgmFTk0ocK4kXK5SEHB7aX7rExILMkmvLsZrjz+rKfx63BCC5r98EnWU1/zOXgo2LiX3+hqUBi0ypZzUikKWfONuzuw6SsDrY7ytl44dR8i7voaKL26m4uEbqX70Vs7sOoala4DKL27G7/bS9OJ2Gv+8jd4DJ7D1j0TtZgmzQ+zUCMIVdKE+KGL20tVrNvrKXC7niIXWDw6QVlkUTh2RSRlv66W/roXFX7+d/iOn6T96moDXj8ZsJH/9YnSpiXR+fBx73whKg5bMJQvRZyZhyEjG5/Jg7x+lY8dhnCMWdKmJFGxcij7NHDUt2z1hY++/PR+1FkN2CgUblmLrGcIxNI4+I4mkhXm0vLUnpmdMYmEW5tIc2t7fT8XDN0bKz+VqJWX3rafhuQ+AcEJzclkeh/6/V6d9D/LXLyZ5USGGsx19IRyUNb2wjbHWXgD0mcmkVhTSvvVg3MdILssnc3kZ9b9/L/aiJNzbpvT2tUgVMhQaFa5xK917Gqbd+Vn+nfs4+NNXKL9vPR07j8ZNJq59/I6Ycnfh0og+NYJwFbpQtYuYkn31mo2+MpdLplZgzErm1BsfEfD4QCIheWEeS79xN/1HT9OzvylyX9eYlZOv7qL0zrXo080Ys1LwOd20bz9EUkkOJXesZbC+leYp1UBem5Pxtl7K799AamVhpIJHplRgys/AcjZY0SabyL+hlqYXtkVGHAw1tnNm51HK71uP3+3BPmXy93h7L9mrFqFKMCBVyMheVYHP6Wbk5Blcoxa0yQkggYSCDFyjViRSSXQy9BTqBAMyuTRqnlTA440ENAD2vhEKNixBadDGzJCSyKQUblzKWHsv8cjVKnSpZkKhIEE/+N1eZEolaVXFWDoHcY5MRN0/f8MSZGolpvwMgoHgtNVRLe/uo+art6LUXXpDQ+HTEcdPgnAFXaja5XIqYYQrZ2pgs3fv3jkJaIKBAAPHmmnfdigc0ACEQoycPMOJV3ZMW8XU+dExVAYtbR8coOvj43gsDmQqJX6Xh9b34k/dbn7rE7y2c8c3Cq2akltXRQKJnDVVtLyzN2ZmU9AfoPntPeSsqYp5TGvvMAvvvg7H0Di2vhEAyu/fgDrRSPmDGyi9Yw2uMRtKg5aS21aHe8qcRyKVokky4bY4iD5okETNlwJoeWcv1Y/cQtLCsxVRgCErhYqHNmHrH8V8thJLIpWSUl5A3vU15K2rpeKhG3EMjnHgP19i/3+8QMPzW3EOjyPXqii8cRkL7rqOtKoislaUU/PV28hYvABNgoHS21dj7Y2f7wThQCveUeC17EoPg70YEdQIwhVyoWqXz/uU7GvF1N20J5988orvpnltTjp3HYt7zdY7gsqkj/lgB/BYHMhVyqjb0mtKcE/Ypv2Q9bu9MTOidKmJLNlyNwkFmSj1GtwT8SdQe+2uyNGVTKVEn5GEOtGAOsGAc2QCtUlPzupKkhfmI1OrkKsU1D37DnXPvsOp13Zx9Fdv4hgap+yeddEPLJFQcvtquj85jlQqieoQrNCpSaspibq7QqtivL0XTYKBioc2UfHwjaSUF9D89l5OvrqTgM9P1qoKqh65GYVWxVhrD47BcfxuD7rUxEhOj7V7iIY/bSXg9qHQqjHlpZO3fgl5NyxGn5mEJjHc6ViTnIDGPH3itVytBMn8+tidHAZ7/r9Vk/+mbdmy5Yqu55p6d3fv3s0dd9xBZmYmEomEN954Y66XJAiX5EJ9UL785S/z5S9/+Yr3SBE+vbneTfN7fHF7wkxyjVlRGrQxt0ukEqTKc9kGudfVoE7Qx4wNUOg0GHPS0CQZI983lUwhx5iVQukdq5FrYidnTxUKhii9cy0L776epAW55KyuxJSXhsZs5PRfPqHxz9toevFDQn4/9X98PzpBOQS9B07g9/ioePhGMpYsoHDTMqofuZnxtl5GTnXiOlt1NHVt+esWo048N0ohtaKIvkOn6NnfROOft9H45220bzuIxxIOxvoOnSR7eTkNz31A3+FT2PpGGDl5hsY/b0OuUZFWVRR5rOSFeQQDAc7sPMrRX75J05+3hY/ipmwWyRVyUsryI7tC58teVYFSr77g+/ZphYIhPFYHbosdv3v6Hjuz5UoPg72YayqnxuFwUF1dzde+9jXuueeeuV6OIFyyC1W7VFVVRf77/GuTlTBPP/30FVurEN9cdBw+n0whRyKVEgrG7y+jMmjjVi8lL8xHZdSTvbqStOpiNGYjCq2agNePXKNCl5pI0U0r8DncWHuGUOo1aJNNMbkfQb8fj81JKBhCqdMgU8pjjp8ApHJZODn5lWPYekcit+szk1l49/Usun8DAZ8fmUKO1+6KGmw5VdfHdRRuWobP5SVzeTb9R04x3NQBhKeFn0+TaGDxE3cycWbg7LymRHwu97Tvp9fuYqCuOe7zn9l5hMov38RgfXjuU9LCPI7//t1IEON3e2l6aTtZKxdRtGlZJMhTmbRUPHwjTS98GPX3lFCYSdby8hntMuyxORhsaKf7k3p8TjeJBZkUbl6ONtkUKXW/Ej7LyI+Zds1WP0kkEl5//XXuvvvuS/4eUf0kCMLluFqqn/weH81/+ZiBupaYawqdhprHbuPIM69HfUhrUxIouXU1nbuPUfHQjVFl3MFAEMfwBASDNP55G64xa+SaVCGn5rHbMGanIpVJ8dqcdO9toHtfI0Gfn6QFOSQWZNH6fmxOTv6GJchVSlrf2xe5LfHsh3rzu3vxWsOJuzKVgsIbl+McmaB3SoLzVBUPbWK8vQ+/109iQQanXv8IlVHHki13o9BpCHr9SBWymA/xYDBI0Bfg1Bu7GapvjfvYC+6+nt4DTTE9aSaV3rGWM7uOUrBhCZ276yI9ac634nsPoktJiHwd8Pnx2pxYOgfwOlwk5GeEp5V/ionnF+O1uzj56k5Gm6N3CyVSKYu/cRemWZrjdSF79+6NFDqsXr16Rh9b9KkBPB4PVqs16o8gCMKndaU7DrstdoaaOjj52i46dhzBMTyB3+tDrlJQsHEpprz0qPsrDVqqH7kZr8tNxcM3UvHwjdQ+fgdL/uouyu/bwFBTO5bOgai5S5PHFlKZBEvXAMacVKRTAoOgz0/9H97Da3MQ8Pnp/KSezt11kRyc0dPdeB0uar52G/nrl5BYnI0uzcyCu68nqTSHtq0Hzi1QIiH3uhqaXt4RCWgAAh4fLW/vISEvPe6xmTYlgVAoXBE1caafgM+POtFA7dfvIOD10/ruPk68soOhxjbsg2NROUBSqTT8fq1fHDfPSGXSkViQMW1Ac/ZdAsJJ0tMFNAD2/pGor2UKORqzkfTaUnLXVmPMTp3RgAbANWGLCWggPP6i5e09+JzT71DNhrk+mp10TR0/fVo//vGPeeqpp+Z6GYIgXOMudPyXk5Mzo8eDrnErx37zdtSHaMeOw5Tft4GU8nw0ZiOlt6/BbbHjHreh0KkhBGc+qiOtojA8c2lkgr6DJwl4fUjlMtJrSih/YGNkLILH6mCsow+VTsPwiQ5sfaNoEvUsenAjw43tkZ0gv9uLc8SCJhiid390J+GkhXkkFmYyfOIM7jErptw0khfk0vnxcRRqZdQIhsTCTEZbuqcdy9B74AQZtaV07q6Lur1w0zJc41batx6iYOMS9Olmqr96K167k2PPvk3e9TUYs1PoO3gSt+UQ+vQkCjYuRZeSgEypAMLHVEu23E3LO/uY6OhDIpOSWllE4calSFUKtCkJOIcnYhclkaBONOK1OWNyi84nVSgueH02jLX0THvN2j2E3+1FoZ3Z/J3pXA1Hs5PmdVDzgx/8gO9///uRr61Wq+j9IQjCVSEUDBEKhZBOmSHk93hpe/9A7K5ACE6+uhNjzoNok0yozUZcEzYG6ppxDlsI+HyYS3LQZybTvbeevoMnI98a9AfoO3wKr9NNyW2rcVsdtLyzl9SKQo7/4b1IoGHtHmSwvo2S29fgtbsYaw1/aPqcbhRaddSRlik3jdRFBdT/8f1IL5nR5m66Pj7Oogc2EPQHUCfoI9VR6gR9/MDhLMfwOJnLFka+lquV5K2rJRgIoE0yUfmlzaiMOrr3NZK/rpYTr+wkrbKIoD/AyVd3Rb7PY3Ew2txF1VduIak0B4lEEsnvKb9vHUF/EIlMikKnRn426Cm7Zx1Hf/2XmICr8MZlyJRyFn/jbuQqBcacVKzdseXaEpkU/QUGXF6I22LHPjDKxJkBtElGEguzLnm6t1w9fSAlkUmnTVaeaRcbBnulA5t5HdSoVCpUqgtn6AuCIMwUv8tDMBBEplYii3PkAeB1unGNWug9eAK/20taVTGm3DTUJj0+p4fhEx1xvy8UDDHe3odCp0GhVpJaXoA+zYx9YBSJRMJ4Rz8+p3vajrcjJ85QtHkFzpFRzMXZtL2/P+7OSdsHByi/f0MkqNGlmcMfshIiSbLZqys5/cbumOZ4QZ+f1vf2R8YMTDb181gcaFMSGGuJfyShTTJhyktnxXcfIOD3I5PLCQWDdOw8ysiJDkLBEFKFnOxVFRAKdzdOvWNNpAtx9BsFp9/czdItX0Bl1OEat9K7/wSDDW1IZVIyli4kvaYkEtToM5NZ/p376N7TgKVrELVJR971tWiSjIy19dL67j4kUgll966j6aUd0YnYEii/b33co7OLcY1ZOfabt6LK4iUyKTVfvRVTbnrcI7OpkkpyiM2sCkutLArv4F0Bl3I0eyULHeZ1UCMIgnAleB0urD1DdO0+jtfhwlySTfaKCjRmQ1TXW5/TTeeuY3TvOTdpe+TEGbTJCdQ8dhuhYHDaLroAngkblq4BkopzkEgleKwOGp/fFrmekJt2wcnbXpuDwbpWUquKpu0xE/T5CfkDSOUyEouykMpkKHRqkkpzGT3dFXk905WWu8asyJRyrD1DLLjrOjo/OsZ4ey85a6roPXgi7vpyr6tGoVEhT1RF3s+mFz5kvL0val1du+sgFCK9dgHes1VYcd8niwOf000wEOTIL96M6ijcvvUgg8dbqH70NtQmHTK5DF1KIqW3r8bv9iFVyJCrlIw0d3HylZ3h9zU/g/GOfiq/uJmJzn5svSNozEYyly5ElaC/5EqjgD+A1+rAbXFwZteRmL+DUCBI/R8/YMV370edcK40PRgI4rU7CQWCSOUyVEYdSoOW0jvW0PzWnqjHUCfoKdy0LBK0zbYreTR7Ka6poMZut9Paei6LvaOjg7q6OsxmM7m58UfZC4IgzJZgIIDH6qBzd13UkY9zeIL+w6dY8o270acnRW53j9uiAprI/Ucm6NnfSO7aanSpiTiGxuM+nyErhea39rD48TtQm/Sc33JXcpHf7uVqVfho4iJFryFC5KypwpCVwuFn3mDZX3+BBXeupeH5rTgGxy/+/cEQPfsaMeaksuCu61Hq1YRCISoe2sSpN3aHh0kSrrDKX7cYXaoZufrcrrrX7mK8vY+Eggwyl5YhlcuQyKTY+kboP3yKBXddF5X0HI9UIaf34Am8dicJ+RkoDVpcYxZsvSM4BseZ6OgjfUqzPqlcjlIvjzx/2/sHMGSnULhxKRMd/dgHxwh4faRVFZO0IA9jZvIFn/98QX8A5/AEre/tJXtlBeNt8Uc0BLw+HEMTkaDGY3PSd/gk3Xsa8Ls8qEx6Cm9cRvKCXNJrSkjIz6T/6Gk8Vjsp5QWY8tLP/mx8Pl1TQc3hw4dZv3595OvJfJlHH32U3/3ud3O0KkEQPo8CXh9j7b1IJJKogObcdT/N7+yl8oubUZztYdJ/rHnax+s7fIrsVRWU3rGWY8++FTOhOrEoC+eIBfeYNbxLYgr/Vi5VyCMVSfb+UUy5aVi6BmMeX5NkRK5WkrW8LNKk7/yZSBDuMWPISMbSORAeOhkK0Xf4FAUbl1D96C34nF6Cfj8SmTTurotCq0aTZKTioU1IZFIG6loYrG+h6is3M9LcRc1Xb8NtsRMKBlHqtSj0Guz9o4y1dmPITEGh1+Aas5KzpgqVUUvLO3sjlTym3DQWfuEGFFo1oWAw6rVPpU1JOFvdZaf6kVsYb+/DPW4jeWE+BRuW0r7tIP1HT5NSnh9JKJ4q6A8Q9PkpvHEZjX/eFtWLp+/gCcru34A+NfGiR0STXBM2xtt6GW/tRZ+RHD6uukBcOPl6fS4Pre/vZ3BKCb/HYufkKzspuW01WSvK0aebKbl1FaFQKKaZ4ufRNRXUrFu3jmu0rY4gCNcoj82B3+VFIpUi16pQnq0ocY3b6Nh+hKTS6ZMgJ9r78Ls8kaDGPzmvKY7JD2djdgq1X7uD9m0HsXQPodSpyViyEH26mRNnj0MmE0mVBi0L776eEy/vAKB7bwOLHtxIy9t7o4Yuqkw6Su9Yi0QqRZuSwGhLD0Wbl3PytY9idl0KNi6lbesBRk52Rm4bbekmZ20VAV+A+j++jyEzmdzrquOObCjYuJTmt/Zg6RyIut3aPUR6VQlndh0lsSgLtUlHwOOl7rfvRAUmqVXFFG5ahlQqpf5PH0QFTpauQU6+tovFj9+BTJlA6W2rOfXm7qgAQaqQU7R5OfbBUZIX5NF39DRplcUYs1PDuz0DoxTdtJLBxtZpk2klUgl519fQ+t7+mOaCoWCI02/sJiE3LeqIaDrOkQmO/PIv+KaUm+vTzNMGlQD6jPDuntfuigpopmr/8DDJ5flozq5BBDRh11RQIwiCcKUEvD4sXYOcfvPjSFM6U14aC+++AXWigZ69jXCx347Pu5ReXczA0fiJvMkL81BoVMiUCtRmI+aSHLJXVeL3eBk83kLnR+EAwlycHUkClcllJJflsexb99Cz/wSO4TFcYzYqv7QZ94Qde394HhShEJ0f1bHowY0odRoyaktxTdioeew2eg804RgcQ202krlkIRMdfVEBDYRnKEmA9m2HcI1acI1ayF9XS9k96+g9eALXmBVdupnsFYsYbe7CMThG9qoKTHnphIJBRk91IlUoGGrqYPjsn5qv3U79H96LVFUp9RpKbluNz+nhzI7DyDUqKr+4meETHVHJz16bE/vgGMbsVAJ+P0u/eQ+9B07gHrehTzdjLsmhY8cR8tcvxj1uRW3Sc+LlHZHAyZSXTkJuGrmrq2JyYfxeH54JO+PtfejTzdNO2w54fLgn7BcNanxO99njtugZWr2HTpJ3Qy0tb++J+Z6URQWoziYeu8biP394DV78Li8kXHAJnzsiqBEEQYjDMTxB3e/eidoFsHQOcuSXb7L0m/dgHxrDMThO4Y3Lpn0Mc3FOZJcGQJeWiCk3FUtXdGmwTKmgYNPSyFGIyqAhIT+dut+9G7VToU7QU3rXdVGPGfD4CIUgZVE+2cZFuMasNL+9B43ZSGpVEf1HTjNY10LFFzdHPixlSjlt7+/HkJGMuTgbc2kOWrOJxj9vi9u0Le+6GvweH0MNbZHbzuw6hjpBT3ptKUqDFl1yAoNN7dgHRln04CZ69jfSe6AJiUxGakUhKWVnxwwQPgpzj9siAY1ULqPs3vU0v/VJVFfjnn2NFG5eTnpNSVQXZUvnIEklOThHLAT9QfxuD9pkE46hcbr3NSCVycJdkB1uuj+JzmGydA5w6vXdVD1yS9TtAZ+P0ZNnaHp5B4RgyTfunvbvFZh2tMNUPqeHiY7+mNutXYMYs1JY9NAmOj48hHPEglyjImd1JZnLFkb6y0zNM4rnUo+/Pk9EUCMIgnAev9tD+7aDcfMe/C4PYy1dpJTlY+0aZKy1l6yVi2La/MvVSkpuXRU1+FFl0FHx8GYGjrfSu78Rv8dH8sI88tfVRs0ykspkmPLSWfm9Bxlr68U1aiEhPyM87XpKEqhjaJzjf3gvqq9NYlEW2SsX0fjCh/QdPsXCL1xPWnURpuxzXYhVRh0FG5fS8NwH9J/dOSravJzksryYkvDs1RUoDVp8DldMDo17ws6ZnUcBKNy8nOwVi/CWF9Dwpw8ixzahoJ+BY81MnOmn5LbVNPxpK3KNCo/1XOVPamURA8dORwU0k9q3HqTqkVsYON4aOSrTnm2ul3tdNYN1LVi6BslaXo65JJvMZWV4bE7kGhU9+xpjHg/CFVoeiz1qtIHX5uLEK7vCf+dn+9sotOq4QZ5EKkVl0kXdNjkawdY/gt/tw5idcsGE6p59jegzkshZW4VCo0adaECXZo5qBaBO0E+7BmNu2hUr276WiKBGEAThPH6PD2vP8LTXx1p7KLltDe3bDtGzt4GCjUspv38Dg/Wt+BxuzMXZZCxZEDUxepLKqCN3TRXpNSWEgiEUWiWyOB1ppTIZGrORrDiDGyHcuK3ud+9GJk5PGm/rDR8xLVkQLv3Vawh4/DiGxlAnGlAZdYSCQQyZySz963s4s/MoIyfP0Lm7joX3rid7VSVjrT1IJOEAaeRUJwf/62WKb1mJLs2MY3As7nq0SSaGT57BNWKJO+TSPW7D5/RgzE3DOTyBMevcbKKkBbmRvKB4rN2D6DOSsPeNIJXLMBdlAaBJMJBcXoA+I4kzO47Ssf0wALrUREy5aXGHe05yDI1jLs6e8hxDkQGUMoUcj9VBwaalkV47U+WsqYwqJw94fYw2d9P00vaowK/qkZujmhCeT6nX0PDcB2d/DtQs+/a9SA1avGerw5R6DVWP3kLdb94m4D2Xj6Uy6cL9ca5Qx+BriQhqBEEQziOVyaadeA3h1vtKvYbqR2+h6aUddGw/jEKnJq2qmLwbatGnm5GrlNM+vkQqiRwFXS73hD0c0EgkZNSWklyWF+5jopBj6R4krbqY1nf20fHh4cj3KPUaqr5yM5buIXoPNCFTysleWUHxrauQymWEAkFs/SPINSq0SUbcE3YGjoYrtoZPdlKwYQmNL2yL2cFKyM/AY3GgUCvpbZ2+ff/wiQ4qH74R+8AYSoMmUr4ukUgu2F8n4PUhk8uQq5VUfvlmVMZzuyRSmZSmF7cTmJKE7Rgaj/TLiRdgAWiTTVFf+z3n+u4EfOHHsvUMU/HwjfTsP5t3lGgga3kZHqsTv8uDe8KGOsGA2+Kg8YUPY3Zm2rcdoujmlTS98GHM86dVFTHR0R8JjnxOd3hq+LEW+o+eRiKB9NoFpNeUsPy792PtGsQ5YsGQlYI+3fy5Ltu+EBHUCIIgnEep15B3Q2383QMJZCxZiEwhJ7Ewi2Xfuid8NBMCpU6D0qCNGn1wOYKBAF6bC7/Hi0whR6nXxJQeTwY0ZffcgKVrkMYXPowEBubibJIX5GHtic7d8dpd1P3uXRbcdV1kbMHJV3eRVlNM7ppqjj37dlQgp9RrWPTQJoL+AK5RCwGfn5rHbqd920Gs3UPINSoyFi/AlJvGiZd3ULBpGXKVAu80sx/lGhUKvYak0hz8Hi9VX7mZ3kMncQxPYMhOwTbN7lhSaS7G7DSkcilSuTRSBRsKBhk83hoV0EwaamgjY8nCuEdQCq0aXWr0aANTbtq5L0LhwMgxPMHI6S4yFpeSVlWE1+bkzK5jmHLS8FgdTHT0sfiJuxiccjQ2lb1/FEvnALWP30Hb1oPYeodRGXVkLi1DoVNz+s2Pz/v7cYaPPc+aLD2v/frtpFUVx39ThSgiqBEEQYjDXJxF1opyeg+ciNwmkUkpu2dd5FhJIpWgNuln9LdmryNcxtux4wh+txeJVEJqRRFFN6+Ieh5Nkom0yiKs3UP0HYrukzPW2oPP5SZ/wxJa390Xdc3v8hDw+FDoNJGqnMT8TBr+9EHMzpTX7qL5rT1kLFkQeRyVSUfeulrK798Q/pDfeZTuvfUQguHGdtJrSmn/8FDM60oszCLv+hrsfSOEgiHcFjvDTR0kFmZiLs4isSCDY795K6ZLcEJBBs5RC23vHyDg9SGRSln+nXvRpZoJ+PzTNrEbPnGGiodvxGtzMtTYHrldZdJR/cgt4aqwKZQGHalVRQzVh5Ohz+w6xqIHN9K9p56uj4+H7ySRkFZdTGpFISde2UHA7cM1Zr1glVLvwRPkXl9D1Vduxu90M9bWS/+R09h6owM4XWoizpHYx3GNWhg5eYasFYtE2fYlEEGNIAhCHEq9lsIbl5O9qhJb7xBShQJDRhJKgzamFNhjc+IetzJyuhu5WkHywjxUBh1y9fRHUPEEAwEG61pomRKIhIIhButbcY1bqXrkZpRaDQBqo460mhIan98a97FsvSPkr1sct0mex+pAoVVFghqFXjNt3odjcCwqidljcdD85ifkXFeNISMpMiMKwNozRPbqChIKMqKqfrJXVaBNTuDoL9+MjFfQJJkovmUlZ3YcoXtPPTWP3c7Sb36Btg8OMt7Rh0KrJqO2FH1mMidf2RmpNgoFg3TtaWDBHWvwe32ojNMc44VCdO+tp+LBTRRsWop73IZMpUSpVSPXqmICBKVOTcmtq0nMz6Tz4zq8dhc9B5pYcOdanKMWQsEQapMer8OFc2iCsrtvwOf2MnK6E3NpTni3Jo7JhOGREx0Mn+okbVEh9v7RqPvIVEqKb13F6Td2x32M/qPNpFUVX/bU7R/+8Ids2bIl7mDJ7u7uKz6faTaJoEYQBGEaCo0KhUYVVSVzPo/VwYlXdjDedm5OUdv7Byi5bTXptaWR8muv3UXA50cilaDUa+JOYvbaXHTsOBJze3JZHpnLyhmsb8Pv9JBYmIkmyYTSoL1gabHH6kSuVsX0SdEmm/BYzzZ+k0jiduWdKhTnOXr3N7Hkr+5CqdfgtZ97/FOvfUTRzSvJXVvNaEs3aqMOfUYSx3//XtT3u0YtnHhpB4se2kT9H96j/+hp8m6oYdFDm/C7PFi6B+k7dJLO3XUxz23rGcLn8dG9p4HUyiIG69ti7gOQd30NMpWCic5B2j7Yj8fiIBQMhqd2378BfXoSEum54EZl0JK1opzk8nxCwSAypYKgz0/b1kMU37yCppe2R00b1ySZKL9vPSqjNn4zPQkU3bSS3kMn6NwZ7jMUCgSp+spNjLX14h63kZCfQdKCXDp2xM6CijzMZ5y6vWXLlrgTs6dO2J4vPtvBryAIwudYKBhi4HhLVEAzqeWdvXgsdvweL2NtvdT99m32/fvzHPjPl+nYcQSP1RHzPX6Pl4DXj8qki5SCJ5flk1SaS8Nz79Py1h46th/m6K/+QsNz76NQK5DKp/9nPFz5FD14UpeaSMDjO3d7KIRMpZj2Q3Ny7tL5gj4/XpuDsnvXRyXdhoJB7P0jhICCDUvJXFZG+5Rk5akCXh/WniGM2akMHGvGPWEPB5J6DcNNHXF7vACozUaCXj+9+5sYa+2lcNOyqOAEIGd1JcbsNOz9ozS9sA33uC1S3eQYGufor/+CeyJ+8o/KoEVt0qPQqFDqtZTcupL2Dw9FBTQQDsxO/+VjpAoFix+/A3NxVuSaxmyk+tFbURq0dO6qi9w+1tzN8T+8j613BJlKQWplIdokE0kl03emzl6xKKo30ac1OTH78ccfp7s7PCl9akATbwfnWiV2agRBEC6T1+4MdxaeRv/R06RVFVP37NuR2wIeL527jmHpGqTiwU0o9ZrINalCTuWXNuMctUS6Cyu0Ko49+05MIqq1Z5ie/U0U3ric1vf2xzy3xmxEoVWHAxJ/ACRgLskhd211TDWO1+4ia3kZQw3tZC4rw5CVAoBzaBykEkZOd0fum1iYRfriUuRqJXKtmv4jp8leVYHKpEcqkyKRyRhqbINgkKA/vAM03YBOIFJV5LU7IztGcqWC3OtqGG7qiPs9edfXAuHAqvdAE6mVRVR++WZcIxaCZ3di/G4vUrmUtm0HkamUGLNSCIWCWLuHCPoDBDw+hk+cIXdtFT6Xh1AwiFytiknylkglKHWaaZOY7f2jeO1O9GlmFj10Iz6nO/JYKoM2fDx3fhJxKMRERx90hIMvlUFHYmEmprw0LJ3Rc7tMeekkFmZO+/5dqqmBzZNPPslTTz017wIaEEGNIAjCZQuFQhecFu2xOqcdYjnR3od7whYJajw2B23v7WP4xJnIfUx56aSU50/bxK3v0EmWffs+xlp7GWs5F3hok00senAjAa+fqq/cjFylxO/xMt7eR9DnI3t1BWPN3UgVctIqi8KDJLVq0qpLaN96MDKSwZCdQsktq1DqtfQfPknxrasIeHy0vrsPn9ONVCEnY3EpCq2axj9vo+TWVYyc7CRjyQIGG9oxZKVE+u1M199GYzZi7R4iuSwfn+vcrpIuJYGFd19P89t7IkdsEpmU0tvXoE1JgGAQY04q1u4hhhraGGpoQ52gB4kE94Sd2q/djt/jI7WikOyVFUx09CGRSslZW43f6WaicwBDdgqDDW10720g4PGRsqiAjMUL0JzXX2hqj5h4JquvJo8rp5IpL/wxO3kMqTLqqHjoRqw9Q+HkdImErOVlGLNTo0rYP4ucnByefPJJ1qxZw549e+ZdQAMiqBEEQbhscpWCxIJMRpu74l5PKc+nfVtsJdAkS9cgxuxUgoEAfQdPRgU0EB5SOF2eBYQngUskEopuWk7BhiW4LXakchkeq4P6P36A3+Ol9I61mHLTaHzhw8gsI0N2Cgm56QQDQTp2HmXh3dcjlcmo/8N7kUReCPdpqfvtOyzZcjep1cV4bc5zlUBM7pScwGN1kr9+MabcdIL+IO0fHiK1oiiSO1SwcQmNz2+LWb9EJiWxMJPB+jZyr69BoT0XEMjVSsylOVR/9dZIx2SFVo3H4SLo86MyaCm5bTVHf/lmpGJq8r3SZyaHA5xgkNHT3ZGAL722FMnZ9917tiTbkJlMwO0Nl3APjtF74ARLt9wdSY722JzhXjcSSfzgUkIkgdfn8uBzuHAMTyBXK9EkGlAl6JFrVHF7HunTzVFdgVVGHSnlBeGmgBLiNmX8LLq7u3nqqafYs2fPvN2pETk1giAIl0muVlF40/K4OScasxFDVsoFg5LJD0Ov3UX33oaY646hcYzZqTG3T9JnJCFTKggFgjiGxzn12i4a/rSV5r98gsfqIODxceq1jwj6A1Ft/W09w3TvbaD3QBNeuxOpQsZYW09UQDMp6A/Qs6+RgvVL6DlvFMSkkZNnSF6QR+t7+5CpFJTevoakkmzcE+GcooT8TAo2LkUiPfc+yTUqyu/fgHvCzoI71zLc2BZpSOg5O7TSOTTOREc/Z3YdpeXdfYy396LSa7D3j2I/e2xV87XbIz1mZCoFWSvKKdy4lLZtBxlv64sENMnl+ejTk6j/4/v0HTrJaHM3HR8e5sTLOym6eSUKXXjHzOdw0bm7jsDZozD3uJXhk2dIqyyK+9rTKotQ6tV47U5a39vP/v/7Ig3PfcCxX7/FwZ++gmvUSs1jt8XMaVJo1ZQ/EB4wej6ZUjErAc1kDs3q1atjcmzmC7FTIwiC8BlokxNY8o27aXl3L5YzA0hkUtJrSslfvxiFVk1qZWHccl+JTBr5MA4FgnEDCp/TTdAfQJ9uxj5w3vGNBIpvWQUSCPgDdO2ui9s9NxQMMtzUQfFNKzj889djrweCKA1arN1DMdcmTXT0k7W8/IJVUq5xK/kbl3Ly5R2RQE4ilZC1YhH56xaTszY8GsI1bkMiAYlchmNgnKETHehTzRTeuBypQs54Rx+n39gd6dlizE6l5LY1SCTQd/gU9X98P9LR2JiTStHNK0hakEvOmiqC/gBDje00/OkD8tcvCffPOStzyUIa/hRb/u53eejcdZSSW1dz8rWdhAJBButbyV+/GJlJH+4DdPAk5fetR6aUM1DXQtAfCP89V5eE76dU0n+skf4jp6If2+3l+O/eZfnf3M+K7z7AaHM39sFREvLSMeVlxBxzzZZ4ScFTc2zm046NCGoEQRA+A5lchjErhcov3UTA40MikaDQqSO9bIpuXI6tdziqsZpEKqHi4RtRnt2ZkMrDeSfxBjq2bT3Akm/cTeeuYwzWtxL0B9Clmcm/oZbB+lZUhio8E/YL7gg5hsbJWVNJ/oYlnNl5JBIUSKQSSm5djVytjEpYPp9Cr0GquPDHhUKrpvH5bVHl46FgiJ59jagT9OSsrkRuNqIxGwkFQ3hsDpRaNebSbJR6LTK5DFv/KHXPvh3VgM/aM8SJl7ZT9cgtMYnD1u4hmv+yh8xlZTT+Ofp4S6aURwJFlUmHa0r10/ksXYMU3riMyi9upuml6C7SKpOeUDDIiVd2kFpZTPn9G86+eRJGT3eCRILH7qTzo7q4jx30Bxhr7SF7xSKyVy664Hs4W5555pm4gctkYCP61AiCIAhRlFo1xGmOpjRqqXr0FpxDE4x39KE26UkqzUFl0kcCH5VRR9FNK2I+mAFSK4ro2tNA0O+n7N51SCQSXBN22j88hGvMisqoQ52gR5dunrZCJ7EoC7lKSe7aKtKrS7D1DyORStFnJKHUa5ErFeSsrpy22ihj8QIcw+Mk5GcwcSa2zFpl1CGVyWL64Uzq/KiO1MqiSEfkyU7MU/k9Xjp2HI7pKAzhHY/RU51xn98xOIbapItpMmjrHSaxOJv+w6fCx14XmJgN4HN6OPPRMYpvXoF9YBTl2VwXQ1YKUoWcoM/P4PEWBo+3RL4nc1kZSn24M3NMj5opzi8Fv9IuFLDk5OTMm4AGRE6NIAjCjAkGggSnfLAGfH7GW3s5/LPXOPXGbux9Iwwcb2G0uZugL7qhXWJhJmX3rotKHDUXZ5OzupLxlm4G69toenE7jS98SNv7+yO7OuNnm7jlrq6Kuya5RhWZRi1XKdEmm0irLCZ1USFaswn52ZlSutRECjcvh/Pa1WQsWYBMpSDg9ZO3rhZNUvTUcIVWTdm96xjviD+uAMLHaCH/9AMrIVxBdKEjMFvfSLjqKQ6v3RUzQHSkuZvcNVXIlAp8Tg8J+enTPrY22RTO4+kLD/PMvb4aqXwy4NRS/egtMVVMptzU8NGTQo5ELpt2bRCuYhOuDLFTIwiC8Bl5bE7sA2P0HQrPicpcuhB9RhJ+l5f6594P7z64vZHf5m09w+hSEyPBBoSDg/SaUhKLss72WJGFE4lDIeRaFcSviA5XBFkdeO0uSu9YS8eOw/gcbiCcSFx+3/pwJdBFKLRqslcsInVRAWNtffgcLgyZyYy39yFXKWl4+X0UWjVFm1cgkUlxjlpQm/RozEZGW7vRJEyfH6I0aJHIYzsoTyWVy1AZ43TlnfIYPqc77jV1gv7clG2JBJlSTvUjt6BONLD0m19grLUHS88wGYsX0H/0dPQ3SyQUbFga6eTsGrVEJQVLZTJMuWks/5sHsA+M4rE6MGaloDLpI4nNKr2WoptW0PDcB7Hr1msw5aTF3C7MDhHUCIIgfAYem5NTr+1itPlcFclwUweJRZnkr1sS9zgFoGPHYQyZyVHzfCLHMqbo++ZdV03jnz8knuxVFZx8ZQceqxNTbholt6xCqpAjkUrQpiaiS0645NciVysJBoJok030tHTjGBpHrlZi6x0mFAzhtbs4+dou5GolKqMOr8NN0OdnwV3XIZVJo4ZkTpW/fsn0M5rOUmjV5N+wmIZpZlml15ZS/4f3Ym7XpZmRKRUs+cZd4Z0ynx+lTovSoEGmkKNLTUSmVHD0138hZ3Ul5fetp+uT43hsToxZKWStWETf4ZM4RyYA4g4nlcpkaBINF0zsTchPZ+E962h9b1+kfNuYk8qiBzei0KoI+HwzXtEkxBJBjSAIwmdg6RqICmgmjbf1kVJegDYlIW5OhWvUesG5TVMl5GeQVlPCYF1L1O2511WjTzNT8cXNnHx1F5auQSxdg2jMRhbec0PcD+ig308oBDKFnFAoHKhMzjkK+PwEvL7w7kJeOtaeIXSpiTEjHfxub1S1lj4jiVAwRO3XbqPpxe2RDsJSuYzc66pJrSiIGiAZCoXwWB24xqx47S60ySZURh2m/HRy1lTSvedcebtEKmXBXdehTTaRXJYf7lY8Wf2UnUrhjcsIBoK0vrcfa89Q5P3KW1cbPpKSSFDq1CSX5dHyzl5y1laRt24xPqcb59A4J17eEXktEpn0so+K/O7w+1bx0CYkUgkKnQaZQoG1e5C+w6eQyqRkrViEISslssMjzDxJKHSR7Kl5xGq1YjKZsFgsGI3Gi3+DIAjCBfjdHuqf+2DaGUXGnFQSCzLjDmVMLMqi8uEbIzOeLsbrcOOx2Bk53YlUKiVpYR4qoxaFJrzT47E58bs8hEIhFFp1zAenx+bA1jdC78GTEAqRsWQBKqOOk699RMjvp/jW1cgUcuRqJfV/fD8ypFKhU1N8yypOvrIz7rr06WZqHrs9Uj3ltTsjOzgKrTpmqnkoFMI+MErdb9+N2tVJKMhk0QMbkCnkeOwubL3DSOUyDJnJKPUaZEoFfrcHx7AFz4QNqUKOfWAMuVpB/9HT2HpHAEitLMJclEXr+/sjwYpMpaD0zrWMt/YyWN9K5Rc307H9MLa+kcjzS2RSqr58MwmFmcguclR2PsfQOEd/9Zeo47GKL22m48PDMZ2Uk0pzWHjPOhHYfEqX+vktdmoEQRAuUyhITMLvVEGfH6ki/gdk4aZllxzQeGxOnCMTjLX0oEtJwJSfjkKrjkqOVRm0035QemwOTryyk/HWc8m8o6e7MOakUrBhCXK1ktNvfkxqRSG23pGoqds+hxuCIXSpiXFnOBXfujqqHDwYCOIcHmfweBtyjZLMZeVokozh6jDCU83rnn0nJj9moqOPtm2HKL1jDbqUBHQpCXjtLjxWB7b+UVTG8JBJqVxK45TZVVVfuTkS0EgVctJrSqh/7lwvGwgnIZ98eSe1X7+DkVNnaHppO0U3rSBXo8Y5OoE6wUBCXjpKo+5TBzReh4sTr+yMej2m3DTsfSNxR0OMNndj6xtGtSDvUz2PcGlEUCMIgnCZ5BolaTXFkWOP86VWFZNcnk//0eaoVv+ld6xFl5Z4Sc/hsTpo/PNWLF3Rz1F6xxrSa0qQq1X4nG68DjehQBC5RknQ58c9YcdjcaBLN+MatUQFNJOs3UP4HG6GT5zBPW7DlJsWNQZhUst7+yi/fwNDDW0M1rcSCgTRpiRQcssqjGeHXwK4LXbqfvtO1HFb/5HT5F5XTd71NSi0apzDE9Mm/A4eb6Fg/WLkZgXuCTuNL2yLqohSJxqoeuRmUiqKGG5sQ6qQR83eSikvYKCuJSqgmapnfyPLvn0fjsExJBIp2lQTyeV5yOSX/1Hoc7qx9UaX0ictyGOgLv7Mr/A6mkgszBQ5NrNABDWCIAiXSSKRkFKWT/eehkjQMkll0mFITyLkD7LkG3fjc7gIBc8eDRm1USMDphMMBOk9dDImoAFofmsP5uJsPDYnJ1/dhc/pYcEda+jeW8/o6S4kMhmplYVo0xLpPXhi2ufoP3oKc0m4Kdt0Sc1+l4fG57dS/sBGUhYVEPIHcFsdtG8/TOUXNyNXKwn4A/TsbYybP9T18XHSqorDlVoWR+wTnBUKBAn6A/jdHprf+iSmxNs9bqPhjx9Q89htaBL19B44ETVAUm3SMdbWM+3jO4cnkCnkJM/gLsnU3jiTJFLJtI3+It/zuUn8uLJEUCMIgvAZqBMM1Dx2Gz37Ghlu6iBEiJSyApIX5nLqjd1IZTIW/9Vd6NOTPvVj+xwueqeZtwThhnH1z72P3+Wl+pGbaXppR9QuSPcn9Si06qjeOecL+oNIzwZYXrsTTZIR12hsZ+OgP4BUJqXh+a1RH+SucSvqBD0+p5u+wyfjPkd6bSlBf4CR012ozRfIh9CokCnleB1uRk53xr2Pa8yKz+mmYNMysldWEAoGMeWlY+kcwD1hR5ucEDmOOp82JYHLSSP12ByEAkEkUmnMxGy5WhVT9TXe3kfygry487wgXPIvU4pdmtkgmu8JgiB8RgGvD9eYldzra8i/oRaPxc7xP7yPx3KuwudyhEIh/O7Y6c4Q/oC29Q3jc7hJLstjqKkj7rHOcFM7qRWF0z5HamUR453hROee/U0UbFga04APIKWiEEv3YMzOhPdsj56g14d5QW7M9+VvWIJSr+Hor96k/g/v4RgcQ5+ZHHctBesXozToCHh9F9zJ8FideG0O5FoVGrORRQ9sxFycxfCJDtKqS8ITtc8nCXdGDnhiZ2xNx+twM3C8hSO/eJO9//Y8R37xBv1HTuOdEsCojDpKb18d9X1jrd0kFmdHDRGdpM8wi2Z8s0gENYIgCJ9R0B9k9HQXLW/vofmtPYyc6oxqyx8MXFrp9vlkSgUJBZlxr2mTTFjP7kiY8tIZbe6Kez9b7wj6dDOaJFPMNXWCHnNRJvq08C6Sc3iC4ZNnqPziZhIKMpAq5GjMRkrOTt2ON99IplRw6GevcvCnr6AyaCm9Y03kmsqkR5NooOvj44SCISRSKa5xK+X3rSelPD8SfMjVSopuXklaTQlSmRS5Shkz1XoqiVTC/p+8RPvWg3hsTtQJehY9uIll374PpU5D5RdvjOrMrNCqWXj39WdHHMQJeOII+Pz0HznJiZd2RI4W3RN2Tr62i559jeHA6+xazCU5VH/11nCwJpGgTjDgnrBR9eWbyVlTiSbJGM5Bum01VV+5JW6pvTAzxPGTIAjCZ6TUqWNmD02SymWRyp9PS6FRUXzzSg7//PWYHA2pUo7ubGv+UCAYaesfT/+xFioe2sRQUztD9W2EQiHSa0pIrynF5/KQsXgByQtyad9+mOHGdmy9QxTdtILim40EvH78Xi8Nf4ztlmsuzcHWN0IoGCQUDB935V1fQ9KCXEZPd5FeXUzfofCRlEQqofz+9Yyc7OTwM2+QsbiUyi/eiEQmRZtkQp1oQCoLBzJKg5aslRV0fxKbtJxQkIF9YIyQP0D/0dOYctJIKMpErlKiS0nAOWqh+a06Sm5dHR7CGQoRDATo3d+EZLJL8yXw2px0bD8S91rn7joyFi9AYw4fISk0KpJKctAmJ+C1OXEMjtFf18LEmQGKNi8jd211pHeNJN4ukjBjRFAjCILwGSn1GvKur+HMzqMx1/Kur41M474c2pQEln7rHqw9wyjUykgibfLCfIKBAO0fHmLkVCdpVUVxnx8gqTgbv9uDa8xG9VdvRaZUEApB36ETDNW34hyxoDEbKbp5JQqtGq/NwVDTGXQpCaRXF2M7PULxLavo3lOPx+pAplSQvriUhPwMTrwcPdW658AJKr94I5auQdSJBtxnB0Cm15Yy1tLDYH0rAL37myL5QvrMJKofuTVSki5TyMm9rgqpVEL3vkaCPj8SqYTksnzSa0tpenE76bWlpCwqYOBoM50f16HPSCJ3bTUqo5b02pKYdck1Kpb81V1RicUX4nO6p22OGAoEw/lH5+UHaRINqE3hAaPm0hzkahVylciduZJEUCMIgvAZyZQKsldVoE400LH9CB6LHXWCnoKNS0lakBvVfO7TCoVCBNxe+g42YesdQa5WkrWqAolUgkqvp/qRW2j401ZyVldiyEyOaigHkLKoEF1qIl17jlO4cQnaJBPOUQvj7X34XR6yli9CbTbQsf0wjc9vperRW1CZ9BRuDOfCKDRqUhVy7AOjlN6+BrlGiVShoPOjYzS9uD1m+nXA40Wh01B27w1IpDL06Ul4LA6SF+ZF9ZeZyt43itfmjOqzo9JrKdi4hMzl5XgsdnxON2MtPTS98CGmvHQMWSlRs5bs/aMM1rVQ+eWbSasuwZSbTs+BJjwTdswlOaQsKrikGViTLnT8Fb4e/+80XjKxcOWIoEYQBGEGKHUaMpcsJKkkh2AgiFR2eR9ufq8Pn91FwOtHrlHiGrFw7LdvRxJn/W4vnTuPYjnTz6KHNpGQn8Hy796Pa8zGwi/cgGvcxsCxZqRyGZnLysLJqiEouXU1Sp0Gx9A4x37zVlTyskylZNEDG2h9fz9t7x8gvaaEtg8OUHLbatIXL0Bt0qM26fF7fUilEiY6Bxk5eSbu+qVyGV67k4bntiJXKym/fwOjzd2EAsG4x3OT3BY7hvMSiKVyOZrEcH5Kw5/OzYTKWrGIk6/sOP8hCAVDnHr9I5Y8cSeGzGQW3LmWUDB8NPdpj30UOg0aszEyDX0qlUmHYkrDQeHqIRKFBUG4Jvzwhz+kuzt2xhJAd3c3P/zhD6/wiuJTGXVoEg2XFdB4rA5a3tnL/p+8yMGfvsxQUwfNb++JWwk00dGPe9yOVC5Dk2DAXJiJITOZ1EUFVDx8I+UPbMBclIUuOdydV6nT4LW7aHrxw5hqrIDHy6k3d5N3XQ2OwbHIsUrLO3vxWOyR+8mVCqRyOdpk07RHahlLFjJwNNx4zu/20n/0NOX3rkOqlF+wN8+F3i+VURfZZZnsARPw+uPe12tz4pqwEwwEkMpkyBSKy8pjURm0VJztwTOVTKmg8ks3oRa7MVclEdQIgnBN2LJlC48//nhMYNPd3c3jjz/Oli1b5mhllybgD+C1O6M64E7lc7o59ebH9B8+RSgQRJ2gR59mjjuaYNJER2yXYIBQIIBnwo5jaBy3xR5JMvY6XNgHYlv3A3itTuQaZXhSt+9cwDB4vCXmvmqTnprHbos5zkkpzyd7VQVDje2R24abOnCOWlEZdaRWFcV9bm1KwgWDGplSwcIv3IA2ObaCK56Ax4vX5ryk+16IPt3Msm/fR9l968laWcHCe25g+d/chyEj+ZoJsj9vxPGTIAjXhJycHH7961/z+OOP8+tf/5qcnJxIQDP59dUoFAziGrfRs7+RseYe5FoVuWurSMjLiJqZ5HW4GT3ViVQhD/c9CQGh0LRVVRA+Ijmfe8JO6/v7GW5qj3QwLty8nJTygotOBQ94/WQuL4sk8wLT9tjRp5lZ/I278Vod+Fwe1CY9Sr0mMvV7kkQqwZiTyuGfv86iBzfhd3sZPXWusZ4+I4mKh2+84IBHpU7D6ISd7FWVqEw61CY9MqU87m6NUq/B7/YS9E9/1HWpJBIJmkQDmkQDGbWlUdcmg+zzf/am/kwKV57YqREE4ZoxNbDZu3fvVR/QADhHLBz62avhEQIjE1i7Bml8fhst7+3D6zjXLM9jDY8PWHDXdfQfbebUG7sZrG8lpbwg7uNKpBIS8jOibvPYnNQ/9z5DDW2RkQc+p5vTb+xm5OQZFBpVuMw57gNKUBl1pNeUMtpybtRAcll+ZNr1+dRGHcbsVJJKctClJoancus1mPLPNZczZKcy0dFHKBDkxEvb0acmUvXIzSx6cBNVX7mZ9MULpl/TlNeavDAX58gEJ17ZTtu2gxTeuDzuayi6aQWD9a3TDhKdKVN/Fid3bK6FIHu+u+aCmp/97Gfk5+ejVqtZsWIFBw8enOslCYJwBeXk5PDkk0+yZs0annzyyav6w8Njc9Ly7j4CHl/MtcG6lqh8FYVWhS41EZ/DjaVzIHyf461kLC6NPXaRSCi/fwMqY/Tuhnvchr1/NO5a2rcdRCKXkb9+cdzrmcsWEvB6GW/vixwF6VIT8bu9NL28HeeoZdrX6XO6cVvseG1OFFo1i+7fEOmaK5PLI68/6A/QubuO+j+8T9NL26n/4/u0vrM36rgrnoA/QMAXILksn4oHN1N80woSi7NZ/MSdpJQXoE83k1ZVRNVXbmb45BnSqoqvSAXSXAfZ4ggs1jV1/PTiiy/y/e9/n2eeeYYVK1bwk5/8hJtuuonTp0+Tmpo618sTBOEK6O7u5qmnnmLPnj089dRTV+1vxX63F/eYlbHW+B86AMMnz0QqfpR6LWk1JQw1tkWuB/0BTry8k5JbVxEMBrH1DKM2G0gpy0dl1MVMebb1x595BOFjpIDHR2pFIVKZjO69DXgsdhQ6DdkrF6Ey6qh/7gOKNq9ArlaQVFpGclk+J17egd/lwdYzzNItX0CdaIg8ps/txd43TNsHB7EPjKJOMJC/YQnm4iwqv7QZn8ON3+0l4PXFDtU8WwpuykufdhQEgN/jZfR0Fydf+yjSr0abkkDuddUk5GVgzElFl5aIe9zGqdd2kbd+MckL865Yk7upQfaePXuu6M+iOAKLdU3t1PzHf/wHTzzxBI899hjl5eU888wzaLVann322blemiAIV8DUf6xXr14ds/1/NfHanXisjgt+uEpl5/4JVhm0pC4qjMl78TndnHhlJ+0fHgKphKxl5cg1KlzjNqy9w7jGbQTO7nRcqP2+RCZFKpciUyqwdA2Sv66Wioc2UXTTcsbbezn1+kcQAnNxNkU3ryS5LI+gz8+CO9eSUl4QzvlpOfc+h4JBxpq7OPabt7H2DBH0B8LHQy9tp+vj40jlMnSpiZhy09AkGTFkpcSuSSol97pqevY1TTt00zVuo+ml7QR9frJXVYT70FSV4LW58Ht8pNeWkl5TSu511Sz95hfIWlZ2yV2DZ8L5QfaV/FkUR2CxrpmdGq/Xy5EjR/jBD34QuU0qlbJp0yb27dsX93s8Hg8ez7nfAKzW2H4DgiBcG+L9Yx0vefhqMdE5gK13hKTS3PAsqDiSF+ZFfa0xG0mrKop7hOS1OsNt+J1uGp/fGrmPVCEn74ZaspaXoU83Y8xJw+d0xUzazqhdgFKvRaaQk71qEcd+83ZM47ys5eV4zrb5797bgNfmjHQPXvTARgbrW8hYvACpXIbH6qT5rT1xX1fXJ/VkLitDrgqXQ0tlMgo2LWOstZuBo8343V4SCzIo2LSUoC9AWlURjqFxlHpNVMJw0B+gZ28DhKBw83LcEzbq//Be5Hrb1gMU3rj8bCBzaZVRM+n8n8m5+Fmc+rxPPvnkVb17eSVcM0HNyMgIgUCAtLS0qNvT0tI4depU3O/58Y9/zFNPPXUllicIwix75pln4v5jPfmP+jPPPMPTTz89R6uLIxRioK6ZiofDIwPOn6CdvboClTF6Z0UilZBWVULvgRO4J+xR1zRmI0mlORz95ZtR5cpBn58zO46QWJCBTKkgraqIUDCINiWRvsMnGTlxhoT8DPI3LIl0NjZmp7Lsr++hffthrF2DqIxa8m6oxZSfQf/hU3RsPxx5/IDXR+/+JtzjNtJrSyO9ZnwuT9yp4JOv3TlqQZtkwu/xEvD6Cfn9mIuySa8qxmt3Ewz4mejop/OjY5EqJo3ZSMXDm9CnJyORSgj6/ThHLKjOVla1bz0vhzIE7VsPkliQiSn3yu3OwNUVZM/lEdjV5poJai7HD37wA77//e9HvrZarZ/rv2xBuJZdKGDJycm5ugIawJSXQcDjo/mtPZTfv56Jjn7Gz/Sj0KhIry3FlJuGQhs7h0idoKf2iTvpP3SKgbpwE7v02gWk15bgGByL23+l7J4b6Nxdx+jpc5O6JVIJC+66nsJNy1DqNFHl4zKFHENmMose2EDA40UilaHUa3BP2Oj6pD7u6xk93UXhpmVIpOHjtKlHZ/HIFAo8didndhwN59Oc3RVSGrSU378en9NH+7ZDUd/jGrNy9Ndvsfw796FJNCJVyDFmp2LKSYs09Iuna0895RnrP9M4ik/ragqyr5U8syvhmsmpSU5ORiaTMTg4GHX74OAg6enpcb9HpVJhNBqj/giCIFwJSr2G3OtqcI1aOP7797B0D2HKSUVl0qNNNl0w/0WTYCB/w2KWfONuFv/VXZhLszn1+kdMdPTH3NeUm4ZrzBoV0MDZkQFvfIREIokKaKaSq5SojPrIdb/bS8ATv3wbwvktkxRaNbo0c9z7yVQKNGYDQ/Vt9B5oijrm8tqc2PvHpg2eAh4fo83h/BCpTEbW8jLkWhWeCzTT81gdhC7Sg2emPf3009MGDlcyyL6W8syuhGsmqFEqlSxZsoTt27dHbgsGg2zfvp1Vq1bN4coEQRBiKTQqcq+rovqx20gozMRrdxL0B8hdU4kuNfGi3y+VyVAZdYQCQY79+i3cE3bU5thfzNKqS+g7Ev8InhAM1MV2BJ72OS8yxFGpO3fEo9SHh1aeP0ZAIpWy4I61+N1ezuw6FvdxVEYtzuHpOyVbu8/98qpONJC0IBdTzvQVrokFmXjOJmZ/nlzsCOzzGNhcU8dP3//+93n00UdZunQpy5cv5yc/+QkOh4PHHntsrpcmCIIQQ6nTkFScjSk7haA/iFytmHa683QsXQOEAkHc4zbUJh1ytTKqGZ5crZy26y+Ae8JGKBS6pBJnhU5DYlEW422x4xcUOnVUOXfQ72egvo3yBzbgGrGg0GtQm/RIZFJ8Tnf4jyP+ujxWBxqzEedI/N43hsxzlVJSmQxDehJ519cw1NgeUx0mUylIKMjgwH++hCbRSNVXbr6koHE+uJqOwK4W18xODcCDDz7Iv//7v/OjH/2Impoa6urqeP/992OShwVBEK4mcrUKpV7zqQMaAI/tXGDQ/uHhs033zjWWcwyOYcqZ/t9AU246fnds8794FBoVC+++PjLQcpJMpaT60VtRGc49b9AfwNY1SOu7+9ClJ9G9t4Gjv/oLR555g5OvfoRULouZDTWp/8hp8tbFbwIoVchjqsIANEkmFv/VXVGTvE25aSx6cCNtHxyAUDgnp+637+C2zM2OzZVuhne1HIFdTSShUCjO/Nf5yWq1YjKZsFgsIr9GEIQrxmt34rY4sPUNozLo0KWZURl1F022BbB0DXLkF29EvtYmm8i9rgaFVoVEKkWdoMdrd1H3u3dipnmrTDoWfuEGTDlpMcdEF+K2OnCNTGDrHUGTZESfkRzehZGe2+0JBoKc2XEYQ1YKp17fHVMJZchMJmvFonD/m/ModBqWfvMLDBxr5syuo5HZVkq9hsovbsaQnYJUFv8ozOtw4bW7cI5YsPeP0HfoZMxO1eIn7owZIXElTNcj5vPeO2YmXOrntwhqBEEQZpHb4qDpxW1YOs/liciUCqofvRVjTupFAxuvzUnD81uxdEUXSUjkUhY/cRenXt1F/salEAjSsfMIzuEJkEhIKs0he2UFoVCQ5AWxOx8zwTVhY7ixndb39se9XnpnOLemc9fRSNm2PiOJRQ9sRJeaSMDrw2t34bE5kcplZ/vU6KKCp3jsQ2Mc/M+Xp71edt/6mAGUV8r5AczlBjQ//OEP2bJlS9zv6e7u/twdLV3q5/c1dfwkCIJwLQn4/JzZdSQqoIFw75fjv3/nkhJblQYtix7aRM6aysjgR21KArVfvwNL5wCOoXGCPj8jpzvJWlZOxcM3UvHwjWgSDfQePhmVnzLT1EYd9sGxaa83v7UHY3YqZfeup/rRW1n+N/dT89XbIjkvMqUCjdlIQl46xqyUmN2g6ciUCmRKxbTXY2ZlXUEzNQ9qcgTC+cdZk0HSli1bZnLZ84YIagRBEGaJ1+6atr9KwOvH1jf9rKap1CY9hZtXsPJ7D7Lqbx+m9ut3kJCbHgkATr+xm4T8DGRqBYPHWxk83oIhK4Xim1ZEdeidaRKp9IJJuWqTDsfQOI1/3sbJ13ah0KiQSCU4hiew9gzhHJnA55p+7tN0VAYtuWurAPjNrjcYsp4LrLQpCZFcnrka6jgTQ1fFCITLI4IaQRCEWRIKBGKqdabyWO3TXjuf7GzircZsjAQq5qJsIJy0e/rNj+n48DBShRypXMZoSw/KKzADKaWsAMk0R2hZy8sZOHYaCA/sDPoDNL20nQM/eZHDP3+d/T95kZOv7cLzKRN7pTIZWSvKyVlbzV3L1vN/3nmOIesYCYWZkYTmudzRmKl5UHM9BfxaJIIaQRCEWSJVKKIqlc73WY+GlAYt+evPVRF5rA4Gj7cwerqLgvWLkWtiOxZ/GqFgCLfFjq1/FMfQON44JdqqBD3Vj9wSfRwkgfTaUmRqJbbe8G5UyW2rOPX6R4y19Ex5Ahg5cYbmd/ZccFJ3PEq9lsJNS7njR1v4w4vP8+vGD0m4biGaRMOc7mjMdDO8mdj1+TwRicKCIAizJBQKMXi8lRMv74i5ps9IOrur8NmOh7xON86hcbr31OOxu0gqzSG9ugR1ouGSetNMx+/xYuka5MQrO/GdrS7Sp5spv38DujRz1GMHAwG8NifOEQsemxOFVs14ey/DJzrwOdwYs1MouXU1B3/6Svwnk8DK7z2ENtmEx+og6A8gkUpRGrSXVCEG54KJuRzqOBvVT1fD67oaiOqnOERQIwjClTC1csXn9DByupO2Dw7gtTkZtk2wvaee/3r2F9P2cbkcAZ+fkD+ATKWIDJ28HF6HC4/FwcjpTkKBIMacVEZPdYXnNxFu9rfs2/eiSYz/b6jP6cHrcOEet+Ias6FNNqExG/E63Bx55vVpn3f539yPY2CUtq0HcU/YkWtU5KypJHNp2SUHfnv37o0MdVy9evWnf/Gf0UxXLM1UJdV8IIKaOERQIwjClXD+h08oFMJjddDZ0cG3v/89fvnLX1FQXDjXy4zhtTtpeWcfg/WtUbfnXlcNQNfHx4FwqXb2ikVxH8M1ZuX4H94Ll5afpU7QU/XILRz//btx82fMxdkkLcyj5e09MdfSqovJu6GWnv2NBDw+0mtK0KcnxRzrzbcdDdHzJpoo6RYEQZgj51euSCQShq3j/M0//B3P/v53V2VAAzDW2hsT0EA4mDFmpyJThfNmxtv7iPf7sM/p5sSrO6MCGgD3hJ3G57dSdPPKuM+bs6aKjg8Pxb02eLwV94SdvkOnGDzeyvHfv0fD81ujugbPx6GOlzICQYglghpBEIRZcK1VrngdLro+rpv2+nBTO8kLcgHQn5dTM/UxLGcG4n6/c8SCNsmEKS96pIO5OBuFTh01z+p8HosdxZSkZ2v3EIPHWwgFQ/N2qKMYgXB5rqmBloIgCNeSqZUre/bsuWoDGoBQIIj3vFEHU3kdbjRmIxKplLSqorj3mewaPJ2A10fll27C53Djd3uRa5QodBp8jumfF0CuUhLwRT9274Em0mtLxVBHIYrYqREEQZglM9Wv5EqQa5SRvjfxJORn4BiZoOqRm1GZ4ic4KzSqaXvWACh1aoL+IGqzEVNuGrqURJRaNUqdGlN++jTrUhEiRPC8oCbg9RMKhsSOhhBFBDWCIAizYLbzPGZ6IrRMoSDv+hqk8thBkgqdhtSKAhbdt57Egkxkivib/Aq9hqzl5XGvJZfnM1DXwoH/fJG2Dw7gnjjXeFChVVN2z7qYYEmmlFN2zw2RBOWox1uYi0L72frwCPOPqH4SBEGYYVeicmU2niPoD+AYGqf5nb1YzvSDREJyWR5519UwcrqLpNIctEkmlHrNtI/hsTnp2d9Iz94GAl4/UrmMtOpikkpyaHp5R2QitzbZRM3X7kBtOlfF5LbYsQ+MYe0eRJucgDE7hfYPDzHU0B71HDKVgmV/fQ/a5IRP9fqEa5co6Y5DBDWCIFwJV2rC8mz1MfE53XidbtwTdkZOnGGgrpmAxwdAWlUxxbetQqWfvndMwB9uxhfwePE63AwcPc1gfRuhYDDqfhUPbyK1In5+ziS3xU7fwRP0HjpJ0OcnuSyfgg1LIvk9wueDCGriEEGNIAjzzWz1Z+k/1szJV3bGvVb96K0klV78OdwWOwf/6+VpK5tSygtY9PAmpBcJToKBAF6HG0Ih5BoV8gtM6L6QKxVsCjNP9KkRBEH4HJiN2UBeh5uevQ3TXu/e10DA67vo40ikEuRq5bTXFVrVJY1ykMpkqI061Cb9ZQc0AFu2bImb1zSXwy+FmSWCGkEQhGvYrFRYhYIXDFoCHl/MUVI8Sp2WrJUV017PXF7+meZTfVrx+td8Xjv0zlciqBEEQbhGzVaFlVyjImXR9F2P06qKkamm34GZJJFKSK8uxpQXW66dt24xmkTDZ1rn5bjWmiIKn47IqREEQbgGzXaFlWvcxuGfvxbTGE+doGfxE3eiTrj0gMRjc+IYGmeosQ25WkVaVRFqkx6FVn3Z6/us5nr4pfDpiJwaQRCEeWy2ZwNpEg0s3fIFMpeVIVMpkWtUZK+upPZTBjQAKoMWc1EWC++6nuKbVmDISJ7TgOZaaooofDpip0YQBEGYVsDnx+d0AxIUOjWyOM35riWzVQZ/NZmPVV5ip0YQBEH4zGQKOWqTHrVJN+8CGpgfwy/P93mu8hJBjSAIgvC5MNtHdleLz3OVlzh+EgRBEIR5aLYaM86FS/38jj+VTBAEQRCEa9rUxox79uy5ZgOaT0McPwmCIAjCPPR5rPISQY0gCIIgzDOz1ZjxaieCGkEQBEGYRz4vVV7xiKBGEARBEOaRz0uVVzyi+kkQBEEQhKuaaL4nCIIgCMLnighqBEEQBEGYF0RQIwiCIAjCvCCCGkEQBEEQ5gUR1AiCIAiCMC+IoEYQBEEQhHnhmglqnn76aVavXo1WqyUhIWGulyMIgiAIwlXmmglqvF4v999/P9/85jfneimCIAiCIFyFrpkp3U899RQAv/vd7+Z2IYIgCIIgXJWumaDmcng8HjweT+Rrq9U6h6sRBEEQBGE2XTPHT5fjxz/+MSaTKfLn/DkYgiAI89kPf/jDaYcXdnd388Mf/vAKr0gQZtecBjX/+I//iEQiueCfU6dOXfbj/+AHP8BisUT+zOfJpIIgCOfbsmVL3KnMk1Oct2zZMkcrE4TZMafHT3/7t3/LV7/61Qvep7Cw8LIfX6VSoVKpLvv7BUEQrmWTU5kff/zxyNTmyYAm3hRnQbjWzWlQk5KSQkpKylwuQRAEYV6bGtg8+eSTPPXUUyKgEeatayZRuKuri7GxMbq6uggEAtTV1QFQXFyMXq+f28UJgiBcxXJycnjyySdZs2YNe/bsEQGNMG9dM4nCP/rRj6itreXJJ5/EbrdTW1tLbW0thw8fnuulCYIgXNW6u7t56qmn2LNnD0899ZTILxTmLUkoFArN9SKuFKvVislkwmKxYDQa53o5giAIs+78HBqRUyNciy718/ua2akRBEEQPp14AczUHBuxYyPMNyKoEQRBmKeeeeaZuDsyk4HNM888M0crE4TZIY6fBEEQBEG4qonjJ0EQBEEQPldEUCMIgiAIwrwgghpBEARBEOYFEdQIgiAIgjAviKBGEARBEIR5QQQ1giAIgiDMCyKoEQRBEARhXhBBjSAIgiAI84IIagRBEARBmBdEUCMIgiAIwrwgn+sFXEmTEyGsVuscr0QQBEEQhEs1+bl9sclOn6ugxmazAcQMdxMEQRAE4epns9kwmUzTXv9cDbQMBoOcPn2a8vJyuru75+1QS6vVSk5OjniN1zjxGucH8Rrnh8/Da4Sr93WGQiFsNhuZmZlIpdNnznyudmqkUilZWVkAGI3Gq+ovbDaI1zg/iNc4P4jXOD98Hl4jXJ2v80I7NJNEorAgCIIgCPOCCGoEQRAEQZgXPndBjUql4sknn0SlUs31UmaNeI3zg3iN84N4jfPD5+E1wrX/Oj9XicKCIAiCIMxfn7udGkEQBEEQ5icR1AiCIAiCMC+IoEYQBEEQhHlBBDWCIAiCIMwLIqgBPB4PNTU1SCQS6urq5no5M+rOO+8kNzcXtVpNRkYGX/nKV+jr65vrZc2YM2fO8PWvf52CggI0Gg1FRUU8+eSTeL3euV7ajHr66adZvXo1Wq2WhISEuV7OjPnZz35Gfn4+arWaFStWcPDgwble0ozZvXs3d9xxB5mZmUgkEt544425XtKM+/GPf8yyZcswGAykpqZy9913c/r06ble1oz6+c9/TlVVVaQZ3apVq3jvvffmelmz6l/+5V+QSCR873vfm+ulfGoiqAH+/u//nszMzLlexqxYv349L730EqdPn+bVV1+lra2N++67b66XNWNOnTpFMBjkF7/4BU1NTfzf//t/eeaZZ/gf/+N/zPXSZpTX6+X+++/nm9/85lwvZca8+OKLfP/73+fJJ5/k6NGjVFdXc9NNNzE0NDTXS5sRDoeD6upqfvazn831UmbNRx99xLe+9S3279/Ptm3b8Pl8bN68GYfDMddLmzHZ2dn8y7/8C0eOHOHw4cNs2LCBu+66i6amprle2qw4dOgQv/jFL6iqqprrpVye0Ofcu+++G1q4cGGoqakpBISOHTs210uaVW+++WZIIpGEvF7vXC9l1vzrv/5rqKCgYK6XMSt++9vfhkwm01wvY0YsX7489K1vfSvydSAQCGVmZoZ+/OMfz+GqZgcQev311+d6GbNuaGgoBIQ++uijuV7KrEpMTAz9+te/nutlzDibzRYqKSkJbdu2LXTDDTeEvvvd7871kj61z/VOzeDgIE888QR//OMf0Wq1c72cWTc2Nsaf/vQnVq9ejUKhmOvlzBqLxYLZbJ7rZQgX4PV6OXLkCJs2bYrcJpVK2bRpE/v27ZvDlQmfhcViAZi3//8FAgFeeOEFHA4Hq1atmuvlzLhvfetb3HbbbVH/X15rPrdBTSgU4qtf/Spbtmxh6dKlc72cWfUP//AP6HQ6kpKS6Orq4s0335zrJc2a1tZWfvrTn/KNb3xjrpciXMDIyAiBQIC0tLSo29PS0hgYGJijVQmfRTAY5Hvf+x5r1qyhoqJirpczoxoaGtDr9ahUKrZs2cLrr79OeXn5XC9rRr3wwgscPXqUH//4x3O9lM9k3gU1//iP/4hEIrngn1OnTvHTn/4Um83GD37wg7le8qd2qa9x0n//7/+dY8eOsXXrVmQyGY888gihq7yR9Kd9jQC9vb3cfPPN3H///TzxxBNztPJLdzmvURCuVt/61rdobGzkhRdemOulzLgFCxZQV1fHgQMH+OY3v8mjjz7KiRMn5npZM6a7u5vvfve7/OlPf0KtVs/1cj6TeTcmYXh4mNHR0Qvep7CwkAceeIC33noLiUQSuT0QCCCTyfjSl77E73//+9le6mW71NeoVCpjbu/p6SEnJ4e9e/de1dunn/Y19vX1sW7dOlauXMnvfvc7pNKrP16/nL/H3/3ud3zve99jYmJillc3u7xeL1qtlldeeYW77747cvujjz7KxMTEvNtNlEgkvP7661GvdT759re/zZtvvsnu3bspKCiY6+XMuk2bNlFUVMQvfvGLuV7KjHjjjTf4whe+gEwmi9wWCASQSCRIpVI8Hk/UtauZfK4XMNNSUlJISUm56P3+67/+i3/+53+OfN3X18dNN93Eiy++yIoVK2ZziZ/Zpb7GeILBIBAuY7+afZrX2Nvby/r161myZAm//e1vr4mABj7b3+O1TqlUsmTJErZv3x75oA8Gg2zfvp1vf/vbc7s44ZKFQiG+853v8Prrr7Nr167PRUAD4Z/Vq/3f0E9j48aNNDQ0RN322GOPsXDhQv7hH/7hmgloYB4GNZcqNzc36mu9Xg9AUVER2dnZc7GkGXfgwAEOHTrE2rVrSUxMpK2tjf/1v/4XRUVFV/UuzafR29vLunXryMvL49///d8ZHh6OXEtPT5/Dlc2srq4uxsbG6OrqIhAIRPopFRcXR352rzXf//73efTRR1m6dCnLly/nJz/5CQ6Hg8cee2yulzYj7HY7ra2tka87Ojqoq6vDbDbH/PtzrfrWt77F888/z5tvvonBYIjkQ5lMJjQazRyvbmb84Ac/4JZbbiE3Nxebzcbzzz/Prl27+OCDD+Z6aTPGYDDE5EFN5mFec/lRc1p7dRXp6OiYdyXd9fX1ofXr14fMZnNIpVKF8vPzQ1u2bAn19PTM9dJmzG9/+9sQEPfPfPLoo4/GfY07d+6c66V9Jj/96U9Dubm5IaVSGVq+fHlo//79c72kGbNz5864f2ePPvroXC9txkz3/95vf/vbuV7ajPna174WysvLCymVylBKSkpo48aNoa1bt871smbdtVrSPe9yagRBEARB+Hy6NpIPBEEQBEEQLkIENYIgCIIgzAsiqBEEQRAEYV4QQY0gCIIgCPOCCGoEQRAEQZgXRFAjCIIgCMK8IIIaQRAEQRDmBRHUCIIgCIIwL4igRhCEa1IgEGD16tXcc889UbdbLBZycnL44Q9/OEcrEwRhroiOwoIgXLOam5upqanhV7/6FV/60pcAeOSRRzh+/DiHDh2KO6leEIT5SwQ1giBc0/7rv/6L//2//zdNTU0cPHiQ+++/n0OHDlFdXT3XSxME4QoTQY0gCNe0UCjEhg0bkMlkNDQ08J3vfIf/+T//51wvSxCEOSCCGkEQrnmnTp2irKyMyspKjh49ilwun+slCYIwB0SisCAI17xnn30WrVZLR0cHPT09c70cQRDmiNipEQThmrZ3715uuOEGtm7dyj//8z8D8OGHHyKRSOZ4ZYIgXGlip0YQhGuW0+nkq1/9Kt/85jdZv349v/nNbzh48CDPPPPMXC9NEIQ5IHZqBEG4Zn33u9/l3Xff5fjx42i1WgB+8Ytf8Hd/93c0NDSQn58/twsUBOGKEkGNIAjXpI8++oiNGzeya9cu1q5dG3Xtpptuwu/3i2MoQficEUGNIAiCIAjzgsipEQRBEARhXhBBjSAIgiAI84IIagRBEARBmBdEUCMIgiAIwrwgghpBEARBEOYFEdQIgiAIgjAviKBGEARBEIR5QQQ1giAIgiDMCyKoEQRBEARhXhBBjSAIgiAI84IIagRBEARBmBdEUCMIgiAIwrzw/wf4k44mR9saMQAAAABJRU5ErkJggg==", + "text/plain": [ + "<Figure size 640x480 with 1 Axes>" + ] + }, + "metadata": {}, + "output_type": "display_data" + } + ], "source": [ "# group the data into the clusters (all labels not equal to -1) and noise\n", "# (labels equal to -1). Noise points are not associated with a cluster.\n", @@ -454,28 +461,31 @@ "#ax.scatter(noise[:, 0], noise[:, 1], c='black', marker='x', label='noise')\n", "plt.legend()\n", "plt.show()" - ], - "metadata": { - "colab": { - "base_uri": "https://localhost:8080/", - "height": 472 - }, - "id": "S26MBwddYz65", - "outputId": "7ec12eeb-843b-4947-b7b6-5c69c571147a" - }, - "execution_count": null, - "outputs": [ - { - "output_type": "display_data", - "data": { - "text/plain": [ - "<Figure size 640x480 with 1 Axes>" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAHHCAYAAABHp6kXAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAEAAElEQVR4nOy9d5wcd33//5yd7fX67nWdeu/t1JstjG0wxmArEMBgEyc2GAxJfjYEF4oJfE1CQrABJ1Qb04wpbpJVbZ2qJVmS1dv1Xra3Kb8/Vre6vd29O510VmGej8c9HtqZz8x8Zma18553eb0FVVVVNDQ0NDQ0NDSucXRXegIaGhoaGhoaGpcDzajR0NDQ0NDQuC7QjBoNDQ0NDQ2N6wLNqNHQ0NDQ0NC4LtCMGg0NDQ0NDY3rAs2o0dDQ0NDQ0Lgu0IwaDQ0NDQ0NjesCzajR0NDQ0NDQuC7QjBoNDQ0NDQ2N6wLNqNHQ0EiyYsUKVqxYcaWnMSy2bNmCIAhs2bLlSk/lPUEQBB577LErPQ0NjasKzajRuOb42c9+hiAIyT+z2UxJSQlr167lv/7rv/D7/WnbPPbYYynb6HQ6iouLueWWW9i5c2fa+EOHDnHHHXdQWVmJ2WymtLSUG264gf/+7/9OGyvLMj/96U9ZsWIFeXl5mEwmRo0axd13383evXsznsMPf/hDBEFgwYIFWc+zd65PPfVU1muQbf/9aW1t5ctf/jITJ07EarVis9mYM2cO3/jGN+jp6RnSPi4H3/rWt3jppZfes+NdbcyaNYuHH34YgK6uLnQ63VVphDU1NfHYY49x4MCBKz2VIaMoCk8//TQzZ87EYrGQn5/PqlWreOedd6701DTeQ/RXegIaGsPliSeeoKqqing8TktLC1u2bOELX/gC3/ve9/jzn//M9OnT07Z5+umnsdvtKIpCfX09P/nJT1i2bBm7d+9m5syZANTU1LBy5UoqKiq499578Xg81NfXs3PnTr7//e/zuc99Lrm/cDjM7bffzmuvvcayZct45JFHyMvL49y5c/z2t7/l5z//OXV1dZSVlaXM47nnnmPUqFHs3r2bU6dOMXbs2Kzn+d3vfpd//Md/xGq1Dus67dmzh/e///0EAgE+/vGPM2fOHAD27t3Lt7/9bbZt28b69euHte+L5Vvf+hZ33HEHt91222Xf97JlywiHwxiNxsu+78tBKBTi8OHDSe/Kzp070el0zJs378pOLANNTU08/vjjjBo1Kvn/4mrn05/+NM899xyf+MQneOCBBwgGg+zfv5+2trYrPTWN9xJVQ+Ma46c//akKqHv27Elbt3HjRtVisaiVlZVqKBRKLn/00UdVQG1vb08Zf/jwYRVQH3nkkeSy97///WphYaHa3d2dtv/W1taUz/fff78KqP/xH/+RNlaSJPW73/2uWl9fn7L8zJkzKqC++OKLamFhofrYY49lPE9AnTlzpgqoTz311JCvQV+6u7vV0tJS1e12q0ePHk1b39LSon79619Pfl6+fLm6fPnyAfd5KdhsNvWTn/zkZd1nOBxWZVm+rPscCd58800VUFtaWlRVVdWvfvWr6vTp04e9P0B99NFHL9PsUtmzZ48KqD/96U8v634DgcBl3V8vv/nNb5L/pzT+ttHCTxrXFatWreLf/u3fqK2t5Ve/+tWg4z0eDwB6/QWn5enTp5kyZQo5OTlp44uKipL/bmho4Ec/+hE33HADX/jCF9LGiqLIl7/85YxemtzcXG6++WbuuOMOnnvuuazzW7x4MatWreI73/kO4XB40PPpz49+9CMaGxv53ve+x8SJE9PWu91uvvrVr2bdvjfMde7cuZTlmfJXTp48yYc//GE8Hg9ms5mysjLuuusuvF4vkAinBYNBfv7znydDa5/61KeS2zc2NvLpT38at9uNyWRiypQp/N///V/G477wwgt89atfpbS0FKvVis/nyzinFStWMHXqVI4cOcLKlSuxWq2Ulpbyne98J+1ca2tr+cAHPoDNZqOoqIgvfvGLvP7665eUpxMKhejo6KCjo4Nt27ZRVlaGKIp0dHTw1ltvMW3atOT6vkQiER577DHGjx+P2WymuLiY22+/ndOnT2c91qc+9SlGjRqVtrw39NqXDRs2sGTJEnJycrDb7UyYMIFHHnkESFzjXu/R3XffnbxXP/vZz5Lb79q1i/e97324XC6sVivLly9n+/btGY975MgR/u7v/o7c3FyWLFkCQEtLC3fffTdlZWWYTCaKi4v54Ac/mPI983q9HDt2LPn9GYjvfe97zJ8/nw996EMoikIwGBx0G43rEy38pHHd8fd///c88sgjrF+/nnvvvTdlXVdXF5CIvzc2NvL1r38ds9nMRz/60eSYyspKduzYweHDh5k6dWrW47z66qtIksTf//3fX9T8nnvuOW6//XaMRiPr1q3j6aefZs+ePVnDEI899hjLli3j6aef5qGHHrqoY/35z3/GYrFwxx13XNR2F0ssFmPt2rVEo1E+97nP4fF4aGxs5K9//Ss9PT24XC5++ctfcs899zB//nw++9nPAjBmzBggkfOzcOFCBEHggQceoLCwkFdffZXPfOYz+Hy+NKPx61//OkajkS9/+ctEo9EBQ07d3d28733v4/bbb+ejH/0ov//97/nXf/1Xpk2bxk033QRAMBhk1apVNDc38+CDD+LxeHj++efZvHnzJV2X73znOzz++OMpywoLC1M+9xq1qqoCiRytW265hY0bN3LXXXfx4IMP4vf72bBhA4cPH05es+Hy7rvvcssttzB9+nSeeOIJTCYTp06dSholkyZN4oknnuBrX/san/3sZ1m6dCkAixYtAmDTpk3cdNNNzJkzh0cffRSdTsdPf/pTVq1axZtvvsn8+fNTjveRj3yEcePG8a1vfSt5jh/+8Id59913+dznPseoUaNoa2tjw4YN1NXVJQ2zP/7xj9x999389Kc/TTF+++Pz+di9ezf/9E//xCOPPMJ///d/EwgEqKqq4tvf/nbK/22NvwGutKtIQ+NiGUroxeVyqbNmzUp+7g0/9f/LyclRX3vttZRt169fr4qiqIqiqFZXV6v/8i//or7++utqLBZLGffFL35RBdT9+/cPee579+5VAXXDhg2qqqqqoihqWVmZ+uCDD6aNBdT7779fVVVVXblyperxeJIhtaGGn3Jzc9UZM2YMeX79w0+9xzl79mzKuM2bN6uAunnzZlVVVXX//v0qoP7ud78bcP/Zwk+f+cxn1OLiYrWjoyNl+V133aW6XK7kefced/To0SnhxUxz6j0fQP3FL36RXBaNRlWPx6N++MMfTi576qmnVEB96aWXksvC4bA6ceLEtH1eDKdPn1Y3bNigrl+/XrVYLOo///M/qxs2bFD/4z/+QwXU3/72t+qGDRuS3wdVVdX/+7//UwH1e9/7Xtr+FEVJ/pt+4adPfvKTamVlZdo2vd/9XnqP3T8U25ds4SdFUdRx48apa9euTZlLKBRSq6qq1BtuuCHtuOvWrUvZR3d3twqo3/3ud7MeX1UvfPcGC4Ht27dPBdT8/HzV7XarP/zhD9XnnntOnT9/vioIgvrqq68OuL3G9YUWftK4LrHb7RmroP7whz+wYcMG1q9fz09/+lPGjx/Phz/8YWpqapJjbrjhBnbs2MEHPvAB3nnnHb7zne+wdu1aSktL+fOf/5wc5/P5AHA4HEOe13PPPYfb7WblypVAIiRz55138sILLyDLctbtHnvsMVpaWnjmmWeGfKzeOV7M/IaLy+UC4PXXXycUCl3Utqqq8oc//IFbb70VVVWT4ZiOjg7Wrl2L1+tl3759Kdt88pOfxGKxDGn/drudj3/848nPRqOR+fPnc+bMmeSy1157jdLSUj7wgQ8kl5nN5jRP38UyevRo1qxZg9vtJhwOc88997BmzRokSWLUqFF85CMfYc2aNaxZsya5zR/+8AcKCgpSEtJ76R9GGg69YdU//elPKIpyUdseOHCAkydP8nd/93d0dnYm71MwGGT16tVs27YtbZ/33XdfymeLxYLRaGTLli10d3dnPdanPvUpVFUd0EsDEAgEAOjs7ORPf/oT//iP/8jf/d3fsXHjRvLz8/nGN75xUeeocW2jGTUa1yWBQCDjw3zZsmWsWbOGG264gU996lNs3LgRh8OR9gCZN28eL774It3d3ezevZuHH34Yv9/PHXfcwZEjRwBwOp0AGY2nTMiyzAsvvMDKlSs5e/Ysp06d4tSpUyxYsIDW1lY2btyYddtly5axcuXKi86tcTqdQ57fpVBVVcVDDz3Es88+S0FBAWvXruV//ud/hpQP0d7eTk9PDz/+8Y8pLCxM+bv77rsB0ipYqqqqhjy3srKyNGMgNzc35YFaW1vLmDFj0sYNVJU2GNFoNPnQf+WVV3C73eTl5dHR0cEbb7zBggULkuv7GgKnT59mwoQJKXlel5M777yTxYsXc8899+B2u7nrrrv47W9/OyQD5+TJk0DCqOx/r5599lmi0WjaPe9/r0wmE//+7//Oq6++itvtZtmyZXznO9+hpaVlWOfTa9xWVVWlSCTY7XZuvfVWdu/ejSRJw9q3xrWHllOjcd3R0NCA1+sd0gPJbrezYMEC/vSnPxEMBrHZbCnrjUYj8+bNY968eYwfP567776b3/3udzz66KPJxNtDhw4Nqex106ZNNDc388ILL/DCCy+krX/uuee48cYbs27/6KOPsmLFCn70ox9lTGLOxMSJEzlw4ACxWGxYpc7ZPAOZvEpPPfUUn/rUp/jTn/7E+vXr+fznP8+TTz7Jzp0705Kl+9L7MP34xz/OJz/5yYxj+pfnD9VLA4mE7Uyo5/M7Ropf//rXSaOsl/75NL/5zW8AOHv2bMYk34thqPfKYrGwbds2Nm/ezMsvv8xrr73Gb37zG1atWsX69euzXi+4cK+++93vZv3O2+32tOP15wtf+AK33norL730Eq+//jr/9m//xpNPPsmmTZuYNWvWQKeZRklJCZBIeu9PUVER8XicYDCY9CZqXN9oRo3Gdccvf/lLANauXTuk8b1vcYFAIM2o6cvcuXMBaG5uBuCmm25CFEV+9atfDSlZ+LnnnqOoqIj/+Z//SVv34osv8sc//pFnnnkm6wN7+fLlrFixgn//93/na1/72qDHA7j11lvZsWMHf/jDH1i3bt2QtulLbm4uQJpAX21tbcbx06ZNY9q0aXz1q1+lpqaGxYsX88wzzyRDAJkevIWFhTgcDmRZTgnDvJdUVlZy5MgRVFVNmeOpU6eGvc+1a9eyYcMGAG6//XY++9nP8r73vY/jx4/zwAMP8MILL5Cfnw9cqMKDRPL0rl27iMfjGAyGIR8vNzc3o5Bipnul0+lYvXo1q1ev5nvf+x7f+ta3+MpXvsLmzZtZs2ZNVgOpN0nZ6XRe8r0aM2YMX/rSl/jSl77EyZMnmTlzJk899dSQqhb7UlJSkkxM709TUxNms/k9CcFqXB1o4SeN64pNmzbx9a9/naqqKj72sY8NOr6rq4uamho8Hk+yXHvz5s0Z3+JfeeUVACZMmABAeXk59957L+vXr8+oNKwoCk899RQNDQ2Ew2FefPFFbrnlFu644460vwceeAC/35+Ss5OJ3tyaH//4x4OeGyTyGYqLi/nSl77EiRMn0ta3tbUNmHPQ+xDbtm1bcpksy2nH9/l8aS7+adOmodPpiEajyWU2my3twSuKIh/+8If5wx/+wOHDh9Pm0N7env0ELxNr166lsbEx5fpHIhF+8pOfDHufxcXFrFmzhjFjxuD3+/n4xz/OmjVrEEURj8fDnXfemcynMZvNye0+/OEP09HRwQ9+8IO0fQ7kXRozZgxer5eDBw8mlzU3N/PHP/4xZVxvBWBfer0uvfeq17jvf6/mzJnDmDFj+H//7/8lc1n6MpR7FQqFiEQiaXN3OBwp35WLKem+8847qa+vTxqRAB0dHfzpT39i1apV6HTao+5vBc1To3HN8uqrr3Ls2DEkSaK1tZVNmzaxYcMGKisr+fOf/5zyoOjl97//PXa7HVVVaWpq4n//93/p7u7mmWeeSb6dfu5znyMUCvGhD32IiRMnEovFqKmp4Te/+U2y/UEvTz31FKdPn+bzn/980mjJzc2lrq6O3/3udxw7doy77rqLP//5z/j9/pRE1L4sXLiQwsJCnnvuOe68886s57x8+XKWL1/O1q1bh3SNcnNz+eMf/8j73/9+Zs6cmaIovG/fPn79619TXV2ddfspU6awcOFCHn74Ybq6usjLy+OFF15IM2A2bdrEAw88wEc+8hHGjx+PJEn88pe/TBosvcyZM4c33niD733ve5SUlCTzIL797W+zefNmFixYwL333svkyZPp6upi3759vPHGGxkfxJeTf/iHf+AHP/gB69at48EHH6S4uJjnnnsu+R3q67nYsmULK1eu5NFHHx1S76Xt27fjcDiYNm0akFCsHuiaf+ITn+AXv/gFDz30ELt372bp0qUEg0HeeOMN/umf/okPfvCDGbe76667+Nd//Vc+9KEP8fnPf55QKMTTTz/N+PHjUxKtn3jiCbZt28bNN99MZWUlbW1t/PCHP6SsrCypIzNmzBhycnJ45plncDgc2Gw2FixYQFVVFc8++yw33XQTU6ZM4e6776a0tJTGxkY2b96M0+nkL3/5y4DX48SJE6xevZqPfvSjTJ48Gb1ezx//+EdaW1u56667kuOGWtIN8PDDD/Pb3/6WD3/4wzz00EO4XC6eeeYZ4vE43/rWtwbcVuM648oVXmloDI/eUs/eP6PRqHo8HvWGG25Qv//976s+ny9tm0wl3TabTa2urlZ/+9vfpox99dVX1U9/+tPqxIkTVbvdrhqNRnXs2LHq5z73uTRFYVVNKAc/++yz6tKlS1WXy6UaDAa1srJSvfvuu5Pl3rfeeqtqNpvVYDCY9bw+9alPqQaDIVnWTJ+S7r70li4zhJLuXpqamtQvfvGL6vjx41Wz2axarVZ1zpw56je/+U3V6/Umx2VSFD59+rS6Zs0a1WQyqW63W33kkUfUDRs2pJQ6nzlzRv30pz+tjhkzRjWbzWpeXp66cuVK9Y033kjZ17Fjx9Rly5apFotFBVLKu1tbW9X7779fLS8vVw0Gg+rxeNTVq1erP/7xj9POPVPpeLaS7ilTpqSNzVT+fObMGfXmm29WLRaLWlhYqH7pS19S//CHP6iAunPnzuS4v/zlLyqgPvPMM9kudwr33Xefunr16uTnsWPHDlrOHAqF1K985StqVVVV8lrccccd6unTp5NjyKAovH79enXq1Kmq0WhUJ0yYoP7qV79KK+neuHGj+sEPflAtKSlRjUajWlJSoq5bt049ceJEyr7+9Kc/qZMnT1b1en1aafX+/fvV22+/Xc3Pz1dNJpNaWVmpfvSjH1U3btyYHJNNxbujo0O9//771YkTJ6o2m011uVzqggUL0v4fDrWku5fTp0+rH/rQh1Sn06laLBZ11apV6u7du4e0rcb1g6CqI5wtp6GhoXGN8p//+Z988YtfpKGhgdLSUgD+5V/+hV//+tecOnUKk8l0hWeooaHRF82o0dDQ0CDRnLRvknYkEmHWrFnIspySjzRv3jzuvffepCqyhobG1YOWU6OhoaFBokKpoqKCmTNn4vV6+dWvfsWxY8fSenPt2bPnCs1QQ0NjMDSjRkNDQ4NEBdSzzz7Lc889hyzLTJ48mRdeeGHAxG0NDY2rCy38pKGhoaGhoXFdoBXva2hoaGhoaFwXaEaNhoaGhoaGxnXB31ROjaIoNDU14XA4Lku3Ww0NDQ0NDY2RR1VV/H4/JSUlAypE/00ZNU1NTZSXl1/paWhoaGhoaGgMg/r6+gEb5P5NGTW9Tc3q6+txOp1XeDYaGhoaGhoaQ8Hn81FeXj5oc9K/KaOmN+TkdDo1o0ZDQ0NDQ+MaY7DUES1RWENDQ0NDQ+O6QDNqNDQ0NDQ0NK4LNKNGQ0NDQ0ND47rgbyqnRkNDQ0ND43IhyzLxePxKT+O6wGAwIIriJe9HM2o0NDQ0NDQuAlVVaWlpoaen50pP5boiJycHj8dzSTpymlGjoaGhoaFxEfQaNEVFRVitVk3M9RJRVZVQKERbWxsAxcXFw96XZtRoaGhoaGgMEVmWkwZNfn7+lZ7OdYPFYgGgra2NoqKiYYeitERhDQ0NDQ2NIdKbQ2O1Wq/wTK4/eq/ppeQpaUaNhoaGhobGRaKFnC4/l+OaXlNGTWNjIx//+MfJz8/HYrEwbdo09u7de6WnpaGhoaGhoXEVcM0YNd3d3SxevBiDwcCrr77KkSNHeOqpp8jNzb3SU9PQ0LiG+cpXvkJ9fX3GdfX19XzlK195j2ekoaExXK4Zo+bf//3fKS8v56c//Snz58+nqqqKG2+8kTFjxlzpqWloaFzD3Hfffdxzzz1phk19fT333HMP99133xWamYbG5WXbtm3ceuutlJSUIAgCL7300qDbbNmyhdmzZ2MymRg7diw/+9nPRnyel8I1Y9T8+c9/Zu7cuXzkIx+hqKiIWbNm8ZOf/ORKT0tDQ+Map7y8nGeffTbFsOk1aJ599lnKy8uv8Aw1rlcUSUKOhJGCAeRIGEWSRvR4wWCQGTNm8D//8z9DGn/27FluvvlmVq5cyYEDB/jCF77APffcw+uvvz6i87wUrpmS7jNnzvD000/z0EMP8cgjj7Bnzx4+//nPYzQa+eQnP5lxm2g0SjQaTX72+Xzv1XQ1NDSuIfoaNo8++iiPP/64ZtBojChyLEaw4SxSwJ9cprc7sZWNQjQaR+SYN910EzfddNOQxz/zzDNUVVXx1FNPATBp0iTeeust/uM//oO1a9eOyBwvlWvGU6MoCrNnz+Zb3/oWs2bN4rOf/Sz33nsvzzzzTNZtnnzySVwuV/JP+4HS0NDIRnl5OY8++iiLFy/m0Ucf1X4vNEYMRZLSDBoAKeAj2HBuxD02Q2XHjh2sWbMmZdnatWvZsWPHFZrR4FwzRk1xcTGTJ09OWTZp0iTq6uqybvPwww/j9XqTf9mSATU0NDTq6+t5/PHH2b59O48//vigvxdagrHGcFGleJpB04sU8KFKV0c/qZaWFtxud8oyt9uNz+cjHA5foVkNzDVj1CxevJjjx4+nLDtx4gSVlZVZtzGZTDidzpQ/DQ0Njf70zaFZtGhRWo5NJrQEY43hosrywOuVgddrZOeaMWq++MUvsnPnTr71rW9x6tQpnn/+eX784x9z//33X+mpaWhoXMNkSgrOlDzcHy3BWGO4CIO0ABB0l96t+nLg8XhobW1NWdba2orT6Uy2NbjauGaMmnnz5vHHP/6RX//610ydOpWvf/3r/Od//icf+9jHrvTUNDQ0rmGeeeaZjEZIr9EyUN5eX8OmpqZGM2g0hoSgN6C3Z44c6O1OBL3hPZ5RZqqrq9m4cWPKsg0bNlBdXX2FZjQ4gqqq6pWexHuFz+fD5XLh9Xq1UJSGhsZlo6amhsWLF7N9+3YWLVp0paejMYJEIhHOnj1LVVUVZrN52PtJVD+dQwpcqMod6eqnQCDAqVOnAJg1axbf+973WLlyJXl5eVRUVPDwww/T2NjIL37xCyBR0j116lTuv/9+Pv3pT7Np0yY+//nP8/LLL49I9dNA13aoz+9rpqRbQ0ND42qkf4Kx5qnRGAqi0Yi9YjSqFEdVZASdiKA3oNOP3GN57969rFy5Mvn5oYceAuCTn/wkP/vZz2hubk4pvqmqquLll1/mi1/8It///vcpKyvj2WefvWrLuUHz1GhoaPThK1/5Cvfdd1/Gh3J9fT3PPPMM3/zmN6/AzK5O+ufQaDk11z+Xy1Ojkc7l8NRcMzk1GhoaI49W0TN0hptgPBhyLIYUDiPHro6yXg2NawnNqNHQ0EiiVfQMnUtJMM6EHI0RammjeesO6l/bTMv2XUQ6ulDimnGjoTFUtPCThoZGGr2GjNYy4L1BkWR8p8/SvvedtHWepQuxl5Ug6IQrMDON/mjhp5FDCz9paGiMCBfTMmAklHWvhFqvqqrIkShyJMp7/a4nRyJ07DuUcV377n1IV6l6q4bG1YZm1GhoaKRxMS0DRiIPZ7j7VCSJWCBItNtLPBAccg+deDBEz/FTNGzcRsPGbfQcO0U8FLroeQ+XeCiMqigZ18nRGHKfxrwaGhrZ0YwaDQ2NFC62ZcBI5OEMZ59SKEzH2wep/cvr1L3yBrV/WU/H/kNI4ciAx4oHQzRteouOtw8S6/ER6/HRse8gjRvfIh58bwwbQRg4tDTY+iuF1v9K42pDM2o0NDSSXI6WAZdLWfdi9inH4rTvO4T31FlQEqEjVVHwnjhDx/5DA1YSBZtaiPnSmwvGfX4CDU3vScdkvdWCzpBZn0RvsyKaTCM+h+GgVctpXG1oRo2GhkaSS20ZMNQ8nKEy1H3KkSiB2swGl/9cHXIkc/hGjsbwnT6X9fj+M7UEGptHPKdFbzbjXjQf+jlkBJ0Oz6J56K1XZ58drVpO42pDM2o0NDSSfPOb38z6ICovLx9QeO9i8nCGylD3OWDOiQpKLJZ19YChHUEg1tVDx76BvT2ZUGSZeDBEzB8Y1CgSRB0WTyEVN9+Aa8IYLO5CcidPoOLmNZjycy/quO81Wv8rjasJrU2ChobGJdP/7bz3IXcpD7eL2We20M1g60WTEee40UQ6ujKut1eU4j9bT6zHS960yYjGoTUalEJhuo+dxHvyDKokY7DbKJg9HYu7IGtfH1GvR3Q5KZw9HVWWEUT9NVPG3dejtn37ds2g0bhiaJ4aDQ2NS2IklHUvdp+i2YQpNyfjvsz5eQPmpNg8RRm9Iaa8HAxWK7EeLzCIN6gPUiRKy4499Bw9iSrJAMQDQZq37SDU3JY2XonHiXp9dB58l9Ydewk2NiPH49eMQQMj46XTuPw8+eSTzJs3D4fDQVFREbfddhvHjx8fdLvf/e53TJw4EbPZzLRp03jllVfeg9kOD82o0dDQuCQut7LucPapN5spXroAg9ORstzocuBZMh/RnN2o0VstlCyrxr1oLpaiAixFBRTMmU7OxHG07dqXHDeYN0iOxoh09RDt7iHc0p5xTMe+g0ihC6EoRZII1DVS99cNdB06hu9MLc3bdtK4YRvxQHDA410t1NfXs3z5cp544omM1XJaFVR25GiMmNdHuKOLmNePHM0eJr0cbN26lfvvv5+dO3eyYcMG4vE4N954I8Fg9u9aTU0N69at4zOf+Qz79+/ntttu47bbbuPw4cMjOtfhoikKa2hoXDdI4TBSMEw8FMJgs6K3WtFbLiiTyvE4qiQhiGJaGEiKxvCdPoscihBqbk2piDLmOCldvRR9FgVZORqj5/gp/LUNOKvK6XznSNY5Vt66Fp3RgByJokgSUiiE/0wdwcbmlHGOUeUULZg9ol2bL5Vej9oTTzzB1772tbTGnv2XXw9cLkXheDBE6863Cbdc8N5ZPEW4F87BYLNejqkOSnt7O0VFRWzdupVly5ZlHHPnnXcSDAb561//mly2cOFCZs6cOawXloHQFIU1NDSueS6n1oneYsFckIejogxzfl7SoFEkiUhXN601e6h/fQvNW3cQamlLeTPWm4w4yksJ9jNoDHYbxcuqsxo0AFIoRNehoyjxODpjdq+QwWFHlWUaN71J3csbaHh9M6073saU6yJv2qSUsf66hqxVW1cLvR61BQsWpHhoysvLeeKJJ1i3bt11ZdBcLuRoLM2gAQi3tNG68+0R99j04vUmQqt5eXlZx+zYsYM1a9akLFu7di07duwY0bkNF82o0dDQuKKMtNaJqqqEW9upf3UTwYZmpGCIcFsHjRvfxHe2NkWHxuCwU7Z6KWVrV+JZPJ+yG1dQdsNyjA77gMfwnUvMXQ5H0FvMCKKYcVzR/Fk0bnqTWLf3wvwkia7Dx9AZjal5QYr6nrdruFj6Vsv1r4L62te+xtatWzWDJgNyJJJm0PQSbmlDjgwsGHk5UBSFL3zhCyxevJipU6dmHdfS0oLb7U5Z5na7aWlpGekpDgvNqNHQ0LiijLTWiRSO0LpzX8Z1nfsPp3lD9FYLloI8HKPKsRTmD0kjRulT7t199ATuhXMQdKk/rxZ3YaLlQRbvS8+xkzjHjkp+NuW6Bs3judoYCa2i6xE5PrCg42DrLwf3338/hw8f5oUXXhjxY72XaEaNhobGFWcktU4STSpT33ytJW6Kly7EvXgeUjhCPBS6JK+IvaI0+e9IeyfeU2cpXraQglnTyJ08ntJVSylesoBoV0/WfUjB0IWEZgEK584cMOR1NaJVQQ0NcRBjdbD1l8oDDzzAX//6VzZv3kxZWdmAYz0eD62trSnLWltb8Xg8IznFYXNtvQZoaGhct4yE1okUjqDGU0XzXBPGoLdaaNmxJ1lyLZpNeJYswFyQhy5L6KgXOZbwtqiKgs5gQG+1YMpxYsrPI9qZ0LsJt7YTbm3HmOOkeFl1MnxldDmy7lc0m1BicSzuAgpmTcPouraKGUZCq+h6RTSbsXiKMoagLJ4ixBEyZlVV5XOf+xx//OMf2bJlC1VVVYNuU11dzcaNG/nCF76QXLZhwwaqq6tHZI6Xiuap0dDQuCq43G/5UjRK+9vvEPX6MdhtAIgWM5aCPDr3H04aNJDw5jRtegtpkAaWcX+A5jd3UfuX9dS9/Ab1r23Cf7YOQSdSvGwh+dMnI5oTOTX28lI8SxakVLJYigoQslQz5U6egLXEQ/HSasz5eVd11VN/RkKr6HpGNBlxL5yDxVOUsry3+kk0ZRZovFTuv/9+fvWrX/H888/jcDhoaWmhpaWFcB/F60984hM8/PDDyc8PPvggr732Gk899RTHjh3jscceY+/evTzwwAMjMsdLRTNqNDQ0rjgX2xl8KMjhKIHaBnqOn6Jg1jQEnQ5nVQU9J85kHK8qCr6zdVnDUPFgiIaNb6a8XcuRKK079hJu68BgtZA7ZQLlN62i8gM3UlQ9B5PLmZJbo7daKV29JFU3RwDX+NE4qsoxWC0j9kAbSe666y6eeOKJjLpCTzzxBHfdddeA2/8tdvs22KwUL1lA5S03ULZ2JZW33EBxPyP4cvP000/j9XpZsWIFxcXFyb/f/OY3yTF1dXU0N1+QF1i0aBHPP/88P/7xj5kxYwa///3veemllwZMLr6SaDo1GhoaV5RsScGXmizsO1NH6449AJiLCsibMhFUldYde7OqA/fm2mTykgQam2neUpNxO4PDTtkNy1M0cfojx2KE2zrpOXEa56jyZBKw0eVENJuH3ILhauRS7+FIfQdGgsulU6ORjqZTo6Ghcc0zEorEALo+RkKkrYOmLduJh8IYnNnLs025OVnLsSPtnVm3i/sDqLKcdb2qqoSa22jeWkO4uZXWHXtpfnMXLdv30L73HVRFGcIZXRpyXCLmC9Bx6AjNb+3Ce/oc8UHCbUPlUivYtG7fGpcLzajR0NC4olxKZ/CBMOU4EcQ+P3GqStehI+SMH51xvKDT4RxdmbVrd29eTiZEqxlVEIj5A0R7vMSDIVTlghNcDkfoePtg6kaqiirLhJpbB+3iPVzkeJx4KEw8GCTu8xFqbsXkcGArLabnyAnqX9uUIjR4KVxqBZvW7VvjcnDtZKJpaGhoXASixUzx0oU0bd0B56PscjhCtMdH4dyZdBw4lFb9pB8gn8HqKULQ6dK8KjqTkZJli+jYeyDR6kBNLCuYMQVbRSl6kwklHh/QcIl2dWNyuZDjMQRBd8mhKEWWifn8dB46iquqEu+J04T65AKJZhPuhXPoOHCYtt37KF5afVlyeS61gk3r9q1xqWieGg0NjasWORYnHgwhhcIpno+hoBNFLJ4iKm+9kfyZ03COGUXh/FmYC/MR9CIVN62mfO1Kym9aRflNq7AUFQxYzq23WChZtSQt38a9cC6tNXsINiQMGgAlGqNt935Cjc2JxGOdDrI03TbYbZjz8+g+cpymTW/RvLWGQEMTUvjiVGWlcCRxrSJRol3d1L+6CZ1OR7CxOcWggUSCc0vNHvKmTiLc2oEci6HKClI4ckmtGS61gm2g7f8Wk4k1Lh7NU6OhoXHVkfQ0HDhMuKUdndFAzoQxOEePGpLCby86UcTosJM7eVziYd/dTdwXQAqFEUQdVnfRgMm9fRFEHZbCfCpuWUPMF0CJxjDmupDD0awhnI4D72L1uBFNJmylJQQbmlL3qdNROH8WjRvfTDEmwm0d2CvLzgvwZe8lBQkDJdTSRufBI8T9AYrmz6LnxGlQVezlpclk6f4osThKPI45PxdUlc5DRwjUNSKIIjkTxmAr8VzUtb5UnZrBtu9tpzFQMrGGhuap0dDQuOqIeX3Uv7aJUFMrqqIgR6J0vpNIcL1YDwYkEnnr/rqe5s01dLx9kJ6jJ2ndvoe23fsuan+CTofBZsNW7MYxqhyTy0m0uyfreDkcQZEkRKOBwjnT0/Jy7KPK8Z+rz+gdCdQ2EA8EBpyPIkn0nDxDy/bdxP2JsTqTkViPLzlGlbMnIUuhMAVzZ9CwYSvd7x4n7g8Q6/HStmtf4lqHhpbrc6k6NUPZXksm1hgKmlGjoaFxVSFHY7S/fRAyhJsiHZ1Ikcj55NcQSj+14EwocYnOg0dS+jP1EmxoJh4IZtgmTtwfINTWQaSze8A2CgZ79jwcQRSTOjUGu42yG5ZTsnIxuVMmULRgNnlTJhCobci6vf9s3YDnJkeidB0+mnrMPnEuVZYHzJUx5brw12buBh5p7yTq9aGq6qChv0utYBvq9loyscZgaOEnDQ2NqwpFkoi0daQt1xmNeBbNxX+6Ft/ZWlRJxlZaTP6MyRgc9rQGkr3IsRiB+sasx/PX1mMpzE9+liJReo6eoPvoyWSCsWg2U7y8GnNeTtpxTLk56PT6lG7fvTjHViH2CW/prRb0Vgu2kkTfnMFKqgdTEZPCkTTjL9LZhcVdSLi1Hd+ZWnImjqPznXfTtjU6HRhdTtp27U/fsSCQP3MKqiTRWrMHVVZwjhmFKc+F3pIekhqoQm0oFWwXs72WTKwxEJqnRkND46ojk1ZM4dwZdOw/RM/xUyixOKqiEKhvpO7VTcT96d6WlP1lKdNOrEv9GQw2NNF95ESKRSFHIjRu3JYxHKO3WihZvTRFFwfAWuwmb/L4AZOPRZMRe2X2hoLOqoqs64DUkvXzeE+dJXfyBESTiXBrOwgCeVMnpnT8tpa4KV6xKJH0rEu/NgWzphLt6KZ520785+oJ1DfStGU7zdt2Eh9iSGqk0JpmagyE5qnR0NC4qhDNJpxjKvH2aWegt9tQ4nFi3vSEXFWW6Tx0lMK5M0BV0Rn0KRVKosmIfVQF/tPnMh7PMerCm74UCtN16GjGcaokE2ppwzU2tQlgPBRG0IuUrl6KHI4gR2OYcnMQLeZBk3x1ej15UycSampJCwHZyksxOLJr4yTOzYxoMSP3yQtSYnHa9x7AvWguMX+AcHMrFk8RZTesQJFldAY9eosF0WhIeGBGV9L97vEL+zSbEE2mjN6tSEcXwfomXONHD2gojhRa00yNwdA8NRoaGlcVOlEkd/IEDM4LHa3N+bkJr0MWQk3NRNo7adiwldadbxPt7kE+Hw7S6fXkT52YEgbqxTm2KiUnRlXVAZNj+ycFx/wBOva+Q/3Lb1D/6iZaavbgPXkGVVUHNWh6MTrslK9dSd70yRhzXZgL8yletpCieTPRDyLDr7eaKV62MM2zJUci6K1WdHoDuvMem/rXN9Hw+mZa3tyZzEUSRB2ucaNTEpht5SUE6lOrtPriPXH6ksq+h4vWNPPSefrpp5k+fTpOpxOn00l1dTWvvvrqgNv87ne/Y+LEiZjNZqZNm8Yrr7zyHs12eGieGg0NjasOg81K2eqlRLq6CdQ1YnEXEWlPz7PpRac3IIXCxP0B4v4AgboGSlYsxlrsRhAEDHYb5WtXEmxowl/bgGg0kDNxHMYcF6LpgvEh6HQY7LaMycMA5oI+uTehMN1HTiQE986jxOJEOrpo2vwWpauW4q9rwF5eit5mQW/KbuQY7DbypkzANW40gm7o4nuCIGDOy6XylhsINjYT7erBXJCHtdiNIkm07dybtk3M66fn+CnyZ0xBJ4oYbFZK1ywj1NyaOH+ng64MOTjJc5RlkoI87yFDSSYervr0lSIeihALRpAiUfRmE0abGYN15PpJlZWV8e1vf5tx48ahqio///nP+eAHP8j+/fuZMmVK2viamhrWrVvHk08+yS233MLzzz/Pbbfdxr59+7SGllcDWkNLDY1rl3BHJw2vb8m4LnfyeCKd3SneHNFipvx9qzD00VpRVRUlLiHohIxNKwH8tQ20vLUrbbnOaKDiptVJr0bU66P+1Y1ZS6aLly+idcdelFgM17jR5E2fPGTvTX+kSAQpECLY3IpoNGAtdqO3mNEZMhs/siTRffhYSlipL4Jez6hbb0BvveClksIR2vYcIO7z4xxTSce+Qxm3zZk0LmkQ/S1yuRpaRrwBjr24la5TF6rf8saWMfH25Zhd2fuTXW7y8vL47ne/y2c+85m0dXfeeSfBYJC//vWvyWULFy5k5syZw+7JNhBaQ0sNDY2/CaRwhFiPD9e49L5NprwczAV5aeEpORxB6deNWxAERKMhq0EDYPEUUjB7OoL+wkPb4HQkunD3aaOgSvLAGjDBULKc2nvyDLFu78AnmW0/oTCt2/dQ//pmug4eoX3vO9T+ZX1C36ZfSbsiy0R7vHQfPTFgiEiVpbTKqnBbO8H6RmJeH3qrFYMj/cGqMxnJGTf6kgyaeCxOyB9ClrI3AL3eiYciaQYNQNepBo69uJV46OK1mC4WWZZ54YUXCAaDVFdXZxyzY8cO1qxZk7Js7dq17NixY8TnN1yumfDTY489xuOPP56ybMKECRw7duwKzUhDQ+Ny0yu0p0KK8RHz+mjbtY/cyeMpXlZNqLkFRZKxugsRbdaUpOIUhpHMqjeZcI0fjb2iBDkaS4SDTKY05WGdXo/OYMiqlWN0ORD6VBx1HzuBuSAvWYUkR2PI0SiqoqAzGNBbLWnJt6qq4jtbl9bmAKBt937MhQWIORe8NbEeL/XrtyAajRTMmoYvS3K01eNO8fLI0WiihP087Xv2466eS6i5DX9dA6qi4KgoJWfSePQDNPYciHAwQltDG+tf2ERbYztjpo5mxW1LKCjJRz+AkXk9EgtG0gyaXrpONRALRkYsDHXo0CGqq6uJRCLY7Xb++Mc/Mnny5IxjW1pacLvdKcvcbjctLS0jMrfLwTX1TZoyZQpvvPFG8vPf2n8EDY3rmXgojO/UObynzqDKMraSYvKmTURvs+E9lTBauo+cQBBFLO4CBJ1Ix/ncj7wpEwn2q9bR26yIxgvCc9J5dd9eI0Wnz+5t0IkiOpsNg22AB7hOIGfyOLreOZK2yuB0IIUj5IwbTduufQAo0XiyGWbMH6Bt176kd0k0myiYNQ1baXGKWJ4UjtBz/FTWKfjP1WGamchtkKNR2vYcAEVNGIaKgikvl2hXd8o2gk5HwaxpKXk7qqKmiBPK0RhNW2uwFnvImzoR0WTC4ikcMC9oIGLRGG9v2c//ffOXyWWnD59l04tb+dcffJExU6sG2Pr6Qxok0VqKxEbs2BMmTODAgQN4vV5+//vf88lPfpKtW7dmNWyuNa6p8JNer8fj8ST/CgoKrvSUNDQ0LgPxUJimzdvpOnQkETaKxfGfq6P+tc0osViKwJwqy4SaWgk2NCVKmVU1zSMj6HR4Fs1Db7WgxOIEm1tpfGMbtX9+ndq/vE7HvoODCt8NhiAI2MtKyJk4NqX6yFJUQOGcGXS8fTAlCdlWXoLOaCAeCtH4xraUcJkcidK6Yy/h/snQqoocHSiMpBDt8RHt8SJHY0Q7Lxgw7W8fJG/qRHImjkM0mxB0OqylHspvWoXBmRpa0hkN2EqL++0cQk0ttO85gBQKpxiIF4u308cvvvPrtOVSTOKX/+/X9HR68XX7iFxi2OVaaXo5WG6V3nzpHdOzYTQaGTt2LHPmzOHJJ59kxowZfP/738841uPx0NramrKstbUVj8czYvO7VK4pV8fJkycpKSnBbDZTXV3Nk08+SUVFdnGqaDRKtM8Pgs/nyzpWQ0PjyhHt6ibWk5pzYq8oxTl6FN6TZ7GVl2YtM7ZXlmP1FOIYXUnc58eUn0fO+NHJ/JdIZzdNm95KjldlBe/JM4Q7OilduWTIDS37Ixj0SP5Ec0zPonmoqAg6HZHOblq270oKBAKIJhOOyjIEQSDa5c1aNt6x7xDm/LzknHQGPZaiQsL9wk/2yjKcVZVIoRDBxmZMOU50ZlPCuDufLKNKEs3bdmD1FJE/fQrGXBdGpyNjZZVOFHGNH43v9Lm0cJpoNmMvL7kkXZrW+jakeLri8rxVs6l+3wJe+M/fUX+qCXd5ITd/8n2UjPJgsQ29mWYv10rTS6PNTN7YsowhqLyxZRhtI1cB1R9FUVKek32prq5m48aNfOELX0gu27BhQ9YcnKuBa8ZTs2DBAn72s5/x2muv8fTTT3P27FmWLl2K35+5Oy7Ak08+icvlSv5p4kwafytcK2+skMgb6d/jyFriweIupGlLwnujyjLmPq0MehHNZnInjsXodFA0fxYlKxdTOGsaRqcDnSgihSO0v30g43Fj3V5iA/x+ZEOOxwm1ttO0eTuiwUCwoZnmN3fS8uYumrfuoPvwMZRYPNn3yV5ZRtnaFcmqqYFK0+P+AKp8IYE2kRszNcUT5RxbhSnHRdPW7bTt3k/ngcM0banBd+IMniUL0vYZammjbfc+RKNhwFJxg91G+ftWYi8vTRxPJ+CoqqD8xuVpjTj7oqoq3e09tDd20N3WjaKkJ08rGXpHjZ4yiqkLJ/Pf//oMuzfuo7m2hQNvHeKb936Xt7ccID6Evl79uVaaXhqsZibevpy8salq0r3VTyOVT/Pwww+zbds2zp07x6FDh3j44YfZsmULH/vYxwD4xCc+wcMPP5wc/+CDD/Laa6/x1FNPcezYMR577DH27t3LAw88MCLzuxxcM56am266Kfnv6dOns2DBAiorK/ntb3+bsRQNEjfwoYceSn72+XxXzZdaQ2MkuVbeWHvpX5rsGjealjd3Jj+3732HogWzsZUVEzjXgCLLOCpKcY4ZlXzg6kQR+lXlqJKUUYW4l3BrB9aiwiHPU1VVwq0dtO7YgxKL033sJDmTxmUsnc6bPglTXi5WT1FKi4JMVUW96IxG6Ne2wehyUnbjctr3vEPM68NW4qF5W3r1ie9MLRZPEZaiAsL9emcVzp2BOEj5sSAIGJ0O3NVzKIhNBxJqzANVivl7/Ly95QB//r9X6Onw4sxzcssn38f8NXNw5l4QT/RUFCGKOuQ+1WKr71jBC//1+4yNQn/11G+YOHs8BcXphuxg9DVsHn30UR5//PGryqDpxeyyM+XO1ed1amLozcYR16lpa2vjE5/4BM3NzbhcLqZPn87rr7/ODTfcAEBdXR26Pr3NFi1axPPPP89Xv/pVHnnkEcaNG8dLL7101WrUwDVk1PQnJyeH8ePHc+pU9iQ6k8mEaZiJbRoa1zKZJOSvhjfWXsVeORJNqu6KFjOusVXJSh3RYkYKhZKhG1OuC2OOi0BtA1I4gq3Ug7W0mO4jx/GdrcM1ZhR6a5ZQhU6HIIop3o++DKbYmzJ3RSEeDKHKEgWzpqG3WAg2taDTixTOm0nPsVPE/QEMTgf5MyYnKrMy/P5YPUUIOl3y/PqSO3lcepWVKGIpyKd05WIURaHrYHpici89R0/gWbKAYFML4dYORJMRx6hy9HbbkAX9dAZDVv2bvsQiMTb+fit//r8LCrO+Lh/P/8dv6Wrt4gOfuRmzJXH+rjwnd/zTbfzmv19MjjUYDfi7A1n33dPhHZZRA9dO00uDdWSNmP787//+74Drt2zZkrbsIx/5CB/5yEdGaEaXn2sm/NSfQCDA6dOnKS4uHnywhsbfIH0Nm5qamitu0CiynJDrf3UT9a8lJPtr/7oB35laRKsF14QxQKKZpSrJGOw2ipdVY68sQ4nHEc0m8qZNQgpHkENhgvVNdB08QvP2XYlu1RlI9JEalXlCgoDFMzQvjSorhNs7qX9tEy1v7aZt1z6atmxHlSR0RhPeE2dwjRtN+U2rKVuzDEdFGaLJhByNEfP5iXR1E/cHUCQJvcVCyaolaR4Qe0UZztGjEDI0mOw9F9FoGLCNgxSOosQlfKfOodOLyJFoohHllpoBtxsO3i4fr/xyfcZ1G36zCV/XhRxGk8XEkpur+df/+SKT50/EXV6EeZC8kUtpLaU1vfzb5Zrx1Hz5y1/m1ltvpbKykqamJh599FFEUWTdunVXemoaGlctV9MbqxQM0bj5rbRKpvbd+zGutpMzcRxWdxGB+kZM+XkU5rho3bEnRUTOd/oc+TOnQh8XeaStk3ggmDHhVyeK5E6ZQKSjk2hXz4UVgkDx0oXZPTz9iIdCNG16K8274jtTS77Djk6vp2PfQYpXLMKcl5PYJhiidefbF5J8dUJCWXjKRCyF+VTccgNxnx85FseY40x4rQbxLAuiiLW4iFBza8b15oJcol4vMa+PmPeCURHz+oj5/EM+36Hg7wlkTP4FkGUFX7efotILRqPNaWPCrHFUjC8jFo0jxSRyClz0dKSLEpqtZnIKcoY1L63p5d8214ynpqGhgXXr1jFhwgQ++tGPkp+fz86dOyksHHo8XEPjb42r5Y1VVVV8Z2pTDJq+dB48ghKL0XnoCIokASo9x05mVMXtfOdwmsZMsCm7GJjBaqFkxWLKblxO3vQpFC2YTeWtN2ItcQ9ZGTfU1JIxXATgPXEGx+hKBFGHyZWQb5fCEZq31qRWLSkq3uOn6T56ElVVMdisWIvdOCrLMLmcSYNGikSJeX1Eu72JcFefnBNBELCXlyZyb/ogiCKOqgrypk8h2tmTksPTS/88m0vFaBo4RGU0ZS5LttgsuPKc5LlzueffPokopj6GBEHg7kc+jiv/4lvZaE0vNa4ZT80LL7xwpaegoXFNcTW9saqynOop6UfcHyAeDGH1FNFz9CTOURVZvRGoiTJtg9NB3JdIAhazPEB70VvM6C1mLIUFKJKEHI4Q9/nR6Q2IFtOAybAA0QGSjaVwGNFkxLNkYbITuBQOE83SFsF74jQ540ej61dRpKoqMa+P1pq9yW7gotlEwZzpmPJyEQ2GxHnYrJTfuJy23fsJt3VgKyvBNX40/jO1tNbsxmC3466eS7CxJUVRWG+5fF4aAEeOg+JKD8216QZlYUl+SqIwJPJkvJ0+ak/UEQ5GGD15FOXjSnn8F19h4x+2UHusnuJRHm68azWFJQXoMxhmg3E9Nr3UuDiuGaNG4/rlK1/5Cvfdd1/GB219fb32Q5SFga7brl27WLduHVu3bs34xvpeGzaCKGLKz81qqBicDqKd3VjdhQTqm1AH6QKtynJK7onVUzSkeUjhMJ3vHMF39rzXSCfgHD2K/GmTBgzNWArz8Z3M3IrB6HJgynWht1qTnp9sXb6T81dUpEgkoVx8PilXCoZo2LA1Vdk3EqV1+x48S+bTc/w0BbOnYc7NxehyUrysGjkeJ9bjpWnzW8nG2bEeH8GGJgrmTMda7E5c80Hyh+RoFCkUJtzWic6gx1yYj2g2Iw5gWLjynfzTN+/hOw/8J/6eCwm/NoeVB779D+QUuJLLouEoB2sO8+PHf5bS86n6fQv46AMf4q4H7yAWjmE0GzEMMaE5EwP9TpSXl2u/I38DXDPhJ43rl97y4/6u4V5Pw3333XeFZnZ1M9B1W7duHb/+9a8HfGN9L5AiUeLBEHI4grOqAkGX+Scnf/pk4oEgrTv3UThnBjq9HmOOK+NYSDSxjPsSD9L8mVPwna7NmizcixyL0/72oYT3ojcMpqj4Tp2lff8hpEiEmD9AqK2DSFd3SmKtpagga75L/szzujh9QmLZDCRbWQnFSxfQeehdGjdso3n7bsLtncixGMGmlhSDpi89R09hdRfS+Ma2pBKyaDIi6IREG4YMNmDnO+/iGlsFOoHiZdVZ5ySFI7Tt3k/dKxtp33uA1h17qf3LeoL1jVn7WvVSOrqEr/30/+P+Jz/LrZ9+P//0zXt47OePUDamNGVcV1s3z3zt/9KaWO54bRf7t72DwWDA5rRdkkGjoQGaUaNxFXCtCGZdafoL6vW9brt27Uquv+eee9i6dSsLFqQLsfVuN9JvrHJva4KN2zj30qvUvbKRSGc3JauWJEM0kGgKWbRwDqZcF7lTJiBHozRvrcF7ppaC2dMzlsDYK8pQJBnX+NGUrFhE3Beg59jJwY2aSJRAbeacisC5euK+ALV/eZ3GDVsTFVrrtxDp7knmv5TdsAzT+SRgSGjKFC2cgyWDKKDBak1r/GjKzcFeUULT1hoC5xqI+fyEGltoWL8F/7n6RDuILER7vBgcdlRZwXf6XDK/R47EsnbjViUZwaCn8pa1WIuL0IkicixGPBAkHggiR2OoqkqgvpFAXWO/jVVad+wlPoSKqXx3HnOWz+RD99zC3JWzyffkpakP73x9T0Y9GoBXf7Wens7hdTDX0OiPZtRoXBWMVPnxtaSsOxiZPDPl5eU88cQT3HzzzcydO/eqMARVVSXU0kbTpreI9SQqcORolNaaPQQamii7cQXlN62m/H0rqbjlBpyjKhCNRoxOB+VrV2AuyCNY20DP8ZOU3bAca6kHndGAwemgYM4M8qZNJNrdQ7TbS9PWHYkEZECODGLUSAN7HaRIJMXjIQUTPZp6PTZGl5OSlUuovOUGKt6/mor3r8ZZVZExn0dvtVC6cnGK0F7OhDF07D+c0avS8fZBLO7sITS91YJ83osT6ehE6fV4DFL2rNPrMTps6ESRmM9PS80ezv3pNc796TWattUQ7e4hmC13CZLXdijEYxIdzZ201LXS1U9ZuLUhvct4Lz0dPhQ5cxK2hsbFouXUaFw1jET58bWmrDsQ2QT1vva1r/GTn/yE22+//YqXbUMinNGx952M67zHTuEaU5Use+6LThQx5+dRsmIRSlwCQUgk4C6ajxJLeBW8J09T98rBZH+jvvQPr8jRGPFgEN/pWpR4HHtFKe6Fc2jf+875CqtUBF16JZQSiyeSks/3kdKbTTBIM8Lk+RiNFC9dmOwMrqpqogFnBlRFQYnHEfR61Axzy5k4NnFNSCgSC+dDXaLJhGg2ZzToBL0e/Xlht3ggSP36LSjRC96gSFsnDeu3Ury8mnBTa8bqLikQRFXVQfs+dXf08NpzG9j60lvEonGceU4+dO8tzF4+E0eOnenVU9j9xtsZtx09ZRSmIV5TDY3B0Dw1GlcNI1F+fL2FtjJ5tJ544gmeeeaZK1623YsSiyOFs4cteit7siGaTBjsNgw2Kzq9HtFowGC3obeYUWUlo0FjLipIaQMgR6N0HzlO/aub8J44jf9sHc1bd9Bz4jTuRfPStjfl5xLr8SKIOuzlJbjGVWFxJxJr++q9DJWYz0/T5reoe+UNGtZvoeGNbVlVjXtRJZmi+bMQ+lViOcdWgSAkk5BzJoxNStnrLWbc1XMzhumKFsxGNJsTvbVqG1IMmuQxZRn/uXrsFaUYnA4K582ieOlCipcupGj+LByjKgY1aPw9AX7+7efZ8JvNxKIJb5Kvy8fP//15dq7fgyzLTJg1PmOJtiAI3PFPt2FzWgc8hobGUNGMGo2rgr6GxqJFiy6rrsTVpqx7qfT1aN1333187WtfG5HrdjEokpR809cZ9BTOm4ln6QKKly7EOWYUQh89GN0wk0F1ej15UyfhGj8a+lQ+2cqK8Syal/CinCceCNF95ETaPqJdPUQ6OrH0qZYyupzkz5hCPBTCs2QhgsFAzB/ElJdLycrFmAsLLmqe8WCIhje2pZSwq5JE3B9Idg7vjyCKIAh4T53FUz0X96K5FM2fRflNqxEEAf+ZWqRoFPfi+SnNJQVBwFJUQMX7V+MYU5nI26kso/ymVdhLPehEESUuDajjE2nrwFrsJn/6ZHqOnqD5zZ00v7mTriMn0Bn0KIMYY74uHwdrDmdc99Kzf6Wn3Uu+J4//74cPMXn+xOS6orJCvvgfD1BaVTLg/jVGhm9/+9sIgpDSgTsTv/vd75g4cSJms5lp06bxyiuvDDj+SqOFnzSuOIMJZl0OA+RqUta9VHo9Wi+++CL33nsvL7/88hUr244HQwQbmwk2NCNazOROGkc8EKTn6MlEWbMgYC8voXTVEuRoLOFx0OuJ+QOJ0MlFGjh6i5mCWdPInTgOOR5P6MyYjYj9xOi8p85m3YfvbB2lq5YS9/vR26zoLRZiPj8Wd1GyUSVAuKUN78kzlK1ZlrK9IsvIoTDhtg6kaBRLYQEGhy3ZRyra48NRUYYpPxdVkvDXNhBubafn+CkKZk2jpWZ3mghh/sypeE+dIdLWQXNbB4Jej8VdQDwYwnvyDMXLqzHl5iDoE53H5Z4oOoMe0WxCbzZjynFRNG8WiiQlysT7eHsEnW5ApWKdyYgpP4+6VzakzEsKBGnc9BYVN69Jigpmork2e05OOBAmHEx47dzlRfzT1+8h4A0iyzIWu4Wc/OwVbn8LRAJhwt4QsXAEo9WMxWnFbL+8ekKZ2LNnDz/60Y+YPn36gONqampYt24dTz75JLfccgvPP/88t912G/v27btqm1pqRo3GFee9EMzqH9q6Vj01fQ3AZ555hpdffjnpqelv2GS7bqqiIIUjqIqCIIoYhimdH/MHaFi/NZnPYcxxEevx0bJ9d5+DqQTqGon2+MifPpmWt3Yllgsk9GFmTMnY3mAgdHo9OoedbOaQqqoDVhKpcQmdUY+9vBQ5LiFHIkS7vUjBEJ7F89EZDEjhMAICodZ22vYeoGT5IvRmE4okE2pupfnNnckwmK20mNypExJNOhUFnUFPzOfHe+oMOoMR5+gKXONH01qzF9/pc5S/bxXek2eIdvVgcNjJGTca3+lzhJouGAc6vUjO+DG07NhL/vTJmAvzQVZo3/NOSgWXKdeFZ+lCBJ0OORJFEHVgShUT1OlFcieNI1jfr8LpPHmTJxA4V5dZ7VlV6T56kqJ5M7OqLztysncdFwQhpUzb6rBidWihJoBAp49NP3qZ+oMXDPDy6VWs+oebsQ9DTXnIxw0E+NjHPsZPfvITvvGNbww49vvf/z7ve9/7+Od//mcAvv71r7NhwwZ+8IMfvGeyEBeLFn7SuOJ885vfzGpgXI7y45EMbb2X9PdoffOb32TBggUZzyfbdZPCEboOH6fu5Teo/fPrNLy+Gd+ZWuRoalmwIsvEgyEiXd1Ee7xp5dJyPE7HvkPIkQhGl5PCuTNxL5xN1+GjGece9/lRZRmxN0SkJvo4eU+cTuTJXCJyLEa0x0fnoaN0HzmOvaIs61hraTGiwYgiSQQbmqj9y+t0vP0OSjyOFArTsn03LW/uovmtnUjBEPnTJie8TCTE+/oaNAVzppMzcSy+k2dp3PgmcjhK48ZthJpbUWUFORKh+8gJeo6epGD2NCJd3cS6elCiMRxVleRNmwgGPfaKMnImjsNeWUbh/FmUrFyCEpfwLJyDtbQYnSjSdfhYakm6kPAKNW3eTqi5lfrXNlH38hs0btxG1JeaB2R02smbNintWjhHj8KUn0uwMXt4KtrZNaBeTUFJQVbDZtrCyTj6KQtn43qqVByMSCCcZtAA1B88y6YfvUwkcHmbj/bl/vvv5+abb2bNmjWDjt2xY0fauLVr17Jjx46Rmt4lo3lqNK5r3ovQ1nvFpXq05GiM9rffIVDbkFwmhcK07thL4dwZuMaNTrzxR2P4a+vp3H84WSVkdDnwLF6AMceJIAjnk05VSlYsBp1AoLYB0WIiNkA7gUhXorVBX12VnmOncI6tSlYXDQc5GsN74jSdB48kl7kXzcPocqYl+QqiSP70SUlvSmvNHiBRUWRxF9Bas/fCYBWCjc3EvD6Kl1cT9weItHcmDRpriQd0OsLtnfjO1JI7ZQLdR45n9HhEOrrImTCWnAlj8Z2rJ9zSRqCuEZ1BT+maZcjxOHG/H0EU8Z44TYf/YCJBVydQunoZUiicbHlgcRcm8orOH0bQCegMBgRRRG+1kD99CuGWDnynazHluLAU5qO3WcmZOBZHVcV5A01FNBjRmY3oRBG93Zo1gdtgs6ETsz8qcgtdfPF79/Pdz/8X4T4PY0+lm49/+S6sQwynXE+VioMR9obSDJpe6g+eJewNjUgY6oUXXmDfvn3s2bNnSONbWlpwu90py9xuNy0t2Y3gK41m1Ghc11xPvWAuVQI+IT7XkHFd5ztHsJWVYLBZCbd30L7nQMr6mNdPwxtbqbhpdTJR1VrsoXXX2xTMmobv9Dks7sKsJcmQKIcO9wsLKZI0aFXQQEiRKPFAMMWgAWjfewB39TzCbR34z5xDkWRsJR7yZ0xOzj/Q0JQc7xpbRfe76YnFkCiHjvn8dB06hnvB7ORyZ1UFiizRfSLRPsGUl0P3u8ezzjXc3om11ENXn7kqcQn/mTpsFaW4xo0m0tl9QQhP1OGeP4+2XW9TOG8WqqLgGFWOubCAth1vJw1OQRQTHqMp47Hk59FaszfF86bTJwwnnclI95ET+M/WosoKlqICCubMwOhykDd5AsH6xPXQGQzkTBiDKT8PVZYxugb2tOh0OirGl/P4Lx6h4VQj7U2dVIwvw11WlNIqYTCySRZcay8fQyE2iFDkYOuHQ319PQ8++CAbNmzAbL64kO+1hBZ+0riuGenQ1sVyJV3sMX92L4oSj6PEYgmNmf2ZK1mUWJxQW3vi37JC+9792Eo8yZBIoK4R5+iKzAcQBEy5OUkxvl50RkNKZdRQUVWVSHcPXYePZuzJpMTiNG+rQY5GKVu7ispbb8RdPQejy5ls1SCHI+iMBuyVZZgL87N24QYIt3YgmoyE2jowF+Sdn7yATm+4oBGjqImclizojAa6M4Tnwh2dRLu6Cbd1IEcSFU550ydTvHQhPSdOE+3qQZUkdAYD9spy2vfsT9HZUWWZ9t37sRYW0HX4aHooUZJo2lpDtLML36mzyXBfuK2Dhtc3E/cFMDgdFM1PlIB7lswn3NZB89YaWt7aRd0rG+k4cGhAxWadTkeBJ5+ZS6Zzw0dXMmHmuIsyaHq53ioVs2EcJI9ssPXD4e2336atrY3Zs2ej1+vR6/Vs3bqV//qv/0Kv1yNneLnweDy0tqYmgre2tuLxeC77/C4XmlGjoTEIiiQhRyPI0cigvXAG40r2udJbrbgXzcOzZAHuhXOwFKWWKguiiKooyc7XmYi0dwEkmiSqCS9Ar9JtsLEZq7sokdTad786He6Fc+g5cTptf7mTxqO3mFHiEjGvn67Dx2jbe4BgU8uAEv1SMEjj+kTzR0VRKZg9ndLVSyleVk3hvFkYc5yJ8FFDEzpRSGjeGFJTix1VFRTNnwVA97vHcU0Yk0gUzqAQLJpNyLEYocZmrMUJd7wgCMjhSIrnx16Z/eFrKcgj0tGd2J/JlBALFAREkwkpGEZvs+I9eQbRoCfU1ELTlhoibR2J693aQf6safjP1WXdf8+xU5hycjKuk8ORjH23VEWh4+C7569HOWU3Lqdj/2HC54+bGKTiPXGG7iPHBy3vvhz0rVR89NFHrzuDBsDislI+vSrjuvLpVVhclz+ZevXq1Rw6dIgDBw4k/+bOncvHPvYxDhw4gJjh5aK6upqNGzemLNuwYQPV1dWXfX6XCy38pKExAHIkTLCpDimQeNCLZgvW0kpEsyVrNchADNfFfqmdzKVwhGBjEz1HT6HE44hmEzkTxmIrK6Zj36GEeJ3JiKqo6G1WpPNNE/tjyk28fcvnxfUiXYnO2r25Ji01e8ifMYXciYnSbnRCotmjwZCqpqsTyBk/FueYUaiyQqCugdadFxRnvcdPY3Q5KFm5JC3fJiEm14giSZjycrAWu+k8cJiO/QdBBb3dRv7USYTb2lFkOc2YgUTYKpGofMHLE2xsxuB04KmeS9PWmgvtDAQBc14uXQePYCsvwTm2ingoTKi5DUEUyZk0jvY9BwjUN1KyfBGR9k7i/kDK8fJnTiHQ0IzFXUjO+DHIkSiKJGF02hH0BrqPHk96eQJ1jWkl2FIohK2sGN/p7KXqMX8AU35u1vWKJCeUjft5pMLNbShSHIPVihJLdP3OhPfkmYTwX7+eVpeb66VScSDMdgur/uHmrNVPI5FP43A40sqwbTYb+fn5yeWf+MQnKC0t5cknnwTgwQcfZPny5Tz11FPcfPPNvPDCC+zdu5cf//jHl31+lwvNqNHQyIIcjeA7fRxVvuDqlyNh/KeP4xgzHlVvQGcwZu08nY2+hs2jjz46pB/uS0milGMxOg8cTunjI0eidL7zLrmTx+McW0Xu5PHJB2netEm09TEwehFEHdbzonVWj5vuIyeItHeSN2VCUqpflWU69h1E0IvYykrImzaRzv3vEunsJGfiOApmT08ktJrNiJZE6XHM508xaHqJef10v3ucgjnTUwxIVVYIt7WTM3EsptwcmrfUJAyo80iBIK079+JZPA9jfi7odMkGjoKoQzSbkIKhFIOml7jPT6ilnfwZ05DDYWJ+P47KcnqOnwISar4Gq4WiuTMSJdyqSqi5lfwZk+k+coLWmj0Uzp2BIkmEWtsRjUYcVZUJ/RiDHnN+Li3bd6VUfDmqKsifNpnmrYmKEkWWU79TgoCjsoyeoycx5biIdnZnvM+mHGdKZ/HUmwei0ZgxxCYajQjnm0j1vY79UWUl2aphpOhv4F+LCf1DxZ7v5MbP33ZBp8ZixuJ6b3RqslFXV5dUqwZYtGgRzz//PF/96ld55JFHGDduHC+99NJVq1EDIKjZWqdeh/h8PlwuF16vF6dz5HQANK59FFki2tlOuCWztofBmYNOb8CYm4fBNrSS1f7U1NQkxQAXLVo06Pj+P/hDTaKM+fzU/mV9xnWCKFLx/tUYnRfOQYpE6Dlyku5jJ5OVPqLJROH8mfjO1uMoL8HiLqBpcw0xrw+93UbR/Fn4Tp8jUN8IqoqtrISCGVMxOO0okpQUtBNNxhQNFYDuY6foeDtzryhB1FF569oUb42qqLTvP4it2I0UCtO2a1/GbY05LkpWLCJQ20DnwSPJhGTX+NGoioovg0Cfa9xorMVu/HUNSMEQlsICbOUlxINBRIMBc35uuhclEkmWfCdCdwJSOEK0qxspFCbS0YlnyUJEk4H617dkbPNQMGc6/rP1RLu6KVo4h66DR5BCYUSziYLZ0wjUNhBqbqN4eTVNW2rS9yFA+dqVhFo76Nx/KG3/znGjEVDxnkw/5/wZU8idMgFBEAh3dNHw+uaM1xNBoPIDN2K0Z9eluRSyfZ+vtmThSCTC2bNnqaqquq4Tbq8EA13boT6/tZwaDY0MqLKMFMyeWyKFAohmC8G6syjx7EJv2RhOn6vhJlFmfXsncZ59k07laBRUyJ06gcpbb6R4eTXFSxdSMGc6XYePEWpoonXHXrynzlG8cjHOMaOQQ2Gat+7AYLdRcdNqRn3gfbir52J0ORAEAdFgwGCzJns59adviXf6/NJ7PQk6gZwJY4n5/ES7MnstAGI9XuRIlI79h1IqrKRwJGOFlr2iFL3VQvO2HQTO1RNp76T7yHEaN25D1OvpOHCYrsPHiPlTvRmCTof/bB2Bukaat+2kedsO2vfsTwjqNbeixCUiHZ0E6poyGjQAPcdP46yqwJSXg6WoAM/ShZTduIKC2dPoOXaKYGMLqqLQc/w0xUsXIvZJJBXNJoqXLcLocuKsKqdo4Zxkc0/RbCJ/xmRcY0ahM6bnCpkL83GMKk/2dzJYLSltGPriqKpIqiYPhYtNih9KpaKGxmBo4ScNjQwkOiZnl/DX6Q0JgyAeOx9aSH9gZONSXOzDafeQKaekL4KYkN4Pt7XTffQkSlzCVurBNaaKrsPHEj2M+j2Mu48cxzlmFIVzZ5A3dSKqqqLT6y9aHRjAVuKm+91jGdeZ8nIzGkJ6ixk5GktpYtkfndGQltsCCc2YghlT8J9LfeA6R1fStDVdVEyVZDrfOULBrGko0SihpmaE8tKkErMciaK3WdGJIrmTx+OvbUjLSZJCERQpe5K5HApjys+luKyY9rcPEmxowlyYT97USZjycs+fswVHVQUxf4DCuTMw2GzJTuZ6q4V4IEi4rQO91ULh3JmJEJaoQxBFYv4ABoedkhWLCLd1oEgSFnchphxXihGjt1ooWbmE5q01xPokjNvKiimYMSXjvcjGxYZML1WyQEMDNKNGQyMzqorRmUOsuzPjanOBm0j7xQtQXaoY4HCSKEWLGb3VktFj02s0tO3Zn9QpAejx+fGdPodn8QKa39yZ7tlQVORwBKPdhs4++M+IHIudbyFgSEuwNjjsmAryiHZ0pW4kQOHcGRdUiPugE0UsBfkgkOhQncEDkjNhbEoeUXIu4QiqqmLKz03mp4gWM/FAKKsnpVeYzne2LlmxJBQXIRoSxm2kvZNIeyei2UTelAkokkTHvgthIDkaxVpclFUnyJSXg95uo+foCYLn9XMi7Z00bdmOrawYa4kHW6mHps01CIJA8fJqEMBgsyCaTIl+W8dOoTPo0/KhBL2e4iXzCXV1Y8opT6gtC4lkaUVWkKPRlJCa0WlPCAJGIsixGKLJhM5gSPEODYW/Jd0ZjasHLfykcUV4L/VaVFVFjkWJ9nQRamkk5u1GjmUPeQDojEbiAT8Wd3oHYaMrF53RhByNIOj1CAOorfbnUlzsw233YLBaKF6xKK07tt5qwbN4XqIyqo9B04sSi+M9dQZnVeaHz0CaLL3I0WiiV9K2nTRs2Eb73neIef0pibJ6i5nipQvJnTIh6VUyF+ZTfuPKC9VWkSjR7h58Z84RaGgmHghizHESaGimaMHstGRtS7Eb5+hKot2plTym3BxyJo0j5g9SNH82edMmYbDbEkZKn87f2c5Xb7FgdRchiCLBljaiPV7qX9+M/2wd8UCQSEcXbbv3E+3xkTt5fHJba3ERlsKCjAYaQN70yYCKt7/mjqoSrG+i+/Axot1eCmZNo2jhHFRFof7VTXQdOYEUjRGob8JW6sko/qdKEl2Hj+GsqqRt1z7qX9tE/aubaN68nfpX3qD72KlkTlAvotmEoNcTaGimafN2Gje9hffEmQFDmZn4W9Gd0bh60BKFNa4I72VSoBQO4T99HFW5kFch6PU4Rk9Ab85caaCqClIwQLSrA2NOPnIk8RYvWqwIegOBc6dAUbBXjUs+iAVRP6wy76Ew3OslhcJIoTByPJ4IUfj8xHwBTHkujE4nBpuV9rcP0nPsZOYDCwKexfMvNKI8j2gxU/6+VQM2w5RjcbqPnqD7cGpoSdDpKLth+QURu/OosoIUjYAKgl5Ef957IIXDtO3eT7Ch+cI+RJHiFYswOuwEm1oxWM3E/cFkWCUeCGJ0OYh6/bTV7EFnNFK0YBZxfzDhCRGERJ6J2UTcH8RWktCeyZZQbXA6cI0bnUxo1hmNlCyvpuvIcUJZ+iaVrl5K45bt2Ird2EqL0dttoCh0HT6WKIEnYVjmTZtEpLOb3Enjsh4fIHfKBGK+AMH6RnInjyfS2U24tZ2KW26g6+BRTPk5dGYRTgQou3EFDeu3ZFxXftNqzHk5yc8xf4D61zYlE7x7MRfmU7xkQTJnZ6hcbFL81YyWKDxyaInCGtcsfd/gej0NI2HQKLEYgXOnUgwaSLy9BuvOZBXTEwQdeqsdi7skIbony+jMZgRBR7i5AYMrB8eYCUTam/EeO4T32GGCDbXI0csvbw7D8/DEfH4aNmyl/vXNNG16i7q/bsB75hzO0ZXYij0XKoqE7B4KIcM6QS9Ssqx60PwZORJJM2ggIfjWunsfUiT1WgmiDoM1kVDca9CoioL31LkUgwYSCc5Nm99KeuGkcATRZkFVoXlbDa01e2jc9BaWgjxcE8Ymmm0ePELngcNEOrqItHfSuvNtug8fw5TrQm8xJzVnMlwE8qdPxttHPFCJxWjbvQ+ruyjr+Uc6u6lYuwrHqHLa9hxAlSRaa/ZgcRdSvGwhniULyJs2Ce+JM/hOnUWOxdH3uSfmgjwsnqJkaMjodBA5r+gcamnDfF6TJub1ozPqL+jqZENVKVo4J+P97u0rBQmxya7Dx9IMGkiExKL9+mkNxnCS4jU0hotm1GgMm0sNIb0XrmlFimetTpIjYRQ5u+6GoNMhmsxYCt3YisswufIQrVbsFVVYCtz4Th8j7usNb6jEvV34Th9LhrZUVUWJx5DCIaRQEDkWHVCKfyAutt2DFA7T1E+/BSDU0ELrzreTKsAAjsrsHa3to8owF+RRVD0H57jRFM2fTeXNN2DKy81o8PQl0j9Hpg+xbm/Gh2Z/pEgkuxdJUVGiUbreOULbrn20bNtJ18F3kSOJ+61EY0jBEHkzJif6N/VttqkTsFeW4Ro/Gp1Bjwr4ztaiMxhwL5yDuagAg92GvbKckhWL8J0+l5Z0HPP6s1YKQcIga9m+CykcwTW+CtFkQo7G6D58jLbdB4j1eNEZDeROmYBzzCh0oo6CmVNxVFVQsnwRlvNzKJg9Dffi+QDJMJHOYECVlfNNLM1YihJJv9kw5eUQbu8gWN9E/vTJaevlPj255FiMYH1mKQMA35lahurgH27IdCj8LXX11hg6mlGjMWwuh+T/SEuiD2pEXKSRoRMTOTSRjtaM26qSRMzbg6IoSKEgvlNH8Z08gu/UUbzH3yXa1ZFSQj1SSOFIxsofgFBTy4V+RYDeZsU5dlTaONFsJn/aZAw2K67Ro3DPn4VrXBUGu23Q/JMEg40Zwj4UNc340Rn05EwcS/GyhYkFAzxgpVAYFCUlYVi0mClZvgidKNK2ez8Nr28h0tFFz9GTCW/OwSNYCvJwjqvCNW4Uzdt2JtpCZGKA62DOyyXm89Ox7xA548agt1rQGY1Y3IUULZhNqLWdljd30VKzO1FtZzBgcRdgysulact2uo+cwHfqLK079tJz5ASiyZi8ZI5R5QQamnCMKqfn2CmkUAgpHCZnwti0eQg6HXlTEx6hYGNzotS+X5jUUV5KPBhKCP8hDCgoqRPFQQ1aGDwpPptBMlRj5Uq2HNG4etGMGo1hczlCSCPtmh6wnFkQEC6iRFVRZFRFQZVl4v7sLvi4txs1HsN/5kRqeEtVCDXVIYWyq7ZeLgbSfoGEZH4verOJ/BlTKV21BGuJB3NhPgWzp1G+duWAnojBMBfmZV1nys9FNA1cag6J3Jm+woCixYxnyUJiPj/N23YS8wXSEqB7Mea6MOXlokRj5E+bnOyEXbysmrbd+xMeBylxTxMNPRP3SgqF6T5ygs79h5PrM85NL2Kw2zIeP2fS+EQXcBVQVaLdXvQWC8XLFpI7eTwtb+5M5tXYS0twjq4k2NiMFAxnFCKMdvcQam7Fs2QBRQvmIAg6pGCidUKwvonOA+8SDwRxVFVQvOK8l8fpSH7uPnYymeQb6ehK9MbqvU45ThRZovavGwjUNSLo9TjHjMp6TwZa15fhJsUP1Vi5XCFszeNzfaEZNRqXxKWEkEbSNd2LoDdgys+c92AuKh6S7oYcixLpbCdw7jSB+rPI0QjWkgosxWWYCz1pGjV6m42YtxvUzA/DcGvjgJollwO9NXtDPEGnQ+xfCWU2YS12U7xkASUrFpMzcRwG+6U11dObTeTPnJZ+fL2Y6AhtylwJlLIPi5mC2dOTnwtnT6Nt9z5CTQnPif9MLTkT0/NgciePJ2fcaJq2bKf2L+tp3bkXo92OY1QFkbaONB0ZVVYyGieB+iZcYzM3HsydPIGe46fxLJ5P3rRJmAvzsZWX4FmyAEEgRbFYlSQEnYApx4X35JmkoeQcXYmpIJemrTsI1Dbgrxs47IMKvtNnUVEpWbUYo8uZzJHpfvc4DRu2IlrMmPJyE1Vrqkpzn8aYkEiSF0gkO7vGjyF/xlTa976TzPmJ+/24xo/B4EhXDnaOrsy4PBMXGzLtu26oxsrlCGFrHp/rC82o0bhkhhNCGqprWlFkFCk+7FwUnShiKSrGUlyWLL0W9AasZZWY8wsRdANXK8mxKP7Txwk11iIFfKhy4s092t1BtKMNKejHXFSMxVOa3MaYkz+gN0aORlCVkS061JtNWNyFGde5xo/OWlqsM+gRjYYhhRcGQ2cw4Bo3irIbV2ArL8GUn0vu5AlUvH/NgPkf/TEX5uFZuiDhdZHkFIMk1NKGoBPInzElqZhrKSpAb7XQtnt/cqwSl+g+cpxIV1fGUJL/bB2ucaPTlvtOn8OY66Jo/qxkxY/BbqNw3sxEWOvkGZo2b8eY48Ra7EZnMNC2ex/dR06k7Md0vtJLkWXCrQkDQxB12MpLExVL58ULlVh2derevkuRji7adr5NuLUDncGAs6oiOUaVZfynzhEPBOl85wj+c/Vp/3es7kJyp0ygZNVipGCQ5m01KSG+rsPHEI0GSlctwV09F2uxG1t5KaVrlpE/axr6LN+dy8nFGCuXGsJ+r4oWrgYee+wxBEFI+Zs4ceKA2/zud79j4sSJmM1mpk2bxiuvvPIezXZ4aEaNxiW7X4cTQhrMNf30D3+IFAoSrD+H/+zJRKfsSHhYxo3OYMBc4MY5fjKuCdNwjZuEKbcA3XnFYDkWJdbTRai5gWh3ZyKhV1VRFYVwW3My0VhnNGHOLyRQe4q4tzuRBBwKEmqsRYnFMOUXYcovQmcwordmD9uIxsE1UfpzsfdINJvwLJqXFFqDxEM0Z9I4cidPuChl2EtBZzBgKczHs2gepauWkD9jMkaH/aLOXzQasZeXUrpycWqyL4nQiSk3F8Ggx71wDiUrFlM4fxZdhzIrFEe7ehAM6eceam7FYLPhHFuVUh1kdDmwFhXiHFtF2Y0rqLz1xkTF0skzdPWp7Op85whGhw3/2dq0HCDHqPKEh+VcHaosozMljC9riSclITfa7cVSmJ/1OpiLCpIigJDwzMjRKLlTJqSUWPvO1iUM1wzVablTJuA7U0vztp1EO7qJ+QIpVVOCKOIYVUGwqZW2XfsItXWQO3UiRfNmYnUXDmjQyLE48VBo0NDnUBmqsXI5QthXSk8n6AvSXNvC6XfP0lzbQtA38qHpKVOm0NzcnPx76623so6tqalh3bp1fOYzn2H//v3cdttt3HbbbRw+nF064Eqj6dRoXJJmzHCbLA6EqshEe7oJNZxLXSEIOKrGY7APr4FkJqRIGP+Z46mKuTodztETEPQGvMcPJRNRrcVlRLs6spZtO8dNRmdINGyUoxG8J97NmMRqHzUWozPnouY53Hskx+OJbtKSlFCFNZvR6UdGS6cXRU54U/zn6on1+LC4C7GVetDbrJfsAeo5cZr2PQeARPjEs3geLW/tTsld8ixZkKar04vOZMRTPTfRFDIDJSsXI5pNKNE4OqMB0WxENBrPJ36HQYVwazu+M+eI9aTmVdnKSnCNH0PPkeNEurrRm804x1YlO4O3vLkLc2E+9vISOvYdwjlmFFIonOI5ci+cQ/exU8R6UkUDEQSKly6kbfe+FKOhcO4MzIX5CIKOQFMLoaYWRIMex+hRGJ0Ogo3NhNs6EE0JwzDc1k7PsUTHcWuJB73ZhO9MLTqjEefoShyVZcT8AbwnTqdUr5ny8yhetjCjLpESl4h5fXS88y7R7h4MVgt5UydhLiq4JK9O73d7oE72l/v3Zyh6OpdLp6artZufPvkr3t19NLls6vxJfOrhj5Pnzh32fgfiscce46WXXuLAgQNDGn/nnXcSDAb561//mly2cOFCZs6cOSK9uDSdGo3LwnDdr8OtbhgMRZIINabL2yfUVc8iD6OBZMbjxOME685kaAGg4D93KpET08co6VURzoYcDiU9IDqDEcfo8an9owQdluIyxCyCfwMx3HskGgwYHXZMuTmJpNYRNmhUWSHc2k7tXzfQdegogfpG2vceoO6VjWlGwHCwFruTFUfOMaPO96pK9YwMVLmjRGPoDAYcoyvT1lnchcjRGPWvbqJpWw1NW7bTvvcgUa+PSFsHrTV7qX9tE96TZ3COqSJ/1tSU7YMNTUQ6OrGWuCmYNQ3H6Ep8Z87RvudAMswZae9EtJixFLuJ+fyY8lMfXu1vH6Rg5hRc46oQzt8rc2E+xUsX4j11Jt0LIgjEvH46Dh7G5HJiynUhms2079lPuLUdo8tJ7pQJ2MpLUBUFU44r6dXRiTrQ6bCWePAsmkusx0vDG9vofOddrCUe3IvmJq91tDNz2A4g3NZB/eubCbe0oURjRLu9NL+5k56jJ1KkAy6GoeTbXe7fn/dSTyfoC6YZNACHdx/lZ0/+akQ9NidPnqSkpITRo0fzsY99jLq6uqxjd+zYwZo1a1KWrV27lh070nukXS1oRo0GMDz360h11VWi0axluko8lrHD8rCOI0vIkcyy76oUR1VUDBfjURGEpH6HoEuI9znHTcI5dhKO0RNwjBqDFAoSOHuSaE/nRScLXwuS81I4TPObu9LunxKP01KzB+kSQhPy+e9FydJqBFGHpSCPcEtb2rhweydWT+bkcJ1BjxSOJFpHLFuIa1wVzjGjKFm5GHt5Kd3HTuJZPB/3gtnkTZ1E7qRxRLt6EpVWPV5QVeL+AB1vv4MUCuMYXZkI2YyuJH/GZGwlblRFRTSZMNht5E6egGv8GCKdF7webTveJn/aJApnT8deWpySoKzE4zRt3YEUiVL+vlVUfmAtjsoy2nbvTyZHJxEEDDYroeZWBFVAjkUJNbXiO30OVVEw5jjp3H+Ixg1badm2k5a3dtF56ChFC2ajt1iwV5ZjryglZ8IYmrbuINTSdr47fYiug0fwn2tI0bTxnjiDFE29f1IoTNvufRmvdfeRE4l7dpEM1Vi5nL8/70XRQl983f40g6aXw7uP4uv2Z1x3qSxYsICf/exnvPbaazz99NOcPXuWpUuX4vdnPl5LSwtutztlmdvtpqXl4vvevVdoDS01klxsB+iR66r7HkVEB8nPUWUJi6eUeMAHioIcCSNabchZkoAFvR45EkI0W5NJeKLBSCwSJnA2VUAuWHcWU34RFk8JuovoHTWcLt3vJfFgKKvRGevxIkejg4YklLiEFAoTaGhCCkewlbgx2G207tpHpK0DS1EBnsXZpfp9p87iWbKAeCCYIj4oiCJFC+fQfeQE0c5uBIOekuWLiHn9BJtaiLR1kj9tEq273kY5L3LnWbKAzgOZ8we8J85QumYZjooyfGfO4TtbT7itE+fYUYTbOug5dhKdyUjBjCnE+yQ3q4pCqKUN15hRCEYjZTesoG33vmSJt8FhJ2fC2IRnTRRRCvIzahvlz5yC9/Q5DFYrUiiM/0wd1uIivP4AORPG0vnOuymdtgGkYIj2tw9SOHcG8WAQNaASqK3P+BIRamrBNXYUgiiiyvJ5z2XqGDkWG7AfVKzHi3GI1VK9DMVY+eY3v3nZfn8utcnscAgFBu6hFR5k/XC56aabkv+ePn06CxYsoLKykt/+9rd85jOfGZFjvtdoRo1GkuF0gB4JdEZz1s7LvTkrlwNBrwdBl7X0WmcwoDOacI2bTKS9lZivG6unjEDtmbS2CxZ3CbHuTuIBP86xkxDPV+LI8RihhgyhNCDa2Ya5oAguwqi5Wu5RNlRJHnjAIFVfSlwiUNdAa59O03qLmc6DR5IdteVYDCkcRmcyUnbjckBAioQRBJFoVzc9J07TumMvZTcsIx4MXQj5FOThr2sANRG6co6uJNDQhByOoEgSedMm0rpjT7LKCACB1M99MLocqHGJpq01ye9q3Ocn1NxK3rRJ2CvLCNQ20LZ7P0ULZmN0OpJGhsFuo+61TTgqy8mdNI7i5dWJBGNFRWc0pLSgMLqclK1eir+ugWhXD3qLGXtFGdHuHgTAXlFKz4nTWNwXqvlMeTl0HcrsCYj7/IhmE81v7cKzZH5a08++RDq7Ez20unpwjK5MCAD2YbAcqf4if0Nh5F6WMjNUI+pyYrUPHIK2DLL+cpGTk8P48eM5depUxvUej4fW1lQPYWtrKx6P572Y3rDQwk8awHvvfh0InV6PtSTTg1rAVj4qTRdm+McxZOzCDWDKL0TQJ0qbRZMZa0k5jlHj0JmtOMdOxFzgRm9zYMzJw145BkWKE+vpQu3XlkFVFAwOVyKMleEBIIVDacuycTXdo2wYnPasQsGi2ZRVKK8XKRxOMWgATDnOpEHjHDOKnInj6Dl6ksYNW2l4Yxs9x0+hE/W07thLqKUNz6L5OMdUIppM2Ird5E+fjL28hEi3F0tRAUULZmMuKqD72ClQVZzjRmMtKUYKR9IMGEHI/hOZM34sbXv2ZzS+u949llJq3X3kBM5xCb0bY44To8uBOT+PnmMnadt7AAEBo8OO0eVI66mlxBNJy4osJ9bbrAljQVURRJFIVxfla1dQMHsaFndBIjl5EKkCKRS6YJAMYJjo9HpUWU60jCgvTTNidCZTspN6fwRRlyKceLUyXD2dS8GZ62Dq/EkZ102dPwln7ntz3QKBAKdPn6a4uDjj+urqajZu3JiybMOGDVRXV78X0xsWmlGjMWIJv8NFEEWMOXk4x0zE4MhBtFgx5hXgHD95wFLp4WB05WIru2AoCecNKktRSUrHbUGnQ2cwIhoMqKqKFAklE34D9WeJdrYnxyqxaKLqKBoh1t2JHIsgiCL2yjEYc1JVdgdKau3L1XaPsiGaTeROHJ9xXeHcGYN2dw7263gtiGKy35HB6cBSVEDbzrcvhJUUlUBtAx37DlI4exqR9k7adu/DObYq1augqEiBADq9gYYNW2jbsZdgfSM9x07RuHEblqKCjGEUKRjCkOXBLJqNaSJ+KccLR5JGXNwfQG+14BhVTsHMaTRt2YHBZsVdPZdgQ1Nac89e4oEgjZvepO7VjdhKirFXlmMpKqB52w66Dh8j5vNjdDrpPPAu9a9spHnbTpRYHIPNkugKngWdwZiQLGhpx1aa/a3blJ+Lo6qS0jXLLjRA7YPebMJdPQ9dhjJ5d/W8jGXlGmBz2vjUwx9PM2ymzp/Epx75ODbn5f2d6+XLX/4yW7du5dy5c9TU1PChD30IURRZt24dAJ/4xCd4+OGHk+MffPBBXnvtNZ566imOHTvGY489xt69e3nggQdGZH6Xg2s2/PTtb3+bhx9+mAcffJD//M//vNLTuaa5Eu7XwdCJegSrFWtJOUo8oRsjnE/EvXRZuMTbb6SjlUhHK6LZgrkooQysM5kTOjIDda4WRaRQECmQOblO0OtRohH8Z0+mhLZi3Z1YSypQJSmRpyMIiKahuZmvxnuUCdFgIGfy+GT4Ix4MYcp1kT9zKqbcnEHDFYokJTw9550fotmEMcdJ8dKF6G0WWmr2Ztwu5vWDTkA0JQyNuD+A3mJOGqbh9g5s5aW0vLkrPUSmqPjP1eGoLEvOMdDYjP9sHd3HTlI0byYt23eneHEEnQ5xkHJeQRAunIfJhMFmA52O5jd3oMoKPcdP4aiqwDVuNDGvH73FkqL0LEejtNTsSVaNNW+tofx9q2h6axeqLCPodOTPnErzth0XzklVCdQ1EG5rp3hZNQ3rt6TNy1ZWTPh8t2/f2TqKly0k2tWTZtQVzZ+V0OnxFA1434w5Tirev4ZAXSOh1naMTjvOsVUYbNaUFwONVPLcufzDE5/G1+0nHAhjsVtw5jpGzKABaGhoYN26dXR2dlJYWMiSJUvYuXMnhYUJoc66ujp0fV60Fi1axPPPP89Xv/pVHnnkEcaNG8dLL73E1KlTsx3iinNN6tTs2bOHj370ozidTlauXDlko0bTqbl2UBWFeDBAsPZ0Sv6KudCNucAzcE+nwfatKoTbWom0pkvS64wmnGMmDBjiUhWFSEcr4Zb07Q3OHEx5hYSa61EylX8LOuwVVQRqT2OrGI3R6Ro0VHA1IkdjqEqitUC2B5cUiaAq5ztJD9ASQVVVpHAYKRRGCkXQiToiHV2EWtvJnTQ+kfDq9Q2oPwOQM3Eskc5uIu2d5M+ciqW4EHNODook0330BFZ3IY0b30zdSAD3gjlEunoSVUPnjQX7qHJsJR5aa/ZgcDlwL5hDqKUtkfia48KU40KOx+k6eCRj41BBp8OzdAHNWxOlr3lTJxJu6yDcp11B7/FLli9CkWUMNivm/AuevJjXT+1f16cML15WTfO2xD7tlWUIooj/TGrOls5owDV+DLYST6KvVSyGv7aBYH2iAaa1xENLzW5QVIw5zkQHcFkh0tlFuLUdvdWCc8wo9DYr4kX+P1POX7/LoUh9tXK5dGo00rkcOjXXnKcmEAjwsY99jJ/85Cd84xvfuNLT0RghlHiMwLmTafkKkfZWRLMVU2525dXB9x0n2p65JFGJRZGj0QGNGkGnOx9GEoh0tCSqfXQ6TLkFifCYqmQ2aCCpfeMcn5D1v1iDRpHiCW+VTndRVVOXCykSIdLWmSjXjcWweorO94lK79ytz/KDr8gyciSCFIqATocANG2tQQ5fuGbWEg9F82ZS//qWROUNgKog6MWsycii2ZRsM6A3mwi3tKM3mROK0nm5Sc0UY64Lc24O8XAYg9VKuK0jpYu3qij4zyRUonOmTEAQBIKNzQQamiiaNwspHKZpy3YMDjsFM6fSsn13mtJ1/owp+E6dA8AxqgKD3ZaiQHzhYKDICmpcovvICdzVc5OJ8Jkqnvoex5yXS8/JM6nXwGTCvWge3e8eo/v88QRRR87E8VTccgMIAj3HT2LOzcVUkItz9CgaN2xFicUxOh0Yc13EfAHigeCQezz1RfPMaFxprjmj5v777+fmm29mzZo1gxo10WiUaB+dBJ/v0sW//lb4yle+wn333Zcxga6+vn7Ewx2JhpCZnYjhtiYMdufwvTWKkla91Bc5GhlctVhVEUQ9Vk8Zgk6HqqrEvF0E69uwV6T3EEpBp0N/kQJ8ihQnHvATaWtGiccRLVasnlJ0ZjO6S/D0KJKEFI4Qbm1HjsYSUvg2K3qLOdG5WlbQGfToRBE5GqVj/yH8Zy6IdXn9AXxnaylfu3JI/ZyUWJxAUwttu/ahShKeJfNp23MgWULdF9+ZugsGDRCoa8RZVYH35Nm0sZxvFtnp9SeMRYMeg6gjHggmzslqQYpEKF+7EhWIeX1YDXqMLidtu/dnnGuwoZm8aZPoOnQUORYnb8rEhCbMeaMj7g/Qc+I0xcsXEahvJNbtRW+zkDNpHIJOh8Fho2DWNBBI87j0xWC10FJzGEEvokjyBQFHoyGtClAQdYnv2/nO4qLRQF/TJ3/mFNrffod4n1JuVVbofvcYOoOe3EnjKJg57Xz3cZmmzRf6PsV8/mR1Vri1ncpbbkB3CV3aNTSuBNeUUfPCCy+wb98+9uzZM6TxTz75JI8//vgIz+r6pLdz7UCy/JlQzovWCYIwJKNDVVWUeDwhdqcq6EQDiCLyAFVBSizGJUVNdboBS7lFY+ZQiaooCcG8832hRKORQMNZ1H6KtqqiIBgMacuT+zddnMtakWXCbS1EOy6UVkoBH75TPuxV4zA6ht4csi9yXCLU1EzL9j3JB2cnUDhvFkanne6jJ5DCESxFBeSMH4MiySkGTS+qJNP+9kGKly5IlrJnIxYI0Lp9N5DwKihxKaNBY3TYUwTrAAINzRQvXUi025si4S/odBQtmE3PsVOIFjOexfPwnqnFkp+HcP47KFrNCHqRniMnUrwygl6kaN4sdHo9oaZ0750UimArKSYeDNK+9x2UeJzSVUuS68Ot7YTbOrCVFmMuyj8viGdLVDDlJdSCpUgEo8uV3vqARFl41Osj7g/gHDMqJeFWbzbjGluFt483JtjYQs6k8XS/ewx/XSOucaOJdvUAiUolnV6fYtD0pfvIcRyjyhMJv6JIzOtP6SXVF1WWifsDGDSjRuMa45oxaurr63nwwQfZsGHDkOOYDz/8MA899FDys8/nu6o0Pa5G+npo+otP7dq1i3Xr1rF169a066hIElIoSLi1MSFSZzRhdpdisDuy6sqoqppQ2K09jZpU1xWwFJcg2uzg7c64nWi2DLlqKBM6vQFzfiGRjnTZd0FvQJfB6FDiMSKd7YltzueJmAuLcVSOJdLeQszXA6qK3u5EMJiwlVQSqE3XfjC7S1JbJwwBVYqnGDR9CTXUoh87cVhl7nI4TMv23SmCas6xVcT9Adr3XPBexLq9RLu9WVV6gYREfiw+oFGjSBLd7ya6V5vyc8mdOA7RaqZ46UKCza34z17wzMjRaHqllKrSsn03+TOnkjtlInG/PxFays8jHgyRO3UiOoOeUGs7ZpcLg8OefCgLOpFQU0OKQQMJg6x159uULF+U0agB0hRzdSYj1uIiQs1tyXkFG5oAKF29NK0kW282U7x0AY2b3kqpltJbLRTMnkHrzr0gCORMGpcSvtEZ9ORNm4SgF/HX1ic8LLKMzmjEXT2X7nePoxN12MqKCTY0I1otKWKDadc/Fk8RRlSzGPXJ8YNpDmloXIVcM0bN22+/TVtbG7Nnz04uk2WZbdu28YMf/IBoNIrYL55rMpkwDZCgqJFOfw9Nr2Fz3333ce+99/Lyyy+nGTSqohDzdhFqvPAWL0cjBOtOY/aUYCnwZDRClFgU/5kT/TwmKuHmRpxjJxHRiRnDRFZP2SUJ8Ak6HeZCN3I8Ttx74Y3fXFSMMScPJRpGiSd6BCVKX2VCLY3EujsvzFKWCbc0oBS6EW12bK5cBEAKBYl2tWGwO3GMmUikvRkpHEI0mDC7i9FbLr4iRA5nVxdV4jEUWUY3jEhcoKEpTSHWXl5C0+btaWNVWR64Q/oQ8kIVSSbm8yfUch12OvYdQgqHQRCwl5dQvHQhLTW7EyGqhiY8i+cTqG1Im0fH2+9QunoprrGjCba0UvfqRlzjqtBbLXS+827KOTmqKimYNRUlHsd74nTmiakq4bZ2zIX5SVVfAKPTgRRMNRISeTtxihbMwX+2jp5jJ5GjMcz5eRTMmZ5Vs8XodFB24wrifj+xHl+iU7eq0rZ7H4JOR+mqJRm9InqLmfwZU3CNG03T5u3JpGSD04FrzCiMuTkYc104x4wi0t6V0AnKgiDqUsTwdEYjosWcksuUMmeXAyUuZSzX1tC4Wrlmvq2rV6/m0KFDKcvuvvtuJk6cyL/+67+mGTQawyOTh+a+++7j9ttv58UXX2TBggVp2yhSnFBzQ4a9QaS1GVNOfsaQTtzvyxoCCrU0Yq8aR6ixNtmfSRATGjKiNV0v42LRGYzYSitQPSUJcTO9gUhnG74T7ybHCKKIfdRYBL0hxaAB0FvtmPIKEgm7RlPCW+PtweB0YcrNJ9zWjL1yLLby0aiKjCDohm+I6QZRbR3eXhOJun0wOOxEM4RIAKLdPeRPm0Rm3xnYSksSD+oB0OlFbGXF6C2WFE9Qogy5kZjPT8GsaefzbWRUWaFg9nQ6Dhy6oEQsQN60SRhzXegMeqzFbipvuQE5GqVh/da0Y/rP1mItLsKcnzugnH88GEpp36C32yiYO4PWHRdKyAUxEapq272PonmzyJ08AefoSlRVRacXEU0mVEVJhB8zGPEGqwWD1YLVXYQUCiNHY5SsWIRoNA6s36OqdB0+mlJlFff56dh/KFk91bJ9N6bcHMyF+YhmU3rjS8A5pirFqNFbzBTNm5WspuqLa8IYgk2thBqbcVRVYHEXZtSp0dC42rhmjBqHw5FWG2+z2cjPz7+qa+ZHmpFI6M3koXnxxRd55plnmDt3brqnRpKy91FSVZR4LKNRM5CarhTwoeYXYcovRG9NvH0Koh6dwXDZykV1ej3o9eiMJqJd7UQ7U5sjqrKM/8wJnGNTBbIs7hIQdES62jG6cgEBU34hZncJ0e5OpHAIe+XYC6GYIRjcvfk6SiwGqoLOaEYw6NHpxITIX5a2EaLFmkxcvVhsJW68xzPLo6ehqIRa2smZlFDz7YvOZKRg1tRBy391ej2OUeUZPUFAwoOhFxGtZpyjKpBCIcJtnRQvrUYOR1BVBaPTgcHpSJaIi3o9Ooed7mOpc0IAa7EHc15OwpgpzMeY60oqE/fH6i5Eb7dhLizAmONMiizmjB9DzOfHYLdhzs+j691jxHp8dL17DM+SC/2n4qEQUlcPUjSKKkmIFvOF3JoM6K2WQYUIFUlKls5zvuItzVumQswfSOQgtXfSceAQnqULaK3ZmxLqspUWYykqoHHzWxTOnYE5Lzeh3O0ppOyG5XQcOEy0uweD1Ypr4lhUKeERAwi1tGFwOhLepPOGTTKJXC9etrYlGhqXA+3beI0z3ITewejvofnQhz7E3LlzMzd4G6z/SxapeYPNTqy7I+M6ncmMHIsQ7WzHOSb3knRpBkOR4kTamjOvVFWkgB/RYkUOh9DbE/oIcjSMOb+ISFszcjRRmmzKycdc6E5U3wwgr592fEUm7vcRrD97wTgUBCzuUkx5Bej0emzlVQTrUst3BZ2YUEO+yBydXkw5TgwOe9IDEPcHMLmyJx2H2zrInzEZc0E+/rN1yNEottJiHJVlQ04oFQQhuwovEPMHKV6yEDkaTWq8BBuaEE2JiqbipQsx9DMGVEVBCl7wwhicDgrnzCDU1EKgoQmdwYAxx0XBjCk0bnor7Zg6kxFzQT7Rbi+mXBc9x05hdDkItbQn2lzYrAQbm/HXNpAzfgy5E8chiGIih8hgIObz0773HULNibwng91G3rRJhNs6cFZVZjVsBiLmD9B1+Fgi/CaAvbyU4uWLaNu9L+36qZJMyYrFyNEYgkFEbzZTfuMK4udFCEWTiXBHZ1KbpvGNbZSvXYU5P/H/ylJUkNDKkWTkWJTW7XuIeVMrReM+P77T58iZMJaY30/34ePEAwFMuTnkTpmQaL6pGTcaVwHX9Ldwy5YtV3oKV5xM4aJMkvoXy65duzJ6aDJ1rhXOezuUWLrLW9DrsybG6u0OhCx5M+YCN5GOVow5+cjxGAjCyP1oqok3z2xI0QjWknIi7S0YXXlEOtsw5xcmjJBeFIVoVztSJISjcgzCRSTuKrEowdp++R6qSrilIdEiwuHE4HThHD+FaGc7SiyK3u7A6MxFN0i10UDorVZKVy+l85138dfWg6IS7ugkd+rEpMZJL4IokjdtEm0796EoMqUrF2Nw2C/acyaI4oWuzxnQGfS01uzBXJBHyYpFBOqbkIIhzEX52EpLkGMx4oEgYh+1YJ0oYivxEGpqQdCLFM6dQctbu5OaNQDNW7ZTMG8m7sXz6Xj7IPL5tgSmvFzc1XMwOOwE6htp3ZGorBStZnImjUOJRon5Awh6EXtZMZ0HL4SBzIX5iXDU3gNE+ojqxQNBWnfspXTVEqTz+SoXY9jEA0EaXt+C3EeOwn+2jlBzG+6Fc2jakurpsniK0jw/On0iYbp9z4F0vRsVOg4cTqlWE01GdAaVjgOH0gyaXmKBAIH6Rtp2XUicjnn9+GvrKVmxBGvxwMrDGhrvBVrvp+uAvsZGTU3NJRs09fX1rFu3jpdffpkPfehDKf2F+sry9yIajAltlv55BIKAvWJMVi+LzmDEMWYCur6hKZ0Oi7sEJR5DEAT0Fgv+U0cJtzYlyqkHQFXVRAfnYIC434ccjaDImTssp05TyFjx1IveZCLYWIfOYEI0WzDl5BHO4tmRQ8GUhykkwghKPJYx0VZVFSJ9+kb1J9LahCJJiTCUyYy5qBhb2SgshR5E08DtHIaCwWalaP4sRt26lsoPrD3viRhL6eqlWEvcmHJdOMdWUbysmu53jyGFwyjRGF2HjyUMlIs8vmg24RwzKuM6QdRhdRdhLszHf64+0cdIkiiYPZ1wawf1r26kaeObnPvL6wTqm1Ie1rbSxPVwjKrAe/JM2j0A6NhzAJPLSfmNyym/aRUVN6+hdOViTDmuRHfw+kQFU/7MqZhzc+k5epKuw8eRwlFyJoylpWZPSl5LpL2Thje2kjc5c6+rjnfeJdjQRMMb24h0dA2caH0eVVHwnalNMWh6kSMRwu0dWIoKksvMRQVZc12CDU0ZBfx6556+ToUsxiaAo7Kc9r0HMkwaWnfuTSR9a2hcYTSj5jqhvLycRx99lMWLF/Poo49ekkFzzz33sHXr1mRScP/GiZk614oWK65xU7CWlGN05WLxlOEaPwW91Zb1wZcwWqw4/3/2/jxetrsu88Xfa16r5j3P8z5zZhIyAQkQQFoQr+3Q90oj1wZNiz+72+6mG/k1AW2k9b680uJPEO1W+SleJ9BWVEQwBJKQhJA5Zz57nseaa833j2/t2rt2Ve2zz5RzTlLP6xVenFpVq9ZaVbu+z/p8ns/zjB0iMX6U+Ogh4kPjBEGArKiYnd3kZycBsNeW6y5UWwiDAK+QI3P6ZTJnT5CdOEX65IsUlxbOS4ZkTSPS3V//GJVyFapUxF5bprg8j2JFCeosOltw82LhC1xhmOdkNiitrVBYmMEvFatGacMgbOw+DPiuTRgG+I5NaXWJ3ORpclNnsDfWqtLALwWyqqLFoujxGKplohgGeiKO0ZIi0teDX7KZf/jRKm8YgQsnVLKi0HLsEGZHtSO0pCh03XU7y999FtUyaTl2CMU0SB0cY/Hxpygu7SB+QcjSo0/i5gt4xRL2Rho3X6DvgTcSG+glP9uglQhkJqbQ4jHM1haMVBKlLA6WFVnEA4yP4BWKLD/5Pez1DfxSCc0yWX/heM2kmFL2kUFRaH/dTTXhjfbaBnoyjpvJMvuPj+Du0Xbbgu845GZq4ze2UFhYxmxvRdY1Wm84Qs+9r2+s24k2bgkqZq3GTZJl4o0IpyxDEBL69YmZXyzV9RtqYm+kN7NMnJ3m+WdeZuLsNOnN+h5DlxNzc3O8973vpa2tDcuyuPHGG/nud+tnqm3h4Ycf5rbbbsMwDMbHx/n93//9K36cF4vruv3UxDZmZmb4xCc+waOPPsonPvGJi67UXGxwoiRJKIaBYnRBe9cFvaes6ciaju84FW2LndkUWpUdsDfXG6Z0B65THg+vXnns1SUUw0RPte45Sq1GY0T6higuzlZaI4ppYfX0U5jfHlV305tYHT21wl1JQlJUwsBH1lR818EvlbBXl/DtIrJuYLR2UFpbwWhtR7XE3bUky6iRaMNwTNWMQBiSPXuyisR4hQnUWJzowAjKRXjUnA+KaYAk1bShtpA8MIqsXNw9kRax6HnTXbjZHIXFFRTDQLVMNo6forSyRml5ld43v4HE+CgrT34PZ6N2IkvWVELXY/6x72KvC/GvrGv0vvneqkBMLR6j5cgBFNMkDIOKvkSNWGg7puhkTaPl2EFC169p7+jJOJnJatPB5IFRrK520qfOkTkniFLHbTdSWt1gsyy+VkyTwBHVkND3yZybou3GozVxEjsh0uAba6RkTSV5cIzkoXFU09jTryk+MsDm8VN1tyXGhmtIGoDZksJob8XeRWBlQ2+Odl9mLM4v8/H/9Ks89si2mew9b7qDj//Kh+nubewJdSnY2Njg3nvv5c1vfjN/93d/R0dHB6dPn6alpaXhayYmJvj+7/9+HnzwQf7oj/6Ir3/963zgAx+gp6eHd7zjHVfkOC8FzW/pqwC7NTT1dC/7xV6TUvUqNJcb9sZqw3iEvcr3bjbd8HWl5QURqmhFGrr5yqqK0dqGFk8Qei6B6wqvnZnJHcaAAr7roLe046yviHZZZ2/ZHddBUjVUU4iKc5Pbk0WB4+Dlsljdfdgb64LIqSqSJGG0tFNaWap7/FZPv9DR1KnKeLksfrFwRUiNJMskx0fITkzXCFOtrg6MltQl7V/WNDKnJymtreO7bo1Xysbxk3TedXud6pBA6vABVp95oUJoQJjLZc5MEuvvJTc9h9HWQuuxw6x873m8simdrKq03HCYMAhIjA5VtW6MZJL8XG2Vx7cdVMvEKVciIt2daPEoi99+cvs5JZvFcpBmpKzvSY4PV5Gh0vIqge+hNDAV8oolAscleXC0yi+n6ryPHNj3aHUYhLTfdqMY/d7x1Yr0dqNFI/glu2ZfasQSZogz86RPnSXwfWKDfaQOjgE01EOpEQul6Qm2b6Q3szWEBuCxR57i4//pV/mVzzxEMnWeqJaLwK/8yq8wMDDA7/3e71UeGxkZ2fM1n/vc5xgZGeHXfu3XADhy5Ajf/va3+fVf//VrktQ020/XID760Y8yMzNTd9vMzAwf/ehHq/69m8DsbhddL5AUBS3RePrGSLU23LZXP3+LEGTPiRDGhu8vySi6gSQr5KbOUlycqyE0IBZGq6MLxYoQGxzFzWySmzpLYX6G/PQ5MudOijvuOj/yxaV5tGi0Shwt6zrx0WptkaRqwiNHlnE26y9wAPb66r60GhcDLRqh/2330X7bTZgdbUR6u+m+9/V033tH3ZaHSFYvYG+kcTLZPa916Ps4WZE1VM/8zcsXkRDOw/VgtLbUJl4D2ckZEuMjKIZB241HWXzsyQqhAaFvWnv2RbRohOzkdFU7RTH0usLr7MQ0ybHtH/7E+Ajrzx+vxBLsxPoLx0mODRPt60FLxKsExFoiVlNZCXwfN5entLaOvbHJ5qkzhJ5PpLe75jhiQwOYDa5HPUgSlFbX6b3vXtpuuYHWGw7T86a7sTpaWfrO01WeNTuhRSySB0fpe+BNDLz9ftpuPiam21SFztffWveNuu6+/bwj6k1sY31to4bQbOGxR55ivYH1wKXif/2v/8Xtt9/Oj/zIj9DZ2cmtt97K7/zO7+z5mscff5wHHnig6rF3vOMdPP54rb/RtYBmpeYaxIWMaV9su+hahKwoRLr6SGczNb43aiy+553gXuPhimESOA6B6+AX8+fNJ5JUDTUaw8vnarcpKrKm42yuE+nux95YxStUPy/0XHLTE0R6+qsnpEDkRu2qyEiSjBaNER87VLGx3/LkOZ8e6EpDNU1iA73oLQlCz0dPJpDqpIP7tk12apa1516qBCRa3Z103Xlb3XFvWVWxOtsbVmLMthYUQ6f95mPMLC7XbG9E5ELfZ+WpZ+n/vjeTm5xpmOi9efIMscH+mjgGI5Wo8YPZCnmMjw6RPTeFYhp03XuHOM8wRDYMMucmyc/MixgDQ8doa6ky7gNIHRyvaoF6xRIbx0+RPnVWkCtJItbfg9JjEunuJDE6SGFhGUmRRdJ3PFZlEHg+KKZJaXWd3PQcWjyGpChsHD9F6AcYLcm6upotCL3bNnF1CyJSQ4tF6bnvbrIT07i5PEZrCy2Hx1GbGVEXhGym9rdlJ3Ln2X6xOHfuHJ/97Gf5+Z//eX7hF36Bp556ip/7uZ9D13V+4id+ou5rFhcX6eqqlhR0dXWRyWQoFotY1rVFZpuk5hrEhYxpX+120eWGbJgkDxyltLKEk91EkhXM9k70RGrPfCM1GmtYGjc7uimuiLaCm8uWDfP2OAZVJdo/TPbcqeq2jywTGxwllGR8x0ExTJzN+ndUWxWeeiPrkiTXJQaKpsOuc5RVFb2ljdJy/Vwio63jknKw9kLg+xSXVlj41hNVmUGpwwdoOXYQtZzBFoYh+dkFVp56tur1xcVl5r7+Lfredl+Nt4wkyyTGR9g8eaZWfCpJtBw7JATMyQS9b34Dy089U6m4mB1t6InGpXk3m0OSpIZhjSBGkdWIVdPxUyyTzrtex9JjT2G0pkgdPoCsKoQhtHR3kjpyQJjcffe5CvGRZJnWG4+gWpaIYgjDsrBY7FxSZDrvur2K3AWex8bxU9VGhmFIbmZepKX3drH85DNYHW10vP42QTAuMMRVi1j03HcPc19/pGpqS7FMYRy4T4IUuC6rzzxPaXmV0vIquek5YgO9RLo78WxHmEQ2Hd0vCPE94iwAYufZfrEIgoDbb7+dX/7lXwbg1ltv5cUXX+Rzn/tcQ1JzvaFJaq5R7CQ2Dz300CWJf68VVMaaJQlZ1SqLse+ICoqT3hRGaS1tWN29mJ09wklV3ftHM/A87Mwm0YFRiouz27EKsoLZ2YNfKlamleQGCdy7oRgmsZED+IU8vl0qi5k1nFwGxbGF0DcMqau2rByXK4jWTlIjyyimue9FQJJkjNYOnI31Gl2NGo1fcOL3hcDLF5h/+LGaxXTzxGmM1hSJkUFATL6sPvdSvV3g5vK4mWwNqYHt9tbS409XvFG0eIzOO29Di4sfdUVTifZ2MfC2+/Bdtzx+L8wNY8MD5CZr26vRvh5kTcNoTZGbrj9JJCoXEooh9C2+bQv3Xt/H6mhj6D3vwNnIsPzk9yqRA5Kq0H7rjTiZbFUlJwwC1p57ie433klhfgktFmX43W/HyeSQZAktHqvy1QGhwUmfrJ9FVVxepeXoQQLXRU8m8PJ51l94Gd92iA/1Y3a0VYmc94LRkmTwn72V0tomTjqD0ZrCSCUvKPLAL9nkpravY+h5ZCe2tULJ0aF9H08TAq1tLdzzpjvqtqDuedMdtF5Am/FC0NPTw9GjR6seO3LkCH/xF3/R8DXd3d0sLVUH6i4tLZFIJK65Kg00Sc01jZ1j2o8++uh1S2gC38PL5yjMzwiDPknGaGvH6ugmDENREdlh3Bf6PnoyRWllCd+xxRRSZw+yUZ8MBI5NaWEWWdOxuvtECKXnEiI0J4HrVMwB9T00O1X79FzyMxMEjoOs64SeR+C6xIbHyE2eITowIiaeGpgHAqhWhNIuQhDrH4Y6VZrzIdI3iFfI42bTSJKMnmpBkhW8fK5uBMVeCMNQ5BNJ0p5VnuzUbMPqwPqLJ4h0d6JaJoHvNwxFBCitb9RN+JZkGbOtlb63vpHAcQhDoWupp9dRIxYq1T+gHbfeiCTLYoENQ+G8O9hP+203oegascF+1p8/XrdVlTo0htHaiqyqOJksS49/t9IKk3WNtltuwMvlqzKUQk+0trrvfT256bmac86em6L7ja9HjUaQJKlCzOohcNw9tVCB79N641H8UnWmVX5mHi0eo++tb9wXMZEkCS0aRYtGgb6qbb7r4hWKZCdn8AtFov29GG2pGoIS+P6eVaKmP82FI5mK8/Ff+XD96adf/fAVEQkD3HvvvZw8ebLqsVOnTjE0NNTwNXfffTd/+7d/W/XY1772Ne6+++4rcoyXiiapuYZxuca0rza8XJbcTsfcMMBeXcYv5DE6uqsIjRZPIhsG2Yntsnzg2LiZTWJDY2iJVJXvTRiGlMqZTYHrUFycIzo4KozhykZ+Xi4DsowWSzQUR+5G6Af45WwqvyhaL2o0Xhm9LszPEBsex2jvrBuxoFgRfMchNjRGcUlY9RupVtxiAX9zHS0aQzHMfbWOvHyO/MwEaiSGFktA+ZwD20bWddRoDMIQN5sh9H20eAJZ1+vGJ/iOjbO5gZvZRFJVzPYuFNOqEbyGYYjTINxSHFO+qv0iqWpVi2ontNjepXTVMuEiogTUiEXn7TfTesPhSpq0YhqVDCo1YtH7ljew+K0nKmZ2kiyTOnqwEtDo5gvM/uMjVQQlcFxWnnyGztffip5M1Djsbp46S2JkkI2Xq8el3XwBxTT3ZUh4vrwuSZaJDfQy/ZV/rNnmZnNsHD9N+603XHTbJ3BdcpMzLD+5HSy6NZq+mzDJqrr357sHeWuiMbp7O/mVzzzE+toGuUyOWCJGa1vLFSM0AP/u3/077rnnHn75l3+ZH/3RH+XJJ5/k85//PJ///Ocrz/nIRz7C3NwcX/jCFwCh8fzN3/xNPvzhD/OTP/mTfOMb3+BP//RP+cpXvnLFjvNS0Jx+ukaxU0Nzzz33XJfTTCDGnwvz9Y/ZK+SRwrDKidhobae4OF/3+fnZqdrR5jAkLLsGa4kkkd4BCvPTZCdOkz13CnttBcWKUlpeJHP6ZZz0Zo3LcBiGBL5ffecssZ1pVV60JUWuvDb0PbLnTqJYEcyu3qpz0BIprK5eivMzFBfnMFrbCYOA7OQZSotzKJpG5szxSpvsfPCK+fL1ylFaWaS0ulRppwWOQ+i5pE++SGF+muLSHJkzx8nP1F4r3y6ROXOc4uIsXiGHm9kke+4kxeVa51lJkrDqVFe2YKRSSKpYUIVJ3mjd58mqitma2td5XgxkTUOPxzBbU+jxWFWopqwoWJ3tDLzzLQx835vpe+A+Br//AVqOHECPx4TuZn2jYZVp4/hpEuO1465uNocWjxEfHhBj4WV9j9HWcl4R+hYU0yDS11N3mxaL4hdtspMzRAf7Ktd5JzJnJ/c0gDwfvGKpitBswc3mWHvhZbzi9r4Vy6TlSH3XZKOt5apPPV3ItOi1hmQqzsjYIDfeepSRscErSmgA7rjjDr785S/zx3/8x9xwww380i/9Ep/+9Kf58R//8cpzFhYWmJ7ebi+OjIzwla98ha997WvcfPPN/Nqv/Rq/+7u/e02Oc0OzUnNN4nxj2tdVxSYI9nS+9UpFFN2oLPBhGELYaLLFI/Q8Qk2v3A1LsoyebMUrFDBa2ndVhEKczTW8Yp5I7wD5mQkKc1OokSiypQoy4zg46Q3cXBpZ0zHbOpENA0lVMdo7hfmdJFoPsmESei7Oxlpl//mpc8THDoqqC4Ak4eay5KbOQRjg5bOYHV246Y2q4yIMyc9NERsaI/R94bMjyejxBJKmV92Bq2aERsuXrGl1087d7CZOJoHZJohJ4PsUFmfr3m3bq8sYLW011ZpoTxdrulaZZtqJtltvqCRly4pSDjrMkZ/ZJqSyodN7/72oV1FvIdovkYatmmIDPxgQC7wa2VVBkkSMgmLooprnuCQPjKBaJnoqhVyHgNSDomt03nELiyWb0tr2BJgai9Jxx60sP/E0hND75ntpOXIAv+Sw9vxLFSPC0PcvVDdchfx8feE5QG5ihlh/H16hQKy/FzVikTw4AoRsvHxKiPEliPb30vG6myuC8auFKxXq+2rFu971Lt71rnc13F7PLfj+++/nmWdqSfC1iCapuUh89KMf5cEHH6xLLmZmZi5plPpaG9MOPHdbg6FeWIChqHbssHjdBVnVqiaWzrfnwHXw7RJaIlVZ+NVoHLO9UxjY1XuNXSIMAyRNI3Rd7PUVlN5BfLtE9uyJ8o+0cAh2NtZE1EOqDSPRQnbyTKUSBBAbHq8K75RkmcC2K3EO9Q9gm6RJiloZ6TZaOygszFYRnuICWN19GK0dFZKhxuKiElRHg2F2dGOv11+YSytLIvRS0wh9Dze92fAQnc11JFWrMvJTt4S8jz2FXV5MFdOg4/Zbasz31IhF55234d90DDeTRTZ0tFgUNWJdlZBDt1DESWcoLi6jRiwivd2ollUhHV6xhJsvoO4hdBSGitUksO2mYxSXV8ie276TLcwvoiXi9L3l3gs6RtUSoZmSLOMViyimQeC4LD/xNF5B/Lu4ssrmybO033IDHbfdyOqzL2GvbRDt676k5Pp6RHULYRAQBkI/lDk7Se9996BGLFqOHSIxOkTgekiqIhzE9Ys/hsuFKxXq28T1iSapuUhcybuDqz2mvSUkJQzxSwUKC7P4xQKSomJ2dIm7+n262EqKip5qwdms40ciSaixOMF8tQV9I/GtVCZA+dlJYVYXE6VaRdfRki0UFxtn5nj5HKpp4bqumMLyfQpz0xitHajROKHvCYLiuZSWF1BjCbITp2uOIz8zSXxknNLaCs7mejkWYY8fdknabmMBZkcX9vqqmFoK/OoKThnFxTm0WKJCamRNJzF6SBCsHb41Zkc3kqrhF/M1+wAxpbLf2/kwpMadWJIkjFSS3re8gcAWk2uyoaNa9YmKahiohoGRSuzrPa8U3HyBuW98GzezI3pCep6eN95FpLeLwHFY/s73yM8v0nv/PUiKTOiLCAXFMvGLRXzbIXXkALkdOVKqZWG0plirM+nlZrKkz0zSduORMkkplSf3lIYtKaFFUlj45uMouk7gVouHo309FJdXcTNZFh99gp777qH12GEWH32StptvuCRCEenpEmPndWC0teCkxbWz1zcprq4RH+xHVhTka9SP5tU4LdrExaFJai4Sr8a7A9GOsbE31wkcGy2WJD9zbnu771FcnMPL54gODNcVou6GrChY3X34xUJ1lpMkiaqHppE4cITCvNB5lDbWiPQN1prWIRHp6ae0IsrmxcU5lOHxysIvyXJDnxoQ2g6vrEHQ4knCwMdo68DZXK/sE0A2DCL9w4LEqSqhs70/LZ5EMS3s9TWsrl6srt4dGUNJ0ULaBaO1o1IFMTu6CH0fL5/F6urF3mjc+iitLhHtHxbnJUkoVoTEgSOE5YVP1jQkVatLiragxmJQrmZJioIaSwjRdB1o0Rj2xhpaPIEkVUvtVNOEq9xi2C+EY/BL1YQGIAxZ+PZ3GHrX27HXNyrtl/WXTtL9xrsIPZ/A83BzefRYFCViCdJtmSRHxei6lkw0zMICyJyZJDE2RGllvZxobmO2twhH3kQcpY442GxJYbS11GQtKYZBbKi/kkMV+gH52QWsni4Gv/+Bhu200A9wC4Vy+KskLAQMDdWsFqVrsShmZ3uV4zEAkkTrsUOsfPe5qvOK9nbXtCevNbxapkWbuDRc29/SaxyvtrsD3y6RPXOCMPCJ9A1SXJqt+zw3myZw3X2RGgBFN4iPHsS3bbx8FlkTEzuypos4AUsV2pIgAElUahIHjlJaWSRwbGTDQk+2YK8tVbQ3vl2saevorR3YK/W1Amo0QWllCUlRUaOiwuPlMriZzarnBbZNYXaS6OBYpcKiWBEi3X04mTRuLoOsagSOjWJGkFWVwPMw2jqRVFVUpMIQSVYw2jrQW1rLE0lJ7PVt92Gp/LpGCD2PkLDSjpMkqa45nxqLC+dhd1c7QZKwuvoqLTpZUYn09JM5e6KmjaUlUvilovAOkvY3OxCGIX6xRBiGSIqoRnjFIqHvI8lyjS/LKwW/ZJOdbiCmD0KKy6sUduhJvHwBWVFYfOJ7VYJhxTLpuvt2nHQWoyUpDAbnFhuSZoAw8HEzeZYe2x7RLcwvUVhYou8tb6waaw+DEK9QoLiySsdtN1FaXSd9ZoLQ94n2dhPt7xVmhsF2pc3e2CTS3YHeYNrIs21ykzPC1bncNjNaW2i75RheoYjRsqNla5n03Pt6Muem2Dx5Bt92sDrbSR0ep7S6TqSnCzeXF+noV6F9eDF4tUyLNnFpaJKaS8Sr5e4g8DwKc9PoLa2i9aFp5bu9+vAK+UrS9H6wlcStxeqr+3ffBcpWBDWWICgV8R2b3NSZqlaKrBtVE0eBY2MkU/j5LF6huh1j9fTjbK6hxuKYHd3kJs8QGxptWCkJXBcCn9D1kFQVq6uP7NTZChnwEcTO7OzF7OgSx17W5MQGxLRMSIizsU7m1MskDh5DsRRky0JTVfRESlRN8rn6bTnEJJcsn58UCMJ4iMLiXKVqo1hRon2DNcZ8immRGDtEaXUFL59FUlSMljaQoDA3TeLgsfO+Hwg9Sm5qlvWXT+IXS+ipBG03HqW4usbm8dNIikLywAgtRw6+YpMxYRAQeD4hIMsKQVCfMHqFYpW6q+XoQZaferZmAsovllh9+nlabzzC4qNPioDPAyPEhwcaGvpF+3vJ7krzFgcHy08+Q//b7kO1TMIwxF7fYPbrj1RiHMy2Vtpvu5HAdsjNzIsKza7WoRaN7Cm6LiwsV1VYAOz1DZYe+y4dd9yCYhSrCJEasWg5eoj46CBeoYizkUFSFQLXxSuWRATC0YOgKNd8leZyhvo2cX2jOdJ9idh9d3C9jVxvIfQ9zI4u4V8xdbb2zn8XXom7cC0So7S6LKopu37gra7eyg9t5Zg9Hz3VRnRwFKO9E6unn/j4EVQrgp5sQTUj5KfPETi2IGx76E18x0GJWBitHcKHpo5It7Q8XxEuK7qOlkiRm5kgN32O/PQEbi5DdGBEVKasCNHeQaIDI6ixOM7mGkZrR927YElV0RKpfV2jLRG30dJOYvwIiYPHiA+PoUaiNR44UtnJWTZMjNZ2tHiC0toShblpIv1D+xKe+o7D2rMvsvL0cxUi4GxmWPjWd9AiEcyONkLfZ/PEGZaffAavdPFjx/tBGAQ42Rxrz73M/D99m/VnX6Lr3teTPFB/xNxoSaHv8M1Ro5HaVlUZTjqDpMhl2wBxToHnY7TXBqvKukbq0Bi5qUbVzVzlJsErFJn/5mNVuVSltXWWn/gekiyTn52v+92MDw/UNSYEQTTraX0A/FIJv2TXDQCVZAktEhGCblVh/huPkj51jsL8IpvHT7HwyHeQr1AMx+XCqynUt4lLx7VNv69xvNruDopLCxXRqZvLNtSJIEkokSsrGAyDAFSF2Mg4+elz22V/ScLq6kXd8f6B7xHYJez1FbRYgsLcFIphoXclyZ6pL4YMt/xxGri6KqZFND6Mb5fqmuttwc1sYm+sCbfiljaSB4/h2yUkRUHWTWRFRipXXCRJwnedysSVGokRGxqjtLxYaUtpiRSRnv59uQQHrkN+dqr6M5IkooOj6DGlrtGgrOmYre0EroOXz2F19IjcLE3bV2XIL9pkzk3V3bb+0gnab72RUnlMOj+3IAIjG2QM+Y4rJmkk0e65mCkpeyPN7Ne+Wfl+lFbXyU7N0HbLMWIDfeRmtqsqZkcbbi6H1dVO5twkfsmuzZ3ahd3bl598hv4H3kR+boHs5AyB5xHt66Hl6EGcTBajNUVssB9ZUymtbYgk8C3yUiYHXrFU5VRcuR7FEvZmmrabj7H2/Mvb2VGyTPttN6In4g0rX6HvV6WR74aTTqNG9/ibDWHlqWdqyFTo+yw99pSoMl2jKdzX2rRoE1cXTVJzkXhVeckgfrx2TtHYG6vEh8ZEbtIun5nY4NgVK0cHnieIxMoSoeeit7aRGD8i9CdhWHHKrapClH+It/QxseFxvHxuz8EfZ3NdjIHXCYqUDQNFF+2yRqRnC5Iso8UT2KvLOOurBJ5PtKcPL5/D3lhHjUTK7Ty9PHE1VVmAvUKO/OwURms7ZnsnimnVeNRUXRvfF+PloQhJtNMbtaQzDMlPnUU9dANKg/3IqoqsqhfUPtyCna4vNAahZ9lNpNxsDiNZPQ0V+D5uJsfq8y9RXFxBMXRSh8aIDvQhK/KeY9Y74ZVKLH3nu3V1LmvPvUzvm+8lNzOHrKrER4eIdHew+OhTZb3MHWSnZqpahzWQpJrzCT2PtedewuxsJzk+gp5MYLSlhBBXElNFm6fOEjgOVmcHPW+8i/UXT4gbgfIUVOg21lJtvHSSwXc9QGyov+xkLKEnosi6sXcApSyjGEbFOXk3tGgUbY+QRK9QrBlf34Kby+PbzjVLaq72tGgT1xaapOYi8Wq7O6iaTAIIAnIzk0R6Bwh9TwhJdUOkZatapfpwORH4HqXVparKiFfIISkKibHDKGb9H1VJ2bZxdzObePmsyGYibDge7hVyRHoGCIMAe22lsqipkSjRgdHKyLqkqCJ2oVxFCH2P0upyRbAs6yaypqFGhEOtrOnYG+vYa8uEvoezDsgyidFDSKqKl89VHUdYHiEHiA4MYzQ4R9+2d+hmQhQritXZg97SXiFBbi5TOS4nvYHVWd+x9lJwvjHi3S0vxagdZ3bSGWa++k8VEazneax+7wXyswvERwaFsVtfz3lN3XzbwdlsQLLCkND1GP7BdxL4PumTZykurZIYGyI/t8jCNx8jOtCLpIi08MzpczW7SIwNi1bQLsiaJnxi1O1YBq9YYumJZyguLleel5+dpzC/SM+b7kaLRyvXQo01JpMivFVFi0UbCoLrQbVMWo4dYvV7z9fuU1HQkwn0ZGO32r1yqICKt9LlxpX0+2ri8uPjH/84f/mXf8mzzz57tQ+lIa7tZuk1jE9+8pMNKzHX491BPT1F6Lnkp89RWl7C7OzF6ugWzrlXSE8Tum7dVk/o++TnZ2riDbYgaxqRvsGq5/u28AmJjR4k0j+EGquuFkT7R5B1EYCZPHisokeJDR9AKTvlBr6PVypQXJglN3WW3NRZiksLmB3daPEkRluHqGLJCoHr4OYyZCdO4+UzxAZHthPBg0AInYO9F4bA93GyaXzHJtzhquw7DtlzJ3HT62zNkPvFPLmpsxitbXilIl4hh55qreRe+c6V0bJo8WjDKp3Z3oq9vj1irphGjbDVt21Wnn6u7rUoLq8iaxqrT7/A+osn8fcwiNsPQoS4VpJltGiE0voGTiZH67FDdNx+M/mZefJzC7TdcJjWm49W/gZkXaP1xiOYrS1kzk7W7Dd5cBSzpTqWwc3lqwhN5RiCgI0Tp1F2VFkUwyDZIFai7eajKBeRgyVJEvHhAeJjw1WPK4ZO9xvuRItH0fbwmFGjFsj123+yodclp5cDW35fu3UvW5XwBx988Iq8bxMXh//wH/4DX//616/2YeyJZqWmCWFGF4QNQ+vUaK3o9ErAyWcxO7qFXqZsAFhaW8Ev5vFyGaFNqJNwLUkSWixBfOwwxcU5JEVGMS1KK4t4OVHpMdo6iPQOEHgukqTgZjdRIxExlm40aPc4NrnJ6qmrwHXIz0yQGD8MkhCRllaX8IsFZF0n0jeIX8iTm54g2j9UiW0Qxmo+imk1zHxSdIPcxGmQZOIjB8R1l2S8fLZB1ERIaXkBcytnamkBxTCI9g1dsTFc1bLoue9u5v7p21XERDFNWm88WhlnlnWd3vvvqWlZBK5HabmxP09xZRW9JUn65BlSh8ZqKkO+7eAVi+TnFjHbW9HiMdxsrnZHEhgtSdxikeLiMoplEunqIH12kuUnl4l0d9Jz390YLSlUy6T16CESQ4MEnovvuMiayur3XqjZbWJsGCedQY/Hqs4tV6eiUzmnxWUC16u0nxRdo/WGI2jxGBsvncQv2aixKG03HyPa03nRInzVMum47UZajx7EyeZQVFWM1uv63q0rhBdR203HWHv2xZptnXfcsu+W4IXi1ej39WpGLBYjdp6A2quNZqXmNY4wDHHSGxQWpon2jyDt8p5RI1Gs7j4Cx6awMENudhI3m8HfI8/pYqFZUbyCqEDkps9RWJzDaG3DaG3fOtqGr5UVFS0qhLdmRw+5iTPlRG0ReFlaXqAwO0lQKmGvL6NGog1Th4EyoVpuOCFVWl0mDEMyZ0/gbK7j2yXcbIb89LlyInhcTEXtbCeFIZEGhENvaaskgBMGZCdOCyIUhji7vHS2oFhRjNYOQtfBaGkjNjSK0dqO7zookSvzwyPJMmZHG0Pvejvtt91EYmyYjttvpvf+ewgDj+TBUTrvvI2uu16HUs95WJL2JMiyqlY0Mm6mmqx4JZu1F15m+iv/WJnA6rzrdbTedJTE+EhVtbH1xqNIkkR+doGNl06y/J2nKSwu0/G6m4mPDFIoV1W2polCzyc/v8D0336duX98hMLiCvHRIbrvvYPE2DDJA6P0vOkuFNNg5alncXYRqb00ZvXOV7VMUofGGXznWxl+z/cx8Lb7SAwPVKqEFwtF19ETcWJ9PVhdHUJcfB5Cs3X8ifFhet98rwjmNAysrg76334/kd5upAZVnMuBncTmscceuyBCcz2HWV4N3H///fzcz/0cH/7wh2ltbaW7u5uPf/zjle3T09O85z3vIRaLkUgk+NEf/VGWlrbjZz7+8Y9zyy23VP798MMP8/rXv55oNEoqleLee+9lamp7kOCv/uqvuO222zBNk9HRUT7xiU/g7fG7eznQrNS8xhF4LqWVJQLXobAwTaSnvxzg6AldiSThZjMU5ra/qM76anlyZxQkicB1cdLrEIKeTCHrxr6N+bbgOw5ONl3V2go9l8LcNNGBEQLPR6pTpak8NwgIw4AwDCkuzFCPAHmFPEZ7J25mE79YKOtuGu/PrxMUWTneYgEvn61LekrLi8SGx7A31lAMU1RmJAk0DRkqwmc3l8HL5zBaWiEIKCzsGAcOA/xCASVloCdaMFKt29Wr9RUArI5ucjMTVWJmJRLF6uq7on5psqKgx2PIIwOsPfsSmyfP4n73ubK2yMK3bdpvvRGtjrBUMXRiwwNkJ6bQE3GQJGHJX76OVkcbGy+fAkDSqj9ve2OT9ElR+YoN9RMfHmDzxGncdBYtHqPrnjtwNtPlRVln7fmXyU5s+8aUVtdZ/PYTdN55G046Q/r0BFZXJ7Ii45VKVR4vWizC4reeQDZ0zDbx+Sye2xZ5FxaWiXR1VJ4fG+hj/fmX616v+Mhg3faNJEnXlPhWNQzU3m6MthZCP0DeI+LhcuNi/b6u1zDLq6kl+oM/+AN+/ud/nieeeILHH3+c97///dx777289a1vrRCab37zm3iex4c+9CF+7Md+jIcffrhmP57n8YM/+IN88IMf5I//+I9xHIcnn3yyciPzrW99i/e97338xm/8Bm984xs5e/YsP/VTPwXAQw89dEXODZqkpomQirNtYNsinmArcsDz0Bv4pXiFHF6phJvZEELbMkori2jJFiK9gxW9wV4IPBe/VBTuwa6LGokRHzlAYXG+Mo1VWlkkOjha92448D0CxxbEzLGxuvtrzPeqjjufRzEjePnsnpUaSZaRdaMhsZF1Y4+KQygcl3e8Pjowil/IUViYJSx7AGnJFqK9A+Rnp/BLte/jB2ISzN5YqVRxJFXD6uxBsSyyE6drprP8Qh5nYw3V7Gt4brsh2o9BZf/7bX+opknrDYdZfeYF4TBcKOIVS7TfcoxIX3fd18iqStsNR4gPD2CvbRAGAeYtLRSWVpAVhdyM8GiRNa0qCsB33QrZMTvaiHR3svDNxyvbnUyW/NyCcAHO5NBj0SpCsxPrLxyn9cYj5GcX2CK/+fldYaiBcEoObKfKgbhy7lZ19UONmLTedLSG2KjRCK03HL4s04K+59WNWrjcUHdUi16pxfdi3YCv1/bV1SRjN910U4VUHDhwgN/8zd+s6GReeOEFJiYmKsf0hS98gWPHjvHUU09xxx13VO0nk8mQTqd517vexdjYGABHjhypbP/EJz7Bf/7P/5mf+ImfAGB0dJRf+qVf4sMf/vAVJTXN9tNrHJIsY7Z3ou5sVwSBWHjDEDUWx6ujARH6G7eK0GzBTW+IKgblPCnPrRsJEPg+pdVlsudOiZZWqYi9vkJ26ixWV0+lFeaXinUJROj7uOlNMqeP42yu4xXyBJ6zp55EkuXKAu4W6mgxqq5LV8PtRms7srZ3WV+LxQnsErHhcSAkPz1RITQgrlN+ZgKzvaPmtWosgRaJkz13arstRbl6NT9drqTVJ41Oen1f0ypB4OPmMmTOnSJ98kXSJ18kPzNROwnXAFvXMTE6ROuxQ/S//X4G3vkWEmPDVQvjTvi2Q3ZqhvlvfJu1515i/YXjzD/8mDC1a2slc3YSSZbpedNdVUZzoR8QlMeVUwdHWa2j/QBYeepZtIiFk61vqAdifFnWNBLjwxUCt9tsMjczR3y4wYIoQaS3mrQpuk7q4Jg4//ERov29dN1zB/1vu29Pge754Hs+m4vrPPWlb/P3//eXeOLPHmFzYR3fq53ouxJ4JYS8Oxfye+6554JN8y6lfXW1UM8c8JUiYzfddFPVv3t6elheXub48eMMDAxUvffRo0dJpVIcP17r99Xa2sr73/9+3vGOd/Dud7+b//7f/zsLC9uDHs899xy/+Iu/WNHhxGIxPvjBD7KwsECh0LgKfqlokprXMHzXwSvkCDwPNRIlNnwAPbXtlippGophEtRZ5PRUqwi9TCTrTkOVVpbwbZvS6hLZidPkJs9gb65VCV53jjNXIQiEALZNLPaSqtU1Zgs8j/xctRGcm0lXncNuqNFYpQJ0PgddSZbL7bgd7y1JWN19uLlM1YRS9Qsl1EgExTCJjx9GsSIUF+s7zfp2CSS56hoare3oqZY9BMKU9Ua1ZAioOOCKKao9XJOLRbLnTlV9vm5mk+y5U/h7RGSAIBnFlTWmvvKPzD/8GMtPfI+Zv/8G6y+8jJsvkJmYZvHRJ1l7/mWcTBa/TGqdTLau823m9DkC16HzztsYfNfbMDvaqoisomsVIiGbJoFd//gEeQ7PWxmRNRWztaXy72hPNYHNzcwTG+jFaElWv1CC7ntfX3dCSTF0zNYWOl9/Kz1vvJPEyGDD4Mn9IAxDls8t8P/8x9/lyT99hMnvneG7f/Ft/vg//g6LJ2cJg5DcWobp587x1J9/i1PffpHMyibBeQwFLwRXevG9XG7AO9tXDz300DVNaLZwtciYtut3T5IkgvOM9DfC7/3e7/H4449zzz338Cd/8iccPHiQ73znOwDkcjk+8YlP8Oyzz1b+e+GFFzh9+jTmFQzIbbafXqPwHVssaDtHf1eXiPQMiEUxDIn09OOVdhEaSaRly5qOk95EUlQifUMEjlO1cIe+h5PZoLhDJ+JN51BjcaIDoyiahpvb6246j9khFjGzo6tGwAwQOKUaTYuT3iA+ekhUbXaRMaurD6eSai2hRRv7dmzBzWWJDY5ut2cUBXt9FTezKchTHeO2SM+AyLraqjTZpT1ztHzHRolE8bIZJEVFS7RQWl1E0Rv/4Qd2SQRc1oGkaXjFPMWFWSJ9g2ixZM0iH3he1WdTta1MdhW9MTn0ikXm/+nbVY67sq4RHxpg9h++ib/je7P+4nG633AXkZ5ONk6cbrjP9OkJeu+/p66OQ5JlkmPD5GbmkfchGFIMo2Fqu9neWuPOq8YiRLo7KwJiwpDFR5+k4/ZbMVIJYSdQTu2WDWPPNpAkSZdl+iy/keOrn/4y/i5TvMDz+epv/CU/9PF/yf/65T8mu7JtwKgaGj/w0f+drvHeyxZvcCWDey+X39f1GmZ5LWUHHjlyhJmZGWZmZirH8fLLL7O5ucnRo0cbvu7WW2/l1ltv5SMf+Qh33303X/ziF7nrrru47bbbOHnyJOPj46/UKQBNUvOaRBD4FJfmqwlNGYWFGRIHj4lFWVFAkpENo1L6j/YN4mxu4Oa2Tc+cjTVh7987QGFe3Flp8USN0RyAl8vilwooWrJmWz1oqVaMVFvdSk29KkSkdxAnvY7V2UMYBFXBjXZ6A2djDSSJ2NDYnpWaMAyRZBmjtb0ygeRm0hBua08CzyM+cgAnvYlXyCHrBlZ7N7JpIO8UNUtSefy7QSSDbmC2tAviJEsU5srtpWjj49tLNG11dGOvrwp/n+kJ4qOHkHcFiYZBgG+XtkfoEeTLXlsmcF3cbFqIkxuguLxaEyGQHB9h4+VTVYRGvBksPfokg+9+e01w5E6cL7ZAjUXpvf9unHS2oXuurGlImsbGSyfpuP1mlp+stv5XDIOuu15X0xJSTZOue24nOznD5gmRWp08NIYWi7D81DOUVteRVIXk+CipIwcuWNsSBMEFk4xiJk9+vT7xL6bzpJfWqwgNgGe7fOVX/pQf+5V/Rbx9f39j+8GVWnwvhxvw9RxXcy2RsQceeIAbb7yRH//xH+fTn/40nufxMz/zM9x3333cfvvtNc+fmJjg85//PD/wAz9Ab28vJ0+e5PTp07zvfe8D4GMf+xjvete7GBwc5Id/+IeRZZnnnnuOF198kf/6X//rFTuPZvvpNYjQ8xqmQ4MgHltaA0XXiY8cxGjvRLYihEFQRWi24GY2QZaRNR1JVtCTLZXYgt3uw/baCmEQoEUbjx0rkajIX+odbEg+RAr1NtnRYgkCx8ZeXSY/M0FpeaG8eBfJTp5FT6SI9g+TPHgMLRZv6IoceC6l1SUyZ06QmzpLfnYSWVWJDgyJ95Nkov3i/8uGSaSnn/jIQaIDwyiRCKEf4JeKokLje8iqhtHWXve9kCTUaAxZ11FME0mS8R0bv1REsaIN7/i3Pg/RahPPkVSNSM8Agevi7xBLF5fmajRNoQTRwZHtEfqpszjpDSK9g6jR+LZxYAO4+dqeuNneSnGpVmMFgkS5+QKRnsY6JauzfU+iKQI5VdKnJ2i/7ca616b9dTehWial5VXycwv03n8PqcMHiA310/n62xh455vRd8U2bEG1LFKHDzDwjjcz9APvINrXw+w/fpPSqvhbCT2fzROnWXj4UdzCts4sDEPcfIHs9Byrz71EbmYON18QZoqZLKvPvcTiI99h/aUTONnced17K/v199ZFuaX65oR2vkR6caPutovFtRrcez2HWV6qluhyQ5Ik/uqv/oqWlhbe9KY38cADDzA6Osqf/Mmf1H1+JBLhxIkT/PN//s85ePAgP/VTP8WHPvQhfvqnfxqAd7zjHfzN3/wN//AP/8Add9zBXXfdxa//+q8zNDR0Zc8jvFL+19cgMpkMyWSSdDpNIlH/h+21AN8ukT5ZX2gJIgHb6uqteiwMApGGPX2uKiNqJ9RYAi2RQovFyc/PoMcTKIZJ6LlIikrgOhSXFlCjMdHSCQNKK0u1uhpJJjF+eM9sojAMKyPR2zEDI0JEW6flAAjNUGLvu9cw8CmuLFJaqtX6aImUEAirGmg66q4FOPA83GyawsJMZbJKiyWF27EE+emJSnDl1nnGR8ZFxEL5Lj7wffKzE7jpTdRYHKOlnfzsVFWVR0u0EO0TZC/wfULPxbdtIdxeX6mZ/pIUlcTBo1XtKt+2yZx5ufZaSRKx4XEUTW8YSwGQX1hi/hvfrnqs+413svitJxq+puvu12F2dDDzd1+vEeZKiszgOx/Y08ofhKB38fHvQigqQ9mpGZxMFi0WJTEyiOc4xAf68YtF8gtLuNkc0b4e9FRyX34tW/Bth/mHH60Qmt3oue9uzPZWVNMUoZr/+EhVi1E2dPre/AYWvvUdvB0EUFIU+h94E2adpO/dyK6k+eP/+Du4pdrWpaqrvO3/8x7+7tf+ou5r3/5vfpADdzduGVwIdhOHa2m66GqMRpdKJSYmJhgZGblobUija3gtXdurgb2u7X7X72al5jUISVH2XLC0eO0XRpJlJEWGOjlKWwgDHz3ZgqIbRLv7cDY3yE2eIT87RW7qLPb6KrHBEYz2TjEyraiY7V3ERw+ixhIopoXR3kny4NE9jw/E4pafmYAwJDowghqLi8mmBoQGwLfrO/nu3m9peanuNjeziSTLZM4cR6qXJ5XPkp+ZqBoV94p5AscmPzuJlkwRGxrD6uotV4yOVhEaEB4wVoeY/FIjMSRFIzF+mOjQGJG+QRIHjhLt365eyYqCrBvivWcn646zy7pR1b4Thovr9a9VGOJsrNXVMO2Enkyg7comCmwHdY9JH6O1FS0Wof/t92Pt8Hgx21rpf/v9aPHzTwnJmnDjzc/Ns/DI44RBQKSrA0mSWHzsu1jtbciqgqSqmO1tRHq6RQL4efdcjcDzGhIagML8ItnJGdx8gYVHHq/RTAW2w+KjT9Jy5EDV46Hvs/jok3iF838XIy0x3vC+B+puu/Nf3M+ZJ040fG2q+/ykaT+41ish12tczX60RE1cHJqamtcgZFVkJWXPnqzZpkbjDUeVJUVBS7bg15tYAvRka8URtrAwW1PR8UtFCotzxIbGdhyLihxLiFZLGCDJyr4iGULfI/Q8SiuLSKqKnmoVi3cDcSiAYuxNlMIgEItTo6kmIHAcFCuCXyyW21/lx12n2jyvDKu7F3tzHaO1Y3thlWWKywvoyZaaihiApOvEBkcpLs6KKpQkY7S1oydbCBynpkUjSRJGSzullSXqmQ5aXb1VZohhEOBmG6dte/lcQyflLWgRi763vIHlp5+jMLcAIWQnZ+m47UYWHvlOzfNjwwOoliBXRipBzxvvqkxYKbp2QU66WiJG7/1vYPmJp8lNiWuuJ+L0vfletGgEJ5Nj/puP4Wa29ShWVwdd99xR1xCwESRVEdEcdSDrOrmpWayOdtxc/cqlm82h1pl+2m/qtaIqjN15mERniif+9JtszK2R6mnl9T/8RqJtCQLP5zS1k2TDt42jGhdmftkIr7bg3msFzWTxK4cmqXmNQjUjxMcPU5yfLSdhqxjtnZitjXUNkiSEs/baCuGucElJ09CTKTEe6HkVn5rd8IuFupoCoeGp1biEYVhVZQg8r9LC0WIJkGW8Qh4nvYGeSBHpHcTNZnCz6apjlFS1ioTUg4glaExozPYuFNNCT6SEaaBdqqQqh0FYK7yWZFQrIqpKs5MVozw1FifaN0hudgqjrQNll34lLAdYbj8QYK8u42UzmB3dFJcWsLp6qoiKrGvERg+Qnz63XSkqj59vCYErhyVJe2tXVG1f0ztaLEr33XeI1lcQIKsasqbS//b7Wf3e85TWN1Ati5ajB4kN9FURF+USQhIVVSXa28XAO96MbwtfIsXQUS1TTGU9/GhNHlRxaYXVcqzCfkwhFdMgOT7KZoNpLaujnY2XT9b1X9qJut91XROC8KUVistraFELs6MdNWLWGB8aUZP+G4ZpH+rCc10UTcWKR9iYXyMMQt74f76dZ//mCbIrafSIwZH7b6b3yAC6tX+SuBeai28T1xuapOY1CklR0CIxlOFxwsBHkqQqP5jA8wjLLRZJVZHlLeGwQWL8MMWVRZzNdSQk9JZWzI7uyuIc7tGiAmoIUT34jo1XKOBmNkQgZWsHsqbjZtP4pSJqLIGsG4SBT6SnH8W08PK5imA50isEs8XF2bKYd4Dz9SDCwMcr5FEjsWrtC2D19OOXimTOVJtQWd39IptKEoLoneeuxRO4+XyNZsjLZcl7LtG+IVEd8v1tEzjPo7BQv6S/ZYrnpDfQUy2EQYii6wSuK1yBPY/Y4BiSohIGPrKmIataTeVry1jQKxYw2zsr5CjwPOzVJazO7n074Cq6VhM6aXW00XP/PYSejyTLKKZRd3rtUqFGrJpqh1co1Q+4RBjqtd1yw75IjawopI4coLi0jL1RPWHUfuuNZCenIRTTVPXG+qHcst197RWZ7ntfz+K3n8DZzFQ9t+e+e7C62muIje/5lbFuzRREMN6epPfoII9/8Z+47Qfuxoxb+K7Pue+eIt6RJNpybYcONtHElUKT1LzGIRav7a9BGPh4pRKFuWnRPpIk9FQrVldvhbQohkm0dxCrsxckESa588e7nhlf1XvuMY4MYvH27RKBa6PFEkiyTH52Ej3VhqyJBTs3caryfD3VSm76bGXsHCj7yLSRGD+CV8hRWJghPnpwz/eVZBl7bZnY4Cj5uelK5WUrEsHZqE2XLi7OosViKGYEo72zisDoyRSF+dqWlBqNY3V2Y6c38At5ZE3D7OhBMa3yGHpjp2M3n0O1BIHzistEuvvK4u1tMapcnljbXQGqOldNJ9IzQGF+x3lqImVcsS7eAbdyjoYBl6dYcEGo8VXaiZA9ozF2Q4tYdL/pbuzVdYrLK8i6jtXRTnZymuzkDIppIusqLUcOVCIcdiJ5aKzSHttCfGiAzORMFaEBUdFZ+OZjDL377cg7dEnZ1TQvfPVpTjzyAoEfcOCeI9z6rrtIdKboGu/lLQ9+P3MvTTH30hSdYz3c++Nvuayj3E00cb3huiE1n/3sZ/nsZz/L5OQkAMeOHeNjH/sY73znO6/ugb3K4Ns22TMnqGgzysJRL58jPnqoYowmyXLDsDtJ1dBTrXXHxrV4siJC3ZqoCgNf+OEoMmEYkp+bqooGkGSFaP8QxdUlor2D5KcnqvbnZjNVhGYLzuYaWiJJcXEeo71jz+rDVhtBjcTIzUwS6e5DUhR8x0aNROvqZbZQWl3G7OrDaG0ncJ0K+ZEkuaYqJesGZnsn2ckzlbt7v1TEzWawuvvRUy01FZ+q1ysKnh2UjeAi5Oema/KpAschO3Ga+NihhgZ9oe+RmzpTVWEIXIfc5FkSB4/ihyEQIsnKZckteqWgRRpPzEmyXBOSCSJM1bcdkTml61VTUnosCkFAdnoWfz3NxssnIRTVy9777xFj4EcOoEYs1l88gV+yUUyT1hsPE+3rwd5I42SyuLk8ejJB6vABpv/+63WPLwwCSqvrFQ+d7GqGv/zFPyKzvFl5zov/8D3OPnGSH/6lnyDRmSLV3XrZRMFNXBheQ4PDrxguxzW9bn6t+vv7+W//7b9x4MABwjDkD/7gD3jPe97DM888w7Fjx6724b0qEPheefGu/WIFjn1el9ktyIqC1dMP0lZ1Q+xPBF0OIKsqvusIArC+ilcqougGRluHMLLb5TQcBj65mUligyM42QyKaYnkaxCkZWm+4bG4mTR6axtGWyeSVCc/KgxFZahURJIkrO5efNtBkmXRgiob54VufU8QEGTAXl3Cy2eJ9g9jtHcTlPLIhlljume2dVBcnKvbriguzqKnUhjtHZSWa0MUQehxSqtLmJ09QCj2Ve+YHJvQ9aAOqQkDodGpLwYOK+/tbK6hRmJEegdQTGtfAu6rDcUyMdtb604uJQ6Mou4aE3XSWZa/+yzFspOwnkrQ+frbMFpTlTaQnojT8bqbsdc3Ka2toycTWB1tqJGISNo2TZIHx4gO9IHvi+lCy0SSJLRoBKujldAXKfO+bUPQ+Id7Z6Vp6pkzVYRmC8V0nuMPP8ft//wNKPsMH23i8mErZqBQKGBZ107K+qsBW5lQu6McLgTXDal597vfXfXvT37yk3z2s5/lO9/5TpPUXCaEftBQ4AsigHEvl9mdkGQFq6sXs6MLyu68OxOg/VKR3M5qRSGPlkjWDcgUBxcQuI7Qr+5sdTXQM+x8ndXZj6xqhEFAuDVhVdZ4+I6NX8hRXFqo5CxpsQRmRxfOxqrQqzg2ajTW0LBQaHDyQnNz7iSJscPChFBVy8Lq5cpzZd3YMzDSy+fQ4ikR8LmrAmN1i5gHs7MHZ3P9/J47fn0iFgY+XgOvIQC/VEArp7N7hRyZMydIHDiMehnaUlcaqmnQ/YY7WX7qGQpzZWIoSyTHR2g9drCq6uTm8sx+7WFRpSnD2cww+7VvMvjOt1blPmnRCFo0QmygdloNxPew0WTVToF06PuosSheg4kpq70NALtgc+rR2smmLZz5zglufMftRJLX/mfyaoOiKKRSKZaXxd91pExum7h4hGFIoVBgeXmZVCp1SWT9uiE1O+H7Pn/2Z39GPp/n7rvvbvg827axd7QlMpnGY6xNIMSuqtqwKiE3aDftxFaQYnFpDq+QR1Y1zM4etFh8m9DYNoXZqRoyIiHtPU7tuujJFoo7dCtuLosWT1YIh1yu+CiaThiGyGUhp1fIU1pdInCcsqldG5KmE5RKwtxuB9xcBt8uEekZIDd9Dmdzg/jwmMiN2n3MioIajVNaKS+gQVBODM+hJVpEUrdj42arxaaNr19AbnYCq70bSZbxi4Xye8TwigX0RAo3n8XZXENPphqKVEFoZOpvkJF1vYY07XxdtfYkpLAwS2xw7LK3oi63eZpv20iSRNedtxG4HoHnCSNBy6g59vzcQhWhqSAMWXvhZbruvn1fouILgRqx6LjtJhYeebxmm9neWhkBl2UJVW98rVVdbS6kVxHd3SKXbovYNHF5kEqlKtf2YnFdkZoXXniBu+++m1KpRCwW48tf/vKeQVuf+tSn+MQnPvEKHuH1DVnVMNu6GiZKq9EE9sYaWrw6IHHL1TYMQ0LXJbtDxOt7HvnpcxhtnVjdvRCEhEGAYlk1CdSB7yNresNkasWKEBKiaHrVJFB8eBw3m0ZPtgiCsbwgxq1lRRj9JSTs9RURKRAEIMs46Q20RIricv3WVeA6BJ6HrOsirHN5kdjgGMXl+QoZUKNxMWK963r5xQKybqJGImQnz2C2dWK0dYhKUzn5vFG1RtYNQtumMDclwi3jCaz2LuyNVQK7JFptQQBISJqG0dpRVQmqfFbxREMDPVkWBn9uerPudqOlrSb93Mtl923vfyF48MEHz+usuh/4tk1xZY31F47j5goYLQnabr4BPZWoS0wCzyc/X7/FB1BaWSu37y4vqQGwutrpue8eVr/3PG42h6QoJMaHaTl6CLWc/q2ZOjf/s9cz8/xE3X3c9M47sBIXnwDexKVBkiR6enro7OzE3aM13cT+oWnaZWmnXlcxCY7jMD09TTqd5s///M/53d/9Xb75zW82JDb1KjUDAwOv+ZiEveC7DvmZiRpdi9XVR+Da2OurRPoGhZmcJOG7DoX5Gdz0BpHeAUqry3WDMo22TvRUC6WVJQLXRbUi6MkUxaX5iguuYkUwWtoqoZg7IRsGsaFxcpNnifT242bTOJvrhEGA3tKG2d6FXywIl+FdiA2N4WbT2Ovb+h7FihDtHyY7cZrQq/+jpLe0EXpuxahO1nRiQ6MEroh98EtFikvzNWJgo7UdNZ4k9P2yyFpcS0lRRap5j5hY2l1hMTt7CBy7ps2VOHBU6JDsrUwoS0yQyTJIMvbqIqXVlXKVS0yrRbr79qysBb6Ps7lOYX56+zgkCaurl8B1a4iSpCgky0GnlxuXasMfuB4bJ06z/vzLNdu633AnscG+mqpGGIQsP/UMmTP1SYOeStD31jddULTChcIrFgl2jL3vHuUupPM88nv/wNnvVNsI9B0b4m0/+57m2HYTrynsNybhuiI1u/HAAw8wNjbGb//2b+/r+c3sp/0hcF18p4STFrEAaiSGk17fnupRFBIHjiLJMrmZCbzyoh8bGiM3dbZmf3qyBcW0agW9kkxsaJTC3HSlOmN2dCPrBsXFuQpZ0OJJzI5unMwGgePgZjbR4kn0ZEu5tZRDMSOUlhdqqjxaIoWsG9irtdEHsm5gdfWQn5msex3Mzh5BaMIAPdkiQh5lhcAuIesGgedQXJitISexkQMi52phjmj/UM01UaMxrM4enMxmpUWnt7Thl1tku5EYP4IaiVZMDQsLswSug55qw2htE2RJkghDyn5Das0CWQ+h7+OVCpXJMcWKUFyarwSR7r4WVldPXbH15cAWkXnooYcuOK3YyeaY+ut/qNuGUwyDgXe+Ba2Os29pfZOZv6s/idR17x0khgcv7CSuAArpPJvza7z8jWcJvIAjb76Z1sEOoqkmoWnitYX9rt/XVftpN4IgqKrENHF5IGsavlMSgYmuWzP6G/q+iCIIggqh2Qt6S5sQBe9GGFBcnMNo76JYNpyTNR0t2SIWcbsEkoSby5KdFM6uW1WXrf+2EBsaq9u20lOtws23DgLHRtqqeNRpraiRGLJhCMdg38N3RGik0PUsIqsq8eFxCovzFU+fSM8Age3gZNYJfZGGHh0Yobg0X1XBklQNs7NXSGKCUIRL1vNQKZMUEeCZFuPsskxsaAxnc4PsuVNiFFnTsXr60WKJGkIjRucdnEwa3y6iRROo0WjZx0aqVMb0VAuqFakhNYoVxWzruGKEBoQ77UMPPcS9997Lo48+ekFhfl4u31BX5Ns2ge1AHVKjxaJ03HELK999tmrgLzE6TKS780JP4YogkowSSUbpOTwgRsnla09HczVCJZtoohGuG1LzkY98hHe+850MDg6SzWb54he/yMMPP8xXv/rVq31oryqEgY/vODib66LVYZjEhsax15arSMRWHMJO+KUiSiSKvyNUUVK1mrC/3a/RojH8ljaM1nYUU7RWPMcWLZpdKC0vEBsao7S8WHb9ldCSKTE+XQcS1CUsWwhcV3jqrK/ueJFEdGAYJAlZUSmtLOHbRRTdxGjrwM2kMds7yc9M4qQ3SYwdEtciDLDXVoT2xxfv6aQ3QFaIDoyUL7DQFIVBQGgXxZSUomK0dlKqo+8RuU0qgedWjPwi3f0Ul+arhL6B65CfPkd0YATFMIRIurxvr5CrmjRz1leRVJXE2GEU3UCNJXAzG9jrq+gtbcSGx/HyOcIwRE+kBLG7Am2nnZiZmeETn/gEjz766AVXajhfVaoBEVB0jcTIEJGeLkorawSej9XZjmqZFx3hcKUgSdJ5HbGvFi6XLmonmkSpiYvFdUNqlpeXed/73sfCwgLJZJKbbrqJr371q7ztbW+72of2qkEYhrj5HLmJ7bwbL5/DXl8jOjAs8o6KBZEerWpIu+6OS2vLRPuHRVL1VqikBPV8b3YicB2szp6qbCZJ1USFYhdx8vI5iuECscHRqtfbaytoiVTd1slur5iqTYqCohvEhseFV42ioEZiuMU8cuBUVXk8L4dXyGF19eHmcxit7ZRWFikuzRPpH8Yv5vHsImEYoMXi+KUiscERQSqmzhAGgaiwpNdxNtYr10VPtWF196IYBsWlORFaqRtYXb3CrFBWwHGE9keWhb6mweRScXEWs7NXCI1lhejgCPb6ak0lI/Q88jOTxIbHifQN4re0CvJWLOBpOkZ7Z8W4LwzDmgyuy4ndGpqtBOj9EhstGikTv9pKl5aI7xmWKWsquhZDjzfbOReLep/ZheqiduNKEKUmXhu4rjU1F4qmpmZv+I5N5vTxutlMkqoS6RmguDhHfPQgimESlCedtozwQEQoWD0DeIUcfjGPpBuYbZ1kTtX33JANE7O1A2QZs62j8ngYhniFfLm9sk1IJFkhPnYI1RLthMBzyZ47he/YxIbGhD5nR5tHT7YgaZowm9v93pqO1d0rNDWShKzpGC1tuDkRHJmfnqjv7CvJxAZHkBQFJ7OJXywSHRgWo9CuS+B7SJKEW8hhr69WKldGeyeB6+KmN2p2qSVSRPuHRaBmmUDsrI74don0yRdRTAstkarJk9qJ2OBoVZUrNnyA3GT9YMbkoRsqZFJUm0IkVWh0AtfBKxVFFUuSMFo7UAxzzzBMuLC77EaL3+7HA9+vjF+rhoGkbLfCQj+gsLjM/DcfqyJvkqrQ/8B9mG0tex5vE5cHl6KL2mt/l4soNXF94zWhqWni8iL0vIZhk6HnlbOBhiqjwrKmCXHw5JnKiLJfHjuODo2iqD0gSYSBj9nVS6lGKCwR6e6jsDCLYloYre2VaoAkSaiRCMmDR3GzGbxiATUaFZqRHYt9GIaivRUE5GcmRHBlGOIVhQBXjcbFmLTn42xuZzfJhikW/y2tTyhSthXDFILmjj2COcNAVC5C8AsF1GisQkQkXUdGHF/gulWtOC2WqK8tQmRVhZ6HUna8FUaB29URSdXQEkkxLt5gVHvrmtbsO7uJFkvg5mr1TzvvaXaO6fuuQ356osqM0dlcR0u2EO0d3JPYXMhd9uc+97m6i9TW3f/nPvc5Pv6RX2Dj+GlyUzMgSSRGh0geHEWLlo3nJFAiJr1vvpf87AJevoCeShAb7EON1Ten80p2ORZhhyGk6+IViuRn5vEdh2hfD3oiXhmzbmJvXIouqtH+tipAl4soNfHqR7NS00QFXiFfk0K9E6J1sonV3YesbodYBq5TNjpzkDUdWdVqFj2Rup3HXl+pjHQbLW0UVxbxclnMji5BSOpgK8kaRH7PTiFs4LnkJs9UxsJBVD1UK4Jnl1DNCGZbB4HnEvq+8J5RFVBUAsehMDdZpfmJ9g9TmJ8hOjBcd5Krci2Gx3Ezaex14YAsKSqJ8cNVLbT8/EzV1NXuCspuxMcOIas6Xj6Lk94QYuK2jkqg5lZVKtLTT256om5LTU+1giRVhW+KvC21JpBTUjUS40fqZnjZ66sNBdaxkQPo8b3djC/XXbabyzPz1X/CL1UPBKixKP0PvAktGsHJ5pj+yj8SBgGR7k4U08DN5SmtrNH31jdWiX69YonC4jKbx08TuC6Rvh5Sh8ZQDJ3MuSlWn36+6n3M9lZ63nhXTRp4E7W43JWaLTz22GMVonTPPfdchiNt4nrEftfvaz/MpYlXDJKqVkUQ7IRiRZF1A1nXyc9MiNDJQr5imKdGIuhlMlHvLl7RDQhDUZEpRy1kJ89U/HCMlva67+vbNvm5adInnid9/HnysxP4pVKlwiCrGlZ3HwBaPEFs+ACKbuAVCyi6gZ5I4eSzpE++SObMcXKTp8mcOUF++hwQEukdEhNQZTjpDeFP4/tIDaoRkqIiazr2jspPWM7NCnx/+9h2C1jPk50U+j5+qYisG+htHRgtrSKbqlTAzWexM2liw+OE5VF4dk0jKVakbpCoYkbqegdFegfqflaB59YdLd+CvbqE7zh4xYJIU/drK1o777Ife+yxiyI0YRCQPjtZQ2hATDwVyuZ5ualZoeEKQwoLS2QnpimtiM9m7bmX8MoTkl6xxPITT7P02FPYG5u4uTzpk2eY+YeHcXOFGkIDUFpdJ3N28ooYD76asJO03nPPPZXPfmam1nPqQve7U0B+qftr4tWPZvupiQpkVRMp2Lvu0CVVJdI7QPbsye2WTB6cjTUivYPoLW378kXRYgm8XJbi6o42lCQR7R8Gufb1vmOTOXeiKrbBTW+SyWZJHDhSqYooVoTo8Dj4frm9I0iFm9mktLpEbHC0xqnYLxZw0xuEkkS0b5DA90TGUySOYpoUV4XoeefUUPmAiQ4MU1icq5qq0hIpjNaOipuxFkugJ1vEFNlWa65YQI1ERVVJljFSrSimVfGLkTSN0uIchKC3tpObnaoYA0qKgtXVR2llETUaJ5AgNjxG6IlRcy0Sw3dKYuR75/FKMkZLG7ImzPu0WBw91SqImaoSBgHS7s8uZM9FPAwCSiuLFYM+PdWG1dNXkwh+qe0I33bITdcP7ATITEwTG+yntFY/kwtEYOXWJJqby5Gfq3URNlJJMuemah7fwubJsyTGhpvVmgaoV4W7GMH3+fZ7qftr4rWBZqWmiQokWUZLtgghblm7osUSxIcPUFyYqasxKcxPN3Tk3Q1Z07B6+kkcOIrV00+kb7Dst7JObkKIfbcQhqHQmdSxIA8Dn9LacmXhlRUV1bQozE1TM2kVBBQWZjHbu2r2Y2+so0Vj5KbPUVpewM3lRKtH1dDjCey1FeJjhzA6utBiCYy2DmIj4wSuUxXsqcbiaPEkucnTlFYWcTObFOanyZw9QaR/GEnT0VOtyKZFpG8IPdUmfHV8n+LyoqgOxVOCaGWzGB1dYoJsx3UNfZ/C/DR6IkVxYQbNjJCbOE1pdRHVimCnN8Sp79DUyLpBYuwQsmFgtHWSGD+MpKjkps6SPXuC9MkXKcxN1fj7SIoijA0bQIsny+P0As7mGvnZyZrpo0u+y5akPcnyVgvUaEntcaxR5LKoODtZP/5DVtWKAWE9+I7DlerSf/SjH214XWZmZvjoRz96Rd73cmI/uqgLxfmIUrNi00QjNElNE1WQFQUtGic2NEZ87BCRviGQ5CrNym54DcaL6yEMA3KTp7FXlykuLZCbPIObTePbIlhya2EMgwCnQTYRgJvNlA3xHLHo+L6YHKqDwC6JYMuagwlEiCZlUW8xD4SVBPEwCPByWfxisZIBlZs4TWFuWqRld4jgNbOtU8QN7N59mYgkRg+CJJGfPkdu+hxGa7s47/QGoefil4rkZyfxshki/UNiOqrBIioyrNpEYGaqDb9YhDDEWV/B2VwnNjxGYvwIiQNHSYwdQo1Ey27DO6orO/btbK5XXXcQ5NZo6xDtyF2QdUNkV+36zL1spoqEXY52hGoaJA+NNdyeOjyOrKnEhwcq+q7daLvpaGWku5Fxnb2xidVZv/0JEOnuPO/E18ViS1S9+7psXb8HH3zwirzv5cQnP/nJhpWTgYGBi/KTuRJEqYnXBpqkpom6kMv+LYph1BuoqcYF6A1CxyFwXQLXqanweLlMZfpKkqSqsd2qY9N0on1DFJbmSZ98kfTJFymtLBIfHhdRBnUglV14dwp5FdOqqg5JqoakKJWAyi0fGi+XwV5frTIfdDObqNEYkqJU9Bz14BcL+LYtRLphiJFqpVAnWgGEnkcxG4ddAvilErKuE/o+qlVuh0gSajSG2dWLYliokWhZ27RjSsx1hV9NHbjZNMGuipiiGyTGj4iML0VBUlUh5u4drAm73MLWPi7nXXa0twuzq5ZwRAf6KhUaNRqh9y1vqDLMk2SZ9ttuwmzfrqjFG8QeePkCWjyGlojXbpQl2m69AUW/MqSm3nVpji5fGaLUxGsDTU1NE+eFpKp7Jkurkfpjs/UQNBgZ38JWS0mSZcz2LtxMuuY5kb5BctPnqkiRs7mOm80QHRypMg8EIewNXJfC/DTRgREK8zMEjo3V3Y+9ti2IjfYPAVKl8iTBtolgvXNx3Upy+HlOuvJ/RZWjfjI4iJF42TAhn6u7XTYM4YIcT+JkNpANA8WwiA2NV41k78ZexAvALxWQFLkcnVA+Vt0g0juA1dlDKAFhSPrECw33sVXZ2c9d9n4XJdWy6Ln39dibGTJnJ0CSSY6PoCfjqOXxd1lRsDraGXjnW/FLNmEQCFdg0xSTbmVosQiJ8ZGaEEs1YqHFovS95Q1svHySzNkpQt/H7Gyn43U3odcjO5cRzdHlJpq4fGiSmibOC1nViPQPkT17it2aFaO9s+GUUN19NaikACDJVaJV4V3TURmbBhEG6RXydXU8oe/hZtNo8UQlWRvA6urBXl8R7aC5aTEtJYnKiNHagWxYGC2tyIZJ6HrIqiamhSRJTH2pqpjy2TVBJGsaWixZVf2pOV9NQ9J0ZMOsZFntCc/HbO2ojm3YAbO9W7SnJAknkyE+NLqnY+4WasTAdbaXVpeIdPdXtXIkWUYqj3wHnocaS+DV8buRDbPiX7QXYbmYu2zVslAti0hXJ0jUdTaWZAktGqkbXLkFxTBou/kY8aF+Nk+eIXBcYoP9RPt7Kq9rv+0mWo4eEuekqq9YXMLl9nhpoonXKpqkpomGCMOQwHMhFC2fxIEjFJcX8At5JFXD6uwWoY/K/r9GsqqhxZNVrZwtmJ1dVcZyYly7F6O1A2dzjTAMMVrbyc82nlTxclmMto5K9pEWT+LlMnjlykfgCi+d/OwkgWPjbK6TPHgUxTAJgwA7s4nR1oGXzQjSkkgQOA5mvBNZ00WVx3WQFAVZN5Fk0X4yWtvrtnesrl6KywtYnT0ihDOfa2iEB6BEY9gbq8IvZ2FmR9yEjNXVi6SqaKkWwjAgMXpgb5K4A5KiosbilRH6nZANk8BxcNbXMDu6UeT6C7msqpXU8Z2aGlk3iA+Po1wh3ckWLkeYo2oaqN2dmO1iXF4uuydvQVYU5D2I0ZXCJWVfNdFEExU0SU0TdRG4DvbmOqXVJULPQ43EMNs7UaMx9GQrimWhlisUvuuA74tE6fKocCNIikKkbxAnm8HeWCF0XAgCzM5ujJb2GsGnrGrCGThSjkXw/YZaGyQZs6MbWdNQrSiSIio/u8eTA8/drrqEAV4+V4l9KC7OEh0YQW9tJ3PmJFuVKWdjDUnViA0Mk5udJNo7iFfIo+g6uckzRHoGiPQMUFpfIXAdVCuC2d6Fk97Ay6bxsmmig6OUlhaI9PbjFQs17s1WTx+SJGGvreBHCsK9WZJE20iSyqQpRG9pr1mMzwdBSIbrEpJo7wC5mcmGQuudUHSD+PCByjWUNU0YLl7hwMvLjb2+o680rvfR5Wb4ZBPXEq6dv+wmrhkEnkuuPI2zBS+fJZfPEh0cpbg4K4S3w+P4pRKF+amKK68aixPtG6ppyYTlGAJ7Yw0vl0XSNKLd/YSShFIOr9xPxUeSZcy2LnJ1Kg6xwREh7N01qWX19KNDxZRuN3Hayq4Kfa8Sd5CbnmB3qy30XIrllPDC0jxGPCUWdl2nsDCDUj73wLHFNNf8DOGOcenSyiJ6qpX83DTRwVH8UgEvm0HSNMy2ThHnUNbfeIU8Xh33YS2RuuiKiKIbRPuHCRybwHWRNY3A8wSh8Vy0ZKsIzzwPBJHRwHrlKxqvNlwpj5dXEjtjMT73uc9VCM7uWIwmwWnilUBz+qmJGgSOU0VodqK0vIDR1kHgCbO63OTpqpgBL5clc/YkfqmIvbGKXTaf80sF0qdfprS8gFfI4aY3RBBlLktxaR6vkMct5vAdu6HxW+C5OOkNAs9BS6SqtmnxJG4+V3f0vLgwi55qA8RE0+4kbzVaTmiW5R3TTPWPwcvnkJDQyy20wPfRW8S+JSSc9LqIgYjGiHT3ihTsngEkRSRrq9FYJWZC1g2iQ2NE+4ZQI0K7IylqzblVnWfs0kSrkqpRWl2muDRPbvochTlh8CfJCpHu3n2ZKDZx+XC1R5cvh0/OThL2Az/wA3zgAx/giSeeqBuTcT2MqDdxfaOZ/fQqQOB7Fe2FpKrI+7jb3gvFlUWKC/WNykBkGHmlotCqNPCvqbRi7BJWV285zbq+n01seJzc1FkRjjl9jmj/MFo8WVlgA98X+VJ2qZLHZHX3IeuGGAMPQ8z2brLnTjScVjI7upB1EwjLJn0CkqqW84/EVFFudgIj2bKnbic2OAqyTHFpgWjfILJuEDglnHwOLRqnuDBT0fCAEDxHevrJz04THRol9DwxaWRayIoqohV8HyRhJBi4LtlzJ2rGrIVxX+slEw/fdcpuy8uEgY8eT5Wvj3FBLa0mrn/sNyX9Qvb14IMP8sEPfpCvfOUr3Hnnnc0R9SYuCy579tP8fOMx1CauDsIwxCsVyU2dI33iBeEQOzuFv4c76n6wnxaEYlp4hcame14xvx1jYFoNCQ1AYNvIqibGmTWN/PS5iuYlDHzczCZueoPi8rbFfXFxjsLsFIHrinTxMNh7/NoPUKNxigvbtvuKFSExeqgyxixrIiZiL/GtpGqEQUB+ZhKrswdJ05BVVWiOWtopLc1VERoQ7a3CwiyRvgFKS3PkJs8Q2DZhCF6pSH5mgvTJF8icfEnEL0gQHzsstD3JFsyOLhIHj6GnWi5LJUXRdMy2ThKjh0iMHyHSO4BimFWEJgxDfNvGXl+jMD8jKm518qOa2Mb16A58OX1ytia4fuiHfojf+Z3f4WMf+9hF53410cTFYt+k5tixY3zxi1+8ksfSxAUisG0yp49vj9iGIc7mOpmzJ/a1AG1NN+22t9+rxaElUri5LKHn7emyKmtajRC24XEQgiQM4rZ0NaKKEBC4HvnZSWTdwC9VE6Mw8MVEUTZNYBdRI7HGxx2JUFpdJHGg7LZ78BjxkQMoZnWej2+XcLOZhjEBVlcvpbUVQt+rjEFvxQyIkfL6bTu/VERW1PL2kPzcNKHrkDlzXLTDwpAw8LFXl8hOnAYkjJY2ooOjwrk4CLA31rA31sstusYEbr+QNQ1F02s0RmEY4hULpE+/RH52gtLqEvnpc+K7VtYfNVGLa80deL8k63KEj27tc2uCa0tbc++99/LQQw813Nf1SASbuLaxb1LzyU9+kp/+6Z/mR37kR1hfbxwg18QrgzAIKK4s1NV+hJ5bd2R6J3zHpri0QPbsSbITp7E31iqLs6RqImRyF2RNx2zrwE6vI1tWJSagHtRoolKx8B17Ty8XxbAIHAfFsipVpsAuEoYBvlMSC77n7Tlh4/seVm/9H07ZMEGWkRW1MsarGGbV+DiIa2qvrVBaWUSLJ8sj1OI5imkRHRgVnjVF0XILPRd7ZYnC4pyoGJ2HxPll7xtJ1TBa2ykuL9R1Yw7sUiVbKfRcctPnyJw5TnF+hvzMOdInXxTEMvAJg2BfuUSB71UIm1fI75lnFLiuCPLcdWyh74kqWp08riauPXfgCyFZO31y9iIhjbA7FuMXf/EX+eAHP8iXvvSlPXO/rjUi2MT1j32Tmp/5mZ/h+eefZ21tjaNHj/LXf/3XV/K4mjgPAt+ra4K2BSe9SdDgbt63bTJnTlBanhci3mKe/MwEuZlJfNcR+U/JFpIHj2F29qCnWokOjBAdHCXwA5LjR9GsKHqyBW1HsCMAkkSkb6jKMM9eWykb3tXqNYy2DtzsJrJhopgR1HKVSIlEkSQZArHw2hurGG0dDc5WwoinUA2T+NghlK2pHElCb2kj2j+EJCt4hRyZUy8JwfLKohhF33lNPa+y0OdnJ3GzGayuXmKDo+ipVuz15e3WniRXzscpE8LdFa/dkDWd2NA4VmcPaiSK0dLWUBTsbK4T+D6l1eVab5kwJDd5Fr9UEmLf+Wm8YqHh+weuQ3FhlvTJF8lOnsZJb+DbRdxsGq+Qrwm0DD23YUipXyqe1xX6tYzLVfW43MdyPpJ1KeGju/c5MzPDxz72Mb7yla/wuc99jl/8xV9sGI9xrRHBJq5/XJRQ+Dd/8zf5d//u33HkyBHUXX4P3/ve9y7bwV1uvJqEwoHniumhBu0APdVKtH+4trUQBEIjsYN07ER85CBafP/XZqt95RXyyLKCYpoU5mdqzOXUWIJITz+llSW8Qg65XK0IXBevmMdo6yA/M4nZ1kEYBBgtbUKLY5dIn3wRgEjvIF6xgLOxw+SunOmkRWNIskLgONibayi6QQi4+Sx6NE6uzni0GksQGxgRrbIgwMmmCT23Ski8E2ZHD5KmUpyfweruw8vnKhWx2OAobj5L6PuV0fGq94rGMdo7yZeFzoAggN19eKWiyIbaAb2lDaurl8yplxu2mqyuXkFQyt+BSO8gektble4mDENKK4sUF+cAidjgCPbGWlUlT9YNYsPjqOVWnJvLkj13su57AiTGj1xQNMaVwrXsj/LYY49V3IHvueeeq3IMW9giCd3d3UxOTvKHf/iHNYTmve99LzfddBOf+cxnLphU7Pwc6hGcrVbUBz7wAQ4ePMiHP/zhmv1uHcPw8DCLi4uXldBcy9+TJvaPyy4U3sLU1BRf+tKXaGlp4T3veU/Nf028MpBVDbO9q+F2o62zbnJx6Hk46cbtQ3tjdV/tjJ3HoZoWZms7eqoFZAWzPMoc7R9GsSIokSiRnn7RwukfEunfA8NIiopiRdDiSeyyTqW4NI8ajVXEupKqYXb1AlCYny774xwg0jdIbHic5MFjaNF4RdwsqapI054+R376HIpmiDZPHXi5TKVKEXieCNGUlRqdDQj9id7SAiEkDh4DqG7xyTL2+ipaIoW+q3qlxZNEegfIz1RnDhGGFBZmhX5Hqv6szHJVai/tTOC5SDu8fQrz0zUVlsB1Ka0IgbWeasHJZmpak4FjC4JcHs3fM5Faluumd18NXKuti0upesDl15lstZa+8IUvUCpV57dtkQmAD3/4w5XnX0j46M7wyd0j6luxGFv7BBrut1Qq8YUvfOGi2l974Vr9njRxZXBBpOZ3fud3uPHGG0mlUrz00kv80i/9Eg899FDVf028ctDiSbR4quZxs6O7cR6QVPmfhriY9kIYBOIO/+wJsmdOkJs8Q2FxDquzl9jQOKoVKZMGGVnVsNdXCQOfwLHxchlkVSM2OIrR1klpebHiVSMrCmZbB7GRA6iRGG5mE3t9BTUSQ4vGUXSjJqvI7OiqLPaKYTSsZgG4uYwYiQ98JEUR2VBdvVhdvciGiawbmO1dRAfHhHDZsSktzSNJokIkazqKFRHvEYbkpyeQFIXY8DixwVHio4ewevopzE83TDN3NjfQE8nKv7fHq+W6BGsLqhWtCRl167SqtqbC9EQKZ7O6IlR52g6XZUnVMNo76z7P6uqt0SJdLVyLrYvd2pKLSSa/3IvwTpJlmibvfe97K/v+1V/9VYCa6s3F+uScL137M5/5TN3P7L3vfS+maV40EdwL1+L3pIkrh323n77v+76PJ598kk9/+tO8733vu9LHdUXwamo/bSFwXQLXxklvIskyWrKlHC1Q/246DAIKi3PYq0t1t0cHRkCRMRL1p38awS8VSZ9+uW4SdOLAUdQd7rOB7wsdz9wUwa7xc7OjW/jOdHSh7BIGB54nhNGysudos+84hIGPs76GGo2VvW3qf80jfUP4dgl7dUn45EydA0LUSFQQRgnCMECWVQoL1T+0kqYRGxgBSSY3eaauUFi0kfrInj1Ro13ZghqNo6da8e0iRku7iB0of35ONl2TOg4irTvS3V/x7dmC1dOPtUPAHbgO6dPHCT2X2OAohaV5JEkSZGjXZxXpH8ZsbS+/ThgdFpcXCD0XWdOxuvuEf9A1UqnZwtYCdbUTrq+E58tu87oLPbd6+9mqzHzqU5+6atdr52f2kY98BNgmVleKcFwr35MmLg6Xvf3k+z7PP//8dUtoXq2QNQ01EiPS04/V1YtqWntnL8kyZntn3UkiLZ4UUQALcxc04RIGAaW15bqEBqC4vFAtWpYk7M31GkIDVCaP6nnlyKoqFvw9CI1XLJA9e4LMqZfw7SIhIVoy1fD5imlWCJ6bTYsWGiKmoLg0R3FxDtWK1RAaECPopdUlZFWt3yaSJMyObiRF2RYv14EaiaIlkkR6BlCtSNXnJ2s60f7hHd45ElqyhUjvYN3kbS22/ccehgEoKlZPH3qyBdkwKuLk2OAoVlcfO6t2OyfUZE3DaOsgOX6E5OEbiY8fxmhpu+YIDVz65M7lwl7uwAcPHqxURXajXkvpcgiOG0Uw/OEf/iGlUqnh9Xolxqx3fmalUqmqUnSh7a+Lec+r+T1p4spi36Tma1/7Gv39/VfyWJp4haDoBtHBEUGCIlHUWJxI3xBaPElhYY7ALl2QriYMArw9zPX8UhH87dZL6Hk4G411PV4+e1Emc75dIjtxqlIRcbNp8tMTGK3tyHotiYv0D2OvLlf+ba+vCU3MDo8aWTdqWjw74WaEPiU+eqjKtE/WDeIjB1F0A1lRsMq6oBrIMkZru/CL2TUdFgYB9voKpdUlzPYuYoOjxIZGkRWF3ORZnPQmWny7baUlW5A1Hd91cNIb5KbOUZidRDEs1FiCzOnjFBfnKC0vkJs6i1fIER0YEodhmCh1rpFUJpK7q2bXEi5Vw3K5sFfr5cMf/jCnTp26oJbSpS7CjUgWgGmavO9976t7vV4JDcrWZ/a+970P06y1e7gSMRHXyvekiSuLZkzCaxSl1WWczTXUSIwwDHEzmxUyIBsGidHDewtGdyAMAvKzUw31GlosQXRorEJUfMchfeL5hvsz2jowO3rwS0XhTKwbInVbaxx6GYYhfqkgqj+ShFfIYa+tEoYBemu7aKuEIiIgcGz0eJIQyJx6qXpHkoTR2iEms2wbSVVE1WZxru77AiQP3VBO+XYIfB8IkRStKngy9H28Yp787FRFuyK8b4ZRzEjdeILAdclONJ5w2xJZO5vrWB3daIkUYRiSmzy9/RpJEm21yTN192F19eI7NlZXb8VZOQh8MUW2JmIu1FhcVHquwRiFy9WmeSVwocd6Jdol+z2GK3ldr8Zndj19T5qojys2/dTEqwNaPIFXKlJaXcJeW67Se1hdffsmNLAtzm0Es6s6KFGSZdRoY9diNRLDKxXIT5+jtDRPfmaCzNnjZY+U2jZP4HnYG6tkz50mN31OVCGKRWJDY8SGD4DnkTlzgsyZ45SW5oVoectJd/ciHYbYa8vkZyaQdJ3i0vx5jAPFttD3kTUd1bRQzUhNknYYBCBJWN19xIbHiY8dKguoo42JgixXTTfVbFZUjNZ2EmOHMdo6kFQVZ3OtigRp0fieRoz2+ipW5zahEbEUaTKnXsJeW8bNZSguzpE+/fKeguurgfMlXF9Ld+JbLZt6LaWd27dwOQTHu3Eh1+tK+e1cjc/sevqeNHHpaJKa1yhk3SA+eghp5+IrSZjdfVW6jAvZX3RwpHo0WZKI9A2i7Covy6pKpKe/rhnflv+JX8gj75jgCn2f3OTZuqZwbi5NYXaqSqjr5TLk58RjTnqjovfxS8Wyv08BSVUrCds1CEP8Ugmrux9Z0xqa5Fk9A/ilIqW1Zez0hogw2FX8DDyPwuIc2bMnyU+fIzd5huzZk4Ko7dHakhVlT9dmo6NLtLc0TURelJ2bzc6eihOypCh7mgIGnlf1OQSeVzt6DhAE5Gcmrik34audcH0h2GrpAFUtJaCmpXOlFuELvV5XQoNyNT6z6+l70sSlo9l+eg0jDENC1xUj3EGApGrImlbX32Zf+wsCYcbnOECIrBvIilpX0OrZNvguxaUF3FwWSVEwWtoEqZFkAs+htLxQ3tc24iMHqnQkvuuQPdN4sijaP0xhcZZw18KuWFHiIwcIw4DiwizO5jqSpgs/HcMESSLwPUrLS3jZNNH+IQLXwV5fJfA81EhUmN9lM9gr2z44kqwQHz2IYm23lLxCnsyZ4zXHplhR9FQLRltHw2T1wHMpLs1jr1WbJRrtnVidPciqVp5UWqe0skjgimMzO7pw0ht4xQJmazuFBqnraixObHCsIgB2s+ly9lR9JA4eq5j0NXFh2D15tHvqZwvXillcc1qoiWsJzfZTE3viox/9KLOzs8i6jmpFUKMxFEN4vlzIhEPo+2IkenMde3ONMAhQTAstlhAeMnUITRgE4HvkJs+JCk//IFZXD14hT27qLMWlORQzUkNogNqqQxA0JDQgKjNKndRtv5gnDHwUTSfSN0ji8I3Eh8dFIOjpl0X7ZWmBSFcPSjRKfnYSJ5vG7Ogi2j+EGolib64R2NUtmTDwyU6crjqm3Q7DWjxJbPgAWjyBXyriZtIV47vdkFUNq6uPxMFjYly7p1/8/07hFxN4Hvm5aQrzM+UqSohXyJGbOlshf7JuVFfkdiDS01810RQG57nHeQ3cA13tkMXzeb3sJjSBH1BczzD7nZc4/uVvMv/d4xQ3Muf/LPfAlWh/NdHEK4Frbz6ziVcEW+XwvQSC50Pg+7iZTfIzk+z0gdFb2ol0N9blhJ6H75QIPAd7bRl7l77YLxYahkMqhkng+9sanbILcCPnXVnT67ZfJEWptF1kRRWi3HOnqt7XzWVwz+VIjB0mc/o4fiFPoZCvbDfaOuvma4W+R+A62zqVHdvUqBDdCuGu2OJsrCFpGonRQ3X1O7KqIqtq3QpJ4Dq4mY26515cmsds76IwP0NsYITS6rJIBEeIlCO9gyh69fvtbhVWHYemNRRqv5pwOf42dmPrtX/4h3/IzMxMJUJhYGDgkvQqYRiSnVvhmf/5NwSu+O4ufPcEiqFz2wfeTby3/aKPtVH7q1mxaeJaRrNS8xrF5XDZDFynrL+oviN0NlbPmxIe+vXddSuoIwhWY3GQZfLzU7j5LF6xSBiGjYMuJRnZMCrTRtuPS5idPZUKhe95OJvr9YlUOblbb6tdHLR4ojZscuv8vO3jN1LbI+Jmeyf5uSl2X7PQdYUZ4XlCMXfD20Gyag7dsYXfTGs7sm4SHRgheehGkoduEBlfsXhNJU1SVczOnrr7i/QN1x2Nf7XhSjjQbuk6gKqxYuCSdB12Js8LX/yHCqEBUHSV9sODrJ6cws41tlo437FeCxqUwPPwHfeCLCaaELjaFcerhaam5jWOS+mb5+dnGjoTy4ZJYvRQ3WrNlq9N9uyJuq+VFJXY8Di5qTNCC1NO2zZbO8jNnCM2OEZxaR6jpQ3fLqGYFvbaShWRkmQRVRAEAfnJ01sPYnX3ohgWgesga5qIIQghPzOBV8jVPxfdwOruJT+9LaCN9A/h5XINx9iTB49VIg4C1yU/P42Xz2J19VGYm6r7GtgeD98v7M118nXCOreQOHgMxTAvaBQ78Fy8fJ7i8ryoOJkRUXkzzYban1cjLrem5EqMFWfmVvjub32p8u+e2w7RfnSY5efPUNzMkejvpP/Oo5ipOLJ6/Xx2TqFEYWWT2cdfxM2X6Dg2TPvhIcxU46nJJqpxOR2urwXsd/1ukporhGtF7LcfXEyicBgG5KbOVdoZuyHJCsmDxxre2fu2TWllAXt9tWZbdGAYr1RCjycrLSInvVE2yguJDo6Wc5qmhO5GkrA6e1CsiCAruoFimMI1uSxedvNZVDNCYWEGL7+DvMgyifGjFBdmGlaXlEiU6MAIbjYtksitCE4uA75PqU5YppZIEe0fqspIEmnkBXy7RLGOO/EWdpIhEC2+cGc8hKZVERTfLpE+9VJdrYsWSxIdGrnollHguYRBiKTsHUvxasblStu+nAuMnS0QBgGqqZNf2uDp3/5LANoODdI61s/pv32s6vlaxOTWD7wb1RQGj3rMuuhhgFcCbrHE1DefZfpbz1U9rscjvO6n3oPV2rwh3S9eTf48TaHwVcb1kgx7sS6bkiSjxRt/sZRIFJTGXy/FMDA7e4j0DlaceBUrUg6ujGKvLJI9d1IEZJ49Ua4IlRfuLbPALXFtGFJcmic3eZbi8oIIgiwbxUmKgmKYGKk27M21akIDEAQUF2Yat7AAs70L1TCx2rswWttRrQhmqg2jpU3EFWyRF1nG7Ogm0jdYRWjCMARZRovF0WKN7zTF5Nk2efAdh8LcNOmTL5I+9RKZ0y9jr69UtahkVRN5XbsgaRqRvoFL0sDIqoai7x1L8WrG5XSgvRwtnVImz+wTL/G9z/8VT/7Gn/HSn3wdWZFpPSCc3nvvOMLZf3ii6jWJgU6O/uhbOPePT/HEf/9Tnvrsl5j61nPYmcZty6uN0ka2htAAONkC5/7xKTzn2rEVuNZxpfyGrmU0KzVXENc6S77U4/Mdm8zp43W1KInxIxXPmb0g/FUEOZEUkeDtO7aoPjRItY6PHd5uTdWBnmojOjBcXdFwbNInXxIVjzpIHDyGvbpUUznSki1EegbqRghUjt9zxbFKErK6PRIfhiGB6+BsruNmM8iahtnRTXF5ATddK+6NDY1VIhoC1yU7eRq/TvxEpG8Qo7Wjcn6B7xO6DnZ6g8Cx0WIJMc1WZ+qrif3hWvvbdfJFTnz5EVaPT1Y9LskyN7//nZz660cZetMtHP+LhyvbFEPnhn/xQI3mBgTZufHH344RP//f6CsJJ19k6pHnmPl2LakBcb53//t/0WxDXSAuV8XxaqJZqbkGcC2z5Mth8KXoBomxQ1XuwLJhCJ+WfepCJElCMQwUw6hUN2RVw2zrrP98VRMdqb24eD3iEoYNCQ2ICSQ91Up87DBmZzdmRzfxscPCt2YPcawkSSiajmKYojq0o6zv2yUyp1+muDiHl8+Wx8WPY7Z3YfX0I5WFyoppER89WHUdA9epS2gAiovzVSZ4sqKIaaauXmIDIxgtbU1Ccwm4Fh1oSxvZGkIDQp929qtPcuSH7q/Z1nPrAWa/82INoQHIzCyTX6o/NXc14eZLhHWGBLYQhsFrwVXgsuK1lnl13ZCaT33qU9xxxx3E43E6Ozv5wR/8QU6ePHm1D+u8uFaTYS+2HB54Qhtib6wJDYosEx0aI3noBpIHj5EYPYQWS9RM1QSug1fI4WQ28UrFPad8RJJ4F3qq2u1X1g3hJZNJN3T4BTBa22uFsbJcN5l8C4ppkZs6KypAvk8Y+OSmJ5C4uKyjwPMozE3X+YEOyZ49gZZoIXngKMnDNxEfPYgWS1T5xewVEBr6HjQYYW/i0nEtTf9sYf1M4+yx7NwKiqGRGOxC2tHyTQ52s36mvukiwPILZy/rMW7BzhbILa2TX9mguJ4hPb3E0vNnSM8sUVzPUErn8Rs4U5c2c6SG60/fAbSO96NZr/4JvMuF16Lf0HVjOvHNb36TD33oQ9xxxx14nscv/MIv8Pa3v52XX36ZaPTaKqHuxG6WfK1UavYSKdcz+ALh3luYnaqdMhoZR41EkaT6HNkrFcntMqRTYwliA8MNiYZc1oRY3b0EjoMky8L9d2URs6x/cTPpmtaXGo0j1/FzUTQdq6e/7qSQbJhIilohIDvde8M9qjt7IfR9vHz9cW8AL5/BbG2s49mLgIFUHUfRxGXFxfxtXGkoRuOfakkWxNtMRBn/vrs4/RUhFA58H0VT8fz6xo6KeXmreb7nk51d5vhfPIzvehz5ofs59dffprieqTwn0pHiwPffw+rxSQbfcHON6NdIRlk7OU3boUHWTk5XH6+uMvaOO1Ev83G/WvFa9Ru6bn4Z//7v/573v//9HDt2jJtvvpnf//3fZ3p6mqeffvpqH1pDXM8sebfHQRgE2KvLuNk0c4uL/NfP/Fb5cZ/sudMEDcR7vuOQPXeqxvXXy2UoLM7VNa8Tr7PxC3ncjCBQsqahRmJE+wZRDAvZMImPHcLs6BLTTqZFtH+Y2OAISgNCoFoRIr0D28JexKRSpGeAMAxqx8+lOoGX+8Z5auTncXtVTLNKNLwTeqqVUJYpFUtN/47rBF7JxrMbO1+fD61jfTQqGrYdGkLRNRRdo/vWA9z6gXfTMt5PemaJrlsONNxn9y3jF3089VBaz/DM//wbiusZht50C2f+7vEqQgNQWNlk4htPo8cjPP3bf0lpo5r46zGL9bNzdBwdZvyddxPracNMxei+5QC3/OS7sNqSNLE/XIsVx1cC102lZjfSabHYtba2NnyObdvY9rbxWiaTafjcy43rnSXvdlUNPJfS2jJzi4v8m49/kv/+8R3GTWGAV8ihMQ3s7QAAjjxJREFUGLV3UIFj1w2hBBEfYHX2gFG9eHulItlzJ6uEwLJuEB85UK3V0UDp6sNs7waJqomjevDyOZzNdSLdfZWEbjeXITd9FsW00Fvaq0a0jdb28+6zESRFjH430sXsNQUFolITGz1IbuJUVQtLsSLIqXb+2yc+w+zUPHe/8XYeeOd99PZ31/WiSW9m2FhPUyqWiCditHe2YRgXV75Pb2ZwbIdILEI0GrmofbzWUErn2Dg7x8LTJ5Fkib47j5Ic7MZIXFh1WYuLKsyZv/tO1eNGIsrwm29Dj4m/C80yaRnpJd7Tju96BJ7Pxrk5CsubVa8buu9WzGTsks5tJwLPY+axFyqmmlZrgvxyfc1OZnqJ4ftuxckVWX7pHAP33IQkSwS+T+AHHH7PGzn3j0+RX1qn49goiqGjRw3MVBxVv7i/x9cirsWK4yuB65LUBEHAv/23/5Z7772XG264oeHzPvWpT1VcO19p7IclX8tfqt0ErLezg7n5+Qqh6euuTo+uce3denyPXCbCsDbR2nWx11eRFRV/B6kJHJv8zATRobGqSowky/v23HBzGbxCvq4Lr18sVImT1Vgcq7P7ov08ZFUj2jdE5uyJGlGz0dZRVS2qB0mSUK0IiQNH8e0SgeOgmBbzi2v82F0/QiEvMqcee+QpPv+Z/z9f+NL/j7EDw1X7mJtd5OMf/lWeeFRUMw1D519+8Ef58f/zh2lrb9n9lg2xsb7J88+8zOd/4wssL65ywy1HePDf/ATDowMYzVZAQ5TSOZ77g7+tEuRunJsnNdLDsR976wVNHumWQffN4ySHelh4+gROvkhquIfWsT6MZBRlV5VRNXVUU/yd3PL+d5GdW2bxuTNoEZPe2w9jtSTQIpfvs/Nsl8yMMOKUZAn/PGPXgecjyTJ2toBbKBKGMPP4Cyx89wQgMfaO1zN8/20iS87QMOKRKs1ZE000wnU50v2v//W/5u/+7u/49re/TX9/f8Pn1avUDAwMNB2FLwBbFaf/70d/gY//wkf49Md+oYbQAMJ2v45vTaOEagBkWZjN6QaB5+IXi5TWliEI0OIJJE0vi223yU1s5KCYOLKsfXmwBL5feb1XLIhYhzqj4rJuEBseI/B8ZFVFUlWUi6zSbCEMAnzHprS8iJfPIqkaVmc3ajR2URWg2ZkF3n3fj+PXmQ553Z038+nP/1eSKfEZrC6v8cH/4+c5e3qy5rk/++//FT/5r/8PVO381y+XzfM/fuuP+B+/9UdVjyuKwm//0a/x+rtvveDzeC0gDENmH3uB03/7eN3tN/742+k4WusvtB+4tkPoecIrKrJ/9+kwCCv6m+rHA+xMnsJqGidXJNrVipGIoEf3n8buOy4v/ck3WD0xCcBN73snz3/h7+o+V5Ilbn7/9xP6Aasnpsgvr2O1Jek4OsL8Uy+zelw4bquWwR0/80NNs70mgFfxSPfP/uzP8jd/8zf80z/9056EBsAwDBKJRNV/TVwYtqa33nTf/fyX//KxuoRG1g3kBkGIlSiCOjA7ukTStOuSn58hO3EKN7OJm8tQWJiluDRPdGC4+kW+R/bcSZHVtMcEUBiG+HaJ/MwE6RMvkD7xAs7GGrGhMeQ64+bRgRECx6G0NE9+ZgJnbQW/QfVpv5BkGdW0iPQPkhg/QnzkAHqy5aJbWi8883JdQgPw9BPPkd7cbq/Ozy7WJTQAv/fbf8zycv14h91YW93gf372izWP+77PL/7n/4vVfe7nWsOVzsVx8yXmv1s/BgRg9jsvnbea0QiaoaNHIxdEaIC6hCbwAzKzKzz5mT/n2d/7Ci//2Td46jf/nJf+9BsXZNCn6BpD991S+ffmuXnajw7XOQaZg+9+A3rUxHdcWg/0E+lIsfjMKV74w7+n4+gIiYEuALyizczjL+J7zUm/JvaP64bUhGHIz/7sz/LlL3+Zb3zjG4yMXNxdThMXhp3TW7/8a/83a5JW8VcB0OJJ4UvTcIpJJzY8jhbbIfCTZMyOHszWTiRZxrdLuJvrNa8N7BJeLosWK5NRSaoIdwvzs+WwO1tEKGyuizZNuSoTOA6ZM8erYhzczCb56XNEeqtbgtGhMUpry+Qmz+Dls/jFAsWleTJnjuPbpYu5bNXXoBxvcKnlc+c8QlN/R0jo5LnGYvR8rkCxUNzXe5546XRDMfL05BzpdOMJr2sZV97xu7a1Wr35PNvPg8D3cQulS3bXtTN5nv29r+CVqr9bG2dmmXrkWfw6HjeNEO1IcfDd9yIpMjOPv0DXTeP03HaoMmau6Cq3/OT3k5lb4anf+hIv/vHXePGL/4BXdDj2Yw8gyTKn//Zx+u8+Vtnn6ssTeMVL/xts4rWD66ZJ+aEPfYgvfvGL/NVf/RXxeJzFxUUAkskklrX/MmkT+8dusfP/+B//gw984AP89m/9Fv2jvSKGQFXP2wZSdIPo0Aih5xEGgcgSKjvvhmGIvbbc8LV2eh2rowc3l8Fo7cApO/HqyRbcbIbC/HSVZsVo78Lq6MLeWK1r4hX6Pl4uR3zsMKHnopgWgefVJVWh51FcXhCxB9dAkOONtx5tuG3swDCJpBAfb26k6eppPC6uGzrmPrUw2nmEmcp1GqFQT7R/OV2DtYhJ9y0HOfe1J+tu77n9COpFCLYD36e0kWPuyZfYnFzASMYYecvrsFoTF7W/7Pxqw4rR/HdPMPCGm7D26d6rWgY9tx2i7eAg+ZVNAIbf+jqG7r8V3/FQdJWJr3+XpefOVF4TBiHLL5zFd1wG7rmRqUeeRdnRFlV07YLCWBshDELsbB6vaIMkoUVNjFhT7P5qxHVTqfnsZz9LOp3m/vvvp6enp/Lfn/zJn1ztQ3tVYq/prZ/+mZ9hYWVVhEbuM1tIVlQUw0S1Irucd89zxxqEIEmYnT0ohoGzuS5Su1MtIu1612vt1SXcfK7h1BGAm91EMQz0ZAuKYYp9NoCzuU54jZS/2zta+d9/4n+reVxRFP7LL/97DNPgqe88y4P/8j+ysrxGR2dbnb3AD/7IO2nvaDw1uBMHD4821N4cvfEQyevYrv5KOn5Lskz3LQcwW2qvT6ynfU+Dub2QW1znyc/8GTOPvoBvu/Tcdoi1kzMc/4uHOfvVJ8gvb1xQW6u00XgiNHC9C/7uK7qG1Zqg/dAg7YcGsVJxIm1J4j1tEMLS8/UN/9ZOTpMcFq1t1dQ5/L+9iVhvO313HUO/RPLh2Q6rJ6f47me/zJOf+XOe/I0/45nf/WsycyuEDaJYmrh+cd2QmrBcrt393/vf//6rfWivSrxSHgeSJGO0tjfcriVbkHUDv5CnMC9aBVo8iZPebPia0srino7DkqJel+Z1iWScn/437+fXPvuLHLnhAB2dbbztn93Hn3zldzh282GeevwZ/tWP/RtefuEkn/313+cT/9d/ore/WgN1/9vu5ad+7n37nlpq72jjoU/9h5rHo7EIn/jVD9PSmrocp3bVcCUdv81UjNs+8AOMveNOop0txHraOPgDb+Dmf/l9GIkIpUyOwlqa9PQi80+fYP3sHKV0riHJd3JFTnzpYQLPR4uaHPj+ezj5l48w9c3vsfLSBFOPPMsTv/GnrJ2a2XfbKN7XuKJnJKLI+xyhDvwAO5vHzuQJGui+3KK9Z7yJ73jIuoZbdJj4xtMM3nsj7YeH9vX+eyG/vMELf/hVnOz2jU5hZZNnfvd/UdzM7fHKJq5HXJfTTxeLVzrQson9IXAdspNn8YvVwkRJUYmPHRLTUzvuqIzWdgLHwc3Vv8uUVJX48IGGU1ex4XH0HaTHK+TInKkv6tRTbUT6L3/76aMf/SgPPvhg3UV0ZmbmvCP/G+tpPNeteMYsL63y4+95kKWFbTfkvoEePvCh95JsSaBrGv1DvbS1t1QmpNZWN1heXGVuZp6OrnZ6+rro7KolmLlcgbnpef6fL3yZ2ekFbr/zZt7xrjfT29+NfpGeN9cKtiqSDz300BVz/A6DELdQAgn0qIVTKLF+aho9FuHM33+H3MK22FqLWtz6k99PrLu2ypZf2eSJT4vK9IF33YOZihP6Ab7jokUt1k9NM/vES8iKwp3/5kf3NTVkZ/I88z//hkK5XbQTR374zXTfcuC87Z/SZo6F751g4emThCF033KA3tcfqWlb5Zc3eOK//2nD/dz0L7+P/Momm+fmWDs1AxK87qd/kGRZOHwx8Ir/b3v/Hd32dSb4/2/0DpBg750SKRZRvdlWs9xL3J1ix4k9UcbJJOuZnZmsd+P1/MYnc2ZmZzOTbzZOc5zEcdxL3CWrWLZ6o1hUWMXeC3oHfn9AhAgBlGSZFCX6vs7ROSY+IHAB0cLDe5/ioeGlj6ccF1F4/VLyrquZliMuYWbN2eonYe6RKpTo84rQZuYgVamRKpSoktMwFpeFh2YWl6FKSkWuM6AyJ6NISEJ2ngngcq0OiUKBMjH2A1qZmBwzPVyqVKEwxfZtkcjkaNIyZiSf5osmqiaaTaSkJUea4Nms9qiABqCnq4+n//Hf+PvH/zdOh4vC4rxIQNPXO8Dj3/wH7r/lUZ7Y/GO+8ZW/5uG7vxc3wViv12JKNJJbkE1eQTYH9h7l/lv/it89+2dGh6+8oYgX63J1/JZIJSj1GpQ6DcFAkMG6Vmw9w3TtrosKaAB8Dhe1z7+P2zL1DoIhOwV9ehIn39xFw5+3cuL1ndT98QP8Hh/z7riWoD+AfWDqI9XJVEYd1Q/fTHJZfiQJX6FVM+/Oa0mal3tRAc3R596hfdth3ON2PBY7HZ8c5civ/hK3W7ApL7Z6EkCfmYxCp8E9ZgsHNAAhaN1yILzDc4n8Pj+2vuEpr4939BO8Qo6Xhelx1SQKC3ObTKlEmpSK0mQGQkhk8kgisd9uJej1IFOrCfp82Nub0OcVI5HK4pZ1a9IykSmUaDOyUCenRiUXh6uQzm6pBwMBQsEQ2vQsgsmpuAZ6Cfn9KIyJqMwzN+16uhNVFefpOeP3B1BParRms9r5p3/8Pxyvjx4I29PVx/ce+Qd+9+rPovJxRobH+NvNP6a+Nnrn6+f/8RxSmZRvfucBFOeOmLjCzVbHb6/NSdvHBym7ey1de+unvI973B7T8VehUaFLTaRg3WLq/vABAe+kI6YQ9B9tQpNoICE/g4Dn4vNqNIkGyu9dh9fuIugPIFcrURm0F9V4cqSpE9dI7I6px2Kn/1gLeddWRx5HoVVTfu966v/0UVQwp0tNZN7tazjx+nacQ5aox7H1hBOZFZpL+/9QKpOhTjDgc8SvoNIlJyC9SpPdhfjETo1wQTPd02OCRCIJBx0KZeQfwpDfh2uwH5/NgmdkKFyiHQrh6u9Gl1uATHN210WqVIXLy5VqQsFguNmYTI46JR1tehZyjTYqoAl43Di6O7CcqsfS1IhnZAhdVh6GwlI0aRkzFtBMmM5E1YREE8tXL457TaVSUjKvMPL16PAYuz/ZH/e+nad7YnrPDPYPxQQ0E577xYsMDUxfr5rL9bM2W3Nx/G4vfpcnPE7gPAf/Pntsyb1Sr6H8vvU4hsajA5pJuvcfJ72m9Ly5MvHIVUq0SSb0aWbUJv1FBTR+l4f+o01TXh+oa4nZZdEkGlj4zZtZ+vhdVH5tE0u++xWKb15J3R8/igloANQmHZIvEHQodWoK1sf//wKJhMylZXH79whXLxHUCBc08z09phYKheLOjgq4XTi6O1CnpmOaV4GpdAGGovko9EaCfj+O3s5wsHKyDkdXOwF39PDHgNeDteUkPstoOHkxFMI7Poq15WS47PwynbFPV6Kq0WTgfz3zREzFk0wm49//39OkpJ293XmBHjVjo+NRX59u7Yx/R8I9bxyOqSvNPq/L9bP2zDPPTPlez+RcHKlCFh5MGQohO08SriYpfs6ALjURb5yAZ4LP4UJjNqLUx29z4XN7cQ5bGGpsZ6S5C9eY7YLN7Tw2B9buQYZOnMbWN3z2+aUSpPKpAw6pPP5AWKVeiyEzJdxoLzsVtUkfzjmKI3/tIlTnvBaPzYlzeBzXmDUyJDQUDOJ3e+ImSJty0yjYuCQqeJEp5VR+dRPqhOmbfyVcGcTxkxDj3CTWyTsK//RP/8Rf/vKXmIGXM0UikSJVqQnGaYIX8vvCHw6TOgQHvB5sbScJ+s4GQj7rOFa7DWNJGTKVmlAoiGd0OGr8QuQxA368YyOoUzMuS2AzubnhF01UzS3I5oW3f8Gxw43s++wQeQU5rL/hGtIzU1Aqzyb0Gox6FEoFvilKf9MzUqO+Tk2f+rd+uVyGRvP5Otuez0z3j5ltSq0ac3EO/ceayV6xgI5dtTH3SSzKQmmIX8Yslckw5aYyVdaPOtGAyqRjvL0PJKBPNaMwaJArFXgdLjo+qaVrTx2aRCM5a6rCx01jNlQJelQGbVSPGADniJVjv38f18jZXRRDVjKVX70BdYKe7JUVjLX1xl1L9ooKlOd0PQ6FQnhtTkLBIFK5DKVeizpBT8WDGzn+yvaz+S0SyF5ZSWJxVuR7/V4f1s4Bmt7ZjXN4PDwgdMUCspcvYKCuhdHmbpRGHbmrq9AmJ0RmWym0anJWVZJWXYxr2IpULkWdaERl1IqjpzlIVD8JMab6ENm/fz+33HILv/71r6fcvp8JXss49o6WmNslcnkkmXiCe3gw3JAvDlVSCtqMHEKBALb2JgLu+L/xyjRaDAWlUR2AQ6HQtAc5577PF/rwHuwfZnzMQigUIiHRREpaEtJLGLjpdnn42b/9mj/+9tWYa6uuXcq//Nf/IiHxbAfogb5Bvnr7ZobijES45c6N/Pgnf4dGO70NMC9HVdJscY1Zqf3d+2QtL8fvdNO9rxG/24tEJiW9ppTC9UtQmaZOhHeP2zj4/97E54j9+Z1/91p69jVg6wknx0qkUopvXklGTSkjTZ00vrwNXZqZok3LaH5vD67RcD6MRCYl/7oaslYsQKaQ47W7sPeP4LU7UZkMDDW20Xf4bA5W1vJy8q6tIRgIMHKqg7aPD0Xl8Zjy0ql4YGPUNHKv3clgYzundx5Bl5JI1rLy8ORtrRKlXovP4cI5ZCHg9aFPN6PQaaJyacY7+jny67cjx3YKnZrye9bR+PK2mI7IhdcvJWvFAhRi4OqccbGf3yKomQO+aHlwPFN94G7evJm77rqL3bt3s2rVqul6CecV9PvxWsdx9XVHdldkWh367PyouVLBQCAy6iAeqUKJsXg+SKVn7he/wkSuN5xJRJYS9HrxWsfxO+3INRqUJnNUzs+lmiqAmbi9tLSUv//7vycnJwev18uxI438jx8+w0DfEF6/G1dwnD++8DxLVy68pIBiZGiU3//6Zf78/Bt4PF5kMhk33b6eH/zjd0iLszPTfKqN737jvzM4cLaSZMnyan7yn//rvN2Lv4g9e/awevXqy/qzdrmEB0iO43W40SaZQCJBrlKgjLNbEo9jaIzGV7Zj7w3/fchUCgrWL8bv8XF6++GY+y/7/r00vvwxjsExKr+2iROv74wJBADm37UWhVZFw5+3hvN+ACQSclZVIlcpOL3zKPPuvAafw03f4VPhaeEFGeRfV8PQ8XbsA2NkLS3DkJUcNYXc5/bStmU/PfuPU3LranwOVziYc3mQqZRkr6oge/kCVFPsUHkdbur++AHWrrPdx/PW1mA53c/46b7Yb5DAsu/dgy7NPG2/jPg9Xrw2F2OtPfg9HhILs1AnGj7X4E/h0omgJo65GtRc6APyUn/LPfe35X/6p3/ixz/+8az89hwKhQj6vIQCgTPjGWJnKYWCQeydbVHzniaTqTUYCkuRyhV4LWPYO+J3N53oY+N3ObC2noqe6i2RYCgoQa4zfKF/LC8UiP7rv/4rTU1N/OY3v8HvCXL3jd/C7/Pj9bvpGW0my1yCWqnlpfd+zfzy4ktag8fjZXhwBIfDiUajITkl8bwB0kDfEH29AwwPjpCTn0VKWjLmGWq+N5d3aqaD2+LAOTxG0B8kFAiiNGiQyCTUPvd+eBTAOSq/fgPHX92ByqAhc2k5LR/Enx6uMunJu24hTX/5LOZa2d1r8bk8jLf1MnyyI+qaRCZl0WN3YMgwx51x5hy2sO+nL5FWVYxCq6Z7b0PMfdIXlVKwfjFKnRaZMvox3BY7e/7tT1HJ1RVf3UTDi1vivg6Awk3LyKgpjdotulR+j5fB+lZOvrUrag1JpbnMv+vaqABOmBkX+/ktcmrmgJnKQ5icxPrGG2/w4x//OPJ4M136ei6JRHLBaiSJVIo6OW3KoEadnBapfpJr9ShMifgs0X1WFAlm5BodAZ8Xe0dbdEADEAph72jDWFKOTHnpjefOt3OWk5PDz372M7q6uvj2t79NTdmqmIBGKVcTDAb5zc9f4P/3b/+I5nNObIZwVVRWzsW360/LSJmxXZnJzv3Zvdw/a7PF7/Xhs7vwe3xndm00yOKUyk/0hjm3lFqbksD8O66h4aWPo25XGXWoEwxUPLCRUCiITKkgaV4uI6dij2k9FntMHsyEvqPN5K+roeX92IAoFAjS9O5nVD90M8o4QY1r1AIhSK0ojFkfgMqkw2tz4rE66fy0jvx1NdGBgkSCQquJe+Q2lVAwiHvcPi1Bjdti5+Sbu2JuH2nqZKCulZyVlaKK6gohgpo5YvI//tP12+1EEusbb7zBY489xnvvvXdZe3pcCplajSopBc9IdCM6hcGEwnA2upcqFOiycgmmpOEZHwUkqBLMSJVKpHIFfpeToDd+069QwE/I54MvENRcjJycHH760/9k47ob0EjMDFo6IwHNhKbjLTgdzksKaq5Es9U/ZrZ5rA7aPj5I/9HmM0NfpWQsnkfBusVRH8qhUIihxra4vWGcQ+M4R63oM5Mjx1La5ATm3XkNx1/djuNMQz6ZUkHuNdUYMpM5veNI1GOoTHq8U1QiyZRyLKf7p3wNtu4h/B4vSp06slaPzYnP4UauUVF291qkCvnZYy3CeTElN68i6PNj7R5kvL2XpHm5DNS1krlkfmRIp0qvIWd1FW1bzrYicA6OYchKwdYT/f/6BENmMq5RK6bcS+9IPGHgaPOU17o+qyOtsmhagifhixMl3XPIdM6xmfzhcujQId577z1+/OMfR5XaznRPj0shlSvQpGViLC5HnZKOKikVQ9F8dNn5SBXKmPvKtXp0mbnoMnOQa3Vn+9hc4FQ2FLo8g/CKi4vYtP4W2gaOkWrKjQpoAHLyslBPY/XRbJut/jGzyefy0PzenvCYgTM7g6FAkN4DJ2j5aH+kbBnA53TTd57eMMMnOjAXnq0YKrphGQ0vbo0ENAABr4/2bYdQ6rXo0qIHm+ZduzAqIXgybZLxvCXcSCSRI9mAz89Yaw+HfvEGB/+/1zj87Fu0bjlAyB8guSw8z0mqkFN+zzratx/m5Fu76D10kratB6n744dI5bKohnkSqZSMRSUkzcuN3NZz8Dj56xbFXVPGkvmMtfagS43tFH4pztfh2ed0n38or3BZiaBmDjm3PPhS272f+9vyM888w/Lly+O2kZ/Jnh6XKhysaNFmZKPLykWh0yP9nB1vJXI5knPGI/zzz/4fPf39IJHEBEjT2RhusoGBAVo6GyhKW8igpROvP/q36Me+/w10X3CK8ZVktvrHXG4BfwCvw4Xf7cHncDHY2Bb3fgPHWqL70kgk5z3mkEglyNThn01NkhGP1TFlD5iu3XVkLpkf/j6ZlPx1izGXZOMcih19IZFKSF8YHVScK6U8P1JG7RoNl4J7rWd7GHltTupf3EL+2kVUPHg9Nd++lb4jTVHl4gCEQjS/uzuq54xrzMbQ8dOkVhax8JFbKL5pJYXXL0OXbmbxd+4kfWEJmiQjprx0Fty/AWNWCtbuwWnbPUkuy5/yWkJ++nl7DgmXlwhq5ojpnGPzZfxt+VxShQJNZvTrf+Teu/jB/36GYV8QyaQKlZlqQjjxuM/97jl+/pv/oCirkp7RZrx+NyqVkh//y99RVFIwrc8pzKxQMIhzxELrR/s5+pt3qHvhIzxWx9TdhUOhqK68Sq2arGXlUz5+9ooFZC0rY/kP7qPmW7fijHNMNcE1aiWhIINFj93Oih/eT/bKBXTurqP8vg3o08/u4GjMRsrvWY99YAyVSU/JLbGVaEqDlqIbliNXKfG5PXR+eoxQMPZFhYIhunbXMXziNB6rg6HG9vgvOxjC2jkAhJOMD/3iTZr+8hknXttB3Qsf0XfkFEG/H6VGjcqoI/e6hRRsWIK5JJv+2mYkUinl926Ysgnh52XKTYvbqE8ilVC0afklj3EQpp/IqZkDpjsP4UJJrHPlt+XzkUikKI0JSAtKcfV3E3C7yc0v4Fe//hV//d/+lt/+9rcz2hju3MfNz8/j/Z0vc6y2nn/656f4r//8CVULK1GpxD+mVxPH4DiHf/kWgUmND6caeTBBfs4uQFJpbtxcElNeOgn5GSh1mkiZ8eTg5FxKoxZ7/yjmoixURh1uq4OhhjZGT3WStXwB+etN4U7bDhftOw6jSTSQWlFIek0pCQUZ9Bw4jsfqJKUsj8TibJQ6Da5RK363B3v/1KMz7ANjpJTnQ4jIcVs8PpcHv9dHy4d7oxKEgz4/joFRTr31KeaiLLxOD0d+9XZUrs7IqU4yl5aFAw7tF/9/RG3SU/PobbRtOcBgQzuhYBB9ZjLzbl2NdpqOuITpIYKaOeBidla+DIHIdJPK5SgNRuSa0sjoBJNCwW9/+9sZLzc+9+9UqVSSmZ1OZnY6FdXzefbZZ1m6fMkFH2cmehgJl8bn8tD03u6ogAbAMTiGITMZW2/sNGljbhqKc/qgqIw6Kr9+A5bTffQePAFIyFpejik3Lea4JbEwE5lSHjdwyl5RgTE7JfI9UrkMdaIBW/cQrR/FzgZLKs1FKpMhU8hRaFTMu+2aSGdgn9NN78ETtH60n7TqYjRmY8wE8gkasxGPzYlcrUKbkoBzaDzu/RILM/E53AyfjN9MM2PxPIL+IKfe/jQqoJnQe/AEOasqpyWoAdAkGpl353UUbFhCMBB+3XKN6qL6CgmXj+hTIwiX4GppDHcxPYyeffZZEfhcBq5RK3v/z59jbp+YXt38/p6oD3hdmpmqb9yIJtEw5WNOJBFPVAmdKxgIYusdou6PH53d7ZBIyF6+gJzVVagT9FE5OsOnOqj7w4cxjyORSlj2/XvDs6ccLlyjNgaONRMKhkirLkamlHPo/71JKBhEplJQfs866v8Uv4dMxVfDzf+Ueg0FGxZz/NXtMcdviYWZLLh/I36vj31x3rPslRXI1Ur06Uk0/HnrlO9P6e1ryF6+AACvw4V73M5oSzcypRxzcQ4qgxa5+uKqGANeH5bOAU6+tQv3WLjBpyErhbK7rkOXahYl3TNMNN+LQwQ1wnS42hrDXWgcw0w1bxSiTRXUACh0Giq+ugmZQobHYkdt0qMy6qacAfV5hIIhPDYHXpuTgNeHyqRHqdfEDYQ8difuUSseqxO/20vvwRM4hsYov3c95uIsAh4fzR/sY6A2usQ5aV4uyWX5nHor3MslY/E89OlJtG45QPBMwq9UIafw+qU4BsfoO3QSgNTKItIqizi96yi27iHkGhUZi0rJXrEAjdmEz+nm2B+iOwlLFXIW3Lee+j9tuWADvvl3XUfm4vl4bE6a3vksJoen+OaVZCyad1E5MbbeIQ7+vzdjKiPlaiVLH78bjVl8pswk0XxPEGbA1dgY7kI9jOb6EMkrhVyjwlyczWhLd8w1n8OFUqsKlyBnTW+DQ4lUgtqkR206/0Rq97iN1o/2R3JGlEYtRZuWk5CfjsqoQyqTMd7eFxPQQDiHJak0B02SCdeIhb7DpzCX5FB+73okEpCplAQ8PnoOHme06WzxwmB9KynleaRXF5O3ppqAz89AXSsBX3iwpUKrpvS2NRz+5VuRI6ak0pxIcGLrHiSxMDP+UE0JJOSFm0sOnzwdNym55f29JBRkoNCc/z33e7y0bTsUt9WD3+1lsLGd3DVVl2UIrnB+ovpJEC7ShRKyL7WE/nK4UA+jya9jz549IqCZAQqNipJbVsU97si9pnpadmUmC3h9OIbGaN16gIaXPqbvyCnc4/HnonlsDo798UMG6lojybteq5MTr+3A1j2EVCbD7/HStad+yufrr20hdcHZarzR5i4aXtzC2Ol+ZGoFco0S5+DZcnGpQk7BhiXY+8dofm8vDS99zInXd+IYHI16j/TpZpZ9727SqotRGrRokxMjZeq9h06Se81C5HF2WopvWonSoME1ZqXz07op192z/zg+T+wcrMn8Hh/WrvhN/gDG2nrOThgXZpXYqRGEi3Q1J2Sf28NoqtcxEfjs3r1bBDQzQJucwNLH76bv8ClGmrtQ6DTkrqlCn540rWXBXkd48GLjK9si+SqD9a0o9RoWPXY7qgQDXqsDa0+4C7DWbMTRPxr3sVo+3IcpLx2pQhZ3COaEgMeL9JykWalcRlJxNvbeYdIXlrD4O3fidbgI+gME/UG6dh9j+ET0HKmC9YsZ7+jHXJSFUqdBKpOhSzUz785rCbi9SOUyBupbGWnqwud00/z+HsrvXY+lsx9r1yBKvYacVZVok0wEvH7svSNT9uoB8NlduEYsKDKn3q2RKeTo0hIZb4s/pkGbkoDf7cHWM8TwiQ7kGiUp5QUojToUF5mzI0wPkVMjCHPc582huVpyha5mwUCAgMePVC6d1sZtXrsTS9cgMqWCY79/P25VUGJRFkWblnH4TBm0ITMZc3E2Hbtqp3zcFf/tATRmI52762j9cF/c++ReU4173M5gfXhQrDpBT/FNK+ne24BULqPya5uiXqvX7mTo+Gk6dtXisTowZCSTs7qK0eYu+o6comjTMrJXVyGL0zHYNWbj8C/fwms729zPlJeOPt1MzppqtGfyW3oPn8LWM4jH6ogJniaU3LIKx9A4RdcvRTFp3EjAH8BrdTB+ug+3xY4xKwWPzUnLB/uih4ZKwu/Pidd3YumIHiNRfOMKMpbMF31spsHFfn6L4ydBmMMu9shsOps3Xo2efPLJKV/rTHSLlspkKLSq6Q1oHG5aPjpA018+wzk0FjegARhr7cFjdUSu+1ye8x59SRVyJHIpEqmE1IrCuPdVaNWklOeTXJZHxYPXU/m1TeStXUTbxwcZP92HXKNEIo3+uFHqtZhLsslZXUX53etIKs2h5cO99B0Jj2k4vfNIVNAymSbRwKLHbie5PD/cZVkmxZibRs6qSvwuD23bDtG+/RBKvQbFmblRElnsx53SqEWXmkjy/LyoDsYBfwBLex/7fvoyJ17fSfvHhzj2+w/o+qyOBfetj+xISWRSqh++mcH61piABsK7XJ7zjFgQpp84fhKEOexijsw2b978pRwiOVm89wCig70rncdiZ6C2ieKbVsIFyosnd/t1j9lQJxqQKuSRSqXJMhfPQ3WmM68m0cDiv7qD058cZeBYC4RCpFQUUrB+MbbeYY6/sj3u82WvqIia0RT0+0EqxT1mo/fgCdxj1pheOgGvH5/DhVyjRKGO3enQJpkov2cdPqeHgNeH22Knffvh8LomSa8pJZDlo/rhm2nbehBr1wASqYSk+XlkLSvn5Juf4LE6qHn09kgytdfqoO6FD2MCQ8fgGP21zSz85s34XF70aYlIpFJO/eWzKd/rviNNlNy8csrrwvQSOzWCMIddzCwlMRbjwrtX0x3UzcTO0PCpDkpvW8N4Rz9q49SVThqzEa8jOjek89NjlN21NiYnJiE/g9zrapDK5VHfX3rralb8t/tZ8cQDzL/zGrRJJhLy00ksyuJcWSsWoE1JAMA9bqf30AnaPj6MtWsQj8VBSnk+ZXevo+TmVTHP77W7aHl/L65RS8zjQrg/j3vcRv2fPsJrccQENAD9R5vwu33INEpKbllFxYPXs+C+8AiFhhe34h63EwqGaHp3d+R9sfYMgSQc+KRUFEaNSBisb0Nl1GEuzgKJBOfwOAXrF1P1jRtJKY8dW+K1x99tEmaGyKkRBEE443LlFc1Eb6CegycIeH20vL+XvLU1uIYtDDacMyhTAlXfuJH2bYdjxiwYc9MoWLeIgC+Az+HCkJWC+kxPm4vlsTlxDo8zUNeCTC4nbWEJ6gQDSp0a16iVI7/5C9rkBDJqSjn51q6oiiFTbhq511TT8OePCQWDmPLSSSzM5PSOI2jMRmq+fSvqhOhGhG6rg8PPvkVqRSG2niHGT/fFXZe5OJv8DUsYa+2m/eNDU65/xRMPoE0yMdLSTdDrY/hUJwGPj8SiLKRyGc3v7sbv9rLiiQewdg2GX8OZ3S2JTErB+iV47U669zZEHrPya5viBjvC5yP61AiCIHxOl6sCbCZ6AyXkZ0S663Z8Usv8O69Bn5lM36GTeKwOjNmp5K2twTk4RsH6xYyc6qTnwPHI91s7B5BIpaQumHoS94WoDFpUBi2JBZlRt/u9Ptq2HcJjcTDvjmuo/9OWmKMdS+cAI81dJJflYesdpmDdIhpe3gaEGxeOtfeRURMd1PidbjwWOzKVImrw57l8LjfWzv7z9pGRSKVIpFJ8Tg9jLd10fnoscm2wvhVdmpmye9bRuuUAfpcn3Al5klAgSNvWAyx4YCMDx1rwOd1ok00YprnvkHB+IqgRBEE442JK36fLhZoino/f68Nrc2LvHSYUCmHITAnPYJo4VgqFOPnmLgxZKWSvrEChURHw+Rlp7qJ7d7jXTPGNK0itLGSwvg2N2UjJLaswZqfOyGv1O90M1reiTUnAMTB1EvNAbTM1j96OY3CM46/vxO/yYMxJJXPJfFT6cM8ZlUEbOQ6bOGew9Q5jLs7GMRC/LD0hPxPnsIXUyiKQEHcqempFAQqtGtfIeFRAM8ExMMpYaw8LHthI5ye1U77WviOnSFtYQigQIO/amgs2PRSmlwhqBEEQmJ1u0ZeyM+Rzeeg/2kTLB3vPJvxKoGD9EopuXMGJ13ZE7mvrGYocMxVsWBJVodO65QDL/uZeCjYuRa5UxAzDnC7BQIAQEhKLsgj6A+fdUQl4/XisjshryF9bg1yrpm3bIbxWJ1K5jIzF88i7diHqBAMKrQqlXsNoczdFG5fSd/hkTC+dzGVlpNeUMHKyE4/Vwbzb1sQk9qoT9OSsrkIql9J3pGnK9Q0cayF7xQJcI/FzfCCceD3vtjWoTOEuzMLlJRKFBUH40putbtHn7gxdzPM4h8dpfm9PVAUTIWjfdgiVXoPKFBucKHSa8CTw7rN5NKFgEMfgKLrkhM8V0LitDkaaujj59i7aPj6EY3A0blO+gNeHY2CU5vf2cvL1HWiTEyi5ZVXcZOIJ2mRTZC0J+RkojXoCbi+lN69i/leuw5SbTs/+4xx/bSduiwOVQcf8u64jFAzgcbpY8MBGkublgkQCEgklt6xCm5zAwZ+/TtvHBznx2g4sXYPUfPtWctZUkVZVRNndaym+cQXdB44T9Aeie9Cc+5p8ftwWB7q0xCnvY8hIxmt30fTubk7vPIpjaDxmMrswc0RQIwiXwfmqXb7//e/z/e9/P+61meiRIsSajQqwS+kNFPD56fxs6pb/HZ/VsfDbt5FQeCanRSIhaV4u5feuo/m9PTH3n+oYaCrucTvHnn+PY79/n94DJzi94zD7//NV+mubIhPDIbw7M9rSw/6fvUbP/kbG2nrp3lPP4V+8ieTMmuLJu7YGS9cACfkZ5K2tQalXM9LcRcPLH9P60X4MWcksuH8jls5+PFY7EqmExIJMlj5+N7buYez9I2jMRiru30DFAxvRp5lpeX9v1HFT/9Emap9/H2NWCimVRfjdHmQqBdpEI117GkhZMHVSr7kkm6HGdlIriuL2vZFIJaQvKuXoc+/Se+AEbVsPsP8/X2b4ZAcBnwhsLgdR/SQIl8H5ql2+/vWvA/DCCy+IKdlfEpda/eRzejj2+/exdg/GXINwu/78tYvQZyQhlUkJhUIM1rfR+VkdgXPnG0lgxQ8fQJtsuqg1B/wBWj/aR/eehrjXl33/XnSpCUikUlzjdvprm8KjCjw+BupaGGvrgRCoEw1UP3wz7dsPM9TQRigYRJ1oIP+6Gqw9Q4y391H5tU24x20c+8MHMfkviUVZmIuzkcplZC4tQ3amDNzv8eFzuXEOjtO+4zAasxGpTErf4VNTvlcL7t+AtXuIpr98Gtn5KrtrLV1767H3jUTdX6qQU/nVTTT8eSvGnFSylpbR8tF+3GPheVoqk46Sm1fSX9vCaEs3adXFJJWE/w49Vgcp5QVRpeHC5yM6CgvCFeR8fVBeeOEFXnjhhcvWI0X4/Ka7r8yl7gzJVHISCjKmfFxjVgpeuxPH4CgBr59QMIQxJzVuU728axdGlWv7XB48VseUxy8+h4vegyfjP29OKrb+YZzDFnxON+4xKyMnO2mc2GHJDO+wSOUy3GM2nENjyBQyKr92PUv++i4KNy6le38jvQdPEAqFQCqh+b29cRN6x1p70CabUOjUhAJnS8LlKgUBt5emdz4jsSCT9OpivPb4s5rCr8cNIWj6y2dRR3lN7+2hYMMScq9diNKgRaaUk1pRyOLv3MnpnUcIeH2MtfbQvv0wedcupOKrm6h48HqqH76Z0zuPYunsp/Krm/C7vTS+vI2GP2+lZ/9xbH3DUbtZwswQOzWCcBmdrw+KmL105ZqJvjKXyjlsoeWj/aRVFoVTR2RSxlp76KttZtG3b6Xv8Cn6jpwi4PWjMRvJX7cIXWoiHZ8ew947jNKgJXPxfPSZSRgykvG5PNj7RmjffgjnsAVdaiIFG5agTzNHTct2j9vY828vRq3FkJ1Cwfol2LoHcQyOoc9IIml+Hs3v7I7pGZNYmIW5NIfWD/dR8eD1kfJzuVpJ2T3rqH/hIyCc0JxclsfB/+/1Kd+D/HWLSF5QiOFMR18IB2WNL21ltKUHAH1mMqkVhbRtORD3MZLL8slcVkbd7z+IvSgJ97YpvXUNUoUMhUaFa8xK1+76KXd+ln3/Hg787DXK71lH+44jcZOJax69LabcXbg4ok+NIFyBzlftIqZkX7lmoq/MpZKpFRizkjn51icEPD6QSEien8eS79xJ35FTdO9rjNzXNWrlxOs7Kb19Dfp0M8asFHxON23bDpJUkkPJbWsYqGuhaVI1kNfmZKy1h/J715NaWRip4JEpFZjyM7CcCVa0ySbyr6uh8aWtkREHgw1tnN5xhPJ71uF3e7BPmvw91tZD9soFqBIMSBUysldW4HO6GT5xGteIBW1yAkggoSAD14gViVQSnQw9iTrBgEwujZonFfB4IwENgL13mIL1i1EatDEzpCQyKYUbljDa1kM8crUKXaqZUChI0A9+txeZUklaVTGWjgGcw+NR989fvxiZWokpP4NgIDhldVTz+3tZ+M2bUeouvqGh8PmI4ydBuIzOV+1yKZUwwuUzObDZs2fPrAQ0wUCA/qNNtG09GA5oAEIhhk+c5vhr26esYur45Cgqg5bWj/bT+ekxPBYHMpUSv8tDywfxp243vfMZXtvZ4xuFVk3JzSsjgUTO6iqa39sTM7Mp6A/Q9O5uclZXxTymtWeI+Xdeg2NwDFvvMADl965HnWik/P71lN62GteoDaVBS8ktq8I9Zc4hkUrRJJlwWxxEHzRIouZLATS/t4fqh24iaf6ZiijAkJVCxQMbsfWNYD5TiSWRSkkpLyDv2oXkra2h4oHrcQyMsv8/X2Hff7xE/YtbcA6NIdeqKLx+KfPuuIa0qiKylpez8Ju3kLFoHpoEA6W3rsLaEz/fCcKBVryjwKvZ5R4GeyEiqBGEy+R81S5f9inZV4vJu2lPPfXUZd9N89qcdOw8GvearWcYlUkf88EO4LE4kKuUUbelLyzBPW6b8kPW7/bGzIjSpSayePOdJBRkotRrcI/Hn0DttbsiR1cylRJ9RhLqRAPqBAPO4XHUJj05qypJnp+PTK1CrlJQ+9x71D73Hiff2MmRX7+NY3CMsrvWRj+wRELJravo+uwYUqkkqkOwQqcmbWFJ1N0VWhVjbT1oEgxUPLCRigevJ6W8gKZ393Di9R0EfH6yVlZQ9dCNKLQqRlu6cQyM4Xd70KUmRnJ6rF2D1P9pCwG3D4VWjSkvnbx1i8m7bhH6zCQ0ieFOx5rkBDTmqROv5WolSObWx+7EMNhz/62a+Ddt8+bNl3U9V9W7u2vXLm677TYyMzORSCS89dZbs70kQbgo5+uD8vWvf52vf/3rl71HivD5zfZumt/ji9sTZoJr1IrSoI25XSKVIFWezTbIvWYh6gR9zNgAhU6DMScNTZIx8n2TyRRyjFkplN62CrkmdnL2ZKFgiNLb1zD/zmtJmpdLzqpKTHlpaMxGTv3lMxr+vJXGlz8m5PdT98cPoxOUQ9Cz/zh+j4+KB68nY/E8CjcupfqhGxlr7WH4ZAeuM1VHk9eWv3YR6sSzoxRSK4roPXiS7n2NNPx5Kw1/3krb1gN4LOFgrPfgCbKXlVP/wkf0HjqJrXeY4ROnafjzVuQaFWlVRZHHSp6fRzAQ4PSOIxz51ds0/nlr+Chu0maRXCEnpSw/sit0ruyVFSj16vO+b59XKBjCY3Xgttjxu6fusTNTLvcw2Au5qnJqHA4H1dXVfOtb3+Kuu+6a7eUIwkU7X7VLVVVV5L/PvTZRCfPMM89ctrUK8c1Gx+FzyRRyJFIpoWD8/jIqgzZu9VLy/HxURj3ZqypJqy5GYzai0KoJeP3INSp0qYkU3bAcn8ONtXsQpV6DNtkUk/sR9Pvx2JyEgiGUOg0ypTzm+AlAKpeFk5NfO4qtZzhyuz4zmfl3XsuCe9cT8PmRKeR47a6owZaTdX5aS+HGpfhcXjKXZdN3+CRDje1AeFr4uTSJBhY9djvjp/vPzGtKxOdyT/l+eu0u+mub4j7/6R2Hqfz6DQzUhec+Jc3P49jv348EMX63l8ZXtpG1YgFFG5dGgjyVSUvFg9fT+NLHUX9PCYWZZC0rn9Yuwx6bg4H6Nro+q8PndJNYkEnhpmVok02RUvfL4YuM/JhuV231k0Qi4c033+TOO++86O8R1U+CIFyKK6X6ye/x0fSXT+mvbY65ptBpWPjILRx+9s2oD2ltSgIlN6+iY9dRKh64PqqMOxgI4hgah2CQhj9vxTVqjVyTKuQsfOQWjNmpSGVSvDYnXXvq6drbQNDnJ2leDokFWbR8GJuTk79+MXKVkpYP9kZuSzzzod70/h681nDirkyloPD6ZTiHx+mZlOA8WcUDGxlr68Xv9ZNYkMHJNz9BZdSxePOdKHQagl4/UoUs5kM8GAwS9AU4+dYuButa4j72vDuvpWd/Y0xPmgmlt63h9M4jFKxfTMeu2khPmnMt/+H96FISIl8HfH68NieWjn68DhcJ+RnhaeWfY+L5hXjtLk68voORpujdQolUyqLv3IFphuZ4nc+ePXsihQ6rVq2a1scWfWoAj8eD1WqN+iMIgvB5Xe6Ow26LncHGdk68sZP27YdxDI3j9/qQqxQUbFiCKS896v5Kg5bqh27E63JT8eD1VDx4PTWP3sbiv7qD8nvWM9jYhqWjP2ru0sSxhVQmwdLZjzEnFemkwCDo81P3hw/w2hwEfH46PqujY1dtJAdn5FQXXoeLhd+6hfx1i0kszkaXZmbendeSVJpD65b9ZxcokZB7zUIaX90eCWgAAh4fze/uJiEvPe6xmTYlgVAoXBE1frqPgM+POtFAzbdvI+D10/L+Xo6/tp3BhlbsA6NROUBSqTT8fq1bFDfPSGXSkViQMWVAc+ZdAsJJ0lMFNAD2vuGor2UKORqzkfSaUnLXVGPMTp3WgAbANW6LCWggPP6i+d3d+JxT71DNhNk+mp1wVR0/fV4/+clPePrpp2d7GYIgXOXOd/yXk5MzrceDrjErR3/7btSHaPv2Q5Tfs56U8nw0ZiOlt67GbbHjHrOh0KkhBKc/qSWtojA8c2l4nN4DJwh4fUjlMtIXllB+34bIWASP1cFoey8qnYah4+3YekfQJOpZcP8GhhraIjtBfrcX57AFTTBEz77oTsJJ8/NILMxk6Php3KNWTLlpJM/LpePTYyjUyqgRDImFmYw0d005lqFn/3Eyakrp2FUbdXvhxqW4xqy0bTlIwYbF6NPNVH/zZrx2J0efe5e8axdizE6h98AJ3JaD6NOTKNiwBF1KAjKlAggfUy3efCfN7+1lvL0XiUxKamURhRuWIFUp0KYk4Bwaj12URII60YjX5ozJLTqXVKE47/WZMNrcPeU1a9cgfrcXhXZ683emciUczU6Y00HNj370I5544onI11arVfT+EAThihAKhgiFQkgnzRDye7y0frg/dlcgBCde34Ex5360SSbUZiOucRv9tU04hywEfD7MJTnoM5Pp2lNH74ETkW8N+gP0HjqJ1+mm5JZVuK0Omt/bQ2pFIcf+8EEk0LB2DTBQ10rJravx2l2MtoQ/NH1ONwqtOupIy5SbRuqCAur++GGkl8xIUxednx5jwX3rCfoDqBP0keoodYI+fuBwhmNojMyl8yNfy9VK8tbWEAwE0CaZqPzaJlRGHV17G8hfW8Px13aQVllE0B/gxOs7I9/nsTgYaeqk6hs3kVSag0QiieT3lN+zlqA/iEQmRaFTIz8T9JTdtZYjv/lLTMBVeP1SZEo5i75zJ3KVAmNOKtau2HJtiUyK/jwDLs/HbbFj7x9h/HQ/2iQjiYVZFz3dW66eOpCSyKRTJitPtwsNg73cgc2cDmpUKhUq1fkz9AVBEKaL3+UhGAgiUyuRxTnyAPA63bhGLPQcOI7f7SWtqhhTbhpqkx6f08PQ8fa43xcKhhhr60Wh06BQK0ktL0CfZsbeP4JEImGsvQ+f0z1lx9vh46cp2rQc5/AI5uJsWj/cF3fnpPWj/ZTfuz4S1OjSzOEPWQmRJNnsVZWcemtXTHO8oM9Pywf7ImMGJpr6eSwOtCkJjDbHP5LQJpkw5aWz/Af3EfD7kcnlhIJB2nccYfh4O6FgCKlCTvbKCgiFuxun3rY60oU4+o2CU2/vYsnmr6Ay6nCNWenZd5yB+lakMikZS+aTvrAkEtToM5NZ9v176Npdj6VzALVJR961NWiSjIy29tDy/l4kUglld6+l8ZXt0YnYEii/Z13co7MLcY1aOfrbd6LK4iUyKQu/eTOm3PS4R2aTJZXkEJtZFZZaWRTewbsMLuZo9nIWOszpoEYQBOFy8DpcWLsH6dx1DK/Dhbkkm+zlFWjMhqiutz6nm46dR+nafXbS9vDx02iTE1j4yC2EgsEpu+gCeMZtWDr7SSrOQSKV4LE6aHhxa+R6Qm7aeSdve20OBmpbSK0qmrLHTNDnJ+QPIJXLSCzKQiqTodCpSSrNZeRUZ+T1TFVa7hq1IlPKsXYPMu+Oa+j45ChjbT3krK6i58DxuOvLvaYahUaFPFEVeT8bX/qYsbbeqHV17qqFUIj0mnl4z1RhxX2fLA58TjfBQJDDv3w7qqNw25YDDBxrpvrhW1CbdMjkMnQpiZTeugq/24dUIUOuUjLc1MmJ13aE39f8DMba+6j86ibGO/qw9QyjMRvJXDIfVYL+oiuNAv4AXqsDt8XB6Z2HY/4OQoEgdX/8iOU/uBd1wtnS9GAgiNfuJBQIIpXLUBl1KA1aSm9bTdM7u6MeQ52gp3Dj0kjQNtMu59Hsxbiqghq73U5Ly9ks9vb2dmprazGbzeTmxh9lLwiCMFOCgQAeq4OOXbVRRz7OoXH6Dp1k8XfuRJ+eFLndPWaLCmgi9x8ep3tfA7lrqtGlJuIYHIv7fIasFJre2c2iR29DbdJzbstdyQV+u5erVeGjiQsUvYYIkbO6CkNWCoeefYulf/0V5t2+hvoXt+AYGLvw9wdDdO9twJiTyrw7rkWpVxMKhah4YCMn39oVHiZJuMIqf+0idKlm5Oqzu+peu4uxtl4SCjLIXFKGVC5DIpNi6x2m79BJ5t1xTVTSczxShZyeA8fx2p0k5GegNGhxjVqw9QzjGBhjvL2X9EnN+qRyOUq9PPL8rR/ux5CdQuGGJYy392EfGCXg9ZFWVUzSvDyMmcnnff5zBf0BnEPjtHywh+wVFYy1xh/REPD6cAyOR4Iaj81J76ETdO2ux+/yoDLpKbx+KcnzcklfWEJCfiZ9R07hsdpJKS/AlJd+5mfjy+mqCmoOHTrEunXrIl9P5Ms8/PDDPP/887O0KkEQvowCXh+jbT1IJJKogObsdT9N7+2h8qubUJzpYdJ3tGnKx+s9dJLslRWU3raGo8+9EzOhOrEoC+ewBfeoNbxLYgr/Vi5VyCMVSfa+EUy5aVg6B2IeX5NkRK5WkrWsLNKk79yZSBDuMWPISMbS0R8eOhkK0XvoJAUbFlP98E34nF6Cfj8SmTTurotCq0aTZKTigY1IZFL6a5sZqGum6hs3MtzUycJv3oLbYicUDKLUa1HoNdj7Rhht6cKQmYJCr8E1aiVndRUqo5bm9/ZEKnlMuWnM/8p1KLRqQsFg1GufTJuScKa6y071Qzcx1taLe8xG8vx8CtYvoW3rAfqOnCKlPD+SUDxZ0B8g6PNTeP1SGv68NaoXT++B45Tdux59auIFj4gmuMZtjLX2MNbSgz4jOXxcdZ64cOL1+lweWj7cx8CkEn6Pxc6J13ZQcssqspaXo083U3LzSkKhUEwzxS+jqyqoWbt2LVdpWx1BEK5SHpsDv8uLRCpFrlWhPFNR4hqz0b7tMEmlUydBjrf14nd5IkGNf2JeUxwTH87G7BRqvnUbbVsPYOkaRKlTk7F4Pvp0M8fPHIdMJJIqDVrm33ktx1/dDkDXnnoW3L+B5nf3RA1dVJl0lN62BolUijYlgZHmboo2LePEG5/E7LoUbFhC65b9DJ/oiNw20txFzpoqAr4AdX/8EENmMrnXVMcd2VCwYQlN7+zG0tEfdbu1a5D0qhJO7zxCYlEWapOOgMdL7e/eiwpMUquKKdy4FKlUSt2fPooKnCydA5x4YyeLHr0NmTKB0ltWcfLtXVEBglQhp2jTMuwDIyTPy6P3yCnSKosxZqeGd3v6Ryi6YQUDDS1TJtNKpBLyrl1Iywf7YpoLhoIhTr21i4TctKgjoqk4h8c5/Ku/4JtUbq5PM08ZVALoM8K7e167Kyqgmazt40Mkl+ejObMGEdCEXVVBjSAIwuUS8PqwdA5w6u1PI03pTHlpzL/zOtSJBrr3NMCFfjs+51J6dTH9R+In8ibPz0OhUSFTKlCbjZhLcsheWYnf42XgWDMdn4QDCHNxdiQJVCaXkVyWx9LH76J733EcQ6O4Rm1Ufm0T7nE79r7wPChCITo+qWXB/RtQ6jRk1JTiGrex8JFb6NnfiGNgFLXZSObi+Yy390YFNBCeoSQB2rYexDViwTViIX9tDWV3raXnwHFco1Z06Wayly9gpKkTx8Ao2SsrMOWlEwoGGTnZgVShYLCxnaEzfxZ+61bq/vBBpKpKqddQcssqfE4Pp7cfQq5RUfnVTQwdb49KfvbanNgHRjFmpxLw+1ny3bvo2X8c95gNfboZc0kO7dsPk79uEe4xK2qTnuOvbo8ETqa8dBJy08hdVRWTC+P3+vCM2xlr60Wfbp5y2nbA48M9br9gUONzus8ct0XP0Oo5eIK862pofnd3zPekLChAdSbx2DUa//nDa/Did3kh4bxL+NIRQY0gCEIcjqFxap9/L2oXwNIxwOFfvc2S796FfXAUx8AYhdcvnfIxzMU5kV0aAF1aIqbcVCyd0aXBMqWCgo1LIkchKoOGhPx0ap9/P2qnQp2gp/SOa6IeM+DxEQpByoJ8so0LcI1aaXp3NxqzkdSqIvoOn2KgtpmKr26KfFjKlHJaP9yHISMZc3E25tIctGYTDX/eGrdpW941C/F7fAzWt0ZuO73zKOoEPek1pSgNWnTJCQw0tmHvH2HB/Rvp3tdAz/5GJDIZqRWFpJSdGTNA+CjMPWaLBDRSuYyyu9fR9M5nUV2Nu/c2ULhpGekLS6K6KFs6BkgqycE5bCHoD+J3e9Amm3AMjtG1tx6pTBbuguxw0/VZdA6TpaOfk2/uouqhm6JuD/h8jJw4TeOr2yEEi79z55R/r8CUox0m8zk9jLf3xdxu7RzAmJXCggc20v7xQZzDFuQaFTmrKslcOj/SX2ZynlE8F3v89WUighpBEIRz+N0e2rYeiJv34Hd5GG3uJKUsH2vnAKMtPWStWBDT5l+uVlJy88qowY8qg46KBzfRf6yFnn0N+D0+kufnkb+2JmqWkVQmw5SXzoof3s9oaw+uEQsJ+RnhadeTkkAdg2Mc+8MHUX1tEouyyF6xgIaXPqb30Enmf+Va0qqLMGWf7UKsMuoo2LCE+hc+ou/MzlHRpmUkl+XFlIRnr6pAadDic7hicmjc43ZO7zgCQOGmZWQvX4C3vID6P30UObYJBf30H21i/HQfJbesov5PW5BrVHisZyt/UiuL6D96KiqgmdC25QBVD91E/7GWyFGZ9kxzvdxrqhmobcbSOUDWsnLMJdlkLi3DY3Mi16jo3tsQ83gQrtDyWOxRow28NhfHX9sZ/js/099GoVXHDfIkUikqky7qtonRCLa+YfxuH8bslPMmVHfvbUCfkUTOmioUGjXqRAO6NHNUKwB1gn7KNRhz0y5b2fbVRAQ1giAI5/B7fFi7h6a8PtrSTcktq2nbepDuPfUUbFhC+b3rGahrwedwYy7OJmPxvKiJ0RNURh25q6tIX1hCKBhCoVUii9ORViqToTEbyYozuBHCjdtqn38/MnF6wlhrT/iIafG8cOmvXkPA48cxOIo60YDKqCMUDGLITGbJX9/F6R1HGD5xmo5dtcy/ex3ZKysZbelGIgkHSMMnOzjwX69SfNMKdGlmHAOjcdejTTIxdOI0rmFL3CGX7jEbPqcHY24azqFxjFlnZxMlzcuN5AXFY+0aQJ+RhL13GKlchrkoCwBNgoHk8gL0GUmc3n6E9m2HANClJmLKTYs73HOCY3AMc3H2pOcYjAyglCnkeKwOCjYuifTamSxndWVUOXnA62OkqYvGV7ZFBX5VD90Y1YTwXEq9hvoXPjrzc6Bm6ffuRmrQ4j1THabUa6h6+CZqf/suAe/ZfCyVSRfuj3OZOgZfTURQIwiCcA6pTDblxGsIt95X6jVUP3wTja9sp33bIRQ6NWlVxeRdV4M+3YxcpZzy8SVSSeQo6FK5x+3hgEYiIaOmlOSyvHAfE4UcS9cAadXFtLy3l/aPD0W+R6nXUPWNG7F0DdKzvxGZUk72igqKb16JVC4jFAhi6xtGrlGhTTLiHrfTfyRcsTV0ooOC9YtpeGlrzA5WQn4GHosDhVpJT8vU7fuHjrdT+eD12PtHURo0kfJ1iURy3v46Aa8PmVyGXK2k8us3ojKe3SWRyqQ0vryNwKQkbMfgWKRfTrwAC0CbbIr62u8523cn4As/lq17iIoHr6d735m8o0QDWcvK8Fid+F0e3OM21AkG3BYHDS99HLMz07b1IEU3rqDxpY9jnj+tqojx9r5IcORzusNTw48203fkFBIJpNfMI31hCct+cC/WzgGcwxYMWSno081f6rLt8xFBjSAIwjmUeg1519XE3z2QQMbi+cgUchILs1j6+F3ho5kQKHUalAZt1OiDSxEMBPDaXPg9XmQKOUq9Jqb0eCKgKbvrOiydAzS89HEkMDAXZ5M8Lw9rd3Tujtfuovb595l3xzWRsQUnXt9J2sJicldXc/S5d6MCOaVew4IHNhL0B3CNWAj4/Cx85Fbath7A2jWIXKMiY9E8TLlpHH91OwUblyJXKfBOMftRrlGh0GtIKs3B7/FS9Y0b6Tl4AsfQOIbsFGxT7I4lleZizE5DKpcilUsjVbChYJCBYy1RAc2EwfpWMhbPj3sEpdCq0aVGjzYw5aad/SIUDowcQ+MMn+okY1EpaVVFeG1OTu88iiknDY/VwXh7L4seu4OBSUdjk9n7RrB09FPz6G20bjmArWcIlVFH5pIyFDo1p97+9Jy/H2f42POMidLzmm/fSlpVcfw3VYgighpBEIQ4zMVZZC0vp2f/8chtEpmUsrvWRo6VJFIJapN+Wn9r9jrCZbzt2w/jd3uRSCWkVhRRdOPyqOfRJJlIqyzC2jVI78HoPjmjLd34XG7y1y+m5f29Udf8Lg8Bjw+FThOpyknMz6T+Tx/F7Ex57S6a3tlNxuJ5kcdRmXTkra2h/N714Q/5HUfo2lMHIRhqaCN9YSltHx+MeV2JhVnkXbsQe+8woWAIt8XOUGM7iYWZmIuzSCzI4Ohv34npEpxQkIFzxELrh/sJeH1IpFKWff9udKlmAj7/lE3sho6fpuLB6/HanAw2tEVuV5l0VD90U7gqbBKlQUdqVRGDdeFk6NM7j7Lg/g107a6j89Nj4TtJJKRVF5NaUcjx17YTcPtwjVrPW6XUc+A4udcupOobN+J3uhlt7aHv8ClsPdEBnC41Eedw7OO4RiwMnzhN1vIFomz7IoigRhAEIQ6lXkvh9cvIXlmJrWcQqUKBISMJpUEbUwrssTlxj1kZPtWFXK0geX4eKoMOuXrqI6h4goEAA7XNNE8KRELBEAN1LbjGrFQ9dCNKrQYAtVFH2sISGl7cEvexbD3D5K9dFLdJnsfqQKFVRYIahV4zZd6HY2A0KonZY3HQ9PZn5FxTjSEjKTIjCsDaPUj2qgoSCjKiqn6yV1agTU7gyK/ejoxX0CSZKL5pBae3H6Zrdx0LH7mVJd/9Cq0fHWCsvReFVk1GTSn6zGROvLYjUm0UCgbp3F3PvNtW4/f6UBmnOMYLhejaU0fF/Rsp2LgE95gNmUqJUqtGrlXFBAhKnZqSm1eRmJ9Jx6e1eO0uuvc3Mu/2NThHLISCIdQmPV6HC+fgOGV3XofP7WX4VAfm0pzwbk0cEwnDw8fbGTrZQdqCQux9I1H3kamUFN+8klNv7Yr7GH1HmkirKr7kqdtPPvkkmzdvjjtYsqur67LPZ5pJIqgRBEGYgkKjQqFRRVXJnMtjdXD8te2MtZ6dU9T64X5KbllFek1ppPzaa3cR8PmRSCUo9Zq4k5i9Nhft2w/H3J5clkfm0nIG6lrxOz0kFmaiSTKhNGjPW1rssTqRq1UxfVK0ySY81jON3ySSuF15JwvFeY6efY0s/qs7UOo1eO1nH//kG59QdOMKctdUM9LchdqoQ5+RxLHffxD1/a4RC8df2c6CBzZS94cP6DtyirzrFrLggY34XR4sXQP0HjxBx67amOe2dQ/i8/jo2l1PamURA3WtMfcByLt2ITKVgvGOAVo/2ofH4iAUDIandt+7Hn16EhLp2eBGZdCStbyc5PJ8QsEgMqWCoM9P65aDFN+4nMZXtkVNG9ckmSi/Zx0qozZ+Mz0JFN2wgp6Dx+nYEe4zFAoEqfrGDYy29uAes5GQn0HSvFzat8fOgoo8zBecur158+a4E7MnT9ieK77Ywa8gCMKXWCgYov9Yc1RAM6H5vT14LHb8Hi+jrT3U/u5d9v77i+z/z1dp334Yj9UR8z1+j5eA14/KpIuUgieX5ZNUmkv9Cx/S/M5u2rcd4siv/0L9Cx+iUCuQyqf+Zzxc+RQ9eFKXmkjA4zt7eyiETKWY8kNzYu7SuYI+P16bg7K710Ul3YaCQex9w4SAgvVLyFxaRtukZOXJAl4f1u5BjNmp9B9twj1uDweSeg1Dje1xe7wAqM1Ggl4/PfsaGW3poXDj0qjgBCBnVSXG7DTsfSM0vrQV95gtUt3kGBzjyG/+gns8fvKPyqBFbdKj0KhQ6rWU3LyCto8PRgU0EA7MTv3lU6QKBYsevQ1zcVbkmsZspPrhm1EatHTsrI3cPtrUxbE/fIitZxiZSkFqZSHaJBNJJVN3ps5eviCqN9HnNTEx+9FHH6WrKzwpfXJAE28H52oldmoEQRAukdfuDHcWnkLfkVOkVRVT+9y7kdsCHi8dO49i6Ryg4v6NKPWayDWpQk7l1zbhHLFEugsrtCqOPvdeTCKqtXuI7n2NFF6/jJYP9sU8t8ZsRKFVhwMSfwAkYC7JIXdNdUw1jtfuImtZGYP1bWQuLcOQlQKAc3AMpBKGT3VF7ptYmEX6olLkaiVyrZq+w6fIXlmByqRHKpMikckYbGiFYJCgP7wDNNWATiBSVeS1OyM7RnKlgtxrFjLU2B73e/KurQHCgVXP/kZSK4uo/PqNuIYtBM/sxPjdXqRyKa1bDyBTKTFmpRAKBbF2DRL0Bwh4fAwdP03umip8Lg+hYBC5WhWT5C2RSlDqNFMmMdv7RvDanejTzCx44Hp8TnfksVQGbfh47twk4lCI8fZeaA8HXyqDjsTCTEx5aVg6oud2mfLSSSzMnPL9u1iTA5unnnqKp59+es4FNCCCGkEQhEsWCoXOOy3aY3VOOcRyvK0X97gtEtR4bA5aP9jL0PHTkfuY8tJJKc+fsolb78ETLP3ePYy29DDafDbw0CabWHD/BgJeP1XfuBG5Sonf42WsrZegz0f2qgpGm7qQKuSkVRaFB0lq1aRVl9C25UBkJIMhO4WSm1ai1GvpO3SC4ptXEvD4aHl/Lz6nG6lCTsaiUhRaNQ1/3krJzSsZPtFBxuJ5DNS3YchKifTbmaq/jcZsxNo1SHJZPj7X2V0lXUoC8++8lqZ3d0eO2CQyKaW3rkabkgDBIMacVKxdgwzWtzJY34o6QQ8SCe5xOzXfuhW/x0dqRSHZKyoYb+9FIpWSs6Yav9PNeEc/huwUBupb6dpTT8DjI2VBARmL5qE5p7/Q5B4x8UxUX00cV04mU57/Y3biGFJl1FHxwPVYuwfDyekSCVnLyjBmp0aVsH8ROTk5PPXUU6xevZrdu3fPuYAGRFAjCIJwyeQqBYkFmYw0dca9nlKeT9vW2EqgCZbOAYzZqQQDAXoPnIgKaCA8pHCqPAsITwKXSCQU3bCMgvWLcVvsSOUyPFYHdX/8CL/HS+ltazDlptHw0seRWUaG7BQSctMJBoK07zjC/DuvRSqTUfeHDyKJvBDu01L7u/dYvPlOUquL8dqcZyuBmNgpOY7H6iR/3SJMuekE/UHaPj5IakVRJHeoYMNiGl7cGrN+iUxKYmEmA3Wt5F67EIX2bEAgVysxl+ZQ/c2bIx2TFVo1HoeLoM+PyqCl5JZVHPnV25GKqYn3Sp+ZHA5wgkFGTnVFAr70mlIkZ95375mSbENmMgG3N1zCPTBKz/7jLNl8ZyQ52mNzhnvdSCTxg0sJkQRen8uDz+HCMTSOXK1Ek2hAlaBHrlHF7XmkTzdHdQVWGXWklBeEmwJKiNuU8Yvo6uri6aefZvfu3XN2p0bk1AiCIFwiuVpF4Q3L4uacaMxGDFkp5w1KJj4MvXYXXXvqY647BscwZqfG3D5Bn5GETKkgFAjiGBrj5Bs7qf/TFpr+8hkeq4OAx8fJNz4h6A9EtfW3dQ/Rtaeenv2NeO1OpAoZo63dUQHNhKA/QPfeBgrWLab7nFEQE4ZPnCZ5Xh4tH+xFplJQeutqkkqycY+Hc4oS8jMp2LAEifTs+yTXqCi/dz3ucTvzbl/DUENrpCGh58zQSufgGOPtfZzeeYTm9/cy1taDSq/B3jeC/cyx1cJv3RrpMSNTKchaXk7hhiW0bj3AWGtvJKBJLs9Hn55E3R8/pPfgCUaaumj/+BDHX91B0Y0rUOjCO2Y+h4uOXbUEzhyFucesDJ04TVplUdzXnlZZhFKvxmt30vLBPvb935epf+Ejjv7mHQ787DVcI1YWPnJLzJwmhVZN+X3hAaPnkikVMxLQTOTQrFq1KibHZq4QOzWCIAhfgDY5gcXfuZPm9/dgOd2PRCYlfWEp+esWodCqSa0sjFvuK5FJIx/GoUAwbkDhc7oJ+gPo083Y+885vpFA8U0rQQIBf4DOXbVxu+eGgkGGGtspvmE5h37xZuz1QBClQYu1azDm2oTx9j6ylpWft0rKNWYlf8MSTry6PRLISaQSspYvIH/tInLWhEdDuMZsSCQgkctw9I8xeLwdfaqZwuuXIVXIGWvv5dRbuyI9W4zZqZTcshqJBHoPnaTujx9GOhobc1IpunE5SfNyyVldRdAfYLChjfo/fUT+usXh/jlnZC6eT/2fYsvf/S4PHTuPUHLzKk68sYNQIMhAXQv56xYhM+nDfYAOnKD8nnXIlHL6a5sJ+gPhv+fqkvD9lEr6jjbQd/hk9GO7vRx7/n2W/c29LP/BfYw0dWEfGCEhLx1TXkbMMddMiZcUPDnHZi7t2IigRhAE4QuQyWUYs1Ko/NoNBDw+JBIJCp060sum6Ppl2HqGohqrSaQSKh68HuWZnQmpPJx3Em+gY+uW/Sz+zp107DzKQF0LQX8AXZqZ/OtqGKhrQWWowjNuP++OkGNwjJzVleSvX8zpHYcjQYFEKqHk5lXI1cqohOVzKfQapIrzf1wotGoaXtwaVT4eCobo3tuAOkFPzqpK5GYjGrORUDCEx+ZAqVVjLs1Gqdcik8uw9Y1Q+9y7UQ34rN2DHH9lG1UP3RSTOGztGqTpL7vJXFpGw5+jj7dkSnkkUFSZdLgmVT+dy9I5QOH1S6n86iYaX4nuIq0y6QkFgxx/bTuplcWU37v+zJsnYeRUB0gkeOxOOj6pjfvYQX+A0ZZuspcvIHvFgvO+hzPl2WefjRu4TAQ2ok+NIAiCEEWpVUOc5mhKo5aqh2/COTjOWHsvapOepNIcVCZ9JPBRGXUU3bA85oMZILWiiM7d9QT9fsruXotEIsE1bqft44O4Rq2ojDrUCXp06eYpK3QSi7KQq5TkrqkivboEW98QEqkUfUYSSr0WuVJBzqrKKauNMhbNwzE0RkJ+BuOnY8usVUYdUpksph/OhI5PakmtLIp0RJ7oxDyZ3+OlffuhmI7CEN7xGDnZEff5HQOjqE26mCaDtp4hEouz6Tt0MnzsdZ6J2QA+p4fTnxyl+Mbl2PtHUJ7JdTFkpSBVyAn6/Awca2bgWHPkezKXlqHUhzszx/SomeTcUvDL7XwBS05OzpwJaEDk1AiCIEybYCBIcNIHa8DnZ6ylh0M/f4OTb+3C3jtM/7FmRpq6CPqiG9olFmZSdvfaqMRRc3E2OasqGWvuYqCulcaXt9Hw0se0frgvsqszdqaJW+6qqrhrkmtUkWnUcpUSbbKJtMpiUhcUojWbkJ+ZKaVLTaRw0zI4p11NxuJ5yFQKAl4/eWtr0CRFTw1XaNWU3b2Wsfb44wogfIwW8k89sBLCFUTnOwKz9Q6Hq57i8NpdMQNEh5u6yF1dhUypwOf0kJCfPuVja5NN4Tye3vAwz9xrq5HKJwJOLdUP3xRTxWTKTQ0fPSnkSOSyKdcG4So24fIQOzWCIAhfkMfmxN4/Su/B8JyozCXz0Wck4Xd5qXvhw/Dug9sb+W3e1j2ELjUxEmxAODhIX1hKYlHWmR4rsnAicSiEXKuC+BXR4YogqwOv3UXpbWto334In8MNhBOJy+9ZF64EugCFVk328gWkLihgtLUXn8OFITOZsbZe5Col9a9+iEKrpmjTciQyKc4RC2qTHo3ZyEhLF5qEqfNDlAYtEnlsB+XJpHIZKmOcrryTHsPndMe9pk7Qn52yLZEgU8qpfugm1IkGlnz3K4y2dGPpHiJj0Tz6jpyK/maJhIL1SyKdnF0jlqikYKlMhik3jWV/cx/2/hE8VgfGrBRUJn0ksVml11J0w3LqX/godt16DaactJjbhZkhghpBEIQvwGNzcvKNnYw0na0iGWpsJ7Eok/y1i+MepwC0bz+EITM5ap5P5FjGFH3fvGuqafjzx8STvbKCE69tx2N1YspNo+SmlUgVciRSCdrURHTJCRf9WuRqJcFAEG2yie7mLhyDY8jVSmw9Q4SCIbx2Fyfe2IlcrURl1OF1uAn6/My74xqkMmnUkMzJ8tctnnpG0xkKrZr86xZRP8Usq/SaUur+8EHM7bo0MzKlgsXfuSO8U+bzo9RpURo0yBRydKmJyJQKjvzmL+SsqqT8nnV0fnYMj82JMSuFrOUL6D10AufwOEDc4aRSmQxNouG8ib0J+enMv2stLR/sjZRvG3NSWXD/BhRaFQGfb9ormoRYIqgRBEH4Aiyd/VEBzYSx1l5SygvQpiTEzalwjVjPO7dpsoT8DNIWljBQ2xx1e+411ejTzFR8dRMnXt+JpXMAS+cAGrOR+XddF/cDOuj3EwqBTCEnFAoHKhNzjgI+PwGvL7y7kJeOtXsQXWpizEgHv9sbVa2lz0giFAxR861baHx5W6SDsFQuI/eaalIrCqIGSIZCITxWB65RK167C22yCZVRhyk/nZzVlXTtPlveLpFKmXfHNWiTTSSX5Ye7FU9UP2WnUnj9UoKBIC0f7MPaPRh5v/LW1oSPpCQSlDo1yWV5NL+3h5w1VeStXYTP6cY5OMbxV7dHXotEJr3koyK/O/y+VTywEYlUgkKnQaZQYO0aoPfQSaQyKVnLF2DISons8AjTTxIKXSB7ag6xWq2YTCYsFgtGo/HC3yAIgnAefreHuhc+mnJGkTEnlcSCzLhDGROLsqh88PrIjKcL8TrceCx2hk91IJVKSZqfh8qoRaEJ7/R4bE78Lg+hUAiFVh3zwemxObD1DtNz4ASEQmQsnofKqOPEG58Q8vspvnkVMoUcuVpJ3R8/jAypVOjUFN+0khOv7Yi7Ln26mYWP3BqpnvLanZEdHIVWHTPVPBQKYe8fofZ370ft6iQUZLLgvvXIFHI8dhe2niGkchmGzGSUeg0ypQK/24NjyIJn3IZUIcfeP4pcraDvyClsPcMApFYWYS7KouXDfZFgRaZSUHr7GsZaehioa6Hyq5to33YIW+9w5PklMilVX7+RhMJMZBc4KjuXY3CMI7/+S9TxWMXXNtH+8aGYTspJpTnMv2utCGw+p4v9/BY7NYIgCJcoFCQm4XeyoM+PVBH/A7Jw49KLDmg8NifO4XFGm7vRpSRgyk9HoVVHJceqDNopPyg9NgfHX9vBWMvZZN6RU50Yc1IpWL8YuVrJqbc/JbWiEFvPcNTUbZ/DDcEQutTEuDOcim9eFVUOHgwEcQ6NMXCsFblGSebScjRJxnB1GOGp5rXPvReTHzPe3kvr1oOU3rYaXUoCupQEvHYXHqsDW98IKmN4yKRULqVh0uyqqm/cGAlopAo56QtLqHvhbC8bCCchn3h1BzXfvo3hk6dpfGUbRTcsJ1ejxjkyjjrBQEJeOkqj7nMHNF6Hi+Ov7Yh6PabcNOy9w3FHQ4w0dWHrHUI1L+9zPY9wcURQIwiCcInkGiVpC4sjxx7nSq0qJrk8n74jTVGt/ktvW4MuLfGinsNjddDw5y1YOqOfo/S21aQvLEGuVuFzuvE63IQCQeQaJUGfH/e4HY/FgS7djGvEEhXQTLB2DeJzuBk6fhr3mA1TblrUGIQJzR/spfze9QzWtzJQ10IoEESbkkDJTSsxnhl+CeC22Kn93XtRx219h0+Re001edcuRKFV4xwanzLhd+BYMwXrFiE3K3CP22l4aWtURZQ60UDVQzeSUlHEUEMrUoU8avZWSnkB/bXNUQHNZN37Glj6vXtwDIwikUjRpppILs9DJr/0j0Kf042tJ7qUPmleHv218Wd+hdfRSGJhpsixmQEiqBEEQbhEEomElLJ8unbXR4KWCSqTDkN6EiF/kMXfuROfw0UoeOZoyKiNGhkwlWAgSM/BEzEBDUDTO7sxF2fjsTk58fpOfE4P825bTdeeOkZOdSKRyUitLESblkjPgeNTPkffkZOYS8JN2aZKava7PDS8uIXy+zaQsqCAkD+A2+qgbdshKr+6CblaScAfoHtPQ9z8oc5Pj5FWVRyu1LI4Yp/gjFAgSNAfwO/20PTOZzEl3u4xG/V//IiFj9yCJlFPz/7jUQMk1SYdo63dUz6+c2gcmUJO8jTukkzujTNBIpVM2egv8j1fmsSPy0sENYIgCF+AOsHAwkduoXtvA0ON7YQIkVJWQPL8XE6+tQupTMaiv7oDfXrS535sn8NFzxTzliDcMK7uhQ/xu7xUP3Qjja9sj9oF6fqsDoVWHdU751xBfxDpmQDLa3eiSTLiGontbBz0B5DKpNS/uCXqg9w1ZkWdoMfndNN76ETc50ivKSXoDzB8qhO1+Tz5EBoVMqUcr8PN8KmOuPdxjVrxOd0UbFxK9ooKQsEgprx0LB39uMftaJMTIsdR59KmJHApaaQem4NQIIhEKo2ZmC1Xq2Kqvsbaekmelxd3nheES/5lSrFLMxNE8z1BEIQvKOD14Rq1knvtQvKvq8FjsXPsDx/isZyt8LkUoVAIvzt2ujOEP6BtvUP4HG6Sy/IYbGyPe6wz1NhGakXhlM+RWlnEWEc40bl7XyMF65fENOADSKkoxNI1ELMz4T3Toyfo9WGelxvzffnrF6PUazjy67ep+8MHOAZG0Wcmx11LwbpFKA06Al7feXcyPFYnXpsDuVaFxmxkwX0bMBdnMXS8nbTqkvBE7XNJwp2RA57YGVtT8Trc9B9r5vAv32bPv73I4V++Rd/hU3gnBTAqo47SW1dFfd9oSxeJxdlRQ0Qn6DPMohnfDBJBjSAIwhcU9AcZOdVJ87u7aXpnN8MnO6La8gcDF1e6fS6ZUkFCQWbca9okE9YzOxKmvHRGmjrj3s/WM4w+3YwmyRRzTZ2gx1yUiT4tvIvkHBpn6MRpKr+6iYSCDKQKORqzkZIzU7fjzTeSKRUc/PnrHPjZa6gMWkpvWx25pjLp0SQa6Pz0GKFgCIlUimvMSvk960gpz48EH3K1kqIbV5C2sASpTIpcpYyZaj2ZRCph309foW3LATw2J+oEPQvu38jS792DUqeh8qvXR3VmVmjVzL/z2jMjDuIEPHEEfH76Dp/g+CvbI0eL7nE7J97YSffehnDgdWYt5pIcqr95czhYk0hQJxhwj9uo+vqN5KyuRJNkDOcg3bKKqm/cFLfUXpge4vhJEAThC1Lq1DGzhyZI5bJI5c/npdCoKL5xBYd+8WZMjoZUKUd3pjV/KBCMtPWPp+9oMxUPbGSwsY3BulZCoRDpC0tIX1iKz+UhY9E8kufl0rbtEEMNbdh6Bim6YTnFNxoJeP34vV7q/xjbLddcmoOtd5hQMEgoGD7uyrt2IUnzchk51Ul6dTG9B8NHUhKphPJ71zF8ooNDz75FxqJSKr96PRKZFG2SCXWiAaksHMgoDVqyVlTQ9Vls0nJCQQb2/lFC/gB9R05hykkjoSgTuUqJLiUB54iFpndqKbl5VXgIZyhEMBCgZ18jkokuzRfBa3PSvu1w3Gsdu2rJWDQPjTl8hKTQqEgqyUGbnIDX5sQxMEpfbTPjp/sp2rSU3DXVkd41kni7SMK0EUGNIAjCF6TUa8i7diGndxyJuZZ3bU1kGvel0KYksOTxu7B2D6FQKyOJtMnz8wkGArR9fJDhkx2kVRXFfX6ApOJs/G4PrlEb1d+8GZlSQSgEvQePM1jXgnPYgsZspOjGFSi0arw2B4ONp9GlJJBeXYzt1DDFN62ka3cdHqsDmVJB+qJSEvIzOP5q9FTr7v3Hqfzq9Vg6B1AnGnCfGQCZXlPKaHM3A3UtAPTsa4zkC+kzk6h+6OZISbpMISf3miqkUgldexsI+vxIpBKSy/JJryml8eVtpNeUkrKggP4jTXR8Wos+I4ncNdWojFrSa0pi1iXXqFj8V3dEJRafj8/pnrI5YigQDOcfnZMfpEk0oDaFB4yaS3OQq1XIVSJ35nISQY0gCMIXJFMqyF5ZgTrRQPu2w3gsdtQJego2LCFpXm5U87nPKxQKEXB76T3QiK1nGLlaSdbKCiRSCSq9nuqHbqL+T1vIWVWJITM5qqEcQMqCQnSpiXTuPkbhhsVok0w4RyyMtfXid3nIWrYAtdlA+7ZDNLy4haqHb0Jl0lO4IZwLo9CoSVXIsfePUHrrauQaJVKFgo5PjtL48raY6dcBjxeFTkPZ3dchkcrQpyfhsThInp8X1V9mMnvvCF6bM6rPjkqvpWDDYjKXleOx2PE53Yw2d9P40seY8tIxZKVEzVqy940wUNtM5ddvJK26BFNuOt37G/GM2zGX5JCyoOCiZmBNON/xV/h6/L/TeMnEwuUjghpBEIRpoNRpyFw8n6SSHIKBIFLZpX24+b0+fHYXAa8fuUaJa9jC0d+9G0mc9bu9dOw4guV0Hwse2EhCfgbLfnAvrlEb879yHa4xG/1Hm5DKZWQuLQsnq4ag5OZVKHUaHINjHP3tO1HJyzKVkgX3raflw320frif9IUltH60n5JbVpG+aB5qkx61SY/f60MqlTDeMcDwidNx1y+Vy/DandS/sAW5Wkn5vesZaeoiFAjGPZ6b4LbYMZyTQCyVy9EkhvNT6v90diZU1vIFnHht+7kPQSgY4uSbn7D4sdsxZCYz7/Y1hILho7nPe+yj0GnQmI2RaeiTqUw6FJMaDgpXDpEoLAjCVeHJJ5+kqyt2xhJAV1cXTz755GVeUXwqow5NouGSAhqP1UHze3vY99OXOfCzVxlsbKfp3d1xK4HG2/twj9mRymVoEgyYCzMxZCaTuqCAigevp/y+9ZiLstAlh7vzKnUavHYXjS9/HFONFfB4Ofn2LvKuWYhjYDRyrNL83h48FnvkfnKlAqlcjjbZNOWRWsbi+fQfCTee87u99B05Rfnda5Eq5eftzXO+90tl1EV2WSZ6wAS8/rj39dqcuMbtBAMBpDIZMoXikvJYVAYtFWd68EwmUyqo/NoNqMVuzBVJBDWCIFwVNm/ezKOPPhoT2HR1dfHoo4+yefPmWVrZxQn4A3jtzqgOuJP5nG5Ovv0pfYdOEgoEUSfo0aeZ444mmDDeHtslGCAUCOAZt+MYHMNtsUeSjL0OF/b+2Nb9AF6rE7lGGZ7U7TsbMAwca465r9qkZ+Ejt8Qc56SU55O9soLBhrbIbUON7ThHrKiMOlKriuI+tzYl4bxBjUypYP5XrkObHFvBFU/A48Vrc17Ufc9Hn25m6ffuoeyedWStqGD+Xdex7G/uwZCRfNUE2V824vhJEISrQk5ODr/5zW949NFH+c1vfkNOTk4koJn4+koUCgZxjdno3tfAaFM3cq2K3DVVJORlRM1M8jrcjJzsQKqQh/uehIBQaMqqKggfkZzLPW6n5cN9DDW2RToYF25aRkp5wQWngge8fjKXlUWSeYEpe+zo08ws+s6deK0OfC4PapMepV4Tmfo9QSKVYMxJ5dAv3mTB/Rvxu72MnDzbWE+fkUTFg9efd8CjUqdhZNxO9spKVCYdapMemVIed7dGqdfgd3sJ+qc+6rpYEokETaIBTaKBjJrSqGsTQfa5P3uTfyaFy0/s1AiCcNWYHNjs2bPnig9oAJzDFg7+/PXwCIHhcaydAzS8uJXmD/bidZxtluexhscHzLvjGvqONHHyrV0M1LWQUl4Q93ElUgkJ+RlRt3lsTupe+JDB+tbIyAOf082pt3YxfOI0Co0qXOYc9wElqIw60heWMtJ8dtRAcll+ZNr1udRGHcbsVJJKctClJoancus1mPLPNpczZKcy3t5LKBDk+Cvb0KcmUvXQjSy4fyNV37iR9EXzpl7TpNeaPD8X5/A4x1/bRuvWAxRevyzuayi6YTkDdS1TDhKdLpN/Fid2bK6GIHuuu+qCmp///Ofk5+ejVqtZvnw5Bw4cmO0lCYJwGeXk5PDUU0+xevVqnnrqqSv6w8Njc9L8/l4CHl/MtYHa5qh8FYVWhS41EZ/DjaWjP3yfYy1kLCqNPXaRSCi/dz0qY/TuhnvMhr1vJO5a2rYeQCKXkb9uUdzrmUvnE/B6GWvrjRwF6VIT8bu9NL66DeeIZcrX6XO6cVvseG1OFFo1C+5dH+maK5PLI68/6A/QsauWuj98SOMr26j744e0vLcn6rgrnoA/QMAXILksn4r7N1F8w3ISi7NZ9NjtpJQXoE83k1ZVRNU3bmToxGnSqoovSwXSbAfZ4ggs1lV1/PTyyy/zxBNP8Oyzz7J8+XJ++tOfcsMNN3Dq1ClSU1Nne3mCIFwGXV1dPP300+zevZunn376iv2t2O/24h61MtoS/0MHYOjE6UjFj1KvJW1hCYMNrZHrQX+A46/uoOTmlQSDQWzdQ6jNBlLK8lEZdTFTnm198WceQfgYKeDxkVpRiFQmo2tPPR6LHYVOQ/aKBaiMOupe+IiiTcuRqxUklZaRXJbP8Ve343d5sHUPsWTzV1AnGiKP6XN7sfcO0frRAez9I6gTDOSvX4y5OIvKr23C53Djd3sJeH2xQzXPlIKb8tKnHAUB4Pd4GTnVyYk3Pon0q9GmJJB7TTUJeRkYc1LRpSXiHrNx8o2d5K1bRPL8vMvW5G5ykL179+7L+rMojsBiXVU7Nf/xH//BY489xiOPPEJ5eTnPPvssWq2W5557braXJgjCZTD5H+tVq1bFbP9fSbx2Jx6r47wfrlLZ2X+CVQYtqQsKY/JefE43x1/bQdvHB0EqIWtpOXKNCteYDWvPEK4xG4EzOx3na78vkUmRyqXIlAosnQPkr62h4oGNFN2wjLG2Hk6++QmEwFycTdGNK0guyyPo8zPv9jWklBeEc36az77PoWCQ0aZOjv72XazdgwT9gfDx0Cvb6Pz0GFK5DF1qIqbcNDRJRgxZKbFrkkrJvaaa7r2NUw7ddI3ZaHxlG0Gfn+yVFeE+NFUleG0u/B4f6TWlpC8sJfeaapZ89ytkLS276K7B0+HcIPty/iyKI7BYV81Ojdfr5fDhw/zoRz+K3CaVStm4cSN79+6N+z0ejweP5+xvAFZrbL8BQRCuDvH+sY6XPHylGO/ox9YzTFJpbngWVBzJ8/OivtaYjaRVFcU9QvJaneE2/E43DS9uidxHqpCTd10NWcvK0KebMeak4XO6YiZtZ9TMQ6nXIlPIyV65gKO/fTemcV7WsnI8Z9r8d+2px2tzRroHL7hvAwN1zWQsmodULsNjddL0zu64r6vzszoyl5YhV4XLoaUyGQUblzLa0kX/kSb8bi+JBRkUbFxC0BcgraoIx+AYSr0mKmE46A/QvaceQlC4aRnucRt1f/ggcr11y34Kr192JpC5uMqo6XTuz+Rs/CxOft6nnnrqit69vByumqBmeHiYQCBAWlpa1O1paWmcPHky7vf85Cc/4emnn74cyxMEYYY9++yzcf+xnvhH/dlnn+WZZ56ZpdXFEQrRX9tExYPhkQHnTtDOXlWByhi9syKRSkirKqFn/3Hc4/aoaxqzkaTSHI786u2ocuWgz8/p7YdJLMhAplSQVlVEKBhEm5JI76ETDB8/TUJ+BvnrF0c6GxuzU1n613fRtu0Q1s4BVEYtedfVYMrPoO/QSdq3HYo8fsDro2dfI+4xG+k1pZFeMz6XJ+5U8InX7hyxoE0y4fd4CXj9hPx+zEXZpFcV47W7CQb8jLf30fHJ0UgVk8ZspOLBjejTk5FIJQT9fpzDFlRnKqvatpyTQxmCti0HSCzIxJR7+XZn4MoKsmfzCOxKc9UENZfiRz/6EU888UTka6vV+qX+yxaEq9n5ApacnJwrK6ABTHkZBDw+mt7ZTfm96xhv72PsdB8KjYr0mlJMuWkotLFziNQJemoeu52+gyfprw03sUuvmUd6TQmOgdG4/VfK7rqOjl21jJw6O6lbIpUw745rKdy4FKVOE1U+LlPIMWQms+C+9QQ8XiRSGUq9Bve4jc7P6uK+npFTnRRuXIpEGj5Om3x0Fo9MocBjd3J6+5FwPs2ZXSGlQUv5vevwOX20bT0Y9T2uUStHfvMOy75/D5pEI1KFHGN2KqactEhDv3g6d9dRnrHuC42j+LyupCD7askzuxyumpya5ORkZDIZAwMDUbcPDAyQnp4e93tUKhVGozHqjyAIwuWg1GvIvWYhrhELx37/AZauQUw5qahMerTJpvPmv2gSDOSvX8Ti79zJor+6A3NpNiff/ITx9r6Y+5py03CNWqMCGjgzMuCtT5BIJFEBzWRylRKVUR+57nd7CXjil29DOL9lgkKrRpdmjns/mUqBxmxgsK6Vnv2NUcdcXpsTe9/olMFTwONjpCmcHyKVychaVoZcq8JznmZ6HquD0AV68Ey3Z555ZsrA4XIG2VdTntnlcNUENUqlksWLF7Nt27bIbcFgkG3btrFy5cpZXJkgCEIshUZF7jVVVD9yCwmFmXjtToL+ALmrK9GlJl7w+6UyGSqjjlAgyNHfvIN73I7aHPuLWVp1Cb2H4x/BE4L+2tiOwFM+5wWGOCp1Z494lPrw0MpzxwhIpFLm3bYGv9vL6Z1H4z6OyqjFOTR1p2Rr19lfXtWJBpLm5WLKmbrCNbEgE8+ZxOwvkwsdgX0ZA5ur6vjpiSee4OGHH2bJkiUsW7aMn/70pzgcDh555JHZXpogCEIMpU5DUnE2puwUgv4gcrViyunOU7F09hMKBHGP2VCbdMjVyqhmeHK1csquvwDucRuhUOiiSpwVOg2JRVmMtcaOX1Do1FHl3EG/n/66VsrvW49r2IJCr0Ft0iORSfE53eE/jvjr8lgdaMxGnMPxe98YMs9WSkllMgzpSeRdu5DBhraY6jCZSkFCQQb7//MVNIlGqr5x40UFjXPBlXQEdqW4anZqAO6//37+/d//nR//+McsXLiQ2tpaPvzww5jkYUEQhCuJXK1Cqdd87oAGwGM7Gxi0fXzoTNO9s43lHAOjmHKm/jfQlJuO3x3b/C8ehUbF/DuvjQy0nCBTKal++GZUhrPPG/QHsHUO0PL+XnTpSXTtqefIr//C4Wff4sTrnyCVy2JmQ03oO3yKvLXxmwBKFfKYqjAATZKJRX91R9Qkb1NuGgvu30DrR/shFM7Jqf3de7gts7Njc7mb4V0pR2BXEkkoFIoz/3VuslqtmEwmLBaLyK8RBOGy8dqduC0ObL1DqAw6dGlmVEbdBZNtASydAxz+5VuRr7XJJnKvWYhCq0IilaJO0OO1u6h9/r2Yad4qk475X7kOU05azDHR+bitDlzD49h6htEkGdFnJId3YaRnd3uCgSCntx/CkJXCyTd3xVRCGTKTyVq+INz/5hwKnYYl3/0K/UebOL3zSGS2lVKvofKrmzBkpyCVxT8K8zpceO0unMMW7H3D9B48EbNTteix22NGSFwOU/WI+bL3jpkOF/v5LYIaQRCEGeS2OGh8eSuWjrN5IjKlguqHb8aYk3rBwMZrc1L/4hYsndFFEhK5lEWP3cHJ13eSv2EJBIK07ziMc2gcJBKSSnPIXlFBKBQkeV7szsd0cI3bGGpoo+WDfXGvl94ezq3p2HkkUratz0hiwX0b0KUmEvD68NpdeGxOpHLZmT41uqjgKR774CgH/vPVKa+X3bMuZgDl5XJuAHOpAc2TTz7J5s2b435PV1fXl+5o6WI/v6+q4ydBEISrScDn5/TOw1EBDYR7vxz7/XsXldiqNGhZ8MBGclZXRgY/alMSqPn2bVg6+nEMjhH0+Rk+1UHW0nIqHryeigevR5NooOfQiaj8lOmmNuqwD4xOeb3pnd0Ys1Mpu3sd1Q/fzLK/uZeF37wlkvMiUyrQmI0k5KVjzEqJ2Q2aikypQKZUTHk9ZlbWZTRd86AmRiCce5w1ESRt3rx5Opc9Z4igRhAEYYZ47a4p+6sEvH5svVPPappMbdJTuGk5K354Pyv/9kFqvn0bCbnpkQDg1Fu7SMjPQKZWMHCshYFjzRiyUii+YXlUh97pJpFKz5uUqzbpcAyO0fDnrZx4YycKjQqJVIJjaBxr9yDO4XF8rqnnPk1FZdCSu6YKgN/ufItB69nASpuSEMnlma2hjtMxdFWMQLg0IqgRBEGYIaFAIKZaZzKP1T7ltXPJziTeaszGSKBiLsoGwkm7p97+lPaPDyFVyJHKZYw0d6O8DDOQUsoKkExxhJa1rJz+o6eA8MDOoD9A4yvb2P/Tlzn0izfZ99OXOfHGTjyfM7FXKpORtbycnDXV3LF0Hf/nvRcYtI6SUJgZSWiezR2N6ZoHNdtTwK9GIqgRBEGYIVKFIqpS6Vxf9GhIadCSv+5sFZHH6mDgWDMjpzopWLcIuSa2Y/HnEQqGcFvs2PpGcAyO4Y1Toq1K0FP90E3Rx0ESSK8pRaZWYusJ70aV3LKSk29+wmhz96QngOHjp2l6b/d5J3XHo9RrKdy4hNt+vJk/vPwiv2n4mIRr5qNJNMzqjsZ0N8Objl2fLxORKCwIgjBDQqEQA8daOP7q9phr+oykM7sKX+x4yOt04xwco2t3HR67i6TSHNKrS1AnGi6qN81U/B4vls4Bjr+2A9+Z6iJ9upnye9ejSzNHPXYwEMBrc+IctuCxOVFo1Yy19TB0vB2fw40xO4WSm1dx4GevxX8yCaz44QNok014rA6C/gASqRSlQXtRFWJwNpiYzaGOM1H9dCW8riuBqH6KQwQ1giBcDpMrV3xOD8OnOmj9aD9em5Mh2zjbuuv4r+d+OWUfl0sR8PkJ+QPIVIrI0MlL4XW48FgcDJ/qIBQIYsxJZeRkZ3h+E+Fmf0u/dzeaxPj/hvqcHrwOF+4xK65RG9pkExqzEa/DzeFn35zyeZf9zb04+kdo3XIA97gduUZFzupKMpeUXXTgt2fPnshQx1WrVn3+F/8FTXfF0nRVUs0FIqiJQwQ1giBcDud++IRCITxWBx3t7XzviR/yq1/9moLiwtleZgyv3Unze3sZqGuJuj33mmoAOj89BoRLtbOXL4j7GK5RK8f+8EG4tPwMdYKeqodu4tjv34+bP2MuziZpfh7N7+6OuZZWXUzedTV072sg4PGRvrAEfXpSzLHeXNvRED1voomSbkEQhFlybuWKRCJhyDrG3/zD3/Hc75+/IgMagNGWnpiABsLBjDE7FZkqnDcz1tZLvN+HfU43x1/fERXQALjH7TS8uIWiG1fEfd6c1VW0f3ww7rWBYy24x+30HjzJwLEWjv3+A+pf3BLVNXguDnW8mBEIQiwR1AiCIMyAq61yxetw0flp7ZTXhxrbSJ6XC4D+nJyayY9hOd0f9/udwxa0SSZMedEjHczF2Sh06qh5VufyWOwoJiU9W7sGGTjWTCgYmrNDHcUIhEtzVQ20FARBuJpMrlzZvXv3FRvQAIQCQbznjDqYzOtwozEbkUilpFUVxb3PRNfgqQS8Piq/dgM+hxu/24tco0Sh0+BzTP28AHKVkoAv+rF79jeSXlMqhjoKUcROjSAIwgyZrn4ll4Nco4z0vYknIT8Dx/A4VQ/diMoUP8FZoVFN2bMGQKlTE/QHUZuNmHLT0KUkotSqUerUmPLTp1iXihAhgucENQGvn1AwJHY0hCgiqBEEQZgBM53nMd0ToWUKBXnXLkQqjx0kqdBpSK0oYME960gsyESmiL/Jr9BryFpWHvdacnk+/bXN7P/Pl2n9aD/u8bONBxVaNWV3rY0JlmRKOWV3XRdJUI56vPm5KLRfrA+PMPeI6idBEIRpdjkqV2biOYL+AI7BMZre24PldB9IJCSX5ZF3zUKGT3WSVJqDNsmEUq+Z8jE8Nifd+xro3lNPwOtHKpeRVl1MUkkOja9uj0zk1iabWPit21CbzlYxuS127P2jWLsG0CYnYMxOoe3jgwzWt0U9h0ylYOlf34U2OeFzvT7h6iVKuuMQQY0gCJfD5ZqwPFN9THxON16nG/e4neHjp+mvbSLg8QGQVlVM8S0rUemn7h0T8Ieb8QU8XrwON/1HTjFQ10ooGIy6X8WDG0mtiJ+fM8FtsdN74Dg9B08Q9PlJLsunYP3iSH6P8OUggpo4RFAjCMJcM1P9WfqONnHitR1xr1U/fDNJpRd+DrfFzoH/enXKyqaU8gIWPLgR6QWCk2AggNfhhlAIuUaF/DwTus/ncgWbwvQTfWoEQRC+BGZiNpDX4aZ7T/2U17v21hPw+i74OBKpBLlaOeV1hVZ1UaMcpDIZaqMOtUl/yQENwObNm+PmNc3m8EtheomgRhAE4So2IxVWoeB5g5aAxxdzlBSPUqcla0XFlNczl5V/oflUn1e8/jVf1g69c5UIagRBEK5SM1VhJdeoSFkwddfjtKpiZKqpd2AmSKQS0quLMeXFlmvnrV2EJtHwhdZ5Ka62pojC5yNyagRBEK5CM11h5RqzcegXb8Q0xlMn6Fn02O2oEy4+IPHYnDgGxxhsaEWuVpFWVYTapEehVV/y+r6o2R5+KXw+IqdGEARhDpvp2UCaRANLNn+FzKVlyFRK5BoV2asqqfmcAQ2AyqDFXJTF/DuupfiG5Rgykmc1oLmamiIKn4/YqREEQRCmFPD58TndgASFTo0sTnO+q8lMlcFfSeZilZfYqREEQRC+MJlCjtqkR23SzbmABubG8MtzfZmrvERQIwiCIHwpzPSR3ZXiy1zlJY6fBEEQBGEOmqnGjLPhYj+/408lEwRBEAThqja5MePu3buv2oDm8xDHT4IgCIIwB30Zq7xEUCMIgiAIc8xMNWa80omgRhAEQRDmkC9LlVc8IqgRBEEQhDnky1LlFY+ofhIEQRAE4Yommu8JgiAIgvClIoIaQRAEQRDmBBHUCIIgCIIwJ4igRhAEQRCEOUEENYIgCIIgzAkiqBEEQRAEYU64aoKaZ555hlWrVqHVaklISJjt5QiCIAiCcIW5aoIar9fLvffey3e/+93ZXoogCIIgCFegq2ZK99NPPw3A888/P7sLEQRBEAThinTVBDWXwuPx4PF4Il9brdZZXI0gCIIgCDPpqjl+uhQ/+clPMJlMkT/nzsEQBEGYy5588skphxd2dXXx5JNPXuYVCcLMmtWg5h//8R+RSCTn/XPy5MlLfvwf/ehHWCyWyJ+5PJlUEAThXJs3b447lXliivPmzZtnaWWCMDNm9fjpb//2b/nmN7953vsUFhZe8uOrVCpUKtUlf78gCMLVbGIq86OPPhqZ2jwR0MSb4iwIV7tZDWpSUlJISUmZzSUIgiDMaZMDm6eeeoqnn35aBDTCnHXVJAp3dnYyOjpKZ2cngUCA2tpaAIqLi9Hr9bO7OEEQhCtYTk4OTz31FKtXr2b37t0ioBHmrKsmUfjHP/4xNTU1PPXUU9jtdmpqaqipqeHQoUOzvTRBEIQrWldXF08//TS7d+/m6aefFvmFwpwlCYVCodlexOVitVoxmUxYLBaMRuNsL0cQBGHGnZtDI3JqhKvRxX5+XzU7NYIgCMLnEy+AmZxjI3ZshLlGBDWCIAhz1LPPPht3R2YisHn22WdnaWWCMDPE8ZMgCIIgCFc0cfwkCIIgCMKXighqBEEQBEGYE0RQIwiCIAjCnCCCGkEQBEEQ5gQR1AiCIAiCMCeIoEYQBEEQhDlBBDWCIAiCIMwJIqgRBEEQBGFOEEGNIAiCIAhzgghqBEEQBEGYE+SzvYDLaWIihNVqneWVCIIgCIJwsSY+ty802elLFdTYbDaAmOFugiAIgiBc+Ww2GyaTacrrX6qBlsFgkFOnTlFeXk5XV9ecHWpptVrJyckRr/EqJ17j3CBe49zwZXiNcOW+zlAohM1mIzMzE6l06syZL9VOjVQqJSsrCwCj0XhF/YXNBPEa5wbxGucG8Rrnhi/Da4Qr83Web4dmgkgUFgRBEARhThBBjSAIgiAIc8KXLqhRqVQ89dRTqFSq2V7KjBGvcW4Qr3FuEK9xbvgyvEa4+l/nlypRWBAEQRCEuetLt1MjCIIgCMLcJIIaQRAEQRDmBBHUCIIgCIIwJ4igRhAEQRCEOUEENYDH42HhwoVIJBJqa2tneznT6vbbbyc3Nxe1Wk1GRgbf+MY36O3tne1lTZvTp0/z7W9/m4KCAjQaDUVFRTz11FN4vd7ZXtq0euaZZ1i1ahVarZaEhITZXs60+fnPf05+fj5qtZrly5dz4MCB2V7StNm1axe33XYbmZmZSCQS3nrrrdle0rT7yU9+wtKlSzEYDKSmpnLnnXdy6tSp2V7WtPrFL35BVVVVpBndypUr+eCDD2Z7WTPqX/7lX5BIJPzwhz+c7aV8biKoAf7+7/+ezMzM2V7GjFi3bh2vvPIKp06d4vXXX6e1tZV77rlntpc1bU6ePEkwGOSXv/wljY2N/N//+3959tln+R//43/M9tKmldfr5d577+W73/3ubC9l2rz88ss88cQTPPXUUxw5coTq6mpuuOEGBgcHZ3tp08LhcFBdXc3Pf/7z2V7KjPnkk094/PHH2bdvH1u3bsXn87Fp0yYcDsdsL23aZGdn8y//8i8cPnyYQ4cOsX79eu644w4aGxtne2kz4uDBg/zyl7+kqqpqtpdyaUJfcu+//35o/vz5ocbGxhAQOnr06GwvaUa9/fbbIYlEEvJ6vbO9lBnzr//6r6GCgoLZXsaM+N3vfhcymUyzvYxpsWzZstDjjz8e+ToQCIQyMzNDP/nJT2ZxVTMDCL355puzvYwZNzg4GAJCn3zyyWwvZUYlJiaGfvOb38z2MqadzWYLlZSUhLZu3Rq67rrrQj/4wQ9me0mf25d6p2ZgYIDHHnuMP/7xj2i12tlezowbHR3lT3/6E6tWrUKhUMz2cmaMxWLBbDbP9jKE8/B6vRw+fJiNGzdGbpNKpWzcuJG9e/fO4sqEL8JisQDM2f//AoEAL730Eg6Hg5UrV872cqbd448/zi233BL1/+XV5ksb1IRCIb75zW+yefNmlixZMtvLmVH/8A//gE6nIykpic7OTt5+++3ZXtKMaWlp4Wc/+xnf+c53ZnspwnkMDw8TCARIS0uLuj0tLY3+/v5ZWpXwRQSDQX74wx+yevVqKioqZns506q+vh69Xo9KpWLz5s28+eablJeXz/ayptVLL73EkSNH+MlPfjLbS/lC5lxQ84//+I9IJJLz/jl58iQ/+9nPsNls/OhHP5rtJX9uF/saJ/z3//7fOXr0KFu2bEEmk/HQQw8RusIbSX/e1wjQ09PDjTfeyL333stjjz02Syu/eJfyGgXhSvX444/T0NDASy+9NNtLmXbz5s2jtraW/fv3893vfpeHH36Y48ePz/aypk1XVxc/+MEP+NOf/oRarZ7t5Xwhc25MwtDQECMjI+e9T2FhIffddx/vvPMOEokkcnsgEEAmk/G1r32N3//+9zO91Et2sa9RqVTG3N7d3U1OTg579uy5ordPP+9r7O3tZe3ataxYsYLnn38eqfTKj9cv5e/x+eef54c//CHj4+MzvLqZ5fV60Wq1vPbaa9x5552R2x9++GHGx8fn3G6iRCLhzTffjHqtc8n3vvc93n77bXbt2kVBQcFsL2fGbdy4kaKiIn75y1/O9lKmxVtvvcVXvvIVZDJZ5LZAIIBEIkEqleLxeKKuXcnks72A6ZaSkkJKSsoF7/df//Vf/PM//3Pk697eXm644QZefvllli9fPpNL/MIu9jXGEwwGgXAZ+5Xs87zGnp4e1q1bx+LFi/nd7353VQQ08MX+Hq92SqWSxYsXs23btsgHfTAYZNu2bXzve9+b3cUJFy0UCvH973+fN998k507d34pAhoI/6xe6f+Gfh4bNmygvr4+6rZHHnmE+fPn8w//8A9XTUADczCouVi5ublRX+v1egCKiorIzs6ejSVNu/3793Pw4EHWrFlDYmIira2t/K//9b8oKiq6ondpPo+enh7Wrl1LXl4e//7v/87Q0FDkWnp6+iyubHp1dnYyOjpKZ2cngUAg0k+puLg48rN7tXniiSd4+OGHWbJkCcuWLeOnP/0pDoeDRx55ZLaXNi3sdjstLS2Rr9vb26mtrcVsNsf8+3O1evzxx3nxxRd5++23MRgMkXwok8mERqOZ5dVNjx/96EfcdNNN5ObmYrPZePHFF9m5cycfffTRbC9t2hgMhpg8qIk8zKsuP2pWa6+uIO3t7XOupLuuri60bt26kNlsDqlUqlB+fn5o8+bNoe7u7tle2rT53e9+FwLi/plLHn744bivcceOHbO9tC/kZz/7WSg3NzekVCpDy5YtC+3bt2+2lzRtduzYEffv7OGHH57tpU2bqf7f+93vfjfbS5s23/rWt0J5eXkhpVIZSklJCW3YsCG0ZcuW2V7WjLtaS7rnXE6NIAiCIAhfTldH8oEgCIIgCMIFiKBGEARBEIQ5QQQ1giAIgiDMCSKoEQRBEARhThBBjSAIgiAIc4IIagRBEARBmBNEUCMIgiAIwpwgghpBEARBEOYEEdQIgnBVCgQCrFq1irvuuivqdovFQk5ODk8++eQsrUwQhNkiOgoLgnDVampqYuHChfz617/ma1/7GgAPPfQQx44d4+DBg3En1QuCMHeJoEYQhKvaf/3Xf/G///f/prGxkQMHDnDvvfdy8OBBqqurZ3tpgiBcZiKoEQThqhYKhVi/fj0ymYz6+nq+//3v8z//5/+c7WUJgjALRFAjCMJV7+TJk5SVlVFZWcmRI0eQy+WzvSRBEGaBSBQWBOGq99xzz6HVamlvb6e7u3u2lyMIwiwROzWCIFzV9uzZw3XXXceWLVv453/+ZwA+/vhjJBLJLK9MEITLTezUCIJw1XI6nXzzm9/ku9/9LuvWreO3v/0tBw4c4Nlnn53tpQmCMAvETo0gCFetH/zgB7z//vscO3YMrVYLwC9/+Uv+7u/+jvr6evLz82d3gYIgXFYiqBEE4ar0ySefsGHDBnbu3MmaNWuirt1www34/X5xDCUIXzIiqBEEQRAEYU4QOTWCIAiCIMwJIqgRBEEQBGFOEEGNIAiCIAhzgghqBEEQBEGYE0RQIwiCIAjCnCCCGkEQBEEQ5gQR1AiCIAiCMCeIoEYQBEEQhDlBBDWCIAiCIMwJIqgRBEEQBGFOEEGNIAiCIAhzgghqBEEQBEGYE/7//+IWOnTDWvIAAAAASUVORK5CYII=\n" - }, - "metadata": {} - } ] } - ] -} \ No newline at end of file + ], + "metadata": { + "colab": { + "provenance": [] + }, + "kernelspec": { + "display_name": "datascienceintro-eVBNPtpL-py3.10", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.10.12" + } + }, + "nbformat": 4, + "nbformat_minor": 0 +} diff --git a/poetry.lock b/poetry.lock index aca7c5a4a6b2c697e36357612831d490a99b6c92..e4b9700580adf19b9b51b0983ee8588a836ace69 100644 --- a/poetry.lock +++ b/poetry.lock @@ -1,10 +1,15 @@ +# This file is automatically @generated by Poetry 1.8.3 and should not be changed by hand. + [[package]] name = "anyio" version = "3.6.2" description = "High level compatibility layer for multiple asynchronous event loop implementations" -category = "main" optional = false python-versions = ">=3.6.2" +files = [ + {file = "anyio-3.6.2-py3-none-any.whl", hash = "sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"}, + {file = "anyio-3.6.2.tar.gz", hash = "sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421"}, +] [package.dependencies] idna = ">=2.8" @@ -19,17 +24,23 @@ trio = ["trio (>=0.16,<0.22)"] name = "appnope" version = "0.1.3" description = "Disable App Nap on macOS >= 10.9" -category = "main" optional = false python-versions = "*" +files = [ + {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, + {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, +] [[package]] name = "argon2-cffi" version = "21.3.0" description = "The secure Argon2 password hashing algorithm." -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, + {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, +] [package.dependencies] argon2-cffi-bindings = "*" @@ -43,9 +54,31 @@ tests = ["coverage[toml] (>=5.0.2)", "hypothesis", "pytest"] name = "argon2-cffi-bindings" version = "21.2.0" description = "Low-level CFFI bindings for Argon2" -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, + {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, + {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, + {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, + {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, +] [package.dependencies] cffi = ">=1.0.1" @@ -58,9 +91,12 @@ tests = ["pytest"] name = "arrow" version = "1.2.3" description = "Better dates & times for Python" -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "arrow-1.2.3-py3-none-any.whl", hash = "sha256:5a49ab92e3b7b71d96cd6bfcc4df14efefc9dfa96ea19045815914a6ab6b1fe2"}, + {file = "arrow-1.2.3.tar.gz", hash = "sha256:3934b30ca1b9f292376d9db15b19446088d12ec58629bc3f0da28fd55fb633a1"}, +] [package.dependencies] python-dateutil = ">=2.7.0" @@ -69,9 +105,12 @@ python-dateutil = ">=2.7.0" name = "asttokens" version = "2.2.1" description = "Annotate AST trees with source code positions" -category = "main" optional = false python-versions = "*" +files = [ + {file = "asttokens-2.2.1-py2.py3-none-any.whl", hash = "sha256:6b0ac9e93fb0335014d382b8fa9b3afa7df546984258005da0b9e7095b3deb1c"}, + {file = "asttokens-2.2.1.tar.gz", hash = "sha256:4622110b2a6f30b77e1473affaa97e711bc2f07d3f10848420ff1898edbe94f3"}, +] [package.dependencies] six = "*" @@ -83,9 +122,12 @@ test = ["astroid", "pytest"] name = "attrs" version = "22.2.0" description = "Classes Without Boilerplate" -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "attrs-22.2.0-py3-none-any.whl", hash = "sha256:29e95c7f6778868dbd49170f98f8818f78f3dc5e0e37c0b1f474e3561b240836"}, + {file = "attrs-22.2.0.tar.gz", hash = "sha256:c9227bfc2f01993c03f68db37d1d15c9690188323c067c641f1a35ca58185f99"}, +] [package.extras] cov = ["attrs[tests]", "coverage-enable-subprocess", "coverage[toml] (>=5.3)"] @@ -98,9 +140,12 @@ tests-no-zope = ["cloudpickle", "cloudpickle", "hypothesis", "hypothesis", "mypy name = "babel" version = "2.11.0" description = "Internationalization utilities" -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "Babel-2.11.0-py3-none-any.whl", hash = "sha256:1ad3eca1c885218f6dce2ab67291178944f810a10a9b5f3cb8382a5a232b64fe"}, + {file = "Babel-2.11.0.tar.gz", hash = "sha256:5ef4b3226b0180dedded4229651c8b0e1a3a6a2837d45a073272f313e4cf97f6"}, +] [package.dependencies] pytz = ">=2015.7" @@ -109,17 +154,23 @@ pytz = ">=2015.7" name = "backcall" version = "0.2.0" description = "Specifications for callback functions passed in to an API" -category = "main" optional = false python-versions = "*" +files = [ + {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, + {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, +] [[package]] name = "beautifulsoup4" version = "4.11.1" description = "Screen-scraping library" -category = "main" optional = false python-versions = ">=3.6.0" +files = [ + {file = "beautifulsoup4-4.11.1-py3-none-any.whl", hash = "sha256:58d5c3d29f5a36ffeb94f02f0d786cd53014cf9b3b3951d42e0080d8a9498d30"}, + {file = "beautifulsoup4-4.11.1.tar.gz", hash = "sha256:ad9aa55b65ef2808eb405f46cf74df7fcb7044d5cbc26487f96eb2ef2e436693"}, +] [package.dependencies] soupsieve = ">1.2" @@ -132,9 +183,12 @@ lxml = ["lxml"] name = "bleach" version = "5.0.1" description = "An easy safelist-based HTML-sanitizing tool." -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "bleach-5.0.1-py3-none-any.whl", hash = "sha256:085f7f33c15bd408dd9b17a4ad77c577db66d76203e5984b1bd59baeee948b2a"}, + {file = "bleach-5.0.1.tar.gz", hash = "sha256:0d03255c47eb9bd2f26aa9bb7f2107732e7e8fe195ca2f64709fcf3b0a4a085c"}, +] [package.dependencies] six = ">=1.9.0" @@ -148,17 +202,85 @@ dev = ["Sphinx (==4.3.2)", "black (==22.3.0)", "build (==0.8.0)", "flake8 (==4.0 name = "certifi" version = "2022.12.7" description = "Python package for providing Mozilla's CA Bundle." -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "certifi-2022.12.7-py3-none-any.whl", hash = "sha256:4ad3232f5e926d6718ec31cfc1fcadfde020920e278684144551c91769c7bc18"}, + {file = "certifi-2022.12.7.tar.gz", hash = "sha256:35824b4c3a97115964b408844d64aa14db1cc518f6562e8d7261699d1350a9e3"}, +] [[package]] name = "cffi" version = "1.15.1" description = "Foreign Function Interface for Python calling C code." -category = "main" optional = false python-versions = "*" +files = [ + {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, + {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, + {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, + {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, + {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, + {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, + {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, + {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, + {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, + {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, + {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, + {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, + {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, + {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, + {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, + {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, + {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, + {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, + {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, + {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, + {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, + {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, + {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, + {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, + {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, + {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, + {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, + {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, + {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, + {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, + {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, + {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, + {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, + {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, + {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, + {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, + {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, + {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, + {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, + {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, + {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, + {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, + {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, + {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, + {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, + {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, + {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, + {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, + {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, + {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, + {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, + {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, + {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, + {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, + {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, + {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, + {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, + {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, + {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, + {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, + {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, + {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, + {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, + {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, +] [package.dependencies] pycparser = "*" @@ -167,9 +289,12 @@ pycparser = "*" name = "charset-normalizer" version = "2.1.1" description = "The Real First Universal Charset Detector. Open, modern and actively maintained alternative to Chardet." -category = "main" optional = false python-versions = ">=3.6.0" +files = [ + {file = "charset-normalizer-2.1.1.tar.gz", hash = "sha256:5a3d016c7c547f69d6f81fb0db9449ce888b418b5b9952cc5e6e66843e9dd845"}, + {file = "charset_normalizer-2.1.1-py3-none-any.whl", hash = "sha256:83e9a75d1911279afd89352c68b45348559d1fc0506b054b346651b5e7fee29f"}, +] [package.extras] unicode-backport = ["unicodedata2"] @@ -178,9 +303,12 @@ unicode-backport = ["unicodedata2"] name = "click" version = "8.1.3" description = "Composable command line interface toolkit" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"}, + {file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"}, +] [package.dependencies] colorama = {version = "*", markers = "platform_system == \"Windows\""} @@ -189,25 +317,34 @@ colorama = {version = "*", markers = "platform_system == \"Windows\""} name = "cloudpickle" version = "2.2.0" description = "Extended pickling support for Python objects" -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "cloudpickle-2.2.0-py3-none-any.whl", hash = "sha256:7428798d5926d8fcbfd092d18d01a2a03daf8237d8fcdc8095d256b8490796f0"}, + {file = "cloudpickle-2.2.0.tar.gz", hash = "sha256:3f4219469c55453cfe4737e564b67c2a149109dabf7f242478948b895f61106f"}, +] [[package]] name = "colorama" version = "0.4.6" description = "Cross-platform colored terminal text." -category = "main" optional = false python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*,>=2.7" +files = [ + {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, + {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, +] [[package]] name = "comm" version = "0.1.2" description = "Jupyter Python Comm implementation, for usage in ipykernel, xeus-python etc." -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "comm-0.1.2-py3-none-any.whl", hash = "sha256:9f3abf3515112fa7c55a42a6a5ab358735c9dccc8b5910a9d8e3ef5998130666"}, + {file = "comm-0.1.2.tar.gz", hash = "sha256:3e2f5826578e683999b93716285b3b1f344f157bf75fa9ce0a797564e742f062"}, +] [package.dependencies] traitlets = ">=5.3" @@ -219,9 +356,79 @@ test = ["pytest"] name = "contourpy" version = "1.0.6" description = "Python library for calculating contours of 2D quadrilateral grids" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "contourpy-1.0.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:613c665529899b5d9fade7e5d1760111a0b011231277a0d36c49f0d3d6914bd6"}, + {file = "contourpy-1.0.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78ced51807ccb2f45d4ea73aca339756d75d021069604c2fccd05390dc3c28eb"}, + {file = "contourpy-1.0.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3b1bd7577c530eaf9d2bc52d1a93fef50ac516a8b1062c3d1b9bcec9ebe329b"}, + {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8834c14b8c3dd849005e06703469db9bf96ba2d66a3f88ecc539c9a8982e0ee"}, + {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f4052a8a4926d4468416fc7d4b2a7b2a3e35f25b39f4061a7e2a3a2748c4fc48"}, + {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c0e1308307a75e07d1f1b5f0f56b5af84538a5e9027109a7bcf6cb47c434e72"}, + {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9fc4e7973ed0e1fe689435842a6e6b330eb7ccc696080dda9a97b1a1b78e41db"}, + {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:08e8d09d96219ace6cb596506fb9b64ea5f270b2fb9121158b976d88871fcfd1"}, + {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f33da6b5d19ad1bb5e7ad38bb8ba5c426d2178928bc2b2c44e8823ea0ecb6ff3"}, + {file = "contourpy-1.0.6-cp310-cp310-win32.whl", hash = "sha256:12a7dc8439544ed05c6553bf026d5e8fa7fad48d63958a95d61698df0e00092b"}, + {file = "contourpy-1.0.6-cp310-cp310-win_amd64.whl", hash = "sha256:eadad75bf91897f922e0fb3dca1b322a58b1726a953f98c2e5f0606bd8408621"}, + {file = "contourpy-1.0.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:913bac9d064cff033cf3719e855d4f1db9f1c179e0ecf3ba9fdef21c21c6a16a"}, + {file = "contourpy-1.0.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:46deb310a276cc5c1fd27958e358cce68b1e8a515fa5a574c670a504c3a3fe30"}, + {file = "contourpy-1.0.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b64f747e92af7da3b85631a55d68c45a2d728b4036b03cdaba4bd94bcc85bd6f"}, + {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50627bf76abb6ba291ad08db583161939c2c5fab38c38181b7833423ab9c7de3"}, + {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:358f6364e4873f4d73360b35da30066f40387dd3c427a3e5432c6b28dd24a8fa"}, + {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c78bfbc1a7bff053baf7e508449d2765964d67735c909b583204e3240a2aca45"}, + {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e43255a83835a129ef98f75d13d643844d8c646b258bebd11e4a0975203e018f"}, + {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:375d81366afd547b8558c4720337218345148bc2fcffa3a9870cab82b29667f2"}, + {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b98c820608e2dca6442e786817f646d11057c09a23b68d2b3737e6dcb6e4a49b"}, + {file = "contourpy-1.0.6-cp311-cp311-win32.whl", hash = "sha256:0e4854cc02006ad6684ce092bdadab6f0912d131f91c2450ce6dbdea78ee3c0b"}, + {file = "contourpy-1.0.6-cp311-cp311-win_amd64.whl", hash = "sha256:d2eff2af97ea0b61381828b1ad6cd249bbd41d280e53aea5cccd7b2b31b8225c"}, + {file = "contourpy-1.0.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5b117d29433fc8393b18a696d794961464e37afb34a6eeb8b2c37b5f4128a83e"}, + {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:341330ed19074f956cb20877ad8d2ae50e458884bfa6a6df3ae28487cc76c768"}, + {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:371f6570a81dfdddbb837ba432293a63b4babb942a9eb7aaa699997adfb53278"}, + {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9447c45df407d3ecb717d837af3b70cfef432138530712263730783b3d016512"}, + {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:730c27978a0003b47b359935478b7d63fd8386dbb2dcd36c1e8de88cbfc1e9de"}, + {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:da1ef35fd79be2926ba80fbb36327463e3656c02526e9b5b4c2b366588b74d9a"}, + {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:cd2bc0c8f2e8de7dd89a7f1c10b8844e291bca17d359373203ef2e6100819edd"}, + {file = "contourpy-1.0.6-cp37-cp37m-win32.whl", hash = "sha256:3a1917d3941dd58732c449c810fa7ce46cc305ce9325a11261d740118b85e6f3"}, + {file = "contourpy-1.0.6-cp37-cp37m-win_amd64.whl", hash = "sha256:06ca79e1efbbe2df795822df2fa173d1a2b38b6e0f047a0ec7903fbca1d1847e"}, + {file = "contourpy-1.0.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e626cefff8491bce356221c22af5a3ea528b0b41fbabc719c00ae233819ea0bf"}, + {file = "contourpy-1.0.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:dbe6fe7a1166b1ddd7b6d887ea6fa8389d3f28b5ed3f73a8f40ece1fc5a3d340"}, + {file = "contourpy-1.0.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e13b31d1b4b68db60b3b29f8e337908f328c7f05b9add4b1b5c74e0691180109"}, + {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a79d239fc22c3b8d9d3de492aa0c245533f4f4c7608e5749af866949c0f1b1b9"}, + {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9e8e686a6db92a46111a1ee0ee6f7fbfae4048f0019de207149f43ac1812cf95"}, + {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acd2bd02f1a7adff3a1f33e431eb96ab6d7987b039d2946a9b39fe6fb16a1036"}, + {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:03d1b9c6b44a9e30d554654c72be89af94fab7510b4b9f62356c64c81cec8b7d"}, + {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b48d94386f1994db7c70c76b5808c12e23ed7a4ee13693c2fc5ab109d60243c0"}, + {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:208bc904889c910d95aafcf7be9e677726df9ef71e216780170dbb7e37d118fa"}, + {file = "contourpy-1.0.6-cp38-cp38-win32.whl", hash = "sha256:444fb776f58f4906d8d354eb6f6ce59d0a60f7b6a720da6c1ccb839db7c80eb9"}, + {file = "contourpy-1.0.6-cp38-cp38-win_amd64.whl", hash = "sha256:9bc407a6af672da20da74823443707e38ece8b93a04009dca25856c2d9adadb1"}, + {file = "contourpy-1.0.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:aa4674cf3fa2bd9c322982644967f01eed0c91bb890f624e0e0daf7a5c3383e9"}, + {file = "contourpy-1.0.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6f56515e7c6fae4529b731f6c117752247bef9cdad2b12fc5ddf8ca6a50965a5"}, + {file = "contourpy-1.0.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:344cb3badf6fc7316ad51835f56ac387bdf86c8e1b670904f18f437d70da4183"}, + {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b1e66346acfb17694d46175a0cea7d9036f12ed0c31dfe86f0f405eedde2bdd"}, + {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8468b40528fa1e15181cccec4198623b55dcd58306f8815a793803f51f6c474a"}, + {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1dedf4c64185a216c35eb488e6f433297c660321275734401760dafaeb0ad5c2"}, + {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:494efed2c761f0f37262815f9e3c4bb9917c5c69806abdee1d1cb6611a7174a0"}, + {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:75a2e638042118118ab39d337da4c7908c1af74a8464cad59f19fbc5bbafec9b"}, + {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a628bba09ba72e472bf7b31018b6281fd4cc903f0888049a3724afba13b6e0b8"}, + {file = "contourpy-1.0.6-cp39-cp39-win32.whl", hash = "sha256:e1739496c2f0108013629aa095cc32a8c6363444361960c07493818d0dea2da4"}, + {file = "contourpy-1.0.6-cp39-cp39-win_amd64.whl", hash = "sha256:a457ee72d9032e86730f62c5eeddf402e732fdf5ca8b13b41772aa8ae13a4563"}, + {file = "contourpy-1.0.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d912f0154a20a80ea449daada904a7eb6941c83281a9fab95de50529bfc3a1da"}, + {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4081918147fc4c29fad328d5066cfc751da100a1098398742f9f364be63803fc"}, + {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0537cc1195245bbe24f2913d1f9211b8f04eb203de9044630abd3664c6cc339c"}, + {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcd556c8fc37a342dd636d7eef150b1399f823a4462f8c968e11e1ebeabee769"}, + {file = "contourpy-1.0.6-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:f6ca38dd8d988eca8f07305125dec6f54ac1c518f1aaddcc14d08c01aebb6efc"}, + {file = "contourpy-1.0.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c1baa49ab9fedbf19d40d93163b7d3e735d9cd8d5efe4cce9907902a6dad391f"}, + {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:211dfe2bd43bf5791d23afbe23a7952e8ac8b67591d24be3638cabb648b3a6eb"}, + {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c38c6536c2d71ca2f7e418acaf5bca30a3af7f2a2fa106083c7d738337848dbe"}, + {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b1ee48a130da4dd0eb8055bbab34abf3f6262957832fd575e0cab4979a15a41"}, + {file = "contourpy-1.0.6-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5641927cc5ae66155d0c80195dc35726eae060e7defc18b7ab27600f39dd1fe7"}, + {file = "contourpy-1.0.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:7ee394502026d68652c2824348a40bf50f31351a668977b51437131a90d777ea"}, + {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b97454ed5b1368b66ed414c754cba15b9750ce69938fc6153679787402e4cdf"}, + {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0236875c5a0784215b49d00ebbe80c5b6b5d5244b3655a36dda88105334dea17"}, + {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84c593aeff7a0171f639da92cb86d24954bbb61f8a1b530f74eb750a14685832"}, + {file = "contourpy-1.0.6-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:9b0e7fe7f949fb719b206548e5cde2518ffb29936afa4303d8a1c4db43dcb675"}, + {file = "contourpy-1.0.6.tar.gz", hash = "sha256:6e459ebb8bb5ee4c22c19cc000174f8059981971a33ce11e17dddf6aca97a142"}, +] [package.dependencies] numpy = ">=1.16" @@ -237,17 +444,23 @@ test-no-codebase = ["Pillow", "matplotlib", "pytest"] name = "cycler" version = "0.11.0" description = "Composable style cycles" -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "cycler-0.11.0-py3-none-any.whl", hash = "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3"}, + {file = "cycler-0.11.0.tar.gz", hash = "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"}, +] [[package]] name = "dash" version = "2.7.1" description = "A Python framework for building reactive web-apps. Developed by Plotly." -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "dash-2.7.1-py3-none-any.whl", hash = "sha256:0935490e3dd2d2a046291989824732901437bc0336d592eadcb93fd9c866d4c9"}, + {file = "dash-2.7.1.tar.gz", hash = "sha256:13cd19d19288a8fb9c2a5cd069c72643758fc2fcda68cacc72474a4ec6b7667d"}, +] [package.dependencies] dash-core-components = "2.0.0" @@ -268,17 +481,23 @@ testing = ["beautifulsoup4 (>=4.8.2)", "cryptography (<3.4)", "lxml (>=4.6.2)", name = "dash-core-components" version = "2.0.0" description = "Core component suite for Dash" -category = "main" optional = false python-versions = "*" +files = [ + {file = "dash_core_components-2.0.0-py3-none-any.whl", hash = "sha256:52b8e8cce13b18d0802ee3acbc5e888cb1248a04968f962d63d070400af2e346"}, + {file = "dash_core_components-2.0.0.tar.gz", hash = "sha256:c6733874af975e552f95a1398a16c2ee7df14ce43fa60bb3718a3c6e0b63ffee"}, +] [[package]] name = "dash-cytoscape" version = "0.3.0" description = "A Component Library for Dash aimed at facilitating network visualization in Python, wrapped around Cytoscape.js" -category = "main" optional = false python-versions = "*" +files = [ + {file = "dash_cytoscape-0.3.0-py3-none-any.whl", hash = "sha256:718dc1568b9e7bfe7f64376aa903c64a1a1fe6daed4e559b254456f18dd3135f"}, + {file = "dash_cytoscape-0.3.0.tar.gz", hash = "sha256:a71ad4fe095570b71d4ad7c0d29199e9780c2e6796173d3b25fccc2cc58c855f"}, +] [package.dependencies] dash = "*" @@ -287,49 +506,83 @@ dash = "*" name = "dash-html-components" version = "2.0.0" description = "Vanilla HTML components for Dash" -category = "main" optional = false python-versions = "*" +files = [ + {file = "dash_html_components-2.0.0-py3-none-any.whl", hash = "sha256:b42cc903713c9706af03b3f2548bda4be7307a7cf89b7d6eae3da872717d1b63"}, + {file = "dash_html_components-2.0.0.tar.gz", hash = "sha256:8703a601080f02619a6390998e0b3da4a5daabe97a1fd7a9cebc09d015f26e50"}, +] [[package]] name = "dash-table" version = "5.0.0" description = "Dash table" -category = "main" optional = false python-versions = "*" +files = [ + {file = "dash_table-5.0.0-py3-none-any.whl", hash = "sha256:19036fa352bb1c11baf38068ec62d172f0515f73ca3276c79dee49b95ddc16c9"}, + {file = "dash_table-5.0.0.tar.gz", hash = "sha256:18624d693d4c8ef2ddec99a6f167593437a7ea0bf153aa20f318c170c5bc7308"}, +] [[package]] name = "debugpy" version = "1.6.5" description = "An implementation of the Debug Adapter Protocol for Python" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "debugpy-1.6.5-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:696165f021a6a17da08163eaae84f3faf5d8be68fb78cd78488dd347e625279c"}, + {file = "debugpy-1.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17039e392d6f38388a68bd02c5f823b32a92142a851e96ba3ec52aeb1ce9d900"}, + {file = "debugpy-1.6.5-cp310-cp310-win32.whl", hash = "sha256:62a06eb78378292ba6c427d861246574dc8b84471904973797b29dd33c7c2495"}, + {file = "debugpy-1.6.5-cp310-cp310-win_amd64.whl", hash = "sha256:9984fc00ab372c97f63786c400107f54224663ea293daab7b365a5b821d26309"}, + {file = "debugpy-1.6.5-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:048368f121c08b00bbded161e8583817af5055982d2722450a69efe2051621c2"}, + {file = "debugpy-1.6.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74e4eca42055759032e3f1909d1374ba1d729143e0c2729bb8cb5e8b5807c458"}, + {file = "debugpy-1.6.5-cp37-cp37m-win32.whl", hash = "sha256:0f9afcc8cad6424695f3356dc9a7406d5b18e37ee2e73f34792881a44b02cc50"}, + {file = "debugpy-1.6.5-cp37-cp37m-win_amd64.whl", hash = "sha256:b5a74ecebe5253344501d9b23f74459c46428b30437fa9254cfb8cb129943242"}, + {file = "debugpy-1.6.5-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:9e809ef787802c808995e5b6ade714a25fa187f892b41a412d418a15a9c4a432"}, + {file = "debugpy-1.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:947c686e8adb46726f3d5f19854f6aebf66c2edb91225643c7f44b40b064a235"}, + {file = "debugpy-1.6.5-cp38-cp38-win32.whl", hash = "sha256:377391341c4b86f403d93e467da8e2d05c22b683f08f9af3e16d980165b06b90"}, + {file = "debugpy-1.6.5-cp38-cp38-win_amd64.whl", hash = "sha256:286ae0c2def18ee0dc8a61fa76d51039ca8c11485b6ed3ef83e3efe8a23926ae"}, + {file = "debugpy-1.6.5-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:500dd4a9ff818f5c52dddb4a608c7de5371c2d7d905c505eb745556c579a9f11"}, + {file = "debugpy-1.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f3fab217fe7e2acb2d90732af1a871947def4e2b6654945ba1ebd94bd0bea26"}, + {file = "debugpy-1.6.5-cp39-cp39-win32.whl", hash = "sha256:15bc5febe0edc79726517b1f8d57d7ac7c784567b5ba804aab8b1c9d07a57018"}, + {file = "debugpy-1.6.5-cp39-cp39-win_amd64.whl", hash = "sha256:7e84d9e4420122384cb2cc762a00b4e17cbf998022890f89b195ce178f78ff47"}, + {file = "debugpy-1.6.5-py2.py3-none-any.whl", hash = "sha256:8116e40a1cd0593bd2aba01d4d560ee08f018da8e8fbd4cbd24ff09b5f0e41ef"}, + {file = "debugpy-1.6.5.zip", hash = "sha256:5e55e6c79e215239dd0794ee0bf655412b934735a58e9d705e5c544f596f1603"}, +] [[package]] name = "decorator" version = "5.1.1" description = "Decorators for Humans" -category = "main" optional = false python-versions = ">=3.5" +files = [ + {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, + {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, +] [[package]] name = "defusedxml" version = "0.7.1" description = "XML bomb protection for Python stdlib modules" -category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ + {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, + {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, +] [[package]] name = "dill" version = "0.3.6" description = "serialize all of python" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "dill-0.3.6-py3-none-any.whl", hash = "sha256:a07ffd2351b8c678dfc4a856a3005f8067aea51d6ba6c700796a4d9e280f39f0"}, + {file = "dill-0.3.6.tar.gz", hash = "sha256:e5db55f3687856d8fbdab002ed78544e1c4559a130302693d839dfe8f93f2373"}, +] [package.extras] graph = ["objgraph (>=1.7.2)"] @@ -338,18 +591,24 @@ graph = ["objgraph (>=1.7.2)"] name = "entrypoints" version = "0.4" description = "Discover and load entry points from installed packages." -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, + {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, +] [[package]] name = "executing" version = "1.2.0" description = "Get the currently executing AST node of a frame, and other information" -category = "main" optional = false python-versions = "*" - +files = [ + {file = "executing-1.2.0-py2.py3-none-any.whl", hash = "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc"}, + {file = "executing-1.2.0.tar.gz", hash = "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107"}, +] + [package.extras] tests = ["asttokens", "littleutils", "pytest", "rich"] @@ -357,9 +616,12 @@ tests = ["asttokens", "littleutils", "pytest", "rich"] name = "fastjsonschema" version = "2.16.2" description = "Fastest Python implementation of JSON schema" -category = "main" optional = false python-versions = "*" +files = [ + {file = "fastjsonschema-2.16.2-py3-none-any.whl", hash = "sha256:21f918e8d9a1a4ba9c22e09574ba72267a6762d47822db9add95f6454e51cc1c"}, + {file = "fastjsonschema-2.16.2.tar.gz", hash = "sha256:01e366f25d9047816fe3d288cbfc3e10541daf0af2044763f3d0ade42476da18"}, +] [package.extras] devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benchmark", "pytest-cache", "validictory"] @@ -368,9 +630,12 @@ devel = ["colorama", "json-spec", "jsonschema", "pylint", "pytest", "pytest-benc name = "flask" version = "2.2.2" description = "A simple framework for building complex web applications." -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "Flask-2.2.2-py3-none-any.whl", hash = "sha256:b9c46cc36662a7949f34b52d8ec7bb59c0d74ba08ba6cb9ce9adc1d8676d9526"}, + {file = "Flask-2.2.2.tar.gz", hash = "sha256:642c450d19c4ad482f96729bd2a8f6d32554aa1e231f4f6b4e7e5264b16cca2b"}, +] [package.dependencies] click = ">=8.0" @@ -386,9 +651,12 @@ dotenv = ["python-dotenv"] name = "fonttools" version = "4.38.0" description = "Tools to manipulate font files" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "fonttools-4.38.0-py3-none-any.whl", hash = "sha256:820466f43c8be8c3009aef8b87e785014133508f0de64ec469e4efb643ae54fb"}, + {file = "fonttools-4.38.0.zip", hash = "sha256:2bb244009f9bf3fa100fc3ead6aeb99febe5985fa20afbfbaa2f8946c2fbdaf1"}, +] [package.extras] all = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "fs (>=2.2.0,<3)", "lxml (>=4.0,<5)", "lz4 (>=1.7.4.2)", "matplotlib", "munkres", "scipy", "skia-pathops (>=0.5.0)", "sympy", "uharfbuzz (>=0.23.0)", "unicodedata2 (>=14.0.0)", "xattr", "zopfli (>=0.1.4)"] @@ -408,17 +676,73 @@ woff = ["brotli (>=1.0.1)", "brotlicffi (>=0.8.0)", "zopfli (>=0.1.4)"] name = "fqdn" version = "1.5.1" description = "Validates fully-qualified domain names against RFC 1123, so that they are acceptable to modern bowsers" -category = "main" optional = false python-versions = ">=2.7, !=3.0, !=3.1, !=3.2, !=3.3, !=3.4, <4" +files = [ + {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, + {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, +] [[package]] name = "gevent" version = "22.10.2" description = "Coroutine-based network library" -category = "main" optional = false python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5" +files = [ + {file = "gevent-22.10.2-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:97cd42382421779f5d82ec5007199e8a84aa288114975429e4fd0a98f2290f10"}, + {file = "gevent-22.10.2-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:1e1286a76f15b5e15f1e898731d50529e249529095a032453f2c101af3fde71c"}, + {file = "gevent-22.10.2-cp27-cp27m-win32.whl", hash = "sha256:59b47e81b399d49a5622f0f503c59f1ce57b7705306ea0196818951dfc2f36c8"}, + {file = "gevent-22.10.2-cp27-cp27m-win_amd64.whl", hash = "sha256:1d543c9407a1e4bca11a8932916988cfb16de00366de5bf7bc9e7a3f61e60b18"}, + {file = "gevent-22.10.2-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:4e2f008c82dc54ec94f4de12ca6feea60e419babb48ec145456907ae61625aa4"}, + {file = "gevent-22.10.2-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:990d7069f14dc40674e0d5cb43c68fd3bad8337048613b9bb94a0c4180ffc176"}, + {file = "gevent-22.10.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f23d0997149a816a2a9045af29c66f67f405a221745b34cefeac5769ed451db8"}, + {file = "gevent-22.10.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b43d500d7d3c0e03070dee813335bb5315215aa1cf6a04c61093dfdd718640b3"}, + {file = "gevent-22.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b68f4c9e20e47ad49fe797f37f91d5bbeace8765ce2707f979a8d4ec197e4d"}, + {file = "gevent-22.10.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1f001cac0ba8da76abfeb392a3057f81fab3d67cc916c7df8ea977a44a2cc989"}, + {file = "gevent-22.10.2-cp310-cp310-win_amd64.whl", hash = "sha256:3b7eae8a0653ba95a224faaddf629a913ace408edb67384d3117acf42d7dcf89"}, + {file = "gevent-22.10.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8f2477e7b0a903a01485c55bacf2089110e5f767014967ba4b287ff390ae2638"}, + {file = "gevent-22.10.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ddaa3e310a8f1a45b5c42cf50b54c31003a3028e7d4e085059090ea0e7a5fddd"}, + {file = "gevent-22.10.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98bc510e80f45486ef5b806a1c305e0e89f0430688c14984b0dbdec03331f48b"}, + {file = "gevent-22.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:877abdb3a669576b1d51ce6a49b7260b2a96f6b2424eb93287e779a3219d20ba"}, + {file = "gevent-22.10.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d21ad79cca234cdbfa249e727500b0ddcbc7adfff6614a96e6eaa49faca3e4f2"}, + {file = "gevent-22.10.2-cp311-cp311-win_amd64.whl", hash = "sha256:1e955238f59b2947631c9782a713280dd75884e40e455313b5b6bbc20b92ff73"}, + {file = "gevent-22.10.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:5aa99e4882a9e909b4756ee799c6fa0f79eb0542779fad4cc60efa23ec1b2aa8"}, + {file = "gevent-22.10.2-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d82081656a5b9a94d37c718c8646c757e1617e389cdc533ea5e6a6f0b8b78545"}, + {file = "gevent-22.10.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54f4bfd74c178351a4a05c5c7df6f8a0a279ff6f392b57608ce0e83c768207f9"}, + {file = "gevent-22.10.2-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ff3796692dff50fec2f381b9152438b221335f557c4f9b811f7ded51b7a25a1"}, + {file = "gevent-22.10.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f01c9adbcb605364694b11dcd0542ec468a29ac7aba2fb5665dc6caf17ba4d7e"}, + {file = "gevent-22.10.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:9d85574eb729f981fea9a78998725a06292d90a3ed50ddca74530c3148c0be41"}, + {file = "gevent-22.10.2-cp36-cp36m-win32.whl", hash = "sha256:8c192d2073e558e241f0b592c1e2b34127a4481a5be240cad4796533b88b1a98"}, + {file = "gevent-22.10.2-cp36-cp36m-win_amd64.whl", hash = "sha256:a2237451c721a0f874ef89dbb4af4fdc172b76a964befaa69deb15b8fff10f49"}, + {file = "gevent-22.10.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:53ee7f170ed42c7561fe8aff5d381dc9a4124694e70580d0c02fba6aafc0ea37"}, + {file = "gevent-22.10.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:96c56c280e3c43cfd075efd10b250350ed5ffd3c1514ec99a080b1b92d7c8374"}, + {file = "gevent-22.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b6c144e08dfad4106effc043a026e5d0c0eff6ad031904c70bf5090c63f3a6a7"}, + {file = "gevent-22.10.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:018f93de7d5318d2fb440f846839a4464738468c3476d5c9cf7da45bb71c18bd"}, + {file = "gevent-22.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7ed2346eb9dc4344f9cb0d7963ce5b74fe16fdd031a2809bb6c2b6eba7ebcd5"}, + {file = "gevent-22.10.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:84c517e33ed604fa06b7d756dc0171169cc12f7fdd68eb7b17708a62eebf4516"}, + {file = "gevent-22.10.2-cp37-cp37m-win32.whl", hash = "sha256:4114f0f439f0b547bb6f1d474fee99ddb46736944ad2207cef3771828f6aa358"}, + {file = "gevent-22.10.2-cp37-cp37m-win_amd64.whl", hash = "sha256:0d581f22a5be6281b11ad6309b38b18f0638cf896931223cbaa5adb904826ef6"}, + {file = "gevent-22.10.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2929377c8ebfb6f4d868d161cd8de2ea6b9f6c7a5fcd4f78bcd537319c16190b"}, + {file = "gevent-22.10.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:efc003b6c1481165af61f0aeac248e0a9ac8d880bb3acbe469b448674b2d5281"}, + {file = "gevent-22.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db562a8519838bddad0c439a2b12246bab539dd50e299ea7ff3644274a33b6a5"}, + {file = "gevent-22.10.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1472012493ca1fac103f700d309cb6ef7964dcdb9c788d1768266e77712f5e49"}, + {file = "gevent-22.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c04ee32c11e9fcee47c1b431834878dc987a7a2cc4fe126ddcae3bad723ce89"}, + {file = "gevent-22.10.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8729129edef2637a8084258cb9ec4e4d5ca45d97ac77aa7a6ff19ccb530ab731"}, + {file = "gevent-22.10.2-cp38-cp38-win32.whl", hash = "sha256:ae90226074a6089371a95f20288431cd4b3f6b0b096856afd862e4ac9510cddd"}, + {file = "gevent-22.10.2-cp38-cp38-win_amd64.whl", hash = "sha256:494c7f29e94df9a1c3157d67bb7edfa32a46eed786e04d9ee68d39f375e30001"}, + {file = "gevent-22.10.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:58898dbabb5b11e4d0192aae165ad286dc6742c543e1be9d30dc82753547c508"}, + {file = "gevent-22.10.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:4197d423e198265eef39a0dea286ef389da9148e070310f34455ecee8172c391"}, + {file = "gevent-22.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da4183f0b9d9a1e25e1758099220d32c51cc2c6340ee0dea3fd236b2b37598e4"}, + {file = "gevent-22.10.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a5488eba6a568b4d23c072113da4fc0feb1b5f5ede7381656dc913e0d82204e2"}, + {file = "gevent-22.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:319d8b1699b7b8134de66d656cd739b308ab9c45ace14d60ae44de7775b456c9"}, + {file = "gevent-22.10.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f3329bedbba4d3146ae58c667e0f9ac1e6f1e1e6340c7593976cdc60aa7d1a47"}, + {file = "gevent-22.10.2-cp39-cp39-win32.whl", hash = "sha256:172caa66273315f283e90a315921902cb6549762bdcb0587fd60cb712a9d6263"}, + {file = "gevent-22.10.2-cp39-cp39-win_amd64.whl", hash = "sha256:323b207b281ba0405fea042067fa1a61662e5ac0d574ede4ebbda03efd20c350"}, + {file = "gevent-22.10.2-pp27-pypy_73-win_amd64.whl", hash = "sha256:ed7f16613eebf892a6a744d7a4a8f345bc6f066a0ff3b413e2479f9c0a180193"}, + {file = "gevent-22.10.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a47a4e77e2bc668856aad92a0b8de7ee10768258d93cd03968e6c7ba2e832f76"}, + {file = "gevent-22.10.2.tar.gz", hash = "sha256:1ca01da176ee37b3527a2702f7d40dbc9ffb8cfc7be5a03bfa4f9eec45e55c46"}, +] [package.dependencies] cffi = {version = ">=1.12.2", markers = "platform_python_implementation == \"CPython\" and sys_platform == \"win32\""} @@ -438,9 +762,70 @@ test = ["backports.socketpair", "cffi (>=1.12.2)", "contextvars (==2.4)", "cover name = "greenlet" version = "2.0.1" description = "Lightweight in-process concurrent programming" -category = "main" optional = false python-versions = ">=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*" +files = [ + {file = "greenlet-2.0.1-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:9ed358312e63bf683b9ef22c8e442ef6c5c02973f0c2a939ec1d7b50c974015c"}, + {file = "greenlet-2.0.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4f09b0010e55bec3239278f642a8a506b91034f03a4fb28289a7d448a67f1515"}, + {file = "greenlet-2.0.1-cp27-cp27m-win32.whl", hash = "sha256:1407fe45246632d0ffb7a3f4a520ba4e6051fc2cbd61ba1f806900c27f47706a"}, + {file = "greenlet-2.0.1-cp27-cp27m-win_amd64.whl", hash = "sha256:3001d00eba6bbf084ae60ec7f4bb8ed375748f53aeaefaf2a37d9f0370558524"}, + {file = "greenlet-2.0.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:d566b82e92ff2e09dd6342df7e0eb4ff6275a3f08db284888dcd98134dbd4243"}, + {file = "greenlet-2.0.1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:0722c9be0797f544a3ed212569ca3fe3d9d1a1b13942d10dd6f0e8601e484d26"}, + {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d37990425b4687ade27810e3b1a1c37825d242ebc275066cfee8cb6b8829ccd"}, + {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be35822f35f99dcc48152c9839d0171a06186f2d71ef76dc57fa556cc9bf6b45"}, + {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c140e7eb5ce47249668056edf3b7e9900c6a2e22fb0eaf0513f18a1b2c14e1da"}, + {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d21681f09e297a5adaa73060737e3aa1279a13ecdcfcc6ef66c292cb25125b2d"}, + {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fb412b7db83fe56847df9c47b6fe3f13911b06339c2aa02dcc09dce8bbf582cd"}, + {file = "greenlet-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c6a08799e9e88052221adca55741bf106ec7ea0710bca635c208b751f0d5b617"}, + {file = "greenlet-2.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9e112e03d37987d7b90c1e98ba5e1b59e1645226d78d73282f45b326f7bddcb9"}, + {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56961cfca7da2fdd178f95ca407fa330c64f33289e1804b592a77d5593d9bd94"}, + {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:13ba6e8e326e2116c954074c994da14954982ba2795aebb881c07ac5d093a58a"}, + {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bf633a50cc93ed17e494015897361010fc08700d92676c87931d3ea464123ce"}, + {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9f2c221eecb7ead00b8e3ddb913c67f75cba078fd1d326053225a3f59d850d72"}, + {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:13ebf93c343dd8bd010cd98e617cb4c1c1f352a0cf2524c82d3814154116aa82"}, + {file = "greenlet-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:6f61d71bbc9b4a3de768371b210d906726535d6ca43506737682caa754b956cd"}, + {file = "greenlet-2.0.1-cp35-cp35m-macosx_10_14_x86_64.whl", hash = "sha256:2d0bac0385d2b43a7bd1d651621a4e0f1380abc63d6fb1012213a401cbd5bf8f"}, + {file = "greenlet-2.0.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:f6327b6907b4cb72f650a5b7b1be23a2aab395017aa6f1adb13069d66360eb3f"}, + {file = "greenlet-2.0.1-cp35-cp35m-win32.whl", hash = "sha256:81b0ea3715bf6a848d6f7149d25bf018fd24554a4be01fcbbe3fdc78e890b955"}, + {file = "greenlet-2.0.1-cp35-cp35m-win_amd64.whl", hash = "sha256:38255a3f1e8942573b067510f9611fc9e38196077b0c8eb7a8c795e105f9ce77"}, + {file = "greenlet-2.0.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:04957dc96669be041e0c260964cfef4c77287f07c40452e61abe19d647505581"}, + {file = "greenlet-2.0.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:4aeaebcd91d9fee9aa768c1b39cb12214b30bf36d2b7370505a9f2165fedd8d9"}, + {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:974a39bdb8c90a85982cdb78a103a32e0b1be986d411303064b28a80611f6e51"}, + {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8dca09dedf1bd8684767bc736cc20c97c29bc0c04c413e3276e0962cd7aeb148"}, + {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4c0757db9bd08470ff8277791795e70d0bf035a011a528ee9a5ce9454b6cba2"}, + {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:5067920de254f1a2dee8d3d9d7e4e03718e8fd2d2d9db962c8c9fa781ae82a39"}, + {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:5a8e05057fab2a365c81abc696cb753da7549d20266e8511eb6c9d9f72fe3e92"}, + {file = "greenlet-2.0.1-cp36-cp36m-win32.whl", hash = "sha256:3d75b8d013086b08e801fbbb896f7d5c9e6ccd44f13a9241d2bf7c0df9eda928"}, + {file = "greenlet-2.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:097e3dae69321e9100202fc62977f687454cd0ea147d0fd5a766e57450c569fd"}, + {file = "greenlet-2.0.1-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:cb242fc2cda5a307a7698c93173d3627a2a90d00507bccf5bc228851e8304963"}, + {file = "greenlet-2.0.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:72b00a8e7c25dcea5946692a2485b1a0c0661ed93ecfedfa9b6687bd89a24ef5"}, + {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5b0ff9878333823226d270417f24f4d06f235cb3e54d1103b71ea537a6a86ce"}, + {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be9e0fb2ada7e5124f5282d6381903183ecc73ea019568d6d63d33f25b2a9000"}, + {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b493db84d124805865adc587532ebad30efa68f79ad68f11b336e0a51ec86c2"}, + {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0459d94f73265744fee4c2d5ec44c6f34aa8a31017e6e9de770f7bcf29710be9"}, + {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a20d33124935d27b80e6fdacbd34205732660e0a1d35d8b10b3328179a2b51a1"}, + {file = "greenlet-2.0.1-cp37-cp37m-win32.whl", hash = "sha256:ea688d11707d30e212e0110a1aac7f7f3f542a259235d396f88be68b649e47d1"}, + {file = "greenlet-2.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:afe07421c969e259e9403c3bb658968702bc3b78ec0b6fde3ae1e73440529c23"}, + {file = "greenlet-2.0.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:cd4ccc364cf75d1422e66e247e52a93da6a9b73cefa8cad696f3cbbb75af179d"}, + {file = "greenlet-2.0.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:4c8b1c43e75c42a6cafcc71defa9e01ead39ae80bd733a2608b297412beede68"}, + {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:659f167f419a4609bc0516fb18ea69ed39dbb25594934bd2dd4d0401660e8a1e"}, + {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:356e4519d4dfa766d50ecc498544b44c0249b6de66426041d7f8b751de4d6b48"}, + {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:811e1d37d60b47cb8126e0a929b58c046251f28117cb16fcd371eed61f66b764"}, + {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d38ffd0e81ba8ef347d2be0772e899c289b59ff150ebbbbe05dc61b1246eb4e0"}, + {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0109af1138afbfb8ae647e31a2b1ab030f58b21dd8528c27beaeb0093b7938a9"}, + {file = "greenlet-2.0.1-cp38-cp38-win32.whl", hash = "sha256:88c8d517e78acdf7df8a2134a3c4b964415b575d2840a2746ddb1cc6175f8608"}, + {file = "greenlet-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d6ee1aa7ab36475035eb48c01efae87d37936a8173fc4d7b10bb02c2d75dd8f6"}, + {file = "greenlet-2.0.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b1992ba9d4780d9af9726bbcef6a1db12d9ab1ccc35e5773685a24b7fb2758eb"}, + {file = "greenlet-2.0.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:b5e83e4de81dcc9425598d9469a624826a0b1211380ac444c7c791d4a2137c19"}, + {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:505138d4fa69462447a562a7c2ef723c6025ba12ac04478bc1ce2fcc279a2db5"}, + {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cce1e90dd302f45716a7715517c6aa0468af0bf38e814ad4eab58e88fc09f7f7"}, + {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e9744c657d896c7b580455e739899e492a4a452e2dd4d2b3e459f6b244a638d"}, + {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:662e8f7cad915ba75d8017b3e601afc01ef20deeeabf281bd00369de196d7726"}, + {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:41b825d65f31e394b523c84db84f9383a2f7eefc13d987f308f4663794d2687e"}, + {file = "greenlet-2.0.1-cp39-cp39-win32.whl", hash = "sha256:db38f80540083ea33bdab614a9d28bcec4b54daa5aff1668d7827a9fc769ae0a"}, + {file = "greenlet-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:b23d2a46d53210b498e5b701a1913697671988f4bf8e10f935433f6e7c332fb6"}, + {file = "greenlet-2.0.1.tar.gz", hash = "sha256:42e602564460da0e8ee67cb6d7236363ee5e131aa15943b6670e44e5c2ed0f67"}, +] [package.extras] docs = ["Sphinx", "docutils (<0.18)"] @@ -450,17 +835,23 @@ test = ["faulthandler", "objgraph", "psutil"] name = "idna" version = "3.4" description = "Internationalized Domain Names in Applications (IDNA)" -category = "main" optional = false python-versions = ">=3.5" +files = [ + {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, + {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, +] [[package]] name = "imageio" version = "2.24.0" description = "Library for reading and writing a wide range of image, video, scientific, and volumetric data formats." -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "imageio-2.24.0-py3-none-any.whl", hash = "sha256:c4ccd0293a1aeb566c7fa04260d51897be064b8fb287a77548ce42050ec06d7a"}, + {file = "imageio-2.24.0.tar.gz", hash = "sha256:f240f8229f4f329a1546281194b52da5d6694141a524668fed3f81b0d07782fa"}, +] [package.dependencies] numpy = "*" @@ -487,9 +878,12 @@ tifffile = ["tifffile"] name = "interpret" version = "0.3.0" description = "Fit interpretable machine learning models. Explain blackbox machine learning." -category = "main" optional = false python-versions = "*" +files = [ + {file = "interpret-0.3.0-py3-none-any.whl", hash = "sha256:be9a2ed6fb97a0b3ce89b722a0ca739f66e0682df6788a25312b74350c594bfb"}, + {file = "interpret-0.3.0.tar.gz", hash = "sha256:18816fb03df3123e5f8ed4117338b8c3571fb24db315f8c8f20c383e297e97fe"}, +] [package.dependencies] interpret-core = {version = ">=0.3.0", extras = ["dash", "debug", "decisiontree", "ebm", "lime", "linear", "notebook", "plotly", "required", "sensitivity", "shap", "skoperules", "treeinterpreter"]} @@ -498,9 +892,12 @@ interpret-core = {version = ">=0.3.0", extras = ["dash", "debug", "decisiontree" name = "interpret-core" version = "0.3.0" description = "Fit interpretable machine learning models. Explain blackbox machine learning." -category = "main" optional = false python-versions = "*" +files = [ + {file = "interpret-core-0.3.0.tar.gz", hash = "sha256:83c3bd21112e97afe87d3b7aa8977c0b6c16229abba8ef0b120d8616e49ca4cb"}, + {file = "interpret_core-0.3.0-py3-none-any.whl", hash = "sha256:81d0fd262ac22e36d7a0b03c5601072295481a1878aab62e4a724118b0899618"}, +] [package.dependencies] dash = {version = ">=1.0.0", optional = true, markers = "extra == \"dash\""} @@ -510,7 +907,7 @@ dill = {version = ">=0.2.5", optional = true, markers = "extra == \"shap\""} gevent = {version = ">=1.3.6", optional = true, markers = "extra == \"dash\""} ipykernel = {version = ">=5.1.0", optional = true, markers = "extra == \"notebook\""} ipython = {version = ">=7.4.0", optional = true, markers = "extra == \"notebook\""} -joblib = {version = ">=0.11", optional = true, markers = "extra == \"decisiontree\""} +joblib = {version = ">=0.11", optional = true, markers = "extra == \"decisiontree\" or extra == \"ebm\" or extra == \"required\""} lime = {version = ">=0.1.1.33", optional = true, markers = "extra == \"lime\""} numpy = {version = ">=1.11.1", optional = true, markers = "extra == \"required\""} pandas = {version = ">=0.19.2", optional = true, markers = "extra == \"required\""} @@ -543,47 +940,59 @@ treeinterpreter = ["treeinterpreter (>=0.2.2)"] name = "iprogress" version = "0.4" description = "Text progress bar library for Python." -category = "main" optional = false python-versions = "*" +files = [ + {file = "IProgress-0.4-py3-none-any.whl", hash = "sha256:098ba92780bf0eb3f2f3a0d4109e48d1f3c8ba57d821c6838f9ccb73e4fdc576"}, + {file = "IProgress-0.4.tar.gz", hash = "sha256:55c6bce8ad4401889330fb1125c0bf7810bfbfe0105c058f861ae91e962d51eb"}, +] [package.dependencies] six = "*" [[package]] name = "ipykernel" -version = "6.19.4" +version = "6.29.5" description = "IPython Kernel for Jupyter" -category = "main" optional = false python-versions = ">=3.8" +files = [ + {file = "ipykernel-6.29.5-py3-none-any.whl", hash = "sha256:afdb66ba5aa354b09b91379bac28ae4afebbb30e8b39510c9690afb7a10421b5"}, + {file = "ipykernel-6.29.5.tar.gz", hash = "sha256:f093a22c4a40f8828f8e330a9c297cb93dcab13bd9678ded6de8e5cf81c56215"}, +] [package.dependencies] appnope = {version = "*", markers = "platform_system == \"Darwin\""} comm = ">=0.1.1" -debugpy = ">=1.0" +debugpy = ">=1.6.5" ipython = ">=7.23.1" jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" matplotlib-inline = ">=0.1" nest-asyncio = "*" packaging = "*" psutil = "*" -pyzmq = ">=17" +pyzmq = ">=24" tornado = ">=6.1" traitlets = ">=5.4.0" [package.extras] cov = ["coverage[toml]", "curio", "matplotlib", "pytest-cov", "trio"] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt"] -test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov", "pytest-timeout"] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinx-autodoc-typehints", "sphinxcontrib-github-alt", "sphinxcontrib-spelling", "trio"] +pyqt5 = ["pyqt5"] +pyside6 = ["pyside6"] +test = ["flaky", "ipyparallel", "pre-commit", "pytest (>=7.0)", "pytest-asyncio (>=0.23.5)", "pytest-cov", "pytest-timeout"] [[package]] name = "ipython" version = "8.8.0" description = "IPython: Productive Interactive Computing" -category = "main" optional = false python-versions = ">=3.8" +files = [ + {file = "ipython-8.8.0-py3-none-any.whl", hash = "sha256:da01e6df1501e6e7c32b5084212ddadd4ee2471602e2cf3e0190f4de6b0ea481"}, + {file = "ipython-8.8.0.tar.gz", hash = "sha256:f3bf2c08505ad2c3f4ed5c46ae0331a8547d36bf4b21a451e8ae80c0791db95b"}, +] [package.dependencies] appnope = {version = "*", markers = "sys_platform == \"darwin\""} @@ -616,17 +1025,23 @@ test-extra = ["curio", "matplotlib (!=3.2.0)", "nbformat", "numpy (>=1.20)", "pa name = "ipython-genutils" version = "0.2.0" description = "Vestigial utilities from IPython" -category = "main" optional = false python-versions = "*" +files = [ + {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, + {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, +] [[package]] name = "isoduration" version = "20.11.0" description = "Operations with ISO 8601 durations" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, + {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, +] [package.dependencies] arrow = ">=0.15.0" @@ -635,17 +1050,23 @@ arrow = ">=0.15.0" name = "itsdangerous" version = "2.1.2" description = "Safely pass data to untrusted environments and back." -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "itsdangerous-2.1.2-py3-none-any.whl", hash = "sha256:2c2349112351b88699d8d4b6b075022c0808887cb7ad10069318a8b0bc88db44"}, + {file = "itsdangerous-2.1.2.tar.gz", hash = "sha256:5dbbc68b317e5e42f327f9021763545dc3fc3bfe22e6deb96aaf1fc38874156a"}, +] [[package]] name = "jedi" version = "0.18.2" description = "An autocompletion tool for Python that can be used for text editors." -category = "main" optional = false python-versions = ">=3.6" +files = [ + {file = "jedi-0.18.2-py2.py3-none-any.whl", hash = "sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e"}, + {file = "jedi-0.18.2.tar.gz", hash = "sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"}, +] [package.dependencies] parso = ">=0.8.0,<0.9.0" @@ -659,9 +1080,12 @@ testing = ["Django (<3.1)", "attrs", "colorama", "docopt", "pytest (<7.0.0)"] name = "jinja2" version = "3.1.2" description = "A very fast and expressive template engine." -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, + {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, +] [package.dependencies] MarkupSafe = ">=2.0" @@ -673,17 +1097,23 @@ i18n = ["Babel (>=2.7)"] name = "joblib" version = "1.2.0" description = "Lightweight pipelining with Python functions" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"}, + {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, +] [[package]] name = "json5" version = "0.9.11" description = "A Python implementation of the JSON5 data format." -category = "main" optional = false python-versions = "*" +files = [ + {file = "json5-0.9.11-py2.py3-none-any.whl", hash = "sha256:1aa54b80b5e507dfe31d12b7743a642e2ffa6f70bf73b8e3d7d1d5fba83d99bd"}, + {file = "json5-0.9.11.tar.gz", hash = "sha256:4f1e196acc55b83985a51318489f345963c7ba84aa37607e49073066c562e99b"}, +] [package.extras] dev = ["hypothesis"] @@ -692,17 +1122,23 @@ dev = ["hypothesis"] name = "jsonpointer" version = "2.3" description = "Identify specific nodes in a JSON document (RFC 6901)" -category = "main" optional = false python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ + {file = "jsonpointer-2.3-py2.py3-none-any.whl", hash = "sha256:51801e558539b4e9cd268638c078c6c5746c9ac96bc38152d443400e4f3793e9"}, + {file = "jsonpointer-2.3.tar.gz", hash = "sha256:97cba51526c829282218feb99dab1b1e6bdf8efd1c43dc9d57be093c0d69c99a"}, +] [[package]] name = "jsonschema" version = "4.17.3" description = "An implementation of JSON Schema validation for Python" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"}, + {file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"}, +] [package.dependencies] attrs = ">=17.4.0" @@ -724,9 +1160,12 @@ format-nongpl = ["fqdn", "idna", "isoduration", "jsonpointer (>1.13)", "rfc3339- name = "jupyter-client" version = "7.4.8" description = "Jupyter protocol implementation and client libraries" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "jupyter_client-7.4.8-py3-none-any.whl", hash = "sha256:d4a67ae86ee014bcb96bd8190714f6af921f2b0f52f4208b086aa5acfd9f8d65"}, + {file = "jupyter_client-7.4.8.tar.gz", hash = "sha256:109a3c33b62a9cf65aa8325850a0999a795fac155d9de4f7555aef5f310ee35a"}, +] [package.dependencies] entrypoints = "*" @@ -745,9 +1184,12 @@ test = ["codecov", "coverage", "ipykernel (>=6.12)", "ipython", "mypy", "pre-com name = "jupyter-core" version = "5.1.2" description = "Jupyter core package. A base package on which Jupyter projects rely." -category = "main" optional = false python-versions = ">=3.8" +files = [ + {file = "jupyter_core-5.1.2-py3-none-any.whl", hash = "sha256:0f99cc639c8d00d591acfcc028aeea81473ea6c72fabe86426398220e2d91b1d"}, + {file = "jupyter_core-5.1.2.tar.gz", hash = "sha256:62b00d52f030643d29f86aafdfd9b36d42421823599a272eb4c2df1d1cc7f723"}, +] [package.dependencies] platformdirs = ">=2.5" @@ -762,9 +1204,12 @@ test = ["ipykernel", "pre-commit", "pytest", "pytest-cov", "pytest-timeout"] name = "jupyter-events" version = "0.5.0" description = "Jupyter Event System library" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "jupyter_events-0.5.0-py3-none-any.whl", hash = "sha256:6f7b67bf42b8a370c992187194ed02847dfa02307a7aebe9913e2d3979b9b6b8"}, + {file = "jupyter_events-0.5.0.tar.gz", hash = "sha256:e27ffdd6138699d47d42cb65ae6d79334ff7c0d923694381c991ce56a140f2cd"}, +] [package.dependencies] jsonschema = {version = ">=4.3.0", extras = ["format-nongpl"]} @@ -780,16 +1225,19 @@ test = ["click", "coverage", "pre-commit", "pytest (>=6.1.0)", "pytest-asyncio ( name = "jupyter-server" version = "2.0.6" description = "The backend—i.e. core services, APIs, and REST endpoints—to Jupyter web applications." -category = "main" optional = false python-versions = ">=3.8" +files = [ + {file = "jupyter_server-2.0.6-py3-none-any.whl", hash = "sha256:6a4c9a3f9fa8679015954586944a568b911a98d7480ae1d56ff55a6a4f055254"}, + {file = "jupyter_server-2.0.6.tar.gz", hash = "sha256:8dd75992e90b7ca556794a1ed5cca51263c697abc6d0df561af574aa1c0a033f"}, +] [package.dependencies] anyio = ">=3.1.0,<4" argon2-cffi = "*" jinja2 = "*" jupyter-client = ">=7.4.4" -jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" jupyter-events = ">=0.4.0" jupyter-server-terminals = "*" nbconvert = ">=6.4.4" @@ -812,9 +1260,12 @@ test = ["ipykernel", "pre-commit", "pytest (>=7.0)", "pytest-console-scripts", " name = "jupyter-server-terminals" version = "0.4.3" description = "A Jupyter Server Extension Providing Terminals." -category = "main" optional = false python-versions = ">=3.8" +files = [ + {file = "jupyter_server_terminals-0.4.3-py3-none-any.whl", hash = "sha256:ec67d3f1895d25cfb586a87a50b8eee13b709898a4afd721058e551e0a0f480d"}, + {file = "jupyter_server_terminals-0.4.3.tar.gz", hash = "sha256:8421438d95a1f1f6994c48dd5dc10ad167ea7c196972bb5d1d7a9da1e30fde02"}, +] [package.dependencies] pywinpty = {version = ">=2.0.3", markers = "os_name == \"nt\""} @@ -828,9 +1279,12 @@ test = ["coverage", "jupyter-server (>=2.0.0)", "pytest (>=7.0)", "pytest-cov", name = "jupyterlab" version = "3.5.2" description = "JupyterLab computational environment" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "jupyterlab-3.5.2-py3-none-any.whl", hash = "sha256:16e9b8320dcec469c70bb883e993e0bb84c4ea1a734063731f66922cf72add1b"}, + {file = "jupyterlab-3.5.2.tar.gz", hash = "sha256:10ac094215ffb872ddffbe2982bf1c039a79fecc326e191e7cc5efd84f331dad"}, +] [package.dependencies] ipython = "*" @@ -851,17 +1305,23 @@ test = ["check-manifest", "coverage", "jupyterlab-server[test]", "pre-commit", " name = "jupyterlab-pygments" version = "0.2.2" description = "Pygments theme using JupyterLab CSS variables" -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, + {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, +] [[package]] name = "jupyterlab-server" version = "2.18.0" description = "A set of server components for JupyterLab and JupyterLab like applications." -category = "main" optional = false python-versions = ">=3.7" +files = [ + {file = "jupyterlab_server-2.18.0-py3-none-any.whl", hash = "sha256:2ce377afe6c5f762e933de1d942cad1ec07a1fbace4b586cd7a905fd57892695"}, + {file = "jupyterlab_server-2.18.0.tar.gz", hash = "sha256:7830f085debc9417a72ebf482dc5cb477d6bf76884826c73182fa457c7829df4"}, +] [package.dependencies] babel = ">=2.10" @@ -881,1687 +1341,9 @@ test = ["codecov", "ipykernel", "jupyterlab-server[openapi]", "openapi-spec-vali name = "kiwisolver" version = "1.4.4" description = "A fast implementation of the Cassowary constraint solver" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "lime" -version = "0.2.0.1" -description = "Local Interpretable Model-Agnostic Explanations for machine learning classifiers" -category = "main" -optional = false -python-versions = ">=3.5" - -[package.dependencies] -matplotlib = "*" -numpy = "*" -scikit-image = ">=0.12" -scikit-learn = ">=0.18" -scipy = "*" -tqdm = "*" - -[package.extras] -dev = ["flake8", "pytest"] - -[[package]] -name = "llvmlite" -version = "0.39.1" -description = "lightweight wrapper around basic LLVM functionality" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "markupsafe" -version = "2.1.1" -description = "Safely add untrusted strings to HTML/XML markup." -category = "main" optional = false python-versions = ">=3.7" - -[[package]] -name = "matplotlib" -version = "3.6.2" -description = "Python plotting package" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -contourpy = ">=1.0.1" -cycler = ">=0.10" -fonttools = ">=4.22.0" -kiwisolver = ">=1.0.1" -numpy = ">=1.19" -packaging = ">=20.0" -pillow = ">=6.2.0" -pyparsing = ">=2.2.1" -python-dateutil = ">=2.7" -setuptools_scm = ">=7" - -[[package]] -name = "matplotlib-inline" -version = "0.1.6" -description = "Inline Matplotlib backend for Jupyter" -category = "main" -optional = false -python-versions = ">=3.5" - -[package.dependencies] -traitlets = "*" - -[[package]] -name = "mistune" -version = "2.0.4" -description = "A sane Markdown parser with useful plugins and renderers" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "multiprocess" -version = "0.70.14" -description = "better multiprocessing and multithreading in python" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -dill = ">=0.3.6" - -[[package]] -name = "nbclassic" -version = "0.4.8" -description = "A web-based notebook environment for interactive computing" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -argon2-cffi = "*" -ipykernel = "*" -ipython-genutils = "*" -jinja2 = "*" -jupyter-client = ">=6.1.1" -jupyter-core = ">=4.6.1" -jupyter-server = ">=1.8" -nbconvert = ">=5" -nbformat = "*" -nest-asyncio = ">=1.5" -notebook-shim = ">=0.1.0" -prometheus-client = "*" -pyzmq = ">=17" -Send2Trash = ">=1.8.0" -terminado = ">=0.8.3" -tornado = ">=6.1" -traitlets = ">=4.2.1" - -[package.extras] -docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] -json-logging = ["json-logging"] -test = ["coverage", "nbval", "pytest", "pytest-cov", "pytest-playwright", "pytest-tornasync", "requests", "requests-unixsocket", "testpath"] - -[[package]] -name = "nbclient" -version = "0.7.2" -description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." -category = "main" -optional = false -python-versions = ">=3.7.0" - -[package.dependencies] -jupyter-client = ">=6.1.12" -jupyter-core = ">=4.12,<5.0.0 || >=5.1.0" -nbformat = ">=5.1" -traitlets = ">=5.3" - -[package.extras] -dev = ["pre-commit"] -docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme"] -test = ["ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] - -[[package]] -name = "nbconvert" -version = "7.2.7" -description = "Converting Jupyter Notebooks" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -beautifulsoup4 = "*" -bleach = "*" -defusedxml = "*" -jinja2 = ">=3.0" -jupyter-core = ">=4.7" -jupyterlab-pygments = "*" -markupsafe = ">=2.0" -mistune = ">=2.0.3,<3" -nbclient = ">=0.5.0" -nbformat = ">=5.1" -packaging = "*" -pandocfilters = ">=1.4.1" -pygments = ">=2.4.1" -tinycss2 = "*" -traitlets = ">=5.0" - -[package.extras] -all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] -docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)"] -qtpdf = ["nbconvert[qtpng]"] -qtpng = ["pyqtwebengine (>=5.15)"] -serve = ["tornado (>=6.1)"] -test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] -webpdf = ["pyppeteer (>=1,<1.1)"] - -[[package]] -name = "nbformat" -version = "5.7.1" -description = "The Jupyter Notebook format" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -fastjsonschema = "*" -jsonschema = ">=2.6" -jupyter-core = "*" -traitlets = ">=5.1" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt"] -test = ["pep440", "pre-commit", "pytest", "testpath"] - -[[package]] -name = "nest-asyncio" -version = "1.5.6" -description = "Patch asyncio to allow nested event loops" -category = "main" -optional = false -python-versions = ">=3.5" - -[[package]] -name = "networkx" -version = "3.0" -description = "Python package for creating and manipulating graphs and networks" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.extras] -default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] -developer = ["mypy (>=0.991)", "pre-commit (>=2.20)"] -doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.2)", "pydata-sphinx-theme (>=0.11)", "sphinx (==5.2.3)", "sphinx-gallery (>=0.11)", "texext (>=0.6.7)"] -extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] -test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] - -[[package]] -name = "notebook" -version = "6.5.2" -description = "A web-based notebook environment for interactive computing" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -argon2-cffi = "*" -ipykernel = "*" -ipython-genutils = "*" -jinja2 = "*" -jupyter-client = ">=5.3.4" -jupyter-core = ">=4.6.1" -nbclassic = ">=0.4.7" -nbconvert = ">=5" -nbformat = "*" -nest-asyncio = ">=1.5" -prometheus-client = "*" -pyzmq = ">=17" -Send2Trash = ">=1.8.0" -terminado = ">=0.8.3" -tornado = ">=6.1" -traitlets = ">=4.2.1" - -[package.extras] -docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] -json-logging = ["json-logging"] -test = ["coverage", "nbval", "pytest", "pytest-cov", "requests", "requests-unixsocket", "selenium (==4.1.5)", "testpath"] - -[[package]] -name = "notebook-shim" -version = "0.2.2" -description = "A shim layer for notebook traits and config" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -jupyter-server = ">=1.8,<3" - -[package.extras] -test = ["pytest", "pytest-console-scripts", "pytest-tornasync"] - -[[package]] -name = "numba" -version = "0.56.4" -description = "compiling Python code using LLVM" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -llvmlite = ">=0.39.0dev0,<0.40" -numpy = ">=1.18,<1.24" -setuptools = "*" - -[[package]] -name = "numpy" -version = "1.23.5" -description = "NumPy is the fundamental package for array computing with Python." -category = "main" -optional = false -python-versions = ">=3.8" - -[[package]] -name = "nvidia-cublas-cu11" -version = "11.10.3.66" -description = "CUBLAS native runtime libraries" -category = "main" -optional = false -python-versions = ">=3" - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cuda-nvrtc-cu11" -version = "11.7.99" -description = "NVRTC native runtime libraries" -category = "main" -optional = false -python-versions = ">=3" - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cuda-runtime-cu11" -version = "11.7.99" -description = "CUDA Runtime native Libraries" -category = "main" -optional = false -python-versions = ">=3" - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "nvidia-cudnn-cu11" -version = "8.5.0.96" -description = "cuDNN runtime libraries" -category = "main" -optional = false -python-versions = ">=3" - -[package.dependencies] -setuptools = "*" -wheel = "*" - -[[package]] -name = "packaging" -version = "23.0" -description = "Core utilities for Python packages" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "pandas" -version = "1.5.2" -description = "Powerful data structures for data analysis, time series, and statistics" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -numpy = [ - {version = ">=1.21.0", markers = "python_version >= \"3.10\""}, - {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, -] -python-dateutil = ">=2.8.1" -pytz = ">=2020.1" - -[package.extras] -test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] - -[[package]] -name = "pandocfilters" -version = "1.5.0" -description = "Utilities for writing pandoc filters in python" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[[package]] -name = "parso" -version = "0.8.3" -description = "A Python Parser" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.extras] -qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] -testing = ["docopt", "pytest (<6.0.0)"] - -[[package]] -name = "pexpect" -version = "4.8.0" -description = "Pexpect allows easy control of interactive console applications." -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -ptyprocess = ">=0.5" - -[[package]] -name = "pickleshare" -version = "0.7.5" -description = "Tiny 'shelve'-like database with concurrency support" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "pillow" -version = "9.4.0" -description = "Python Imaging Library (Fork)" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-issues (>=3.0.1)", "sphinx-removed-in", "sphinxext-opengraph"] -tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] - -[[package]] -name = "platformdirs" -version = "2.6.2" -description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -docs = ["furo (>=2022.12.7)", "proselint (>=0.13)", "sphinx (>=5.3)", "sphinx-autodoc-typehints (>=1.19.5)"] -test = ["appdirs (==1.4.4)", "covdefaults (>=2.2.2)", "pytest (>=7.2)", "pytest-cov (>=4)", "pytest-mock (>=3.10)"] - -[[package]] -name = "plotly" -version = "5.11.0" -description = "An open-source, interactive data visualization library for Python" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -tenacity = ">=6.2.0" - -[[package]] -name = "prometheus-client" -version = "0.15.0" -description = "Python client for the Prometheus monitoring system." -category = "main" -optional = false -python-versions = ">=3.6" - -[package.extras] -twisted = ["twisted"] - -[[package]] -name = "prompt-toolkit" -version = "3.0.36" -description = "Library for building powerful interactive command lines in Python" -category = "main" -optional = false -python-versions = ">=3.6.2" - -[package.dependencies] -wcwidth = "*" - -[[package]] -name = "psutil" -version = "5.9.4" -description = "Cross-platform lib for process and system monitoring in Python." -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[package.extras] -test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] - -[[package]] -name = "ptyprocess" -version = "0.7.0" -description = "Run a subprocess in a pseudo terminal" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "pure-eval" -version = "0.2.2" -description = "Safely evaluate AST nodes without side effects" -category = "main" -optional = false -python-versions = "*" - -[package.extras] -tests = ["pytest"] - -[[package]] -name = "py" -version = "1.11.0" -description = "library with cross-python path, ini-parsing, io, code, log facilities" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[[package]] -name = "pycparser" -version = "2.21" -description = "C parser in Python" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" - -[[package]] -name = "pygments" -version = "2.14.0" -description = "Pygments is a syntax highlighting package written in Python." -category = "main" -optional = false -python-versions = ">=3.6" - -[package.extras] -plugins = ["importlib-metadata"] - -[[package]] -name = "pyparsing" -version = "3.0.9" -description = "pyparsing module - Classes and methods to define and execute parsing grammars" -category = "main" -optional = false -python-versions = ">=3.6.8" - -[package.extras] -diagrams = ["jinja2", "railroad-diagrams"] - -[[package]] -name = "pyrsistent" -version = "0.19.3" -description = "Persistent/Functional/Immutable data structures" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "python-dateutil" -version = "2.8.2" -description = "Extensions to the standard Python datetime module" -category = "main" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" - -[package.dependencies] -six = ">=1.5" - -[[package]] -name = "python-json-logger" -version = "2.0.4" -description = "A python library adding a json log formatter" -category = "main" -optional = false -python-versions = ">=3.5" - -[[package]] -name = "pytz" -version = "2022.7" -description = "World timezone definitions, modern and historical" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "pywavelets" -version = "1.4.1" -description = "PyWavelets, wavelet transform module" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -numpy = ">=1.17.3" - -[[package]] -name = "pywin32" -version = "305" -description = "Python for Window Extensions" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "pywinpty" -version = "2.0.10" -description = "Pseudo terminal support for Windows from Python." -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "pyyaml" -version = "6.0" -description = "YAML parser and emitter for Python" -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "pyzmq" -version = "24.0.1" -description = "Python bindings for 0MQ" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.dependencies] -cffi = {version = "*", markers = "implementation_name == \"pypy\""} -py = {version = "*", markers = "implementation_name == \"pypy\""} - -[[package]] -name = "requests" -version = "2.28.1" -description = "Python HTTP for Humans." -category = "main" -optional = false -python-versions = ">=3.7, <4" - -[package.dependencies] -certifi = ">=2017.4.17" -charset-normalizer = ">=2,<3" -idna = ">=2.5,<4" -urllib3 = ">=1.21.1,<1.27" - -[package.extras] -socks = ["PySocks (>=1.5.6,!=1.5.7)"] -use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] - -[[package]] -name = "rfc3339-validator" -version = "0.1.4" -description = "A pure python RFC3339 validator" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[package.dependencies] -six = "*" - -[[package]] -name = "rfc3986-validator" -version = "0.1.1" -description = "Pure python rfc3986 validator" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[[package]] -name = "salib" -version = "1.4.7" -description = "Tools for global sensitivity analysis. Contains Sobol', Morris, FAST, DGSM, PAWN, HDMR, Moment Independent and fractional factorial methods" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -matplotlib = ">=3.2.2" -multiprocess = "*" -numpy = ">=1.20.3" -pandas = ">=1.1.2" -scipy = ">=1.7.3" - -[package.extras] -dev = ["hatch", "pre-commit", "salib[distributed]", "salib[doc]", "salib[test]"] -distributed = ["pathos (>=0.2.5)"] -doc = ["myst-parser", "numpydoc", "pydata-sphinx-theme (>=0.10)", "sphinx"] -test = ["pytest", "pytest-cov", "salib[distributed]"] - -[[package]] -name = "scikit-image" -version = "0.19.3" -description = "Image processing in Python" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -imageio = ">=2.4.1" -networkx = ">=2.2" -numpy = ">=1.17.0" -packaging = ">=20.0" -pillow = ">=6.1.0,<7.1.0 || >7.1.0,<7.1.1 || >7.1.1,<8.3.0 || >8.3.0" -PyWavelets = ">=1.1.1" -scipy = ">=1.4.1" -tifffile = ">=2019.7.26" - -[package.extras] -data = ["pooch (>=1.3.0)"] -docs = ["cloudpickle (>=0.2.1)", "dask[array] (>=0.15.0,!=2.17.0)", "ipywidgets", "kaleido", "matplotlib (>=3.3)", "myst-parser", "numpydoc (>=1.0)", "pandas (>=0.23.0)", "plotly (>=4.14.0)", "pooch (>=1.3.0)", "pytest-runner", "scikit-learn", "seaborn (>=0.7.1)", "sphinx (>=1.8)", "sphinx-copybutton", "sphinx-gallery (>=0.10.1)", "tifffile (>=2020.5.30)"] -optional = ["SimpleITK", "astropy (>=3.1.2)", "cloudpickle (>=0.2.1)", "dask[array] (>=1.0.0,!=2.17.0)", "matplotlib (>=3.0.3)", "pooch (>=1.3.0)", "pyamg", "qtpy"] -test = ["asv", "codecov", "flake8", "matplotlib (>=3.0.3)", "pooch (>=1.3.0)", "pytest (>=5.2.0)", "pytest-cov (>=2.7.0)", "pytest-faulthandler", "pytest-localserver"] - -[[package]] -name = "scikit-learn" -version = "1.2.0" -description = "A set of python modules for machine learning and data mining" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -joblib = ">=1.1.1" -numpy = ">=1.17.3" -scipy = ">=1.3.2" -threadpoolctl = ">=2.0.0" - -[package.extras] -benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] -docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=4.0.1)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] -examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] -tests = ["black (>=22.3.0)", "flake8 (>=3.8.2)", "matplotlib (>=3.1.3)", "mypy (>=0.961)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=5.3.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.16.2)"] - -[[package]] -name = "scipy" -version = "1.9.3" -description = "Fundamental algorithms for scientific computing in Python" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -numpy = ">=1.18.5,<1.26.0" - -[package.extras] -dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"] -doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"] -test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] - -[[package]] -name = "seaborn" -version = "0.12.2" -description = "Statistical data visualization" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -matplotlib = ">=3.1,<3.6.1 || >3.6.1" -numpy = ">=1.17,<1.24.0 || >1.24.0" -pandas = ">=0.25" - -[package.extras] -dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] -docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] -stats = ["scipy (>=1.3)", "statsmodels (>=0.10)"] - -[[package]] -name = "send2trash" -version = "1.8.0" -description = "Send file to trash natively under Mac OS X, Windows and Linux." -category = "main" -optional = false -python-versions = "*" - -[package.extras] -nativelib = ["pyobjc-framework-Cocoa", "pywin32"] -objc = ["pyobjc-framework-Cocoa"] -win32 = ["pywin32"] - -[[package]] -name = "setuptools" -version = "65.6.3" -description = "Easily download, build, install, upgrade, and uninstall Python packages" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] -testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] -testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] - -[[package]] -name = "setuptools-scm" -version = "7.1.0" -description = "the blessed package to manage your versions by scm tags" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -packaging = ">=20.0" -setuptools = "*" -tomli = {version = ">=1.0.0", markers = "python_version < \"3.11\""} -typing-extensions = "*" - -[package.extras] -test = ["pytest (>=6.2)", "virtualenv (>20)"] -toml = ["setuptools (>=42)"] - -[[package]] -name = "shap" -version = "0.41.0" -description = "A unified approach to explain the output of any machine learning model." -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -cloudpickle = "*" -numba = "*" -numpy = "*" -packaging = ">20.9" -pandas = "*" -scikit-learn = "*" -scipy = "*" -slicer = "0.0.7" -tqdm = ">4.25.0" - -[package.extras] -all = ["catboost", "ipython", "lightgbm", "lime", "matplotlib", "nbsphinx", "numpydoc", "opencv-python", "pyod", "pyspark", "pytest", "pytest-cov", "pytest-mpl", "sentencepiece", "sphinx", "sphinx-rtd-theme", "torch", "transformers", "xgboost"] -docs = ["ipython", "matplotlib", "nbsphinx", "numpydoc", "sphinx", "sphinx-rtd-theme"] -others = ["lime"] -plots = ["ipython", "matplotlib"] -test = ["catboost", "lightgbm", "opencv-python", "pyod", "pyspark", "pytest", "pytest-cov", "pytest-mpl", "sentencepiece", "torch", "transformers", "xgboost"] - -[[package]] -name = "six" -version = "1.16.0" -description = "Python 2 and 3 compatibility utilities" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" - -[[package]] -name = "skope-rules" -version = "1.0.1" -description = "Machine Learning with Interpretable Rules" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -numpy = ">=1.10.4" -pandas = ">=0.18.1" -scikit-learn = ">=0.17.1" -scipy = ">=0.17.0" - -[[package]] -name = "slicer" -version = "0.0.7" -description = "A small package for big slicing." -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "sniffio" -version = "1.3.0" -description = "Sniff out which async library your code is running under" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "soupsieve" -version = "2.3.2.post1" -description = "A modern CSS selector implementation for Beautiful Soup." -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "stack-data" -version = "0.6.2" -description = "Extract data from python stack frames and tracebacks for informative displays" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -asttokens = ">=2.1.0" -executing = ">=1.2.0" -pure-eval = "*" - -[package.extras] -tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] - -[[package]] -name = "tenacity" -version = "8.1.0" -description = "Retry code until it succeeds" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.extras] -doc = ["reno", "sphinx", "tornado (>=4.5)"] - -[[package]] -name = "terminado" -version = "0.17.1" -description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -ptyprocess = {version = "*", markers = "os_name != \"nt\""} -pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} -tornado = ">=6.1.0" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] - -[[package]] -name = "threadpoolctl" -version = "3.1.0" -description = "threadpoolctl" -category = "main" -optional = false -python-versions = ">=3.6" - -[[package]] -name = "tifffile" -version = "2022.10.10" -description = "Read and write TIFF files" -category = "main" -optional = false -python-versions = ">=3.8" - -[package.dependencies] -numpy = ">=1.19.2" - -[package.extras] -all = ["fsspec", "imagecodecs (>=2022.2.22)", "lxml", "matplotlib (>=3.3)", "zarr"] - -[[package]] -name = "tinycss2" -version = "1.2.1" -description = "A tiny CSS parser" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -webencodings = ">=0.4" - -[package.extras] -doc = ["sphinx", "sphinx_rtd_theme"] -test = ["flake8", "isort", "pytest"] - -[[package]] -name = "tomli" -version = "2.0.1" -description = "A lil' TOML parser" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "torch" -version = "1.13.1" -description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" -category = "main" -optional = false -python-versions = ">=3.7.0" - -[package.dependencies] -nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\""} -nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} -nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} -nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\""} -typing-extensions = "*" - -[package.extras] -opt-einsum = ["opt-einsum (>=3.3)"] - -[[package]] -name = "torchaudio" -version = "0.13.1" -description = "An audio package for PyTorch" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -torch = "*" - -[[package]] -name = "torchvision" -version = "0.14.1" -description = "image and video datasets and models for torch deep learning" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -numpy = "*" -pillow = ">=5.3.0,<8.3.0 || >=8.4.0" -requests = "*" -torch = "1.13.1" -typing-extensions = "*" - -[package.extras] -scipy = ["scipy"] - -[[package]] -name = "tornado" -version = "6.2" -description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." -category = "main" -optional = false -python-versions = ">= 3.7" - -[[package]] -name = "tqdm" -version = "4.64.1" -description = "Fast, Extensible Progress Meter" -category = "main" -optional = false -python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,>=2.7" - -[package.dependencies] -colorama = {version = "*", markers = "platform_system == \"Windows\""} - -[package.extras] -dev = ["py-make (>=0.1.0)", "twine", "wheel"] -notebook = ["ipywidgets (>=6)"] -slack = ["slack-sdk"] -telegram = ["requests"] - -[[package]] -name = "traitlets" -version = "5.8.0" -description = "Traitlets Python configuration system" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] -test = ["argcomplete (>=2.0)", "pre-commit", "pytest", "pytest-mock"] - -[[package]] -name = "treeinterpreter" -version = "0.2.3" -description = "Package for interpreting scikit-learn's decision tree and random forest predictions." -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "typing-extensions" -version = "4.4.0" -description = "Backported and Experimental Type Hints for Python 3.7+" -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "uri-template" -version = "1.2.0" -description = "RFC 6570 URI Template Processor" -category = "main" -optional = false -python-versions = ">=3.6" - -[package.extras] -dev = ["flake8 (<4.0.0)", "flake8-annotations", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-noqa", "flake8-requirements", "flake8-type-annotations", "flake8-use-fstring", "mypy", "pep8-naming"] - -[[package]] -name = "urllib3" -version = "1.26.13" -description = "HTTP library with thread-safe connection pooling, file post, and more." -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" - -[package.extras] -brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] -secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] -socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] - -[[package]] -name = "wcwidth" -version = "0.2.5" -description = "Measures the displayed width of unicode strings in a terminal" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "webcolors" -version = "1.12" -description = "A library for working with color names and color values formats defined by HTML and CSS." -category = "main" -optional = false -python-versions = ">=3.7" - -[[package]] -name = "webencodings" -version = "0.5.1" -description = "Character encoding aliases for legacy web content" -category = "main" -optional = false -python-versions = "*" - -[[package]] -name = "websocket-client" -version = "1.4.2" -description = "WebSocket client for Python with low level API options" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -docs = ["Sphinx (>=3.4)", "sphinx-rtd-theme (>=0.5)"] -optional = ["python-socks", "wsaccel"] -test = ["websockets"] - -[[package]] -name = "werkzeug" -version = "2.2.2" -description = "The comprehensive WSGI web application library." -category = "main" -optional = false -python-versions = ">=3.7" - -[package.dependencies] -MarkupSafe = ">=2.1.1" - -[package.extras] -watchdog = ["watchdog"] - -[[package]] -name = "wheel" -version = "0.38.4" -description = "A built-package format for Python" -category = "main" -optional = false -python-versions = ">=3.7" - -[package.extras] -test = ["pytest (>=3.0.0)"] - -[[package]] -name = "zope-event" -version = "4.6" -description = "Very basic event publishing system" -category = "main" -optional = false -python-versions = "*" - -[package.dependencies] -setuptools = "*" - -[package.extras] -docs = ["Sphinx"] -test = ["zope.testrunner"] - -[[package]] -name = "zope-interface" -version = "5.5.2" -description = "Interfaces for Python" -category = "main" -optional = false -python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" - -[package.dependencies] -setuptools = "*" - -[package.extras] -docs = ["Sphinx", "repoze.sphinx.autointerface"] -test = ["coverage (>=5.0.3)", "zope.event", "zope.testing"] -testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"] - -[metadata] -lock-version = "1.1" -python-versions = "^3.10" -content-hash = "f56cacba481738614a0316d87c57b7f35d57f025b4d43175e20b3b95f4043fb6" - -[metadata.files] -anyio = [ - {file = "anyio-3.6.2-py3-none-any.whl", hash = "sha256:fbbe32bd270d2a2ef3ed1c5d45041250284e31fc0a4df4a5a6071842051a51e3"}, - {file = "anyio-3.6.2.tar.gz", hash = "sha256:25ea0d673ae30af41a0c442f81cf3b38c7e79fdc7b60335a4c14e05eb0947421"}, -] -appnope = [ - {file = "appnope-0.1.3-py2.py3-none-any.whl", hash = "sha256:265a455292d0bd8a72453494fa24df5a11eb18373a60c7c0430889f22548605e"}, - {file = "appnope-0.1.3.tar.gz", hash = "sha256:02bd91c4de869fbb1e1c50aafc4098827a7a54ab2f39d9dcba6c9547ed920e24"}, -] -argon2-cffi = [ - {file = "argon2-cffi-21.3.0.tar.gz", hash = "sha256:d384164d944190a7dd7ef22c6aa3ff197da12962bd04b17f64d4e93d934dba5b"}, - {file = "argon2_cffi-21.3.0-py3-none-any.whl", hash = "sha256:8c976986f2c5c0e5000919e6de187906cfd81fb1c72bf9d88c01177e77da7f80"}, -] -argon2-cffi-bindings = [ - {file = "argon2-cffi-bindings-21.2.0.tar.gz", hash = "sha256:bb89ceffa6c791807d1305ceb77dbfacc5aa499891d2c55661c6459651fc39e3"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-macosx_10_9_x86_64.whl", hash = "sha256:ccb949252cb2ab3a08c02024acb77cfb179492d5701c7cbdbfd776124d4d2367"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:9524464572e12979364b7d600abf96181d3541da11e23ddf565a32e70bd4dc0d"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b746dba803a79238e925d9046a63aa26bf86ab2a2fe74ce6b009a1c3f5c8f2ae"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:58ed19212051f49a523abb1dbe954337dc82d947fb6e5a0da60f7c8471a8476c"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_aarch64.whl", hash = "sha256:bd46088725ef7f58b5a1ef7ca06647ebaf0eb4baff7d1d0d177c6cc8744abd86"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_i686.whl", hash = "sha256:8cd69c07dd875537a824deec19f978e0f2078fdda07fd5c42ac29668dda5f40f"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-musllinux_1_1_x86_64.whl", hash = "sha256:f1152ac548bd5b8bcecfb0b0371f082037e47128653df2e8ba6e914d384f3c3e"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win32.whl", hash = "sha256:603ca0aba86b1349b147cab91ae970c63118a0f30444d4bc80355937c950c082"}, - {file = "argon2_cffi_bindings-21.2.0-cp36-abi3-win_amd64.whl", hash = "sha256:b2ef1c30440dbbcba7a5dc3e319408b59676e2e039e2ae11a8775ecf482b192f"}, - {file = "argon2_cffi_bindings-21.2.0-cp38-abi3-macosx_10_9_universal2.whl", hash = "sha256:e415e3f62c8d124ee16018e491a009937f8cf7ebf5eb430ffc5de21b900dad93"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3e385d1c39c520c08b53d63300c3ecc28622f076f4c2b0e6d7e796e9f6502194"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2c3e3cc67fdb7d82c4718f19b4e7a87123caf8a93fde7e23cf66ac0337d3cb3f"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6a22ad9800121b71099d0fb0a65323810a15f2e292f2ba450810a7316e128ee5"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f9f8b450ed0547e3d473fdc8612083fd08dd2120d6ac8f73828df9b7d45bb351"}, - {file = "argon2_cffi_bindings-21.2.0-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:93f9bf70084f97245ba10ee36575f0c3f1e7d7724d67d8e5b08e61787c320ed7"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:3b9ef65804859d335dc6b31582cad2c5166f0c3e7975f324d9ffaa34ee7e6583"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d4966ef5848d820776f5f562a7d45fdd70c2f330c961d0d745b784034bd9f48d"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:20ef543a89dee4db46a1a6e206cd015360e5a75822f76df533845c3cbaf72670"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:ed2937d286e2ad0cc79a7087d3c272832865f779430e0cc2b4f3718d3159b0cb"}, - {file = "argon2_cffi_bindings-21.2.0-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5e00316dabdaea0b2dd82d141cc66889ced0cdcbfa599e8b471cf22c620c329a"}, -] -arrow = [ - {file = "arrow-1.2.3-py3-none-any.whl", hash = "sha256:5a49ab92e3b7b71d96cd6bfcc4df14efefc9dfa96ea19045815914a6ab6b1fe2"}, - {file = "arrow-1.2.3.tar.gz", hash = "sha256:3934b30ca1b9f292376d9db15b19446088d12ec58629bc3f0da28fd55fb633a1"}, -] -asttokens = [ - {file = "asttokens-2.2.1-py2.py3-none-any.whl", hash = "sha256:6b0ac9e93fb0335014d382b8fa9b3afa7df546984258005da0b9e7095b3deb1c"}, - {file = "asttokens-2.2.1.tar.gz", hash = "sha256:4622110b2a6f30b77e1473affaa97e711bc2f07d3f10848420ff1898edbe94f3"}, -] -attrs = [ - {file = "attrs-22.2.0-py3-none-any.whl", hash = "sha256:29e95c7f6778868dbd49170f98f8818f78f3dc5e0e37c0b1f474e3561b240836"}, - {file = "attrs-22.2.0.tar.gz", hash = "sha256:c9227bfc2f01993c03f68db37d1d15c9690188323c067c641f1a35ca58185f99"}, -] -babel = [ - {file = "Babel-2.11.0-py3-none-any.whl", hash = "sha256:1ad3eca1c885218f6dce2ab67291178944f810a10a9b5f3cb8382a5a232b64fe"}, - {file = "Babel-2.11.0.tar.gz", hash = "sha256:5ef4b3226b0180dedded4229651c8b0e1a3a6a2837d45a073272f313e4cf97f6"}, -] -backcall = [ - {file = "backcall-0.2.0-py2.py3-none-any.whl", hash = "sha256:fbbce6a29f263178a1f7915c1940bde0ec2b2a967566fe1c65c1dfb7422bd255"}, - {file = "backcall-0.2.0.tar.gz", hash = "sha256:5cbdbf27be5e7cfadb448baf0aa95508f91f2bbc6c6437cd9cd06e2a4c215e1e"}, -] -beautifulsoup4 = [ - {file = "beautifulsoup4-4.11.1-py3-none-any.whl", hash = "sha256:58d5c3d29f5a36ffeb94f02f0d786cd53014cf9b3b3951d42e0080d8a9498d30"}, - {file = "beautifulsoup4-4.11.1.tar.gz", hash = "sha256:ad9aa55b65ef2808eb405f46cf74df7fcb7044d5cbc26487f96eb2ef2e436693"}, -] -bleach = [ - {file = "bleach-5.0.1-py3-none-any.whl", hash = "sha256:085f7f33c15bd408dd9b17a4ad77c577db66d76203e5984b1bd59baeee948b2a"}, - {file = "bleach-5.0.1.tar.gz", hash = "sha256:0d03255c47eb9bd2f26aa9bb7f2107732e7e8fe195ca2f64709fcf3b0a4a085c"}, -] -certifi = [ - {file = "certifi-2022.12.7-py3-none-any.whl", hash = "sha256:4ad3232f5e926d6718ec31cfc1fcadfde020920e278684144551c91769c7bc18"}, - {file = "certifi-2022.12.7.tar.gz", hash = "sha256:35824b4c3a97115964b408844d64aa14db1cc518f6562e8d7261699d1350a9e3"}, -] -cffi = [ - {file = "cffi-1.15.1-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:a66d3508133af6e8548451b25058d5812812ec3798c886bf38ed24a98216fab2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_i686.whl", hash = "sha256:470c103ae716238bbe698d67ad020e1db9d9dba34fa5a899b5e21577e6d52ed2"}, - {file = "cffi-1.15.1-cp27-cp27m-manylinux1_x86_64.whl", hash = "sha256:9ad5db27f9cabae298d151c85cf2bad1d359a1b9c686a275df03385758e2f914"}, - {file = "cffi-1.15.1-cp27-cp27m-win32.whl", hash = "sha256:b3bbeb01c2b273cca1e1e0c5df57f12dce9a4dd331b4fa1635b8bec26350bde3"}, - {file = "cffi-1.15.1-cp27-cp27m-win_amd64.whl", hash = "sha256:e00b098126fd45523dd056d2efba6c5a63b71ffe9f2bbe1a4fe1716e1d0c331e"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_i686.whl", hash = "sha256:d61f4695e6c866a23a21acab0509af1cdfd2c013cf256bbf5b6b5e2695827162"}, - {file = "cffi-1.15.1-cp27-cp27mu-manylinux1_x86_64.whl", hash = "sha256:ed9cb427ba5504c1dc15ede7d516b84757c3e3d7868ccc85121d9310d27eed0b"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:39d39875251ca8f612b6f33e6b1195af86d1b3e60086068be9cc053aa4376e21"}, - {file = "cffi-1.15.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:285d29981935eb726a4399badae8f0ffdff4f5050eaa6d0cfc3f64b857b77185"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:3eb6971dcff08619f8d91607cfc726518b6fa2a9eba42856be181c6d0d9515fd"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:21157295583fe8943475029ed5abdcf71eb3911894724e360acff1d61c1d54bc"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5635bd9cb9731e6d4a1132a498dd34f764034a8ce60cef4f5319c0541159392f"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:2012c72d854c2d03e45d06ae57f40d78e5770d252f195b93f581acf3ba44496e"}, - {file = "cffi-1.15.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dd86c085fae2efd48ac91dd7ccffcfc0571387fe1193d33b6394db7ef31fe2a4"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:fa6693661a4c91757f4412306191b6dc88c1703f780c8234035eac011922bc01"}, - {file = "cffi-1.15.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:59c0b02d0a6c384d453fece7566d1c7e6b7bae4fc5874ef2ef46d56776d61c9e"}, - {file = "cffi-1.15.1-cp310-cp310-win32.whl", hash = "sha256:cba9d6b9a7d64d4bd46167096fc9d2f835e25d7e4c121fb2ddfc6528fb0413b2"}, - {file = "cffi-1.15.1-cp310-cp310-win_amd64.whl", hash = "sha256:ce4bcc037df4fc5e3d184794f27bdaab018943698f4ca31630bc7f84a7b69c6d"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:3d08afd128ddaa624a48cf2b859afef385b720bb4b43df214f85616922e6a5ac"}, - {file = "cffi-1.15.1-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:3799aecf2e17cf585d977b780ce79ff0dc9b78d799fc694221ce814c2c19db83"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:a591fe9e525846e4d154205572a029f653ada1a78b93697f3b5a8f1f2bc055b9"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:3548db281cd7d2561c9ad9984681c95f7b0e38881201e157833a2342c30d5e8c"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:91fc98adde3d7881af9b59ed0294046f3806221863722ba7d8d120c575314325"}, - {file = "cffi-1.15.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:94411f22c3985acaec6f83c6df553f2dbe17b698cc7f8ae751ff2237d96b9e3c"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:03425bdae262c76aad70202debd780501fabeaca237cdfddc008987c0e0f59ef"}, - {file = "cffi-1.15.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:cc4d65aeeaa04136a12677d3dd0b1c0c94dc43abac5860ab33cceb42b801c1e8"}, - {file = "cffi-1.15.1-cp311-cp311-win32.whl", hash = "sha256:a0f100c8912c114ff53e1202d0078b425bee3649ae34d7b070e9697f93c5d52d"}, - {file = "cffi-1.15.1-cp311-cp311-win_amd64.whl", hash = "sha256:04ed324bda3cda42b9b695d51bb7d54b680b9719cfab04227cdd1e04e5de3104"}, - {file = "cffi-1.15.1-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:50a74364d85fd319352182ef59c5c790484a336f6db772c1a9231f1c3ed0cbd7"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:e263d77ee3dd201c3a142934a086a4450861778baaeeb45db4591ef65550b0a6"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cec7d9412a9102bdc577382c3929b337320c4c4c4849f2c5cdd14d7368c5562d"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:4289fc34b2f5316fbb762d75362931e351941fa95fa18789191b33fc4cf9504a"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_i686.manylinux1_i686.whl", hash = "sha256:173379135477dc8cac4bc58f45db08ab45d228b3363adb7af79436135d028405"}, - {file = "cffi-1.15.1-cp36-cp36m-manylinux_2_5_x86_64.manylinux1_x86_64.whl", hash = "sha256:6975a3fac6bc83c4a65c9f9fcab9e47019a11d3d2cf7f3c0d03431bf145a941e"}, - {file = "cffi-1.15.1-cp36-cp36m-win32.whl", hash = "sha256:2470043b93ff09bf8fb1d46d1cb756ce6132c54826661a32d4e4d132e1977adf"}, - {file = "cffi-1.15.1-cp36-cp36m-win_amd64.whl", hash = "sha256:30d78fbc8ebf9c92c9b7823ee18eb92f2e6ef79b45ac84db507f52fbe3ec4497"}, - {file = "cffi-1.15.1-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:198caafb44239b60e252492445da556afafc7d1e3ab7a1fb3f0584ef6d742375"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:5ef34d190326c3b1f822a5b7a45f6c4535e2f47ed06fec77d3d799c450b2651e"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:8102eaf27e1e448db915d08afa8b41d6c7ca7a04b7d73af6514df10a3e74bd82"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:5df2768244d19ab7f60546d0c7c63ce1581f7af8b5de3eb3004b9b6fc8a9f84b"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:a8c4917bd7ad33e8eb21e9a5bbba979b49d9a97acb3a803092cbc1133e20343c"}, - {file = "cffi-1.15.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0e2642fe3142e4cc4af0799748233ad6da94c62a8bec3a6648bf8ee68b1c7426"}, - {file = "cffi-1.15.1-cp37-cp37m-win32.whl", hash = "sha256:e229a521186c75c8ad9490854fd8bbdd9a0c9aa3a524326b55be83b54d4e0ad9"}, - {file = "cffi-1.15.1-cp37-cp37m-win_amd64.whl", hash = "sha256:a0b71b1b8fbf2b96e41c4d990244165e2c9be83d54962a9a1d118fd8657d2045"}, - {file = "cffi-1.15.1-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:320dab6e7cb2eacdf0e658569d2575c4dad258c0fcc794f46215e1e39f90f2c3"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:1e74c6b51a9ed6589199c787bf5f9875612ca4a8a0785fb2d4a84429badaf22a"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a5c84c68147988265e60416b57fc83425a78058853509c1b0629c180094904a5"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3b926aa83d1edb5aa5b427b4053dc420ec295a08e40911296b9eb1b6170f6cca"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:87c450779d0914f2861b8526e035c5e6da0a3199d8f1add1a665e1cbc6fc6d02"}, - {file = "cffi-1.15.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4f2c9f67e9821cad2e5f480bc8d83b8742896f1242dba247911072d4fa94c192"}, - {file = "cffi-1.15.1-cp38-cp38-win32.whl", hash = "sha256:8b7ee99e510d7b66cdb6c593f21c043c248537a32e0bedf02e01e9553a172314"}, - {file = "cffi-1.15.1-cp38-cp38-win_amd64.whl", hash = "sha256:00a9ed42e88df81ffae7a8ab6d9356b371399b91dbdf0c3cb1e84c03a13aceb5"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:54a2db7b78338edd780e7ef7f9f6c442500fb0d41a5a4ea24fff1c929d5af585"}, - {file = "cffi-1.15.1-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:fcd131dd944808b5bdb38e6f5b53013c5aa4f334c5cad0c72742f6eba4b73db0"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_12_i686.manylinux2010_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:7473e861101c9e72452f9bf8acb984947aa1661a7704553a9f6e4baa5ba64415"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:6c9a799e985904922a4d207a94eae35c78ebae90e128f0c4e521ce339396be9d"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:3bcde07039e586f91b45c88f8583ea7cf7a0770df3a1649627bf598332cb6984"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_s390x.manylinux2014_s390x.whl", hash = "sha256:33ab79603146aace82c2427da5ca6e58f2b3f2fb5da893ceac0c42218a40be35"}, - {file = "cffi-1.15.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:5d598b938678ebf3c67377cdd45e09d431369c3b1a5b331058c338e201f12b27"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:db0fbb9c62743ce59a9ff687eb5f4afbe77e5e8403d6697f7446e5f609976f76"}, - {file = "cffi-1.15.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:98d85c6a2bef81588d9227dde12db8a7f47f639f4a17c9ae08e773aa9c697bf3"}, - {file = "cffi-1.15.1-cp39-cp39-win32.whl", hash = "sha256:40f4774f5a9d4f5e344f31a32b5096977b5d48560c5592e2f3d2c4374bd543ee"}, - {file = "cffi-1.15.1-cp39-cp39-win_amd64.whl", hash = "sha256:70df4e3b545a17496c9b3f41f5115e69a4f2e77e94e1d2a8e1070bc0c38c8a3c"}, - {file = "cffi-1.15.1.tar.gz", hash = "sha256:d400bfb9a37b1351253cb402671cea7e89bdecc294e8016a707f6d1d8ac934f9"}, -] -charset-normalizer = [ - {file = "charset-normalizer-2.1.1.tar.gz", hash = "sha256:5a3d016c7c547f69d6f81fb0db9449ce888b418b5b9952cc5e6e66843e9dd845"}, - {file = "charset_normalizer-2.1.1-py3-none-any.whl", hash = "sha256:83e9a75d1911279afd89352c68b45348559d1fc0506b054b346651b5e7fee29f"}, -] -click = [ - {file = "click-8.1.3-py3-none-any.whl", hash = "sha256:bb4d8133cb15a609f44e8213d9b391b0809795062913b383c62be0ee95b1db48"}, - {file = "click-8.1.3.tar.gz", hash = "sha256:7682dc8afb30297001674575ea00d1814d808d6a36af415a82bd481d37ba7b8e"}, -] -cloudpickle = [ - {file = "cloudpickle-2.2.0-py3-none-any.whl", hash = "sha256:7428798d5926d8fcbfd092d18d01a2a03daf8237d8fcdc8095d256b8490796f0"}, - {file = "cloudpickle-2.2.0.tar.gz", hash = "sha256:3f4219469c55453cfe4737e564b67c2a149109dabf7f242478948b895f61106f"}, -] -colorama = [ - {file = "colorama-0.4.6-py2.py3-none-any.whl", hash = "sha256:4f1d9991f5acc0ca119f9d443620b77f9d6b33703e51011c16baf57afb285fc6"}, - {file = "colorama-0.4.6.tar.gz", hash = "sha256:08695f5cb7ed6e0531a20572697297273c47b8cae5a63ffc6d6ed5c201be6e44"}, -] -comm = [ - {file = "comm-0.1.2-py3-none-any.whl", hash = "sha256:9f3abf3515112fa7c55a42a6a5ab358735c9dccc8b5910a9d8e3ef5998130666"}, - {file = "comm-0.1.2.tar.gz", hash = "sha256:3e2f5826578e683999b93716285b3b1f344f157bf75fa9ce0a797564e742f062"}, -] -contourpy = [ - {file = "contourpy-1.0.6-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:613c665529899b5d9fade7e5d1760111a0b011231277a0d36c49f0d3d6914bd6"}, - {file = "contourpy-1.0.6-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:78ced51807ccb2f45d4ea73aca339756d75d021069604c2fccd05390dc3c28eb"}, - {file = "contourpy-1.0.6-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:b3b1bd7577c530eaf9d2bc52d1a93fef50ac516a8b1062c3d1b9bcec9ebe329b"}, - {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d8834c14b8c3dd849005e06703469db9bf96ba2d66a3f88ecc539c9a8982e0ee"}, - {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f4052a8a4926d4468416fc7d4b2a7b2a3e35f25b39f4061a7e2a3a2748c4fc48"}, - {file = "contourpy-1.0.6-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1c0e1308307a75e07d1f1b5f0f56b5af84538a5e9027109a7bcf6cb47c434e72"}, - {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:9fc4e7973ed0e1fe689435842a6e6b330eb7ccc696080dda9a97b1a1b78e41db"}, - {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_i686.whl", hash = "sha256:08e8d09d96219ace6cb596506fb9b64ea5f270b2fb9121158b976d88871fcfd1"}, - {file = "contourpy-1.0.6-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:f33da6b5d19ad1bb5e7ad38bb8ba5c426d2178928bc2b2c44e8823ea0ecb6ff3"}, - {file = "contourpy-1.0.6-cp310-cp310-win32.whl", hash = "sha256:12a7dc8439544ed05c6553bf026d5e8fa7fad48d63958a95d61698df0e00092b"}, - {file = "contourpy-1.0.6-cp310-cp310-win_amd64.whl", hash = "sha256:eadad75bf91897f922e0fb3dca1b322a58b1726a953f98c2e5f0606bd8408621"}, - {file = "contourpy-1.0.6-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:913bac9d064cff033cf3719e855d4f1db9f1c179e0ecf3ba9fdef21c21c6a16a"}, - {file = "contourpy-1.0.6-cp311-cp311-macosx_10_9_x86_64.whl", hash = "sha256:46deb310a276cc5c1fd27958e358cce68b1e8a515fa5a574c670a504c3a3fe30"}, - {file = "contourpy-1.0.6-cp311-cp311-macosx_11_0_arm64.whl", hash = "sha256:b64f747e92af7da3b85631a55d68c45a2d728b4036b03cdaba4bd94bcc85bd6f"}, - {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:50627bf76abb6ba291ad08db583161939c2c5fab38c38181b7833423ab9c7de3"}, - {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:358f6364e4873f4d73360b35da30066f40387dd3c427a3e5432c6b28dd24a8fa"}, - {file = "contourpy-1.0.6-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c78bfbc1a7bff053baf7e508449d2765964d67735c909b583204e3240a2aca45"}, - {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:e43255a83835a129ef98f75d13d643844d8c646b258bebd11e4a0975203e018f"}, - {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_i686.whl", hash = "sha256:375d81366afd547b8558c4720337218345148bc2fcffa3a9870cab82b29667f2"}, - {file = "contourpy-1.0.6-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:b98c820608e2dca6442e786817f646d11057c09a23b68d2b3737e6dcb6e4a49b"}, - {file = "contourpy-1.0.6-cp311-cp311-win32.whl", hash = "sha256:0e4854cc02006ad6684ce092bdadab6f0912d131f91c2450ce6dbdea78ee3c0b"}, - {file = "contourpy-1.0.6-cp311-cp311-win_amd64.whl", hash = "sha256:d2eff2af97ea0b61381828b1ad6cd249bbd41d280e53aea5cccd7b2b31b8225c"}, - {file = "contourpy-1.0.6-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:5b117d29433fc8393b18a696d794961464e37afb34a6eeb8b2c37b5f4128a83e"}, - {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:341330ed19074f956cb20877ad8d2ae50e458884bfa6a6df3ae28487cc76c768"}, - {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:371f6570a81dfdddbb837ba432293a63b4babb942a9eb7aaa699997adfb53278"}, - {file = "contourpy-1.0.6-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9447c45df407d3ecb717d837af3b70cfef432138530712263730783b3d016512"}, - {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:730c27978a0003b47b359935478b7d63fd8386dbb2dcd36c1e8de88cbfc1e9de"}, - {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_i686.whl", hash = "sha256:da1ef35fd79be2926ba80fbb36327463e3656c02526e9b5b4c2b366588b74d9a"}, - {file = "contourpy-1.0.6-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:cd2bc0c8f2e8de7dd89a7f1c10b8844e291bca17d359373203ef2e6100819edd"}, - {file = "contourpy-1.0.6-cp37-cp37m-win32.whl", hash = "sha256:3a1917d3941dd58732c449c810fa7ce46cc305ce9325a11261d740118b85e6f3"}, - {file = "contourpy-1.0.6-cp37-cp37m-win_amd64.whl", hash = "sha256:06ca79e1efbbe2df795822df2fa173d1a2b38b6e0f047a0ec7903fbca1d1847e"}, - {file = "contourpy-1.0.6-cp38-cp38-macosx_10_9_universal2.whl", hash = "sha256:e626cefff8491bce356221c22af5a3ea528b0b41fbabc719c00ae233819ea0bf"}, - {file = "contourpy-1.0.6-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:dbe6fe7a1166b1ddd7b6d887ea6fa8389d3f28b5ed3f73a8f40ece1fc5a3d340"}, - {file = "contourpy-1.0.6-cp38-cp38-macosx_11_0_arm64.whl", hash = "sha256:e13b31d1b4b68db60b3b29f8e337908f328c7f05b9add4b1b5c74e0691180109"}, - {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a79d239fc22c3b8d9d3de492aa0c245533f4f4c7608e5749af866949c0f1b1b9"}, - {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:9e8e686a6db92a46111a1ee0ee6f7fbfae4048f0019de207149f43ac1812cf95"}, - {file = "contourpy-1.0.6-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:acd2bd02f1a7adff3a1f33e431eb96ab6d7987b039d2946a9b39fe6fb16a1036"}, - {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:03d1b9c6b44a9e30d554654c72be89af94fab7510b4b9f62356c64c81cec8b7d"}, - {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_i686.whl", hash = "sha256:b48d94386f1994db7c70c76b5808c12e23ed7a4ee13693c2fc5ab109d60243c0"}, - {file = "contourpy-1.0.6-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:208bc904889c910d95aafcf7be9e677726df9ef71e216780170dbb7e37d118fa"}, - {file = "contourpy-1.0.6-cp38-cp38-win32.whl", hash = "sha256:444fb776f58f4906d8d354eb6f6ce59d0a60f7b6a720da6c1ccb839db7c80eb9"}, - {file = "contourpy-1.0.6-cp38-cp38-win_amd64.whl", hash = "sha256:9bc407a6af672da20da74823443707e38ece8b93a04009dca25856c2d9adadb1"}, - {file = "contourpy-1.0.6-cp39-cp39-macosx_10_9_universal2.whl", hash = "sha256:aa4674cf3fa2bd9c322982644967f01eed0c91bb890f624e0e0daf7a5c3383e9"}, - {file = "contourpy-1.0.6-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:6f56515e7c6fae4529b731f6c117752247bef9cdad2b12fc5ddf8ca6a50965a5"}, - {file = "contourpy-1.0.6-cp39-cp39-macosx_11_0_arm64.whl", hash = "sha256:344cb3badf6fc7316ad51835f56ac387bdf86c8e1b670904f18f437d70da4183"}, - {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b1e66346acfb17694d46175a0cea7d9036f12ed0c31dfe86f0f405eedde2bdd"}, - {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:8468b40528fa1e15181cccec4198623b55dcd58306f8815a793803f51f6c474a"}, - {file = "contourpy-1.0.6-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1dedf4c64185a216c35eb488e6f433297c660321275734401760dafaeb0ad5c2"}, - {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:494efed2c761f0f37262815f9e3c4bb9917c5c69806abdee1d1cb6611a7174a0"}, - {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_i686.whl", hash = "sha256:75a2e638042118118ab39d337da4c7908c1af74a8464cad59f19fbc5bbafec9b"}, - {file = "contourpy-1.0.6-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:a628bba09ba72e472bf7b31018b6281fd4cc903f0888049a3724afba13b6e0b8"}, - {file = "contourpy-1.0.6-cp39-cp39-win32.whl", hash = "sha256:e1739496c2f0108013629aa095cc32a8c6363444361960c07493818d0dea2da4"}, - {file = "contourpy-1.0.6-cp39-cp39-win_amd64.whl", hash = "sha256:a457ee72d9032e86730f62c5eeddf402e732fdf5ca8b13b41772aa8ae13a4563"}, - {file = "contourpy-1.0.6-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:d912f0154a20a80ea449daada904a7eb6941c83281a9fab95de50529bfc3a1da"}, - {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4081918147fc4c29fad328d5066cfc751da100a1098398742f9f364be63803fc"}, - {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0537cc1195245bbe24f2913d1f9211b8f04eb203de9044630abd3664c6cc339c"}, - {file = "contourpy-1.0.6-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:dcd556c8fc37a342dd636d7eef150b1399f823a4462f8c968e11e1ebeabee769"}, - {file = "contourpy-1.0.6-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:f6ca38dd8d988eca8f07305125dec6f54ac1c518f1aaddcc14d08c01aebb6efc"}, - {file = "contourpy-1.0.6-pp38-pypy38_pp73-macosx_10_9_x86_64.whl", hash = "sha256:c1baa49ab9fedbf19d40d93163b7d3e735d9cd8d5efe4cce9907902a6dad391f"}, - {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:211dfe2bd43bf5791d23afbe23a7952e8ac8b67591d24be3638cabb648b3a6eb"}, - {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:c38c6536c2d71ca2f7e418acaf5bca30a3af7f2a2fa106083c7d738337848dbe"}, - {file = "contourpy-1.0.6-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1b1ee48a130da4dd0eb8055bbab34abf3f6262957832fd575e0cab4979a15a41"}, - {file = "contourpy-1.0.6-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:5641927cc5ae66155d0c80195dc35726eae060e7defc18b7ab27600f39dd1fe7"}, - {file = "contourpy-1.0.6-pp39-pypy39_pp73-macosx_10_9_x86_64.whl", hash = "sha256:7ee394502026d68652c2824348a40bf50f31351a668977b51437131a90d777ea"}, - {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0b97454ed5b1368b66ed414c754cba15b9750ce69938fc6153679787402e4cdf"}, - {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:0236875c5a0784215b49d00ebbe80c5b6b5d5244b3655a36dda88105334dea17"}, - {file = "contourpy-1.0.6-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:84c593aeff7a0171f639da92cb86d24954bbb61f8a1b530f74eb750a14685832"}, - {file = "contourpy-1.0.6-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:9b0e7fe7f949fb719b206548e5cde2518ffb29936afa4303d8a1c4db43dcb675"}, - {file = "contourpy-1.0.6.tar.gz", hash = "sha256:6e459ebb8bb5ee4c22c19cc000174f8059981971a33ce11e17dddf6aca97a142"}, -] -cycler = [ - {file = "cycler-0.11.0-py3-none-any.whl", hash = "sha256:3a27e95f763a428a739d2add979fa7494c912a32c17c4c38c4d5f082cad165a3"}, - {file = "cycler-0.11.0.tar.gz", hash = "sha256:9c87405839a19696e837b3b818fed3f5f69f16f1eec1a1ad77e043dcea9c772f"}, -] -dash = [ - {file = "dash-2.7.1-py3-none-any.whl", hash = "sha256:0935490e3dd2d2a046291989824732901437bc0336d592eadcb93fd9c866d4c9"}, - {file = "dash-2.7.1.tar.gz", hash = "sha256:13cd19d19288a8fb9c2a5cd069c72643758fc2fcda68cacc72474a4ec6b7667d"}, -] -dash-core-components = [ - {file = "dash_core_components-2.0.0-py3-none-any.whl", hash = "sha256:52b8e8cce13b18d0802ee3acbc5e888cb1248a04968f962d63d070400af2e346"}, - {file = "dash_core_components-2.0.0.tar.gz", hash = "sha256:c6733874af975e552f95a1398a16c2ee7df14ce43fa60bb3718a3c6e0b63ffee"}, -] -dash-cytoscape = [ - {file = "dash_cytoscape-0.3.0-py3-none-any.whl", hash = "sha256:718dc1568b9e7bfe7f64376aa903c64a1a1fe6daed4e559b254456f18dd3135f"}, - {file = "dash_cytoscape-0.3.0.tar.gz", hash = "sha256:a71ad4fe095570b71d4ad7c0d29199e9780c2e6796173d3b25fccc2cc58c855f"}, -] -dash-html-components = [ - {file = "dash_html_components-2.0.0-py3-none-any.whl", hash = "sha256:b42cc903713c9706af03b3f2548bda4be7307a7cf89b7d6eae3da872717d1b63"}, - {file = "dash_html_components-2.0.0.tar.gz", hash = "sha256:8703a601080f02619a6390998e0b3da4a5daabe97a1fd7a9cebc09d015f26e50"}, -] -dash-table = [ - {file = "dash_table-5.0.0-py3-none-any.whl", hash = "sha256:19036fa352bb1c11baf38068ec62d172f0515f73ca3276c79dee49b95ddc16c9"}, - {file = "dash_table-5.0.0.tar.gz", hash = "sha256:18624d693d4c8ef2ddec99a6f167593437a7ea0bf153aa20f318c170c5bc7308"}, -] -debugpy = [ - {file = "debugpy-1.6.5-cp310-cp310-macosx_11_0_x86_64.whl", hash = "sha256:696165f021a6a17da08163eaae84f3faf5d8be68fb78cd78488dd347e625279c"}, - {file = "debugpy-1.6.5-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17039e392d6f38388a68bd02c5f823b32a92142a851e96ba3ec52aeb1ce9d900"}, - {file = "debugpy-1.6.5-cp310-cp310-win32.whl", hash = "sha256:62a06eb78378292ba6c427d861246574dc8b84471904973797b29dd33c7c2495"}, - {file = "debugpy-1.6.5-cp310-cp310-win_amd64.whl", hash = "sha256:9984fc00ab372c97f63786c400107f54224663ea293daab7b365a5b821d26309"}, - {file = "debugpy-1.6.5-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:048368f121c08b00bbded161e8583817af5055982d2722450a69efe2051621c2"}, - {file = "debugpy-1.6.5-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:74e4eca42055759032e3f1909d1374ba1d729143e0c2729bb8cb5e8b5807c458"}, - {file = "debugpy-1.6.5-cp37-cp37m-win32.whl", hash = "sha256:0f9afcc8cad6424695f3356dc9a7406d5b18e37ee2e73f34792881a44b02cc50"}, - {file = "debugpy-1.6.5-cp37-cp37m-win_amd64.whl", hash = "sha256:b5a74ecebe5253344501d9b23f74459c46428b30437fa9254cfb8cb129943242"}, - {file = "debugpy-1.6.5-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:9e809ef787802c808995e5b6ade714a25fa187f892b41a412d418a15a9c4a432"}, - {file = "debugpy-1.6.5-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:947c686e8adb46726f3d5f19854f6aebf66c2edb91225643c7f44b40b064a235"}, - {file = "debugpy-1.6.5-cp38-cp38-win32.whl", hash = "sha256:377391341c4b86f403d93e467da8e2d05c22b683f08f9af3e16d980165b06b90"}, - {file = "debugpy-1.6.5-cp38-cp38-win_amd64.whl", hash = "sha256:286ae0c2def18ee0dc8a61fa76d51039ca8c11485b6ed3ef83e3efe8a23926ae"}, - {file = "debugpy-1.6.5-cp39-cp39-macosx_11_0_x86_64.whl", hash = "sha256:500dd4a9ff818f5c52dddb4a608c7de5371c2d7d905c505eb745556c579a9f11"}, - {file = "debugpy-1.6.5-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:8f3fab217fe7e2acb2d90732af1a871947def4e2b6654945ba1ebd94bd0bea26"}, - {file = "debugpy-1.6.5-cp39-cp39-win32.whl", hash = "sha256:15bc5febe0edc79726517b1f8d57d7ac7c784567b5ba804aab8b1c9d07a57018"}, - {file = "debugpy-1.6.5-cp39-cp39-win_amd64.whl", hash = "sha256:7e84d9e4420122384cb2cc762a00b4e17cbf998022890f89b195ce178f78ff47"}, - {file = "debugpy-1.6.5-py2.py3-none-any.whl", hash = "sha256:8116e40a1cd0593bd2aba01d4d560ee08f018da8e8fbd4cbd24ff09b5f0e41ef"}, - {file = "debugpy-1.6.5.zip", hash = "sha256:5e55e6c79e215239dd0794ee0bf655412b934735a58e9d705e5c544f596f1603"}, -] -decorator = [ - {file = "decorator-5.1.1-py3-none-any.whl", hash = "sha256:b8c3f85900b9dc423225913c5aace94729fe1fa9763b38939a95226f02d37186"}, - {file = "decorator-5.1.1.tar.gz", hash = "sha256:637996211036b6385ef91435e4fae22989472f9d571faba8927ba8253acbc330"}, -] -defusedxml = [ - {file = "defusedxml-0.7.1-py2.py3-none-any.whl", hash = "sha256:a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61"}, - {file = "defusedxml-0.7.1.tar.gz", hash = "sha256:1bb3032db185915b62d7c6209c5a8792be6a32ab2fedacc84e01b52c51aa3e69"}, -] -dill = [ - {file = "dill-0.3.6-py3-none-any.whl", hash = "sha256:a07ffd2351b8c678dfc4a856a3005f8067aea51d6ba6c700796a4d9e280f39f0"}, - {file = "dill-0.3.6.tar.gz", hash = "sha256:e5db55f3687856d8fbdab002ed78544e1c4559a130302693d839dfe8f93f2373"}, -] -entrypoints = [ - {file = "entrypoints-0.4-py3-none-any.whl", hash = "sha256:f174b5ff827504fd3cd97cc3f8649f3693f51538c7e4bdf3ef002c8429d42f9f"}, - {file = "entrypoints-0.4.tar.gz", hash = "sha256:b706eddaa9218a19ebcd67b56818f05bb27589b1ca9e8d797b74affad4ccacd4"}, -] -executing = [ - {file = "executing-1.2.0-py2.py3-none-any.whl", hash = "sha256:0314a69e37426e3608aada02473b4161d4caf5a4b244d1d0c48072b8fee7bacc"}, - {file = "executing-1.2.0.tar.gz", hash = "sha256:19da64c18d2d851112f09c287f8d3dbbdf725ab0e569077efb6cdcbd3497c107"}, -] -fastjsonschema = [ - {file = "fastjsonschema-2.16.2-py3-none-any.whl", hash = "sha256:21f918e8d9a1a4ba9c22e09574ba72267a6762d47822db9add95f6454e51cc1c"}, - {file = "fastjsonschema-2.16.2.tar.gz", hash = "sha256:01e366f25d9047816fe3d288cbfc3e10541daf0af2044763f3d0ade42476da18"}, -] -flask = [ - {file = "Flask-2.2.2-py3-none-any.whl", hash = "sha256:b9c46cc36662a7949f34b52d8ec7bb59c0d74ba08ba6cb9ce9adc1d8676d9526"}, - {file = "Flask-2.2.2.tar.gz", hash = "sha256:642c450d19c4ad482f96729bd2a8f6d32554aa1e231f4f6b4e7e5264b16cca2b"}, -] -fonttools = [ - {file = "fonttools-4.38.0-py3-none-any.whl", hash = "sha256:820466f43c8be8c3009aef8b87e785014133508f0de64ec469e4efb643ae54fb"}, - {file = "fonttools-4.38.0.zip", hash = "sha256:2bb244009f9bf3fa100fc3ead6aeb99febe5985fa20afbfbaa2f8946c2fbdaf1"}, -] -fqdn = [ - {file = "fqdn-1.5.1-py3-none-any.whl", hash = "sha256:3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014"}, - {file = "fqdn-1.5.1.tar.gz", hash = "sha256:105ed3677e767fb5ca086a0c1f4bb66ebc3c100be518f0e0d755d9eae164d89f"}, -] -gevent = [ - {file = "gevent-22.10.2-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:97cd42382421779f5d82ec5007199e8a84aa288114975429e4fd0a98f2290f10"}, - {file = "gevent-22.10.2-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:1e1286a76f15b5e15f1e898731d50529e249529095a032453f2c101af3fde71c"}, - {file = "gevent-22.10.2-cp27-cp27m-win32.whl", hash = "sha256:59b47e81b399d49a5622f0f503c59f1ce57b7705306ea0196818951dfc2f36c8"}, - {file = "gevent-22.10.2-cp27-cp27m-win_amd64.whl", hash = "sha256:1d543c9407a1e4bca11a8932916988cfb16de00366de5bf7bc9e7a3f61e60b18"}, - {file = "gevent-22.10.2-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:4e2f008c82dc54ec94f4de12ca6feea60e419babb48ec145456907ae61625aa4"}, - {file = "gevent-22.10.2-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:990d7069f14dc40674e0d5cb43c68fd3bad8337048613b9bb94a0c4180ffc176"}, - {file = "gevent-22.10.2-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:f23d0997149a816a2a9045af29c66f67f405a221745b34cefeac5769ed451db8"}, - {file = "gevent-22.10.2-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:b43d500d7d3c0e03070dee813335bb5315215aa1cf6a04c61093dfdd718640b3"}, - {file = "gevent-22.10.2-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:17b68f4c9e20e47ad49fe797f37f91d5bbeace8765ce2707f979a8d4ec197e4d"}, - {file = "gevent-22.10.2-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:1f001cac0ba8da76abfeb392a3057f81fab3d67cc916c7df8ea977a44a2cc989"}, - {file = "gevent-22.10.2-cp310-cp310-win_amd64.whl", hash = "sha256:3b7eae8a0653ba95a224faaddf629a913ace408edb67384d3117acf42d7dcf89"}, - {file = "gevent-22.10.2-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:8f2477e7b0a903a01485c55bacf2089110e5f767014967ba4b287ff390ae2638"}, - {file = "gevent-22.10.2-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ddaa3e310a8f1a45b5c42cf50b54c31003a3028e7d4e085059090ea0e7a5fddd"}, - {file = "gevent-22.10.2-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:98bc510e80f45486ef5b806a1c305e0e89f0430688c14984b0dbdec03331f48b"}, - {file = "gevent-22.10.2-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:877abdb3a669576b1d51ce6a49b7260b2a96f6b2424eb93287e779a3219d20ba"}, - {file = "gevent-22.10.2-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:d21ad79cca234cdbfa249e727500b0ddcbc7adfff6614a96e6eaa49faca3e4f2"}, - {file = "gevent-22.10.2-cp311-cp311-win_amd64.whl", hash = "sha256:1e955238f59b2947631c9782a713280dd75884e40e455313b5b6bbc20b92ff73"}, - {file = "gevent-22.10.2-cp36-cp36m-macosx_10_9_x86_64.whl", hash = "sha256:5aa99e4882a9e909b4756ee799c6fa0f79eb0542779fad4cc60efa23ec1b2aa8"}, - {file = "gevent-22.10.2-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:d82081656a5b9a94d37c718c8646c757e1617e389cdc533ea5e6a6f0b8b78545"}, - {file = "gevent-22.10.2-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:54f4bfd74c178351a4a05c5c7df6f8a0a279ff6f392b57608ce0e83c768207f9"}, - {file = "gevent-22.10.2-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1ff3796692dff50fec2f381b9152438b221335f557c4f9b811f7ded51b7a25a1"}, - {file = "gevent-22.10.2-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f01c9adbcb605364694b11dcd0542ec468a29ac7aba2fb5665dc6caf17ba4d7e"}, - {file = "gevent-22.10.2-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:9d85574eb729f981fea9a78998725a06292d90a3ed50ddca74530c3148c0be41"}, - {file = "gevent-22.10.2-cp36-cp36m-win32.whl", hash = "sha256:8c192d2073e558e241f0b592c1e2b34127a4481a5be240cad4796533b88b1a98"}, - {file = "gevent-22.10.2-cp36-cp36m-win_amd64.whl", hash = "sha256:a2237451c721a0f874ef89dbb4af4fdc172b76a964befaa69deb15b8fff10f49"}, - {file = "gevent-22.10.2-cp37-cp37m-macosx_10_9_x86_64.whl", hash = "sha256:53ee7f170ed42c7561fe8aff5d381dc9a4124694e70580d0c02fba6aafc0ea37"}, - {file = "gevent-22.10.2-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:96c56c280e3c43cfd075efd10b250350ed5ffd3c1514ec99a080b1b92d7c8374"}, - {file = "gevent-22.10.2-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:b6c144e08dfad4106effc043a026e5d0c0eff6ad031904c70bf5090c63f3a6a7"}, - {file = "gevent-22.10.2-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:018f93de7d5318d2fb440f846839a4464738468c3476d5c9cf7da45bb71c18bd"}, - {file = "gevent-22.10.2-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:f7ed2346eb9dc4344f9cb0d7963ce5b74fe16fdd031a2809bb6c2b6eba7ebcd5"}, - {file = "gevent-22.10.2-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:84c517e33ed604fa06b7d756dc0171169cc12f7fdd68eb7b17708a62eebf4516"}, - {file = "gevent-22.10.2-cp37-cp37m-win32.whl", hash = "sha256:4114f0f439f0b547bb6f1d474fee99ddb46736944ad2207cef3771828f6aa358"}, - {file = "gevent-22.10.2-cp37-cp37m-win_amd64.whl", hash = "sha256:0d581f22a5be6281b11ad6309b38b18f0638cf896931223cbaa5adb904826ef6"}, - {file = "gevent-22.10.2-cp38-cp38-macosx_10_9_x86_64.whl", hash = "sha256:2929377c8ebfb6f4d868d161cd8de2ea6b9f6c7a5fcd4f78bcd537319c16190b"}, - {file = "gevent-22.10.2-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:efc003b6c1481165af61f0aeac248e0a9ac8d880bb3acbe469b448674b2d5281"}, - {file = "gevent-22.10.2-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:db562a8519838bddad0c439a2b12246bab539dd50e299ea7ff3644274a33b6a5"}, - {file = "gevent-22.10.2-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:1472012493ca1fac103f700d309cb6ef7964dcdb9c788d1768266e77712f5e49"}, - {file = "gevent-22.10.2-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:6c04ee32c11e9fcee47c1b431834878dc987a7a2cc4fe126ddcae3bad723ce89"}, - {file = "gevent-22.10.2-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:8729129edef2637a8084258cb9ec4e4d5ca45d97ac77aa7a6ff19ccb530ab731"}, - {file = "gevent-22.10.2-cp38-cp38-win32.whl", hash = "sha256:ae90226074a6089371a95f20288431cd4b3f6b0b096856afd862e4ac9510cddd"}, - {file = "gevent-22.10.2-cp38-cp38-win_amd64.whl", hash = "sha256:494c7f29e94df9a1c3157d67bb7edfa32a46eed786e04d9ee68d39f375e30001"}, - {file = "gevent-22.10.2-cp39-cp39-macosx_10_9_x86_64.whl", hash = "sha256:58898dbabb5b11e4d0192aae165ad286dc6742c543e1be9d30dc82753547c508"}, - {file = "gevent-22.10.2-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:4197d423e198265eef39a0dea286ef389da9148e070310f34455ecee8172c391"}, - {file = "gevent-22.10.2-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:da4183f0b9d9a1e25e1758099220d32c51cc2c6340ee0dea3fd236b2b37598e4"}, - {file = "gevent-22.10.2-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:a5488eba6a568b4d23c072113da4fc0feb1b5f5ede7381656dc913e0d82204e2"}, - {file = "gevent-22.10.2-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:319d8b1699b7b8134de66d656cd739b308ab9c45ace14d60ae44de7775b456c9"}, - {file = "gevent-22.10.2-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:f3329bedbba4d3146ae58c667e0f9ac1e6f1e1e6340c7593976cdc60aa7d1a47"}, - {file = "gevent-22.10.2-cp39-cp39-win32.whl", hash = "sha256:172caa66273315f283e90a315921902cb6549762bdcb0587fd60cb712a9d6263"}, - {file = "gevent-22.10.2-cp39-cp39-win_amd64.whl", hash = "sha256:323b207b281ba0405fea042067fa1a61662e5ac0d574ede4ebbda03efd20c350"}, - {file = "gevent-22.10.2-pp27-pypy_73-win_amd64.whl", hash = "sha256:ed7f16613eebf892a6a744d7a4a8f345bc6f066a0ff3b413e2479f9c0a180193"}, - {file = "gevent-22.10.2-pp37-pypy37_pp73-win_amd64.whl", hash = "sha256:a47a4e77e2bc668856aad92a0b8de7ee10768258d93cd03968e6c7ba2e832f76"}, - {file = "gevent-22.10.2.tar.gz", hash = "sha256:1ca01da176ee37b3527a2702f7d40dbc9ffb8cfc7be5a03bfa4f9eec45e55c46"}, -] -greenlet = [ - {file = "greenlet-2.0.1-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:9ed358312e63bf683b9ef22c8e442ef6c5c02973f0c2a939ec1d7b50c974015c"}, - {file = "greenlet-2.0.1-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:4f09b0010e55bec3239278f642a8a506b91034f03a4fb28289a7d448a67f1515"}, - {file = "greenlet-2.0.1-cp27-cp27m-win32.whl", hash = "sha256:1407fe45246632d0ffb7a3f4a520ba4e6051fc2cbd61ba1f806900c27f47706a"}, - {file = "greenlet-2.0.1-cp27-cp27m-win_amd64.whl", hash = "sha256:3001d00eba6bbf084ae60ec7f4bb8ed375748f53aeaefaf2a37d9f0370558524"}, - {file = "greenlet-2.0.1-cp27-cp27mu-manylinux2010_x86_64.whl", hash = "sha256:d566b82e92ff2e09dd6342df7e0eb4ff6275a3f08db284888dcd98134dbd4243"}, - {file = "greenlet-2.0.1-cp310-cp310-macosx_10_15_x86_64.whl", hash = "sha256:0722c9be0797f544a3ed212569ca3fe3d9d1a1b13942d10dd6f0e8601e484d26"}, - {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4d37990425b4687ade27810e3b1a1c37825d242ebc275066cfee8cb6b8829ccd"}, - {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be35822f35f99dcc48152c9839d0171a06186f2d71ef76dc57fa556cc9bf6b45"}, - {file = "greenlet-2.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c140e7eb5ce47249668056edf3b7e9900c6a2e22fb0eaf0513f18a1b2c14e1da"}, - {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_aarch64.whl", hash = "sha256:d21681f09e297a5adaa73060737e3aa1279a13ecdcfcc6ef66c292cb25125b2d"}, - {file = "greenlet-2.0.1-cp310-cp310-musllinux_1_1_x86_64.whl", hash = "sha256:fb412b7db83fe56847df9c47b6fe3f13911b06339c2aa02dcc09dce8bbf582cd"}, - {file = "greenlet-2.0.1-cp310-cp310-win_amd64.whl", hash = "sha256:c6a08799e9e88052221adca55741bf106ec7ea0710bca635c208b751f0d5b617"}, - {file = "greenlet-2.0.1-cp311-cp311-macosx_10_9_universal2.whl", hash = "sha256:9e112e03d37987d7b90c1e98ba5e1b59e1645226d78d73282f45b326f7bddcb9"}, - {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:56961cfca7da2fdd178f95ca407fa330c64f33289e1804b592a77d5593d9bd94"}, - {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:13ba6e8e326e2116c954074c994da14954982ba2795aebb881c07ac5d093a58a"}, - {file = "greenlet-2.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:1bf633a50cc93ed17e494015897361010fc08700d92676c87931d3ea464123ce"}, - {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_aarch64.whl", hash = "sha256:9f2c221eecb7ead00b8e3ddb913c67f75cba078fd1d326053225a3f59d850d72"}, - {file = "greenlet-2.0.1-cp311-cp311-musllinux_1_1_x86_64.whl", hash = "sha256:13ebf93c343dd8bd010cd98e617cb4c1c1f352a0cf2524c82d3814154116aa82"}, - {file = "greenlet-2.0.1-cp311-cp311-win_amd64.whl", hash = "sha256:6f61d71bbc9b4a3de768371b210d906726535d6ca43506737682caa754b956cd"}, - {file = "greenlet-2.0.1-cp35-cp35m-macosx_10_14_x86_64.whl", hash = "sha256:2d0bac0385d2b43a7bd1d651621a4e0f1380abc63d6fb1012213a401cbd5bf8f"}, - {file = "greenlet-2.0.1-cp35-cp35m-manylinux2010_x86_64.whl", hash = "sha256:f6327b6907b4cb72f650a5b7b1be23a2aab395017aa6f1adb13069d66360eb3f"}, - {file = "greenlet-2.0.1-cp35-cp35m-win32.whl", hash = "sha256:81b0ea3715bf6a848d6f7149d25bf018fd24554a4be01fcbbe3fdc78e890b955"}, - {file = "greenlet-2.0.1-cp35-cp35m-win_amd64.whl", hash = "sha256:38255a3f1e8942573b067510f9611fc9e38196077b0c8eb7a8c795e105f9ce77"}, - {file = "greenlet-2.0.1-cp36-cp36m-macosx_10_14_x86_64.whl", hash = "sha256:04957dc96669be041e0c260964cfef4c77287f07c40452e61abe19d647505581"}, - {file = "greenlet-2.0.1-cp36-cp36m-manylinux2010_x86_64.whl", hash = "sha256:4aeaebcd91d9fee9aa768c1b39cb12214b30bf36d2b7370505a9f2165fedd8d9"}, - {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:974a39bdb8c90a85982cdb78a103a32e0b1be986d411303064b28a80611f6e51"}, - {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:8dca09dedf1bd8684767bc736cc20c97c29bc0c04c413e3276e0962cd7aeb148"}, - {file = "greenlet-2.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:a4c0757db9bd08470ff8277791795e70d0bf035a011a528ee9a5ce9454b6cba2"}, - {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_aarch64.whl", hash = "sha256:5067920de254f1a2dee8d3d9d7e4e03718e8fd2d2d9db962c8c9fa781ae82a39"}, - {file = "greenlet-2.0.1-cp36-cp36m-musllinux_1_1_x86_64.whl", hash = "sha256:5a8e05057fab2a365c81abc696cb753da7549d20266e8511eb6c9d9f72fe3e92"}, - {file = "greenlet-2.0.1-cp36-cp36m-win32.whl", hash = "sha256:3d75b8d013086b08e801fbbb896f7d5c9e6ccd44f13a9241d2bf7c0df9eda928"}, - {file = "greenlet-2.0.1-cp36-cp36m-win_amd64.whl", hash = "sha256:097e3dae69321e9100202fc62977f687454cd0ea147d0fd5a766e57450c569fd"}, - {file = "greenlet-2.0.1-cp37-cp37m-macosx_10_15_x86_64.whl", hash = "sha256:cb242fc2cda5a307a7698c93173d3627a2a90d00507bccf5bc228851e8304963"}, - {file = "greenlet-2.0.1-cp37-cp37m-manylinux2010_x86_64.whl", hash = "sha256:72b00a8e7c25dcea5946692a2485b1a0c0661ed93ecfedfa9b6687bd89a24ef5"}, - {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:d5b0ff9878333823226d270417f24f4d06f235cb3e54d1103b71ea537a6a86ce"}, - {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:be9e0fb2ada7e5124f5282d6381903183ecc73ea019568d6d63d33f25b2a9000"}, - {file = "greenlet-2.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:0b493db84d124805865adc587532ebad30efa68f79ad68f11b336e0a51ec86c2"}, - {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_aarch64.whl", hash = "sha256:0459d94f73265744fee4c2d5ec44c6f34aa8a31017e6e9de770f7bcf29710be9"}, - {file = "greenlet-2.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl", hash = "sha256:a20d33124935d27b80e6fdacbd34205732660e0a1d35d8b10b3328179a2b51a1"}, - {file = "greenlet-2.0.1-cp37-cp37m-win32.whl", hash = "sha256:ea688d11707d30e212e0110a1aac7f7f3f542a259235d396f88be68b649e47d1"}, - {file = "greenlet-2.0.1-cp37-cp37m-win_amd64.whl", hash = "sha256:afe07421c969e259e9403c3bb658968702bc3b78ec0b6fde3ae1e73440529c23"}, - {file = "greenlet-2.0.1-cp38-cp38-macosx_10_15_x86_64.whl", hash = "sha256:cd4ccc364cf75d1422e66e247e52a93da6a9b73cefa8cad696f3cbbb75af179d"}, - {file = "greenlet-2.0.1-cp38-cp38-manylinux2010_x86_64.whl", hash = "sha256:4c8b1c43e75c42a6cafcc71defa9e01ead39ae80bd733a2608b297412beede68"}, - {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:659f167f419a4609bc0516fb18ea69ed39dbb25594934bd2dd4d0401660e8a1e"}, - {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:356e4519d4dfa766d50ecc498544b44c0249b6de66426041d7f8b751de4d6b48"}, - {file = "greenlet-2.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:811e1d37d60b47cb8126e0a929b58c046251f28117cb16fcd371eed61f66b764"}, - {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_aarch64.whl", hash = "sha256:d38ffd0e81ba8ef347d2be0772e899c289b59ff150ebbbbe05dc61b1246eb4e0"}, - {file = "greenlet-2.0.1-cp38-cp38-musllinux_1_1_x86_64.whl", hash = "sha256:0109af1138afbfb8ae647e31a2b1ab030f58b21dd8528c27beaeb0093b7938a9"}, - {file = "greenlet-2.0.1-cp38-cp38-win32.whl", hash = "sha256:88c8d517e78acdf7df8a2134a3c4b964415b575d2840a2746ddb1cc6175f8608"}, - {file = "greenlet-2.0.1-cp38-cp38-win_amd64.whl", hash = "sha256:d6ee1aa7ab36475035eb48c01efae87d37936a8173fc4d7b10bb02c2d75dd8f6"}, - {file = "greenlet-2.0.1-cp39-cp39-macosx_10_15_x86_64.whl", hash = "sha256:b1992ba9d4780d9af9726bbcef6a1db12d9ab1ccc35e5773685a24b7fb2758eb"}, - {file = "greenlet-2.0.1-cp39-cp39-manylinux2010_x86_64.whl", hash = "sha256:b5e83e4de81dcc9425598d9469a624826a0b1211380ac444c7c791d4a2137c19"}, - {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:505138d4fa69462447a562a7c2ef723c6025ba12ac04478bc1ce2fcc279a2db5"}, - {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl", hash = "sha256:cce1e90dd302f45716a7715517c6aa0468af0bf38e814ad4eab58e88fc09f7f7"}, - {file = "greenlet-2.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:9e9744c657d896c7b580455e739899e492a4a452e2dd4d2b3e459f6b244a638d"}, - {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_aarch64.whl", hash = "sha256:662e8f7cad915ba75d8017b3e601afc01ef20deeeabf281bd00369de196d7726"}, - {file = "greenlet-2.0.1-cp39-cp39-musllinux_1_1_x86_64.whl", hash = "sha256:41b825d65f31e394b523c84db84f9383a2f7eefc13d987f308f4663794d2687e"}, - {file = "greenlet-2.0.1-cp39-cp39-win32.whl", hash = "sha256:db38f80540083ea33bdab614a9d28bcec4b54daa5aff1668d7827a9fc769ae0a"}, - {file = "greenlet-2.0.1-cp39-cp39-win_amd64.whl", hash = "sha256:b23d2a46d53210b498e5b701a1913697671988f4bf8e10f935433f6e7c332fb6"}, - {file = "greenlet-2.0.1.tar.gz", hash = "sha256:42e602564460da0e8ee67cb6d7236363ee5e131aa15943b6670e44e5c2ed0f67"}, -] -idna = [ - {file = "idna-3.4-py3-none-any.whl", hash = "sha256:90b77e79eaa3eba6de819a0c442c0b4ceefc341a7a2ab77d7562bf49f425c5c2"}, - {file = "idna-3.4.tar.gz", hash = "sha256:814f528e8dead7d329833b91c5faa87d60bf71824cd12a7530b5526063d02cb4"}, -] -imageio = [ - {file = "imageio-2.24.0-py3-none-any.whl", hash = "sha256:c4ccd0293a1aeb566c7fa04260d51897be064b8fb287a77548ce42050ec06d7a"}, - {file = "imageio-2.24.0.tar.gz", hash = "sha256:f240f8229f4f329a1546281194b52da5d6694141a524668fed3f81b0d07782fa"}, -] -interpret = [ - {file = "interpret-0.3.0-py3-none-any.whl", hash = "sha256:be9a2ed6fb97a0b3ce89b722a0ca739f66e0682df6788a25312b74350c594bfb"}, -] -interpret-core = [ - {file = "interpret_core-0.3.0-py3-none-any.whl", hash = "sha256:81d0fd262ac22e36d7a0b03c5601072295481a1878aab62e4a724118b0899618"}, -] -iprogress = [ - {file = "IProgress-0.4-py3-none-any.whl", hash = "sha256:098ba92780bf0eb3f2f3a0d4109e48d1f3c8ba57d821c6838f9ccb73e4fdc576"}, - {file = "IProgress-0.4.tar.gz", hash = "sha256:55c6bce8ad4401889330fb1125c0bf7810bfbfe0105c058f861ae91e962d51eb"}, -] -ipykernel = [ - {file = "ipykernel-6.19.4-py3-none-any.whl", hash = "sha256:0ecdae0060da61c5222ad221681f3b99b5bef739e11a3b1eb5778aa47f056f1f"}, - {file = "ipykernel-6.19.4.tar.gz", hash = "sha256:4140c282a6c71cdde59abe5eae2c71bf1eeb4a69316ab76e1c4c25150a49722b"}, -] -ipython = [ - {file = "ipython-8.8.0-py3-none-any.whl", hash = "sha256:da01e6df1501e6e7c32b5084212ddadd4ee2471602e2cf3e0190f4de6b0ea481"}, - {file = "ipython-8.8.0.tar.gz", hash = "sha256:f3bf2c08505ad2c3f4ed5c46ae0331a8547d36bf4b21a451e8ae80c0791db95b"}, -] -ipython-genutils = [ - {file = "ipython_genutils-0.2.0-py2.py3-none-any.whl", hash = "sha256:72dd37233799e619666c9f639a9da83c34013a73e8bbc79a7a6348d93c61fab8"}, - {file = "ipython_genutils-0.2.0.tar.gz", hash = "sha256:eb2e116e75ecef9d4d228fdc66af54269afa26ab4463042e33785b887c628ba8"}, -] -isoduration = [ - {file = "isoduration-20.11.0-py3-none-any.whl", hash = "sha256:b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042"}, - {file = "isoduration-20.11.0.tar.gz", hash = "sha256:ac2f9015137935279eac671f94f89eb00584f940f5dc49462a0c4ee692ba1bd9"}, -] -itsdangerous = [ - {file = "itsdangerous-2.1.2-py3-none-any.whl", hash = "sha256:2c2349112351b88699d8d4b6b075022c0808887cb7ad10069318a8b0bc88db44"}, - {file = "itsdangerous-2.1.2.tar.gz", hash = "sha256:5dbbc68b317e5e42f327f9021763545dc3fc3bfe22e6deb96aaf1fc38874156a"}, -] -jedi = [ - {file = "jedi-0.18.2-py2.py3-none-any.whl", hash = "sha256:203c1fd9d969ab8f2119ec0a3342e0b49910045abe6af0a3ae83a5764d54639e"}, - {file = "jedi-0.18.2.tar.gz", hash = "sha256:bae794c30d07f6d910d32a7048af09b5a39ed740918da923c6b780790ebac612"}, -] -jinja2 = [ - {file = "Jinja2-3.1.2-py3-none-any.whl", hash = "sha256:6088930bfe239f0e6710546ab9c19c9ef35e29792895fed6e6e31a023a182a61"}, - {file = "Jinja2-3.1.2.tar.gz", hash = "sha256:31351a702a408a9e7595a8fc6150fc3f43bb6bf7e319770cbc0db9df9437e852"}, -] -joblib = [ - {file = "joblib-1.2.0-py3-none-any.whl", hash = "sha256:091138ed78f800342968c523bdde947e7a305b8594b910a0fea2ab83c3c6d385"}, - {file = "joblib-1.2.0.tar.gz", hash = "sha256:e1cee4a79e4af22881164f218d4311f60074197fb707e082e803b61f6d137018"}, -] -json5 = [ - {file = "json5-0.9.11-py2.py3-none-any.whl", hash = "sha256:1aa54b80b5e507dfe31d12b7743a642e2ffa6f70bf73b8e3d7d1d5fba83d99bd"}, - {file = "json5-0.9.11.tar.gz", hash = "sha256:4f1e196acc55b83985a51318489f345963c7ba84aa37607e49073066c562e99b"}, -] -jsonpointer = [ - {file = "jsonpointer-2.3-py2.py3-none-any.whl", hash = "sha256:51801e558539b4e9cd268638c078c6c5746c9ac96bc38152d443400e4f3793e9"}, - {file = "jsonpointer-2.3.tar.gz", hash = "sha256:97cba51526c829282218feb99dab1b1e6bdf8efd1c43dc9d57be093c0d69c99a"}, -] -jsonschema = [ - {file = "jsonschema-4.17.3-py3-none-any.whl", hash = "sha256:a870ad254da1a8ca84b6a2905cac29d265f805acc57af304784962a2aa6508f6"}, - {file = "jsonschema-4.17.3.tar.gz", hash = "sha256:0f864437ab8b6076ba6707453ef8f98a6a0d512a80e93f8abdb676f737ecb60d"}, -] -jupyter-client = [ - {file = "jupyter_client-7.4.8-py3-none-any.whl", hash = "sha256:d4a67ae86ee014bcb96bd8190714f6af921f2b0f52f4208b086aa5acfd9f8d65"}, - {file = "jupyter_client-7.4.8.tar.gz", hash = "sha256:109a3c33b62a9cf65aa8325850a0999a795fac155d9de4f7555aef5f310ee35a"}, -] -jupyter-core = [ - {file = "jupyter_core-5.1.2-py3-none-any.whl", hash = "sha256:0f99cc639c8d00d591acfcc028aeea81473ea6c72fabe86426398220e2d91b1d"}, - {file = "jupyter_core-5.1.2.tar.gz", hash = "sha256:62b00d52f030643d29f86aafdfd9b36d42421823599a272eb4c2df1d1cc7f723"}, -] -jupyter-events = [ - {file = "jupyter_events-0.5.0-py3-none-any.whl", hash = "sha256:6f7b67bf42b8a370c992187194ed02847dfa02307a7aebe9913e2d3979b9b6b8"}, - {file = "jupyter_events-0.5.0.tar.gz", hash = "sha256:e27ffdd6138699d47d42cb65ae6d79334ff7c0d923694381c991ce56a140f2cd"}, -] -jupyter-server = [ - {file = "jupyter_server-2.0.6-py3-none-any.whl", hash = "sha256:6a4c9a3f9fa8679015954586944a568b911a98d7480ae1d56ff55a6a4f055254"}, - {file = "jupyter_server-2.0.6.tar.gz", hash = "sha256:8dd75992e90b7ca556794a1ed5cca51263c697abc6d0df561af574aa1c0a033f"}, -] -jupyter-server-terminals = [ - {file = "jupyter_server_terminals-0.4.3-py3-none-any.whl", hash = "sha256:ec67d3f1895d25cfb586a87a50b8eee13b709898a4afd721058e551e0a0f480d"}, - {file = "jupyter_server_terminals-0.4.3.tar.gz", hash = "sha256:8421438d95a1f1f6994c48dd5dc10ad167ea7c196972bb5d1d7a9da1e30fde02"}, -] -jupyterlab = [ - {file = "jupyterlab-3.5.2-py3-none-any.whl", hash = "sha256:16e9b8320dcec469c70bb883e993e0bb84c4ea1a734063731f66922cf72add1b"}, - {file = "jupyterlab-3.5.2.tar.gz", hash = "sha256:10ac094215ffb872ddffbe2982bf1c039a79fecc326e191e7cc5efd84f331dad"}, -] -jupyterlab-pygments = [ - {file = "jupyterlab_pygments-0.2.2-py2.py3-none-any.whl", hash = "sha256:2405800db07c9f770863bcf8049a529c3dd4d3e28536638bd7c1c01d2748309f"}, - {file = "jupyterlab_pygments-0.2.2.tar.gz", hash = "sha256:7405d7fde60819d905a9fa8ce89e4cd830e318cdad22a0030f7a901da705585d"}, -] -jupyterlab-server = [ - {file = "jupyterlab_server-2.18.0-py3-none-any.whl", hash = "sha256:2ce377afe6c5f762e933de1d942cad1ec07a1fbace4b586cd7a905fd57892695"}, - {file = "jupyterlab_server-2.18.0.tar.gz", hash = "sha256:7830f085debc9417a72ebf482dc5cb477d6bf76884826c73182fa457c7829df4"}, -] -kiwisolver = [ +files = [ {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:2f5e60fabb7343a836360c4f0919b8cd0d6dbf08ad2ca6b9cf90bf0c76a3c4f6"}, {file = "kiwisolver-1.4.4-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:10ee06759482c78bdb864f4109886dff7b8a56529bc1609d4f1112b93fe6423c"}, {file = "kiwisolver-1.4.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c79ebe8f3676a4c6630fd3f777f3cfecf9289666c84e775a67d1d358578dc2e3"}, @@ -2631,10 +1413,35 @@ kiwisolver = [ {file = "kiwisolver-1.4.4-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:36dafec3d6d6088d34e2de6b85f9d8e2324eb734162fba59d2ba9ed7a2043d5b"}, {file = "kiwisolver-1.4.4.tar.gz", hash = "sha256:d41997519fcba4a1e46eb4a2fe31bc12f0ff957b2b81bac28db24744f333e955"}, ] -lime = [ + +[[package]] +name = "lime" +version = "0.2.0.1" +description = "Local Interpretable Model-Agnostic Explanations for machine learning classifiers" +optional = false +python-versions = ">=3.5" +files = [ {file = "lime-0.2.0.1.tar.gz", hash = "sha256:76960e4f055feb53e89b5022383bafc87b63f25bac6265984b0a333d1a57f781"}, ] -llvmlite = [ + +[package.dependencies] +matplotlib = "*" +numpy = "*" +scikit-image = ">=0.12" +scikit-learn = ">=0.18" +scipy = "*" +tqdm = "*" + +[package.extras] +dev = ["flake8", "pytest"] + +[[package]] +name = "llvmlite" +version = "0.39.1" +description = "lightweight wrapper around basic LLVM functionality" +optional = false +python-versions = ">=3.7" +files = [ {file = "llvmlite-0.39.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:6717c7a6e93c9d2c3d07c07113ec80ae24af45cde536b34363d4bcd9188091d9"}, {file = "llvmlite-0.39.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:ddab526c5a2c4ccb8c9ec4821fcea7606933dc53f510e2a6eebb45a418d3488a"}, {file = "llvmlite-0.39.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a3f331a323d0f0ada6b10d60182ef06c20a2f01be21699999d204c5750ffd0b4"}, @@ -2664,7 +1471,14 @@ llvmlite = [ {file = "llvmlite-0.39.1-cp39-cp39-win_amd64.whl", hash = "sha256:3fc14e757bc07a919221f0cbaacb512704ce5774d7fcada793f1996d6bc75f2a"}, {file = "llvmlite-0.39.1.tar.gz", hash = "sha256:b43abd7c82e805261c425d50335be9a6c4f84264e34d6d6e475207300005d572"}, ] -markupsafe = [ + +[[package]] +name = "markupsafe" +version = "2.1.1" +description = "Safely add untrusted strings to HTML/XML markup." +optional = false +python-versions = ">=3.7" +files = [ {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:86b1f75c4e7c2ac2ccdaec2b9022845dbb81880ca318bb7a0a01fbf7813e3812"}, {file = "MarkupSafe-2.1.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:f121a1420d4e173a5d96e47e9a0c0dcff965afdf1626d28de1460815f7c4ee7a"}, {file = "MarkupSafe-2.1.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:a49907dd8420c5685cfa064a1335b6754b74541bbb3706c259c02ed65b644b3e"}, @@ -2706,7 +1520,14 @@ markupsafe = [ {file = "MarkupSafe-2.1.1-cp39-cp39-win_amd64.whl", hash = "sha256:46d00d6cfecdde84d40e572d63735ef81423ad31184100411e6e3388d405e247"}, {file = "MarkupSafe-2.1.1.tar.gz", hash = "sha256:7f91197cc9e48f989d12e4e6fbc46495c446636dfc81b9ccf50bb0ec74b91d4b"}, ] -matplotlib = [ + +[[package]] +name = "matplotlib" +version = "3.6.2" +description = "Python plotting package" +optional = false +python-versions = ">=3.8" +files = [ {file = "matplotlib-3.6.2-cp310-cp310-macosx_10_12_universal2.whl", hash = "sha256:8d0068e40837c1d0df6e3abf1cdc9a34a6d2611d90e29610fa1d2455aeb4e2e5"}, {file = "matplotlib-3.6.2-cp310-cp310-macosx_10_12_x86_64.whl", hash = "sha256:252957e208c23db72ca9918cb33e160c7833faebf295aaedb43f5b083832a267"}, {file = "matplotlib-3.6.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:d50e8c1e571ee39b5dfbc295c11ad65988879f68009dd281a6e1edbc2ff6c18c"}, @@ -2749,15 +1570,50 @@ matplotlib = [ {file = "matplotlib-3.6.2-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:4426c74761790bff46e3d906c14c7aab727543293eed5a924300a952e1a3a3c1"}, {file = "matplotlib-3.6.2.tar.gz", hash = "sha256:b03fd10a1709d0101c054883b550f7c4c5e974f751e2680318759af005964990"}, ] -matplotlib-inline = [ + +[package.dependencies] +contourpy = ">=1.0.1" +cycler = ">=0.10" +fonttools = ">=4.22.0" +kiwisolver = ">=1.0.1" +numpy = ">=1.19" +packaging = ">=20.0" +pillow = ">=6.2.0" +pyparsing = ">=2.2.1" +python-dateutil = ">=2.7" + +[[package]] +name = "matplotlib-inline" +version = "0.1.6" +description = "Inline Matplotlib backend for Jupyter" +optional = false +python-versions = ">=3.5" +files = [ {file = "matplotlib-inline-0.1.6.tar.gz", hash = "sha256:f887e5f10ba98e8d2b150ddcf4702c1e5f8b3a20005eb0f74bfdbd360ee6f304"}, {file = "matplotlib_inline-0.1.6-py3-none-any.whl", hash = "sha256:f1f41aab5328aa5aaea9b16d083b128102f8712542f819fe7e6a420ff581b311"}, ] -mistune = [ + +[package.dependencies] +traitlets = "*" + +[[package]] +name = "mistune" +version = "2.0.4" +description = "A sane Markdown parser with useful plugins and renderers" +optional = false +python-versions = "*" +files = [ {file = "mistune-2.0.4-py2.py3-none-any.whl", hash = "sha256:182cc5ee6f8ed1b807de6b7bb50155df7b66495412836b9a74c8fbdfc75fe36d"}, {file = "mistune-2.0.4.tar.gz", hash = "sha256:9ee0a66053e2267aba772c71e06891fa8f1af6d4b01d5e84e267b4570d4d9808"}, ] -multiprocess = [ + +[[package]] +name = "multiprocess" +version = "0.70.14" +description = "better multiprocessing and multithreading in python" +optional = false +python-versions = ">=3.7" +files = [ {file = "multiprocess-0.70.14-pp37-pypy37_pp73-macosx_10_9_x86_64.whl", hash = "sha256:560a27540daef4ce8b24ed3cc2496a3c670df66c96d02461a4da67473685adf3"}, {file = "multiprocess-0.70.14-pp37-pypy37_pp73-manylinux_2_24_i686.whl", hash = "sha256:bfbbfa36f400b81d1978c940616bc77776424e5e34cb0c94974b178d727cfcd5"}, {file = "multiprocess-0.70.14-pp37-pypy37_pp73-manylinux_2_24_x86_64.whl", hash = "sha256:89fed99553a04ec4f9067031f83a886d7fdec5952005551a896a4b6a59575bb9"}, @@ -2773,39 +1629,212 @@ multiprocess = [ {file = "multiprocess-0.70.14-py39-none-any.whl", hash = "sha256:63cee628b74a2c0631ef15da5534c8aedbc10c38910b9c8b18dcd327528d1ec7"}, {file = "multiprocess-0.70.14.tar.gz", hash = "sha256:3eddafc12f2260d27ae03fe6069b12570ab4764ab59a75e81624fac453fbf46a"}, ] -nbclassic = [ + +[package.dependencies] +dill = ">=0.3.6" + +[[package]] +name = "nbclassic" +version = "0.4.8" +description = "A web-based notebook environment for interactive computing" +optional = false +python-versions = ">=3.7" +files = [ {file = "nbclassic-0.4.8-py3-none-any.whl", hash = "sha256:cbf05df5842b420d5cece0143462380ea9d308ff57c2dc0eb4d6e035b18fbfb3"}, {file = "nbclassic-0.4.8.tar.gz", hash = "sha256:c74d8a500f8e058d46b576a41e5bc640711e1032cf7541dde5f73ea49497e283"}, ] -nbclient = [ + +[package.dependencies] +argon2-cffi = "*" +ipykernel = "*" +ipython-genutils = "*" +jinja2 = "*" +jupyter-client = ">=6.1.1" +jupyter-core = ">=4.6.1" +jupyter-server = ">=1.8" +nbconvert = ">=5" +nbformat = "*" +nest-asyncio = ">=1.5" +notebook-shim = ">=0.1.0" +prometheus-client = "*" +pyzmq = ">=17" +Send2Trash = ">=1.8.0" +terminado = ">=0.8.3" +tornado = ">=6.1" +traitlets = ">=4.2.1" + +[package.extras] +docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] +json-logging = ["json-logging"] +test = ["coverage", "nbval", "pytest", "pytest-cov", "pytest-playwright", "pytest-tornasync", "requests", "requests-unixsocket", "testpath"] + +[[package]] +name = "nbclient" +version = "0.7.2" +description = "A client library for executing notebooks. Formerly nbconvert's ExecutePreprocessor." +optional = false +python-versions = ">=3.7.0" +files = [ {file = "nbclient-0.7.2-py3-none-any.whl", hash = "sha256:d97ac6257de2794f5397609df754fcbca1a603e94e924eb9b99787c031ae2e7c"}, {file = "nbclient-0.7.2.tar.gz", hash = "sha256:884a3f4a8c4fc24bb9302f263e0af47d97f0d01fe11ba714171b320c8ac09547"}, ] -nbconvert = [ + +[package.dependencies] +jupyter-client = ">=6.1.12" +jupyter-core = ">=4.12,<5.0.dev0 || >=5.1.dev0" +nbformat = ">=5.1" +traitlets = ">=5.3" + +[package.extras] +dev = ["pre-commit"] +docs = ["autodoc-traits", "mock", "moto", "myst-parser", "nbclient[test]", "sphinx (>=1.7)", "sphinx-book-theme"] +test = ["ipykernel", "ipython", "ipywidgets", "nbconvert (>=7.0.0)", "pytest (>=7.0)", "pytest-asyncio", "pytest-cov (>=4.0)", "testpath", "xmltodict"] + +[[package]] +name = "nbconvert" +version = "7.2.7" +description = "Converting Jupyter Notebooks" +optional = false +python-versions = ">=3.7" +files = [ {file = "nbconvert-7.2.7-py3-none-any.whl", hash = "sha256:e057f1f87a6ac50629b724d9a46b40e2ba394d6f20ee7f33f4acef1928a15af3"}, {file = "nbconvert-7.2.7.tar.gz", hash = "sha256:8b727b0503bf4e0ff3907c8bea030d3fc4015fbee8669ac6ac2a5a6668b49d5e"}, ] -nbformat = [ + +[package.dependencies] +beautifulsoup4 = "*" +bleach = "*" +defusedxml = "*" +jinja2 = ">=3.0" +jupyter-core = ">=4.7" +jupyterlab-pygments = "*" +markupsafe = ">=2.0" +mistune = ">=2.0.3,<3" +nbclient = ">=0.5.0" +nbformat = ">=5.1" +packaging = "*" +pandocfilters = ">=1.4.1" +pygments = ">=2.4.1" +tinycss2 = "*" +traitlets = ">=5.0" + +[package.extras] +all = ["nbconvert[docs,qtpdf,serve,test,webpdf]"] +docs = ["ipykernel", "ipython", "myst-parser", "nbsphinx (>=0.2.12)", "pydata-sphinx-theme", "sphinx (==5.0.2)"] +qtpdf = ["nbconvert[qtpng]"] +qtpng = ["pyqtwebengine (>=5.15)"] +serve = ["tornado (>=6.1)"] +test = ["ipykernel", "ipywidgets (>=7)", "pre-commit", "pytest", "pytest-dependency"] +webpdf = ["pyppeteer (>=1,<1.1)"] + +[[package]] +name = "nbformat" +version = "5.7.1" +description = "The Jupyter Notebook format" +optional = false +python-versions = ">=3.7" +files = [ {file = "nbformat-5.7.1-py3-none-any.whl", hash = "sha256:e52ab802ce7f7a2863861e914642f021b9d7c23ad9726d14c36df92a79acd754"}, {file = "nbformat-5.7.1.tar.gz", hash = "sha256:3810a0130453ed031970521d20989b8a592f3c2e73283a8280ae34ae1f75b3f8"}, ] -nest-asyncio = [ + +[package.dependencies] +fastjsonschema = "*" +jsonschema = ">=2.6" +jupyter-core = "*" +traitlets = ">=5.1" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx", "sphinxcontrib-github-alt"] +test = ["pep440", "pre-commit", "pytest", "testpath"] + +[[package]] +name = "nest-asyncio" +version = "1.5.6" +description = "Patch asyncio to allow nested event loops" +optional = false +python-versions = ">=3.5" +files = [ {file = "nest_asyncio-1.5.6-py3-none-any.whl", hash = "sha256:b9a953fb40dceaa587d109609098db21900182b16440652454a146cffb06e8b8"}, {file = "nest_asyncio-1.5.6.tar.gz", hash = "sha256:d267cc1ff794403f7df692964d1d2a3fa9418ffea2a3f6859a439ff482fef290"}, ] -networkx = [ + +[[package]] +name = "networkx" +version = "3.0" +description = "Python package for creating and manipulating graphs and networks" +optional = false +python-versions = ">=3.8" +files = [ {file = "networkx-3.0-py3-none-any.whl", hash = "sha256:58058d66b1818043527244fab9d41a51fcd7dcc271748015f3c181b8a90c8e2e"}, {file = "networkx-3.0.tar.gz", hash = "sha256:9a9992345353618ae98339c2b63d8201c381c2944f38a2ab49cb45a4c667e412"}, ] -notebook = [ + +[package.extras] +default = ["matplotlib (>=3.4)", "numpy (>=1.20)", "pandas (>=1.3)", "scipy (>=1.8)"] +developer = ["mypy (>=0.991)", "pre-commit (>=2.20)"] +doc = ["nb2plots (>=0.6)", "numpydoc (>=1.5)", "pillow (>=9.2)", "pydata-sphinx-theme (>=0.11)", "sphinx (==5.2.3)", "sphinx-gallery (>=0.11)", "texext (>=0.6.7)"] +extra = ["lxml (>=4.6)", "pydot (>=1.4.2)", "pygraphviz (>=1.10)", "sympy (>=1.10)"] +test = ["codecov (>=2.1)", "pytest (>=7.2)", "pytest-cov (>=4.0)"] + +[[package]] +name = "notebook" +version = "6.5.2" +description = "A web-based notebook environment for interactive computing" +optional = false +python-versions = ">=3.7" +files = [ {file = "notebook-6.5.2-py3-none-any.whl", hash = "sha256:e04f9018ceb86e4fa841e92ea8fb214f8d23c1cedfde530cc96f92446924f0e4"}, {file = "notebook-6.5.2.tar.gz", hash = "sha256:c1897e5317e225fc78b45549a6ab4b668e4c996fd03a04e938fe5e7af2bfffd0"}, ] -notebook-shim = [ + +[package.dependencies] +argon2-cffi = "*" +ipykernel = "*" +ipython-genutils = "*" +jinja2 = "*" +jupyter-client = ">=5.3.4" +jupyter-core = ">=4.6.1" +nbclassic = ">=0.4.7" +nbconvert = ">=5" +nbformat = "*" +nest-asyncio = ">=1.5" +prometheus-client = "*" +pyzmq = ">=17" +Send2Trash = ">=1.8.0" +terminado = ">=0.8.3" +tornado = ">=6.1" +traitlets = ">=4.2.1" + +[package.extras] +docs = ["myst-parser", "nbsphinx", "sphinx", "sphinx-rtd-theme", "sphinxcontrib-github-alt"] +json-logging = ["json-logging"] +test = ["coverage", "nbval", "pytest", "pytest-cov", "requests", "requests-unixsocket", "selenium (==4.1.5)", "testpath"] + +[[package]] +name = "notebook-shim" +version = "0.2.2" +description = "A shim layer for notebook traits and config" +optional = false +python-versions = ">=3.7" +files = [ {file = "notebook_shim-0.2.2-py3-none-any.whl", hash = "sha256:9c6c30f74c4fbea6fce55c1be58e7fd0409b1c681b075dcedceb005db5026949"}, {file = "notebook_shim-0.2.2.tar.gz", hash = "sha256:090e0baf9a5582ff59b607af523ca2db68ff216da0c69956b62cab2ef4fc9c3f"}, ] -numba = [ + +[package.dependencies] +jupyter-server = ">=1.8,<3" + +[package.extras] +test = ["pytest", "pytest-console-scripts", "pytest-tornasync"] + +[[package]] +name = "numba" +version = "0.56.4" +description = "compiling Python code using LLVM" +optional = false +python-versions = ">=3.7" +files = [ {file = "numba-0.56.4-cp310-cp310-macosx_10_14_x86_64.whl", hash = "sha256:9f62672145f8669ec08762895fe85f4cf0ead08ce3164667f2b94b2f62ab23c3"}, {file = "numba-0.56.4-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c602d015478b7958408d788ba00a50272649c5186ea8baa6cf71d4a1c761bba1"}, {file = "numba-0.56.4-cp310-cp310-manylinux2014_aarch64.manylinux_2_17_aarch64.whl", hash = "sha256:85dbaed7a05ff96492b69a8900c5ba605551afb9b27774f7f10511095451137c"}, @@ -2835,7 +1864,19 @@ numba = [ {file = "numba-0.56.4-cp39-cp39-win_amd64.whl", hash = "sha256:0da583c532cd72feefd8e551435747e0e0fbb3c0530357e6845fcc11e38d6aea"}, {file = "numba-0.56.4.tar.gz", hash = "sha256:32d9fef412c81483d7efe0ceb6cf4d3310fde8b624a9cecca00f790573ac96ee"}, ] -numpy = [ + +[package.dependencies] +llvmlite = "==0.39.*" +numpy = ">=1.18,<1.24" +setuptools = "*" + +[[package]] +name = "numpy" +version = "1.23.5" +description = "NumPy is the fundamental package for array computing with Python." +optional = false +python-versions = ">=3.8" +files = [ {file = "numpy-1.23.5-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9c88793f78fca17da0145455f0d7826bcb9f37da4764af27ac945488116efe63"}, {file = "numpy-1.23.5-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:e9f4c4e51567b616be64e05d517c79a8a22f3606499941d97bb76f2ca59f982d"}, {file = "numpy-1.23.5-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:7903ba8ab592b82014713c491f6c5d3a1cde5b4a3bf116404e08f5b52f6daf43"}, @@ -2865,28 +1906,86 @@ numpy = [ {file = "numpy-1.23.5-pp38-pypy38_pp73-win_amd64.whl", hash = "sha256:01dd17cbb340bf0fc23981e52e1d18a9d4050792e8fb8363cecbf066a84b827d"}, {file = "numpy-1.23.5.tar.gz", hash = "sha256:1b1766d6f397c18153d40015ddfc79ddb715cabadc04d2d228d4e5a8bc4ded1a"}, ] -nvidia-cublas-cu11 = [ + +[[package]] +name = "nvidia-cublas-cu11" +version = "11.10.3.66" +description = "CUBLAS native runtime libraries" +optional = false +python-versions = ">=3" +files = [ {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-manylinux1_x86_64.whl", hash = "sha256:d32e4d75f94ddfb93ea0a5dda08389bcc65d8916a25cb9f37ac89edaeed3bded"}, {file = "nvidia_cublas_cu11-11.10.3.66-py3-none-win_amd64.whl", hash = "sha256:8ac17ba6ade3ed56ab898a036f9ae0756f1e81052a317bf98f8c6d18dc3ae49e"}, ] -nvidia-cuda-nvrtc-cu11 = [ + +[package.dependencies] +setuptools = "*" +wheel = "*" + +[[package]] +name = "nvidia-cuda-nvrtc-cu11" +version = "11.7.99" +description = "NVRTC native runtime libraries" +optional = false +python-versions = ">=3" +files = [ {file = "nvidia_cuda_nvrtc_cu11-11.7.99-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:9f1562822ea264b7e34ed5930567e89242d266448e936b85bc97a3370feabb03"}, {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:f7d9610d9b7c331fa0da2d1b2858a4a8315e6d49765091d28711c8946e7425e7"}, {file = "nvidia_cuda_nvrtc_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:f2effeb1309bdd1b3854fc9b17eaf997808f8b25968ce0c7070945c4265d64a3"}, ] -nvidia-cuda-runtime-cu11 = [ + +[package.dependencies] +setuptools = "*" +wheel = "*" + +[[package]] +name = "nvidia-cuda-runtime-cu11" +version = "11.7.99" +description = "CUDA Runtime native Libraries" +optional = false +python-versions = ">=3" +files = [ {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-manylinux1_x86_64.whl", hash = "sha256:cc768314ae58d2641f07eac350f40f99dcb35719c4faff4bc458a7cd2b119e31"}, {file = "nvidia_cuda_runtime_cu11-11.7.99-py3-none-win_amd64.whl", hash = "sha256:bc77fa59a7679310df9d5c70ab13c4e34c64ae2124dd1efd7e5474b71be125c7"}, ] -nvidia-cudnn-cu11 = [ + +[package.dependencies] +setuptools = "*" +wheel = "*" + +[[package]] +name = "nvidia-cudnn-cu11" +version = "8.5.0.96" +description = "cuDNN runtime libraries" +optional = false +python-versions = ">=3" +files = [ {file = "nvidia_cudnn_cu11-8.5.0.96-2-py3-none-manylinux1_x86_64.whl", hash = "sha256:402f40adfc6f418f9dae9ab402e773cfed9beae52333f6d86ae3107a1b9527e7"}, {file = "nvidia_cudnn_cu11-8.5.0.96-py3-none-manylinux1_x86_64.whl", hash = "sha256:71f8111eb830879ff2836db3cccf03bbd735df9b0d17cd93761732ac50a8a108"}, ] -packaging = [ + +[package.dependencies] +setuptools = "*" +wheel = "*" + +[[package]] +name = "packaging" +version = "23.0" +description = "Core utilities for Python packages" +optional = false +python-versions = ">=3.7" +files = [ {file = "packaging-23.0-py3-none-any.whl", hash = "sha256:714ac14496c3e68c99c29b00845f7a2b85f3bb6f1078fd9f72fd20f0570002b2"}, {file = "packaging-23.0.tar.gz", hash = "sha256:b6ad297f8907de0fa2fe1ccbd26fdaf387f5f47c7275fedf8cce89f99446cf97"}, ] -pandas = [ + +[[package]] +name = "pandas" +version = "1.5.2" +description = "Powerful data structures for data analysis, time series, and statistics" +optional = false +python-versions = ">=3.8" +files = [ {file = "pandas-1.5.2-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:e9dbacd22555c2d47f262ef96bb4e30880e5956169741400af8b306bbb24a273"}, {file = "pandas-1.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:e2b83abd292194f350bb04e188f9379d36b8dfac24dd445d5c87575f3beaf789"}, {file = "pandas-1.5.2-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:2552bffc808641c6eb471e55aa6899fa002ac94e4eebfa9ec058649122db5824"}, @@ -2915,23 +2014,76 @@ pandas = [ {file = "pandas-1.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:c218796d59d5abd8780170c937b812c9637e84c32f8271bbf9845970f8c1351f"}, {file = "pandas-1.5.2.tar.gz", hash = "sha256:220b98d15cee0b2cd839a6358bd1f273d0356bf964c1a1aeb32d47db0215488b"}, ] -pandocfilters = [ + +[package.dependencies] +numpy = [ + {version = ">=1.23.2", markers = "python_version >= \"3.11\""}, + {version = ">=1.21.0", markers = "python_version >= \"3.10\" and python_version < \"3.11\""}, +] +python-dateutil = ">=2.8.1" +pytz = ">=2020.1" + +[package.extras] +test = ["hypothesis (>=5.5.3)", "pytest (>=6.0)", "pytest-xdist (>=1.31)"] + +[[package]] +name = "pandocfilters" +version = "1.5.0" +description = "Utilities for writing pandoc filters in python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ {file = "pandocfilters-1.5.0-py2.py3-none-any.whl", hash = "sha256:33aae3f25fd1a026079f5d27bdd52496f0e0803b3469282162bafdcbdf6ef14f"}, {file = "pandocfilters-1.5.0.tar.gz", hash = "sha256:0b679503337d233b4339a817bfc8c50064e2eff681314376a47cb582305a7a38"}, ] -parso = [ + +[[package]] +name = "parso" +version = "0.8.3" +description = "A Python Parser" +optional = false +python-versions = ">=3.6" +files = [ {file = "parso-0.8.3-py2.py3-none-any.whl", hash = "sha256:c001d4636cd3aecdaf33cbb40aebb59b094be2a74c556778ef5576c175e19e75"}, {file = "parso-0.8.3.tar.gz", hash = "sha256:8c07be290bb59f03588915921e29e8a50002acaf2cdc5fa0e0114f91709fafa0"}, ] -pexpect = [ + +[package.extras] +qa = ["flake8 (==3.8.3)", "mypy (==0.782)"] +testing = ["docopt", "pytest (<6.0.0)"] + +[[package]] +name = "pexpect" +version = "4.8.0" +description = "Pexpect allows easy control of interactive console applications." +optional = false +python-versions = "*" +files = [ {file = "pexpect-4.8.0-py2.py3-none-any.whl", hash = "sha256:0b48a55dcb3c05f3329815901ea4fc1537514d6ba867a152b581d69ae3710937"}, {file = "pexpect-4.8.0.tar.gz", hash = "sha256:fc65a43959d153d0114afe13997d439c22823a27cefceb5ff35c2178c6784c0c"}, ] -pickleshare = [ + +[package.dependencies] +ptyprocess = ">=0.5" + +[[package]] +name = "pickleshare" +version = "0.7.5" +description = "Tiny 'shelve'-like database with concurrency support" +optional = false +python-versions = "*" +files = [ {file = "pickleshare-0.7.5-py2.py3-none-any.whl", hash = "sha256:9649af414d74d4df115d5d718f82acb59c9d418196b7b4290ed47a12ce62df56"}, {file = "pickleshare-0.7.5.tar.gz", hash = "sha256:87683d47965c1da65cdacaf31c8441d12b8044cdec9aca500cd78fc2c683afca"}, ] -pillow = [ + +[[package]] +name = "pillow" +version = "9.4.0" +description = "Python Imaging Library (Fork)" +optional = false +python-versions = ">=3.7" +files = [ {file = "Pillow-9.4.0-1-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:1b4b4e9dda4f4e4c4e6896f93e84a8f0bcca3b059de9ddf67dac3c334b1195e1"}, {file = "Pillow-9.4.0-1-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:fb5c1ad6bad98c57482236a21bf985ab0ef42bd51f7ad4e4538e89a997624e12"}, {file = "Pillow-9.4.0-1-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:f0caf4a5dcf610d96c3bd32932bfac8aee61c96e60481c2a0ea58da435e25acd"}, @@ -2939,6 +2091,13 @@ pillow = [ {file = "Pillow-9.4.0-1-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:b8c2f6eb0df979ee99433d8b3f6d193d9590f735cf12274c108bd954e30ca858"}, {file = "Pillow-9.4.0-1-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:b70756ec9417c34e097f987b4d8c510975216ad26ba6e57ccb53bc758f490dab"}, {file = "Pillow-9.4.0-1-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:43521ce2c4b865d385e78579a082b6ad1166ebed2b1a2293c3be1d68dd7ca3b9"}, + {file = "Pillow-9.4.0-2-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:9d9a62576b68cd90f7075876f4e8444487db5eeea0e4df3ba298ee38a8d067b0"}, + {file = "Pillow-9.4.0-2-cp311-cp311-macosx_10_10_x86_64.whl", hash = "sha256:87708d78a14d56a990fbf4f9cb350b7d89ee8988705e58e39bdf4d82c149210f"}, + {file = "Pillow-9.4.0-2-cp37-cp37m-macosx_10_10_x86_64.whl", hash = "sha256:8a2b5874d17e72dfb80d917213abd55d7e1ed2479f38f001f264f7ce7bae757c"}, + {file = "Pillow-9.4.0-2-cp38-cp38-macosx_10_10_x86_64.whl", hash = "sha256:83125753a60cfc8c412de5896d10a0a405e0bd88d0470ad82e0869ddf0cb3848"}, + {file = "Pillow-9.4.0-2-cp39-cp39-macosx_10_10_x86_64.whl", hash = "sha256:9e5f94742033898bfe84c93c831a6f552bb629448d4072dd312306bab3bd96f1"}, + {file = "Pillow-9.4.0-2-pp38-pypy38_pp73-macosx_10_10_x86_64.whl", hash = "sha256:013016af6b3a12a2f40b704677f8b51f72cb007dac785a9933d5c86a72a7fe33"}, + {file = "Pillow-9.4.0-2-pp39-pypy39_pp73-macosx_10_10_x86_64.whl", hash = "sha256:99d92d148dd03fd19d16175b6d355cc1b01faf80dae93c6c3eb4163709edc0a9"}, {file = "Pillow-9.4.0-cp310-cp310-macosx_10_10_x86_64.whl", hash = "sha256:2968c58feca624bb6c8502f9564dd187d0e1389964898f5e9e1fbc8533169157"}, {file = "Pillow-9.4.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:c5c1362c14aee73f50143d74389b2c158707b4abce2cb055b7ad37ce60738d47"}, {file = "Pillow-9.4.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:bd752c5ff1b4a870b7661234694f24b1d2b9076b8bf337321a814c612665f343"}, @@ -3003,23 +2162,75 @@ pillow = [ {file = "Pillow-9.4.0-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:8f127e7b028900421cad64f51f75c051b628db17fb00e099eb148761eed598c9"}, {file = "Pillow-9.4.0.tar.gz", hash = "sha256:a1c2d7780448eb93fbcc3789bf3916aa5720d942e37945f4056680317f1cd23e"}, ] -platformdirs = [ + +[package.extras] +docs = ["furo", "olefile", "sphinx (>=2.4)", "sphinx-copybutton", "sphinx-inline-tabs", "sphinx-issues (>=3.0.1)", "sphinx-removed-in", "sphinxext-opengraph"] +tests = ["check-manifest", "coverage", "defusedxml", "markdown2", "olefile", "packaging", "pyroma", "pytest", "pytest-cov", "pytest-timeout"] + +[[package]] +name = "platformdirs" +version = "2.6.2" +description = "A small Python package for determining appropriate platform-specific dirs, e.g. a \"user data dir\"." +optional = false +python-versions = ">=3.7" +files = [ {file = "platformdirs-2.6.2-py3-none-any.whl", hash = "sha256:83c8f6d04389165de7c9b6f0c682439697887bca0aa2f1c87ef1826be3584490"}, {file = "platformdirs-2.6.2.tar.gz", hash = "sha256:e1fea1fe471b9ff8332e229df3cb7de4f53eeea4998d3b6bfff542115e998bd2"}, ] -plotly = [ + +[package.extras] +docs = ["furo (>=2022.12.7)", "proselint (>=0.13)", "sphinx (>=5.3)", "sphinx-autodoc-typehints (>=1.19.5)"] +test = ["appdirs (==1.4.4)", "covdefaults (>=2.2.2)", "pytest (>=7.2)", "pytest-cov (>=4)", "pytest-mock (>=3.10)"] + +[[package]] +name = "plotly" +version = "5.11.0" +description = "An open-source, interactive data visualization library for Python" +optional = false +python-versions = ">=3.6" +files = [ {file = "plotly-5.11.0-py2.py3-none-any.whl", hash = "sha256:52fd74b08aa4fd5a55b9d3034a30dbb746e572d7ed84897422f927fdf687ea5f"}, {file = "plotly-5.11.0.tar.gz", hash = "sha256:4efef479c2ec1d86dcdac8405b6ca70ca65649a77408e39a7e84a1ea2db6c787"}, ] -prometheus-client = [ + +[package.dependencies] +tenacity = ">=6.2.0" + +[[package]] +name = "prometheus-client" +version = "0.15.0" +description = "Python client for the Prometheus monitoring system." +optional = false +python-versions = ">=3.6" +files = [ {file = "prometheus_client-0.15.0-py3-none-any.whl", hash = "sha256:db7c05cbd13a0f79975592d112320f2605a325969b270a94b71dcabc47b931d2"}, {file = "prometheus_client-0.15.0.tar.gz", hash = "sha256:be26aa452490cfcf6da953f9436e95a9f2b4d578ca80094b4458930e5f584ab1"}, ] -prompt-toolkit = [ + +[package.extras] +twisted = ["twisted"] + +[[package]] +name = "prompt-toolkit" +version = "3.0.36" +description = "Library for building powerful interactive command lines in Python" +optional = false +python-versions = ">=3.6.2" +files = [ {file = "prompt_toolkit-3.0.36-py3-none-any.whl", hash = "sha256:aa64ad242a462c5ff0363a7b9cfe696c20d55d9fc60c11fd8e632d064804d305"}, {file = "prompt_toolkit-3.0.36.tar.gz", hash = "sha256:3e163f254bef5a03b146397d7c1963bd3e2812f0964bb9a24e6ec761fd28db63"}, ] -psutil = [ + +[package.dependencies] +wcwidth = "*" + +[[package]] +name = "psutil" +version = "5.9.4" +description = "Cross-platform lib for process and system monitoring in Python." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ {file = "psutil-5.9.4-cp27-cp27m-macosx_10_9_x86_64.whl", hash = "sha256:c1ca331af862803a42677c120aff8a814a804e09832f166f226bfd22b56feee8"}, {file = "psutil-5.9.4-cp27-cp27m-manylinux2010_i686.whl", hash = "sha256:68908971daf802203f3d37e78d3f8831b6d1014864d7a85937941bb35f09aefe"}, {file = "psutil-5.9.4-cp27-cp27m-manylinux2010_x86_64.whl", hash = "sha256:3ff89f9b835100a825b14c2808a106b6fdcc4b15483141482a12c725e7f78549"}, @@ -3035,31 +2246,92 @@ psutil = [ {file = "psutil-5.9.4-cp38-abi3-macosx_11_0_arm64.whl", hash = "sha256:6001c809253a29599bc0dfd5179d9f8a5779f9dffea1da0f13c53ee568115e1e"}, {file = "psutil-5.9.4.tar.gz", hash = "sha256:3d7f9739eb435d4b1338944abe23f49584bde5395f27487d2ee25ad9a8774a62"}, ] -ptyprocess = [ + +[package.extras] +test = ["enum34", "ipaddress", "mock", "pywin32", "wmi"] + +[[package]] +name = "ptyprocess" +version = "0.7.0" +description = "Run a subprocess in a pseudo terminal" +optional = false +python-versions = "*" +files = [ {file = "ptyprocess-0.7.0-py2.py3-none-any.whl", hash = "sha256:4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35"}, {file = "ptyprocess-0.7.0.tar.gz", hash = "sha256:5c5d0a3b48ceee0b48485e0c26037c0acd7d29765ca3fbb5cb3831d347423220"}, ] -pure-eval = [ + +[[package]] +name = "pure-eval" +version = "0.2.2" +description = "Safely evaluate AST nodes without side effects" +optional = false +python-versions = "*" +files = [ {file = "pure_eval-0.2.2-py3-none-any.whl", hash = "sha256:01eaab343580944bc56080ebe0a674b39ec44a945e6d09ba7db3cb8cec289350"}, {file = "pure_eval-0.2.2.tar.gz", hash = "sha256:2b45320af6dfaa1750f543d714b6d1c520a1688dec6fd24d339063ce0aaa9ac3"}, ] -py = [ + +[package.extras] +tests = ["pytest"] + +[[package]] +name = "py" +version = "1.11.0" +description = "library with cross-python path, ini-parsing, io, code, log facilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ {file = "py-1.11.0-py2.py3-none-any.whl", hash = "sha256:607c53218732647dff4acdfcd50cb62615cedf612e72d1724fb1a0cc6405b378"}, {file = "py-1.11.0.tar.gz", hash = "sha256:51c75c4126074b472f746a24399ad32f6053d1b34b68d2fa41e558e6f4a98719"}, ] -pycparser = [ + +[[package]] +name = "pycparser" +version = "2.21" +description = "C parser in Python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*" +files = [ {file = "pycparser-2.21-py2.py3-none-any.whl", hash = "sha256:8ee45429555515e1f6b185e78100aea234072576aa43ab53aefcae078162fca9"}, {file = "pycparser-2.21.tar.gz", hash = "sha256:e644fdec12f7872f86c58ff790da456218b10f863970249516d60a5eaca77206"}, ] -pygments = [ + +[[package]] +name = "pygments" +version = "2.14.0" +description = "Pygments is a syntax highlighting package written in Python." +optional = false +python-versions = ">=3.6" +files = [ {file = "Pygments-2.14.0-py3-none-any.whl", hash = "sha256:fa7bd7bd2771287c0de303af8bfdfc731f51bd2c6a47ab69d117138893b82717"}, {file = "Pygments-2.14.0.tar.gz", hash = "sha256:b3ed06a9e8ac9a9aae5a6f5dbe78a8a58655d17b43b93c078f094ddc476ae297"}, ] -pyparsing = [ + +[package.extras] +plugins = ["importlib-metadata"] + +[[package]] +name = "pyparsing" +version = "3.0.9" +description = "pyparsing module - Classes and methods to define and execute parsing grammars" +optional = false +python-versions = ">=3.6.8" +files = [ {file = "pyparsing-3.0.9-py3-none-any.whl", hash = "sha256:5026bae9a10eeaefb61dab2f09052b9f4307d44aee4eda64b309723d8d206bbc"}, {file = "pyparsing-3.0.9.tar.gz", hash = "sha256:2b020ecf7d21b687f219b71ecad3631f644a47f01403fa1d1036b0c6416d70fb"}, ] -pyrsistent = [ + +[package.extras] +diagrams = ["jinja2", "railroad-diagrams"] + +[[package]] +name = "pyrsistent" +version = "0.19.3" +description = "Persistent/Functional/Immutable data structures" +optional = false +python-versions = ">=3.7" +files = [ {file = "pyrsistent-0.19.3-cp310-cp310-macosx_10_9_universal2.whl", hash = "sha256:20460ac0ea439a3e79caa1dbd560344b64ed75e85d8703943e0b66c2a6150e4a"}, {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4c18264cb84b5e68e7085a43723f9e4c1fd1d935ab240ce02c0324a8e01ccb64"}, {file = "pyrsistent-0.19.3-cp310-cp310-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:4b774f9288dda8d425adb6544e5903f1fb6c273ab3128a355c6b972b7df39dcf"}, @@ -3088,19 +2360,50 @@ pyrsistent = [ {file = "pyrsistent-0.19.3-py3-none-any.whl", hash = "sha256:ccf0d6bd208f8111179f0c26fdf84ed7c3891982f2edaeae7422575f47e66b64"}, {file = "pyrsistent-0.19.3.tar.gz", hash = "sha256:1a2994773706bbb4995c31a97bc94f1418314923bd1048c6d964837040376440"}, ] -python-dateutil = [ + +[[package]] +name = "python-dateutil" +version = "2.8.2" +description = "Extensions to the standard Python datetime module" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,>=2.7" +files = [ {file = "python-dateutil-2.8.2.tar.gz", hash = "sha256:0123cacc1627ae19ddf3c27a5de5bd67ee4586fbdd6440d9748f8abb483d3e86"}, {file = "python_dateutil-2.8.2-py2.py3-none-any.whl", hash = "sha256:961d03dc3453ebbc59dbdea9e4e11c5651520a876d0f4db161e8674aae935da9"}, ] -python-json-logger = [ + +[package.dependencies] +six = ">=1.5" + +[[package]] +name = "python-json-logger" +version = "2.0.4" +description = "A python library adding a json log formatter" +optional = false +python-versions = ">=3.5" +files = [ {file = "python-json-logger-2.0.4.tar.gz", hash = "sha256:764d762175f99fcc4630bd4853b09632acb60a6224acb27ce08cd70f0b1b81bd"}, {file = "python_json_logger-2.0.4-py3-none-any.whl", hash = "sha256:3b03487b14eb9e4f77e4fc2a023358b5394b82fd89cecf5586259baed57d8c6f"}, ] -pytz = [ + +[[package]] +name = "pytz" +version = "2022.7" +description = "World timezone definitions, modern and historical" +optional = false +python-versions = "*" +files = [ {file = "pytz-2022.7-py2.py3-none-any.whl", hash = "sha256:93007def75ae22f7cd991c84e02d434876818661f8df9ad5df9e950ff4e52cfd"}, {file = "pytz-2022.7.tar.gz", hash = "sha256:7ccfae7b4b2c067464a6733c6261673fdb8fd1be905460396b97a073e9fa683a"}, ] -pywavelets = [ + +[[package]] +name = "pywavelets" +version = "1.4.1" +description = "PyWavelets, wavelet transform module" +optional = false +python-versions = ">=3.8" +files = [ {file = "PyWavelets-1.4.1-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:d854411eb5ee9cb4bc5d0e66e3634aeb8f594210f6a1bed96dbed57ec70f181c"}, {file = "PyWavelets-1.4.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:231b0e0b1cdc1112f4af3c24eea7bf181c418d37922a67670e9bf6cfa2d544d4"}, {file = "PyWavelets-1.4.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:754fa5085768227c4f4a26c1e0c78bc509a266d9ebd0eb69a278be7e3ece943c"}, @@ -3127,7 +2430,17 @@ pywavelets = [ {file = "PyWavelets-1.4.1-cp39-cp39-win_amd64.whl", hash = "sha256:88aa5449e109d8f5e7f0adef85f7f73b1ab086102865be64421a3a3d02d277f4"}, {file = "PyWavelets-1.4.1.tar.gz", hash = "sha256:6437af3ddf083118c26d8f97ab43b0724b956c9f958e9ea788659f6a2834ba93"}, ] -pywin32 = [ + +[package.dependencies] +numpy = ">=1.17.3" + +[[package]] +name = "pywin32" +version = "305" +description = "Python for Window Extensions" +optional = false +python-versions = "*" +files = [ {file = "pywin32-305-cp310-cp310-win32.whl", hash = "sha256:421f6cd86e84bbb696d54563c48014b12a23ef95a14e0bdba526be756d89f116"}, {file = "pywin32-305-cp310-cp310-win_amd64.whl", hash = "sha256:73e819c6bed89f44ff1d690498c0a811948f73777e5f97c494c152b850fad478"}, {file = "pywin32-305-cp310-cp310-win_arm64.whl", hash = "sha256:742eb905ce2187133a29365b428e6c3b9001d79accdc30aa8969afba1d8470f4"}, @@ -3143,7 +2456,14 @@ pywin32 = [ {file = "pywin32-305-cp39-cp39-win32.whl", hash = "sha256:9d968c677ac4d5cbdaa62fd3014ab241718e619d8e36ef8e11fb930515a1e918"}, {file = "pywin32-305-cp39-cp39-win_amd64.whl", hash = "sha256:50768c6b7c3f0b38b7fb14dd4104da93ebced5f1a50dc0e834594bff6fbe1271"}, ] -pywinpty = [ + +[[package]] +name = "pywinpty" +version = "2.0.10" +description = "Pseudo terminal support for Windows from Python." +optional = false +python-versions = ">=3.7" +files = [ {file = "pywinpty-2.0.10-cp310-none-win_amd64.whl", hash = "sha256:4c7d06ad10f6e92bc850a467f26d98f4f30e73d2fe5926536308c6ae0566bc16"}, {file = "pywinpty-2.0.10-cp311-none-win_amd64.whl", hash = "sha256:7ffbd66310b83e42028fc9df7746118978d94fba8c1ebf15a7c1275fdd80b28a"}, {file = "pywinpty-2.0.10-cp37-none-win_amd64.whl", hash = "sha256:38cb924f2778b5751ef91a75febd114776b3af0ae411bc667be45dd84fc881d3"}, @@ -3151,7 +2471,14 @@ pywinpty = [ {file = "pywinpty-2.0.10-cp39-none-win_amd64.whl", hash = "sha256:3c46aef80dd50979aff93de199e4a00a8ee033ba7a03cadf0a91fed45f0c39d7"}, {file = "pywinpty-2.0.10.tar.gz", hash = "sha256:cdbb5694cf8c7242c2ecfaca35c545d31fa5d5814c3d67a4e628f803f680ebea"}, ] -pyyaml = [ + +[[package]] +name = "pyyaml" +version = "6.0" +description = "YAML parser and emitter for Python" +optional = false +python-versions = ">=3.6" +files = [ {file = "PyYAML-6.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d4db7c7aef085872ef65a8fd7d6d09a14ae91f691dec3e87ee5ee0539d516f53"}, {file = "PyYAML-6.0-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:9df7ed3b3d2e0ecfe09e14741b857df43adb5a3ddadc919a2d94fbdf78fea53c"}, {file = "PyYAML-6.0-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:77f396e6ef4c73fdc33a9157446466f1cff553d979bd00ecb64385760c6babdc"}, @@ -3193,7 +2520,14 @@ pyyaml = [ {file = "PyYAML-6.0-cp39-cp39-win_amd64.whl", hash = "sha256:b3d267842bf12586ba6c734f89d1f5b871df0273157918b0ccefa29deb05c21c"}, {file = "PyYAML-6.0.tar.gz", hash = "sha256:68fb519c14306fec9720a2a5b45bc9f0c8d1b9c72adf45c37baedfcd949c35a2"}, ] -pyzmq = [ + +[[package]] +name = "pyzmq" +version = "24.0.1" +description = "Python bindings for 0MQ" +optional = false +python-versions = ">=3.6" +files = [ {file = "pyzmq-24.0.1-cp310-cp310-macosx_10_15_universal2.whl", hash = "sha256:28b119ba97129d3001673a697b7cce47fe6de1f7255d104c2f01108a5179a066"}, {file = "pyzmq-24.0.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:bcbebd369493d68162cddb74a9c1fcebd139dfbb7ddb23d8f8e43e6c87bac3a6"}, {file = "pyzmq-24.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ae61446166983c663cee42c852ed63899e43e484abf080089f771df4b9d272ef"}, @@ -3269,23 +2603,88 @@ pyzmq = [ {file = "pyzmq-24.0.1-pp39-pypy39_pp73-win_amd64.whl", hash = "sha256:687700f8371643916a1d2c61f3fdaa630407dd205c38afff936545d7b7466066"}, {file = "pyzmq-24.0.1.tar.gz", hash = "sha256:216f5d7dbb67166759e59b0479bca82b8acf9bed6015b526b8eb10143fb08e77"}, ] -requests = [ + +[package.dependencies] +cffi = {version = "*", markers = "implementation_name == \"pypy\""} +py = {version = "*", markers = "implementation_name == \"pypy\""} + +[[package]] +name = "requests" +version = "2.28.1" +description = "Python HTTP for Humans." +optional = false +python-versions = ">=3.7, <4" +files = [ {file = "requests-2.28.1-py3-none-any.whl", hash = "sha256:8fefa2a1a1365bf5520aac41836fbee479da67864514bdb821f31ce07ce65349"}, {file = "requests-2.28.1.tar.gz", hash = "sha256:7c5599b102feddaa661c826c56ab4fee28bfd17f5abca1ebbe3e7f19d7c97983"}, ] -rfc3339-validator = [ + +[package.dependencies] +certifi = ">=2017.4.17" +charset-normalizer = ">=2,<3" +idna = ">=2.5,<4" +urllib3 = ">=1.21.1,<1.27" + +[package.extras] +socks = ["PySocks (>=1.5.6,!=1.5.7)"] +use-chardet-on-py3 = ["chardet (>=3.0.2,<6)"] + +[[package]] +name = "rfc3339-validator" +version = "0.1.4" +description = "A pure python RFC3339 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ {file = "rfc3339_validator-0.1.4-py2.py3-none-any.whl", hash = "sha256:24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa"}, {file = "rfc3339_validator-0.1.4.tar.gz", hash = "sha256:138a2abdf93304ad60530167e51d2dfb9549521a836871b88d7f4695d0022f6b"}, ] -rfc3986-validator = [ + +[package.dependencies] +six = "*" + +[[package]] +name = "rfc3986-validator" +version = "0.1.1" +description = "Pure python rfc3986 validator" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ {file = "rfc3986_validator-0.1.1-py2.py3-none-any.whl", hash = "sha256:2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9"}, {file = "rfc3986_validator-0.1.1.tar.gz", hash = "sha256:3d44bde7921b3b9ec3ae4e3adca370438eccebc676456449b145d533b240d055"}, ] -salib = [ + +[[package]] +name = "salib" +version = "1.4.7" +description = "Tools for global sensitivity analysis. Contains Sobol', Morris, FAST, DGSM, PAWN, HDMR, Moment Independent and fractional factorial methods" +optional = false +python-versions = ">=3.8" +files = [ {file = "salib-1.4.7-py3-none-any.whl", hash = "sha256:d04657d9a4972b56ca34ac0f0b1128f21e464d505892adbf921ec70f20662e84"}, {file = "salib-1.4.7.tar.gz", hash = "sha256:2e6cb19ec772d6cb7368feceae0f61e51f2d6afdbc4f8986a780b87d657b38cc"}, ] -scikit-image = [ + +[package.dependencies] +matplotlib = ">=3.2.2" +multiprocess = "*" +numpy = ">=1.20.3" +pandas = ">=1.1.2" +scipy = ">=1.7.3" + +[package.extras] +dev = ["hatch", "pre-commit", "salib[distributed]", "salib[doc]", "salib[test]"] +distributed = ["pathos (>=0.2.5)"] +doc = ["myst-parser", "numpydoc", "pydata-sphinx-theme (>=0.10)", "sphinx"] +test = ["pytest", "pytest-cov", "salib[distributed]"] + +[[package]] +name = "scikit-image" +version = "0.19.3" +description = "Image processing in Python" +optional = false +python-versions = ">=3.7" +files = [ {file = "scikit-image-0.19.3.tar.gz", hash = "sha256:24b5367de1762da6ee126dd8f30cc4e7efda474e0d7d70685433f0e3aa2ec450"}, {file = "scikit_image-0.19.3-cp310-cp310-macosx_10_13_x86_64.whl", hash = "sha256:3a01372ae4bca223873304b0bff79b9d92446ac6d6177f73d89b45561e2d09d8"}, {file = "scikit_image-0.19.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:fdf48d9b1f13af69e4e2c78e05067e322e9c8c97463c315cd0ecb47a94e259fc"}, @@ -3313,7 +2712,30 @@ scikit-image = [ {file = "scikit_image-0.19.3-cp39-cp39-win32.whl", hash = "sha256:9439e5294de3f18d6e82ec8eee2c46590231cf9c690da80545e83a0733b7a69e"}, {file = "scikit_image-0.19.3-cp39-cp39-win_amd64.whl", hash = "sha256:32fb88cc36203b99c9672fb972c9ef98635deaa5fc889fe969f3e11c44f22919"}, ] -scikit-learn = [ + +[package.dependencies] +imageio = ">=2.4.1" +networkx = ">=2.2" +numpy = ">=1.17.0" +packaging = ">=20.0" +pillow = ">=6.1.0,<7.1.0 || >7.1.0,<7.1.1 || >7.1.1,<8.3.0 || >8.3.0" +PyWavelets = ">=1.1.1" +scipy = ">=1.4.1" +tifffile = ">=2019.7.26" + +[package.extras] +data = ["pooch (>=1.3.0)"] +docs = ["cloudpickle (>=0.2.1)", "dask[array] (>=0.15.0,!=2.17.0)", "ipywidgets", "kaleido", "matplotlib (>=3.3)", "myst-parser", "numpydoc (>=1.0)", "pandas (>=0.23.0)", "plotly (>=4.14.0)", "pooch (>=1.3.0)", "pytest-runner", "scikit-learn", "seaborn (>=0.7.1)", "sphinx (>=1.8)", "sphinx-copybutton", "sphinx-gallery (>=0.10.1)", "tifffile (>=2020.5.30)"] +optional = ["SimpleITK", "astropy (>=3.1.2)", "cloudpickle (>=0.2.1)", "dask[array] (>=1.0.0,!=2.17.0)", "matplotlib (>=3.0.3)", "pooch (>=1.3.0)", "pyamg", "qtpy"] +test = ["asv", "codecov", "flake8", "matplotlib (>=3.0.3)", "pooch (>=1.3.0)", "pytest (>=5.2.0)", "pytest-cov (>=2.7.0)", "pytest-faulthandler", "pytest-localserver"] + +[[package]] +name = "scikit-learn" +version = "1.2.0" +description = "A set of python modules for machine learning and data mining" +optional = false +python-versions = ">=3.8" +files = [ {file = "scikit-learn-1.2.0.tar.gz", hash = "sha256:680b65b3caee469541385d2ca5b03ff70408f6c618c583948312f0d2125df680"}, {file = "scikit_learn-1.2.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1beaa631434d1f17a20b1eef5d842e58c195875d2bc11901a1a70b5fe544745b"}, {file = "scikit_learn-1.2.0-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:d395730f26d8fc752321f1953ddf72647c892d8bed74fad4d7c816ec9b602dfa"}, @@ -3336,7 +2758,26 @@ scikit-learn = [ {file = "scikit_learn-1.2.0-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:de897720173b26842e21bed54362f5294e282422116b61cd931d4f5d870b9855"}, {file = "scikit_learn-1.2.0-cp39-cp39-win_amd64.whl", hash = "sha256:ceb0008f345188aa236e49c973dc160b9ed504a3abd7b321a0ecabcb669be0bd"}, ] -scipy = [ + +[package.dependencies] +joblib = ">=1.1.1" +numpy = ">=1.17.3" +scipy = ">=1.3.2" +threadpoolctl = ">=2.0.0" + +[package.extras] +benchmark = ["matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "pandas (>=1.0.5)"] +docs = ["Pillow (>=7.1.2)", "matplotlib (>=3.1.3)", "memory-profiler (>=0.57.0)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)", "sphinx (>=4.0.1)", "sphinx-gallery (>=0.7.0)", "sphinx-prompt (>=1.3.0)", "sphinxext-opengraph (>=0.4.2)"] +examples = ["matplotlib (>=3.1.3)", "pandas (>=1.0.5)", "plotly (>=5.10.0)", "pooch (>=1.6.0)", "scikit-image (>=0.16.2)", "seaborn (>=0.9.0)"] +tests = ["black (>=22.3.0)", "flake8 (>=3.8.2)", "matplotlib (>=3.1.3)", "mypy (>=0.961)", "numpydoc (>=1.2.0)", "pandas (>=1.0.5)", "pooch (>=1.6.0)", "pyamg (>=4.0.0)", "pytest (>=5.3.1)", "pytest-cov (>=2.9.0)", "scikit-image (>=0.16.2)"] + +[[package]] +name = "scipy" +version = "1.9.3" +description = "Fundamental algorithms for scientific computing in Python" +optional = false +python-versions = ">=3.8" +files = [ {file = "scipy-1.9.3-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:1884b66a54887e21addf9c16fb588720a8309a57b2e258ae1c7986d4444d3bc0"}, {file = "scipy-1.9.3-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:83b89e9586c62e787f5012e8475fbb12185bafb996a03257e9675cd73d3736dd"}, {file = "scipy-1.9.3-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1a72d885fa44247f92743fc20732ae55564ff2a519e8302fb7e18717c5355a8b"}, @@ -3359,23 +2800,75 @@ scipy = [ {file = "scipy-1.9.3-cp39-cp39-win_amd64.whl", hash = "sha256:5b88e6d91ad9d59478fafe92a7c757d00c59e3bdc3331be8ada76a4f8d683f58"}, {file = "scipy-1.9.3.tar.gz", hash = "sha256:fbc5c05c85c1a02be77b1ff591087c83bc44579c6d2bd9fb798bb64ea5e1a027"}, ] -seaborn = [ + +[package.dependencies] +numpy = ">=1.18.5,<1.26.0" + +[package.extras] +dev = ["flake8", "mypy", "pycodestyle", "typing_extensions"] +doc = ["matplotlib (>2)", "numpydoc", "pydata-sphinx-theme (==0.9.0)", "sphinx (!=4.1.0)", "sphinx-panels (>=0.5.2)", "sphinx-tabs"] +test = ["asv", "gmpy2", "mpmath", "pytest", "pytest-cov", "pytest-xdist", "scikit-umfpack", "threadpoolctl"] + +[[package]] +name = "seaborn" +version = "0.12.2" +description = "Statistical data visualization" +optional = false +python-versions = ">=3.7" +files = [ {file = "seaborn-0.12.2-py3-none-any.whl", hash = "sha256:ebf15355a4dba46037dfd65b7350f014ceb1f13c05e814eda2c9f5fd731afc08"}, {file = "seaborn-0.12.2.tar.gz", hash = "sha256:374645f36509d0dcab895cba5b47daf0586f77bfe3b36c97c607db7da5be0139"}, ] -send2trash = [ + +[package.dependencies] +matplotlib = ">=3.1,<3.6.1 || >3.6.1" +numpy = ">=1.17,<1.24.0 || >1.24.0" +pandas = ">=0.25" + +[package.extras] +dev = ["flake8", "flit", "mypy", "pandas-stubs", "pre-commit", "pytest", "pytest-cov", "pytest-xdist"] +docs = ["ipykernel", "nbconvert", "numpydoc", "pydata_sphinx_theme (==0.10.0rc2)", "pyyaml", "sphinx-copybutton", "sphinx-design", "sphinx-issues"] +stats = ["scipy (>=1.3)", "statsmodels (>=0.10)"] + +[[package]] +name = "send2trash" +version = "1.8.0" +description = "Send file to trash natively under Mac OS X, Windows and Linux." +optional = false +python-versions = "*" +files = [ {file = "Send2Trash-1.8.0-py3-none-any.whl", hash = "sha256:f20eaadfdb517eaca5ce077640cb261c7d2698385a6a0f072a4a5447fd49fa08"}, {file = "Send2Trash-1.8.0.tar.gz", hash = "sha256:d2c24762fd3759860a0aff155e45871447ea58d2be6bdd39b5c8f966a0c99c2d"}, ] -setuptools = [ + +[package.extras] +nativelib = ["pyobjc-framework-Cocoa", "pywin32"] +objc = ["pyobjc-framework-Cocoa"] +win32 = ["pywin32"] + +[[package]] +name = "setuptools" +version = "65.6.3" +description = "Easily download, build, install, upgrade, and uninstall Python packages" +optional = false +python-versions = ">=3.7" +files = [ {file = "setuptools-65.6.3-py3-none-any.whl", hash = "sha256:57f6f22bde4e042978bcd50176fdb381d7c21a9efa4041202288d3737a0c6a54"}, {file = "setuptools-65.6.3.tar.gz", hash = "sha256:a7620757bf984b58deaf32fc8a4577a9bbc0850cf92c20e1ce41c38c19e5fb75"}, ] -setuptools-scm = [ - {file = "setuptools_scm-7.1.0-py3-none-any.whl", hash = "sha256:73988b6d848709e2af142aa48c986ea29592bbcfca5375678064708205253d8e"}, - {file = "setuptools_scm-7.1.0.tar.gz", hash = "sha256:6c508345a771aad7d56ebff0e70628bf2b0ec7573762be9960214730de278f27"}, -] -shap = [ + +[package.extras] +docs = ["furo", "jaraco.packaging (>=9)", "jaraco.tidelift (>=1.4)", "pygments-github-lexers (==0.0.5)", "rst.linker (>=1.9)", "sphinx (>=3.5)", "sphinx-favicon", "sphinx-hoverxref (<2)", "sphinx-inline-tabs", "sphinx-notfound-page (==0.8.3)", "sphinx-reredirects", "sphinxcontrib-towncrier"] +testing = ["build[virtualenv]", "filelock (>=3.4.0)", "flake8 (<5)", "flake8-2020", "ini2toml[lite] (>=0.9)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pip (>=19.1)", "pip-run (>=8.8)", "pytest (>=6)", "pytest-black (>=0.3.7)", "pytest-checkdocs (>=2.4)", "pytest-cov", "pytest-enabler (>=1.3)", "pytest-flake8", "pytest-mypy (>=0.9.1)", "pytest-perf", "pytest-timeout", "pytest-xdist", "tomli-w (>=1.0.0)", "virtualenv (>=13.0.0)", "wheel"] +testing-integration = ["build[virtualenv]", "filelock (>=3.4.0)", "jaraco.envs (>=2.2)", "jaraco.path (>=3.2.0)", "pytest", "pytest-enabler", "pytest-xdist", "tomli", "virtualenv (>=13.0.0)", "wheel"] + +[[package]] +name = "shap" +version = "0.41.0" +description = "A unified approach to explain the output of any machine learning model." +optional = false +python-versions = "*" +files = [ {file = "shap-0.41.0-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:9e867dd8be6c0644c8d954dcc9efc51c0f0eec432de2d4cb253a7878489bb9f1"}, {file = "shap-0.41.0-cp310-cp310-manylinux_2_12_i686.manylinux2010_i686.whl", hash = "sha256:48d52fe9d2ebb7bd829484e55c3b8a2edd8f3e50c4ad9ab905d5b6b72741b018"}, {file = "shap-0.41.0-cp310-cp310-manylinux_2_12_x86_64.manylinux2010_x86_64.whl", hash = "sha256:b4aae56ca7827075a73a72d3ae02e28371e3a5ef244d82390b06d2eb34fb7183"}, @@ -3403,54 +2896,202 @@ shap = [ {file = "shap-0.41.0-cp39-cp39-win_amd64.whl", hash = "sha256:c7afe5d5e3547e4392bc43f47dc2b6cef2a4a8b366bd7ef8495736af7013c8e7"}, {file = "shap-0.41.0.tar.gz", hash = "sha256:a49ea4d65aadbc845a695fa3d7ea0bdfc8c928b8e213b0feedf5868ade4b3ca5"}, ] -six = [ + +[package.dependencies] +cloudpickle = "*" +numba = "*" +numpy = "*" +packaging = ">20.9" +pandas = "*" +scikit-learn = "*" +scipy = "*" +slicer = "0.0.7" +tqdm = ">4.25.0" + +[package.extras] +all = ["catboost", "ipython", "lightgbm", "lime", "matplotlib", "nbsphinx", "numpydoc", "opencv-python", "pyod", "pyspark", "pytest", "pytest-cov", "pytest-mpl", "sentencepiece", "sphinx", "sphinx-rtd-theme", "torch", "transformers", "xgboost"] +docs = ["ipython", "matplotlib", "nbsphinx", "numpydoc", "sphinx", "sphinx-rtd-theme"] +others = ["lime"] +plots = ["ipython", "matplotlib"] +test = ["catboost", "lightgbm", "opencv-python", "pyod", "pyspark", "pytest", "pytest-cov", "pytest-mpl", "sentencepiece", "torch", "transformers", "xgboost"] + +[[package]] +name = "six" +version = "1.16.0" +description = "Python 2 and 3 compatibility utilities" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*" +files = [ {file = "six-1.16.0-py2.py3-none-any.whl", hash = "sha256:8abb2f1d86890a2dfb989f9a77cfcfd3e47c2a354b01111771326f8aa26e0254"}, {file = "six-1.16.0.tar.gz", hash = "sha256:1e61c37477a1626458e36f7b1d82aa5c9b094fa4802892072e49de9c60c4c926"}, ] -skope-rules = [ + +[[package]] +name = "skope-rules" +version = "1.0.1" +description = "Machine Learning with Interpretable Rules" +optional = false +python-versions = "*" +files = [ {file = "skope_rules-1.0.1-py3-none-any.whl", hash = "sha256:c03565989869f26262dc4299b49aca6ae297cbcfccf62eed8d69d5c0c0605798"}, ] -slicer = [ + +[package.dependencies] +numpy = ">=1.10.4" +pandas = ">=0.18.1" +scikit-learn = ">=0.17.1" +scipy = ">=0.17.0" + +[[package]] +name = "slicer" +version = "0.0.7" +description = "A small package for big slicing." +optional = false +python-versions = ">=3.6" +files = [ {file = "slicer-0.0.7-py3-none-any.whl", hash = "sha256:0b94faa5251c0f23782c03f7b7eedda91d80144059645f452c4bc80fab875976"}, {file = "slicer-0.0.7.tar.gz", hash = "sha256:f5d5f7b45f98d155b9c0ba6554fa9770c6b26d5793a3e77a1030fb56910ebeec"}, ] -sniffio = [ + +[[package]] +name = "sniffio" +version = "1.3.0" +description = "Sniff out which async library your code is running under" +optional = false +python-versions = ">=3.7" +files = [ {file = "sniffio-1.3.0-py3-none-any.whl", hash = "sha256:eecefdce1e5bbfb7ad2eeaabf7c1eeb404d7757c379bd1f7e5cce9d8bf425384"}, {file = "sniffio-1.3.0.tar.gz", hash = "sha256:e60305c5e5d314f5389259b7f22aaa33d8f7dee49763119234af3755c55b9101"}, ] -soupsieve = [ + +[[package]] +name = "soupsieve" +version = "2.3.2.post1" +description = "A modern CSS selector implementation for Beautiful Soup." +optional = false +python-versions = ">=3.6" +files = [ {file = "soupsieve-2.3.2.post1-py3-none-any.whl", hash = "sha256:3b2503d3c7084a42b1ebd08116e5f81aadfaea95863628c80a3b774a11b7c759"}, {file = "soupsieve-2.3.2.post1.tar.gz", hash = "sha256:fc53893b3da2c33de295667a0e19f078c14bf86544af307354de5fcf12a3f30d"}, ] -stack-data = [ + +[[package]] +name = "stack-data" +version = "0.6.2" +description = "Extract data from python stack frames and tracebacks for informative displays" +optional = false +python-versions = "*" +files = [ {file = "stack_data-0.6.2-py3-none-any.whl", hash = "sha256:cbb2a53eb64e5785878201a97ed7c7b94883f48b87bfb0bbe8b623c74679e4a8"}, {file = "stack_data-0.6.2.tar.gz", hash = "sha256:32d2dd0376772d01b6cb9fc996f3c8b57a357089dec328ed4b6553d037eaf815"}, ] -tenacity = [ + +[package.dependencies] +asttokens = ">=2.1.0" +executing = ">=1.2.0" +pure-eval = "*" + +[package.extras] +tests = ["cython", "littleutils", "pygments", "pytest", "typeguard"] + +[[package]] +name = "tenacity" +version = "8.1.0" +description = "Retry code until it succeeds" +optional = false +python-versions = ">=3.6" +files = [ {file = "tenacity-8.1.0-py3-none-any.whl", hash = "sha256:35525cd47f82830069f0d6b73f7eb83bc5b73ee2fff0437952cedf98b27653ac"}, {file = "tenacity-8.1.0.tar.gz", hash = "sha256:e48c437fdf9340f5666b92cd7990e96bc5fc955e1298baf4a907e3972067a445"}, ] -terminado = [ + +[package.extras] +doc = ["reno", "sphinx", "tornado (>=4.5)"] + +[[package]] +name = "terminado" +version = "0.17.1" +description = "Tornado websocket backend for the Xterm.js Javascript terminal emulator library." +optional = false +python-versions = ">=3.7" +files = [ {file = "terminado-0.17.1-py3-none-any.whl", hash = "sha256:8650d44334eba354dd591129ca3124a6ba42c3d5b70df5051b6921d506fdaeae"}, {file = "terminado-0.17.1.tar.gz", hash = "sha256:6ccbbcd3a4f8a25a5ec04991f39a0b8db52dfcd487ea0e578d977e6752380333"}, ] -threadpoolctl = [ + +[package.dependencies] +ptyprocess = {version = "*", markers = "os_name != \"nt\""} +pywinpty = {version = ">=1.1.0", markers = "os_name == \"nt\""} +tornado = ">=6.1.0" + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["pre-commit", "pytest (>=7.0)", "pytest-timeout"] + +[[package]] +name = "threadpoolctl" +version = "3.1.0" +description = "threadpoolctl" +optional = false +python-versions = ">=3.6" +files = [ {file = "threadpoolctl-3.1.0-py3-none-any.whl", hash = "sha256:8b99adda265feb6773280df41eece7b2e6561b772d21ffd52e372f999024907b"}, {file = "threadpoolctl-3.1.0.tar.gz", hash = "sha256:a335baacfaa4400ae1f0d8e3a58d6674d2f8828e3716bb2802c44955ad391380"}, ] -tifffile = [ + +[[package]] +name = "tifffile" +version = "2022.10.10" +description = "Read and write TIFF files" +optional = false +python-versions = ">=3.8" +files = [ {file = "tifffile-2022.10.10-py3-none-any.whl", hash = "sha256:87f3aee8a0d06b74655269a105de75c1958a24653e1930d523eb516100043503"}, {file = "tifffile-2022.10.10.tar.gz", hash = "sha256:50b61ba943b866d191295bc38a00191c9fdab23ece063544c7f1a264e3f6aa8e"}, ] -tinycss2 = [ + +[package.dependencies] +numpy = ">=1.19.2" + +[package.extras] +all = ["fsspec", "imagecodecs (>=2022.2.22)", "lxml", "matplotlib (>=3.3)", "zarr"] + +[[package]] +name = "tinycss2" +version = "1.2.1" +description = "A tiny CSS parser" +optional = false +python-versions = ">=3.7" +files = [ {file = "tinycss2-1.2.1-py3-none-any.whl", hash = "sha256:2b80a96d41e7c3914b8cda8bc7f705a4d9c49275616e886103dd839dfc847847"}, {file = "tinycss2-1.2.1.tar.gz", hash = "sha256:8cff3a8f066c2ec677c06dbc7b45619804a6938478d9d73c284b29d14ecb0627"}, ] -tomli = [ + +[package.dependencies] +webencodings = ">=0.4" + +[package.extras] +doc = ["sphinx", "sphinx_rtd_theme"] +test = ["flake8", "isort", "pytest"] + +[[package]] +name = "tomli" +version = "2.0.1" +description = "A lil' TOML parser" +optional = false +python-versions = ">=3.7" +files = [ {file = "tomli-2.0.1-py3-none-any.whl", hash = "sha256:939de3e7a6161af0c887ef91b7d41a53e7c5a1ca976325f429cb46ea9bc30ecc"}, {file = "tomli-2.0.1.tar.gz", hash = "sha256:de526c12914f0c550d15924c62d72abc48d6fe7364aa87328337a31007fe8a4f"}, ] -torch = [ + +[[package]] +name = "torch" +version = "1.13.1" +description = "Tensors and Dynamic neural networks in Python with strong GPU acceleration" +optional = false +python-versions = ">=3.7.0" +files = [ {file = "torch-1.13.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:fd12043868a34a8da7d490bf6db66991108b00ffbeecb034228bfcbbd4197143"}, {file = "torch-1.13.1-cp310-cp310-manylinux2014_aarch64.whl", hash = "sha256:d9fe785d375f2e26a5d5eba5de91f89e6a3be5d11efb497e76705fdf93fa3c2e"}, {file = "torch-1.13.1-cp310-cp310-win_amd64.whl", hash = "sha256:98124598cdff4c287dbf50f53fb455f0c1e3a88022b39648102957f3445e9b76"}, @@ -3473,7 +3114,24 @@ torch = [ {file = "torch-1.13.1-cp39-none-macosx_10_9_x86_64.whl", hash = "sha256:6930791efa8757cb6974af73d4996b6b50c592882a324b8fb0589c6a9ba2ddaf"}, {file = "torch-1.13.1-cp39-none-macosx_11_0_arm64.whl", hash = "sha256:e0df902a7c7dd6c795698532ee5970ce898672625635d885eade9976e5a04949"}, ] -torchaudio = [ + +[package.dependencies] +nvidia-cublas-cu11 = {version = "11.10.3.66", markers = "platform_system == \"Linux\""} +nvidia-cuda-nvrtc-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} +nvidia-cuda-runtime-cu11 = {version = "11.7.99", markers = "platform_system == \"Linux\""} +nvidia-cudnn-cu11 = {version = "8.5.0.96", markers = "platform_system == \"Linux\""} +typing-extensions = "*" + +[package.extras] +opt-einsum = ["opt-einsum (>=3.3)"] + +[[package]] +name = "torchaudio" +version = "0.13.1" +description = "An audio package for PyTorch" +optional = false +python-versions = "*" +files = [ {file = "torchaudio-0.13.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:5e0f3dc6699506521364266704e6bf89d0d0579fd435d12c5c2f5858d52de4fa"}, {file = "torchaudio-0.13.1-cp310-cp310-macosx_12_0_arm64.whl", hash = "sha256:ec72a17d4d2178829e7780682999b535cf57fe160d0c20b0d6bdc1ad1a87c4dd"}, {file = "torchaudio-0.13.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:62e9b5c260a27231d905588b72d2e2984ff9cdbb557af86eb178982fd265198d"}, @@ -3494,7 +3152,17 @@ torchaudio = [ {file = "torchaudio-0.13.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:3023aeb5c191047bef1681a3741bffd4a2164b58a64cad24dd37da5e1ac2d1f1"}, {file = "torchaudio-0.13.1-cp39-cp39-win_amd64.whl", hash = "sha256:418fbf93ba77b9742b05b76561be4fe7e8ded27cfe414828624765986b30ce5a"}, ] -torchvision = [ + +[package.dependencies] +torch = "*" + +[[package]] +name = "torchvision" +version = "0.14.1" +description = "image and video datasets and models for torch deep learning" +optional = false +python-versions = ">=3.7" +files = [ {file = "torchvision-0.14.1-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:eeb05dd9dd3af5428fee525400759daf8da8e4caec45ddd6908cfb36571f6433"}, {file = "torchvision-0.14.1-cp310-cp310-macosx_11_0_arm64.whl", hash = "sha256:8d0766ea92affa7af248e327dd85f7c9cfdf51a57530b43212d4e1858548e9d7"}, {file = "torchvision-0.14.1-cp310-cp310-manylinux1_x86_64.whl", hash = "sha256:6d7b35653113664ea3fdcb71f515cfbf29d2fe393000fd8aaff27a1284de6908"}, @@ -3515,7 +3183,24 @@ torchvision = [ {file = "torchvision-0.14.1-cp39-cp39-manylinux2014_aarch64.whl", hash = "sha256:eaed58cf454323ed9222d4e0dd5fb897064f454b400696e03a5200e65d3a1e76"}, {file = "torchvision-0.14.1-cp39-cp39-win_amd64.whl", hash = "sha256:b337e1245ca4353623dd563c03cd8f020c2496a7c5d12bba4d2e381999c766e0"}, ] -tornado = [ + +[package.dependencies] +numpy = "*" +pillow = ">=5.3.0,<8.3.dev0 || >=8.4.dev0" +requests = "*" +torch = "1.13.1" +typing-extensions = "*" + +[package.extras] +scipy = ["scipy"] + +[[package]] +name = "tornado" +version = "6.2" +description = "Tornado is a Python web framework and asynchronous networking library, originally developed at FriendFeed." +optional = false +python-versions = ">= 3.7" +files = [ {file = "tornado-6.2-cp37-abi3-macosx_10_9_universal2.whl", hash = "sha256:20f638fd8cc85f3cbae3c732326e96addff0a15e22d80f049e00121651e82e72"}, {file = "tornado-6.2-cp37-abi3-macosx_10_9_x86_64.whl", hash = "sha256:87dcafae3e884462f90c90ecc200defe5e580a7fbbb4365eda7c7c1eb809ebc9"}, {file = "tornado-6.2-cp37-abi3-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:ba09ef14ca9893954244fd872798b4ccb2367c165946ce2dd7376aebdde8e3ac"}, @@ -3528,59 +3213,199 @@ tornado = [ {file = "tornado-6.2-cp37-abi3-win_amd64.whl", hash = "sha256:e5f923aa6a47e133d1cf87d60700889d7eae68988704e20c75fb2d65677a8e4b"}, {file = "tornado-6.2.tar.gz", hash = "sha256:9b630419bde84ec666bfd7ea0a4cb2a8a651c2d5cccdbdd1972a0c859dfc3c13"}, ] -tqdm = [ + +[[package]] +name = "tqdm" +version = "4.64.1" +description = "Fast, Extensible Progress Meter" +optional = false +python-versions = "!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,>=2.7" +files = [ {file = "tqdm-4.64.1-py2.py3-none-any.whl", hash = "sha256:6fee160d6ffcd1b1c68c65f14c829c22832bc401726335ce92c52d395944a6a1"}, {file = "tqdm-4.64.1.tar.gz", hash = "sha256:5f4f682a004951c1b450bc753c710e9280c5746ce6ffedee253ddbcbf54cf1e4"}, ] -traitlets = [ + +[package.dependencies] +colorama = {version = "*", markers = "platform_system == \"Windows\""} + +[package.extras] +dev = ["py-make (>=0.1.0)", "twine", "wheel"] +notebook = ["ipywidgets (>=6)"] +slack = ["slack-sdk"] +telegram = ["requests"] + +[[package]] +name = "traitlets" +version = "5.8.0" +description = "Traitlets Python configuration system" +optional = false +python-versions = ">=3.7" +files = [ {file = "traitlets-5.8.0-py3-none-any.whl", hash = "sha256:c864831efa0ba6576d09b44884b34e41defc18c0d7e720b4a2d6698c842cab3e"}, {file = "traitlets-5.8.0.tar.gz", hash = "sha256:6cc57d6dc28c85d5365961726ffd19b538739347749e13ebe34e03323a0e8f84"}, ] -treeinterpreter = [ + +[package.extras] +docs = ["myst-parser", "pydata-sphinx-theme", "sphinx"] +test = ["argcomplete (>=2.0)", "pre-commit", "pytest", "pytest-mock"] + +[[package]] +name = "treeinterpreter" +version = "0.2.3" +description = "Package for interpreting scikit-learn's decision tree and random forest predictions." +optional = false +python-versions = "*" +files = [ {file = "treeinterpreter-0.2.3-py2.py3-none-any.whl", hash = "sha256:48660bbddd4577e28655abf0ffb77eb8b8e57d771e32503be56737103aa457a4"}, {file = "treeinterpreter-0.2.3.tar.gz", hash = "sha256:da5c24f802f7d072bc457b6e4b289d5ee41961ce33437e8dc439a2cfd9c6d994"}, ] -typing-extensions = [ + +[[package]] +name = "typing-extensions" +version = "4.4.0" +description = "Backported and Experimental Type Hints for Python 3.7+" +optional = false +python-versions = ">=3.7" +files = [ {file = "typing_extensions-4.4.0-py3-none-any.whl", hash = "sha256:16fa4864408f655d35ec496218b85f79b3437c829e93320c7c9215ccfd92489e"}, {file = "typing_extensions-4.4.0.tar.gz", hash = "sha256:1511434bb92bf8dd198c12b1cc812e800d4181cfcb867674e0f8279cc93087aa"}, ] -uri-template = [ + +[[package]] +name = "uri-template" +version = "1.2.0" +description = "RFC 6570 URI Template Processor" +optional = false +python-versions = ">=3.6" +files = [ {file = "uri_template-1.2.0-py3-none-any.whl", hash = "sha256:f1699c77b73b925cf4937eae31ab282a86dc885c333f2e942513f08f691fc7db"}, {file = "uri_template-1.2.0.tar.gz", hash = "sha256:934e4d09d108b70eb8a24410af8615294d09d279ce0e7cbcdaef1bd21f932b06"}, ] -urllib3 = [ + +[package.extras] +dev = ["flake8 (<4.0.0)", "flake8-annotations", "flake8-bugbear", "flake8-commas", "flake8-comprehensions", "flake8-continuation", "flake8-datetimez", "flake8-docstrings", "flake8-import-order", "flake8-literal", "flake8-noqa", "flake8-requirements", "flake8-type-annotations", "flake8-use-fstring", "mypy", "pep8-naming"] + +[[package]] +name = "urllib3" +version = "1.26.13" +description = "HTTP library with thread-safe connection pooling, file post, and more." +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*, !=3.5.*" +files = [ {file = "urllib3-1.26.13-py2.py3-none-any.whl", hash = "sha256:47cc05d99aaa09c9e72ed5809b60e7ba354e64b59c9c173ac3018642d8bb41fc"}, {file = "urllib3-1.26.13.tar.gz", hash = "sha256:c083dd0dce68dbfbe1129d5271cb90f9447dea7d52097c6e0126120c521ddea8"}, ] -wcwidth = [ + +[package.extras] +brotli = ["brotli (>=1.0.9)", "brotlicffi (>=0.8.0)", "brotlipy (>=0.6.0)"] +secure = ["certifi", "cryptography (>=1.3.4)", "idna (>=2.0.0)", "ipaddress", "pyOpenSSL (>=0.14)", "urllib3-secure-extra"] +socks = ["PySocks (>=1.5.6,!=1.5.7,<2.0)"] + +[[package]] +name = "wcwidth" +version = "0.2.5" +description = "Measures the displayed width of unicode strings in a terminal" +optional = false +python-versions = "*" +files = [ {file = "wcwidth-0.2.5-py2.py3-none-any.whl", hash = "sha256:beb4802a9cebb9144e99086eff703a642a13d6a0052920003a230f3294bbe784"}, {file = "wcwidth-0.2.5.tar.gz", hash = "sha256:c4d647b99872929fdb7bdcaa4fbe7f01413ed3d98077df798530e5b04f116c83"}, ] -webcolors = [ + +[[package]] +name = "webcolors" +version = "1.12" +description = "A library for working with color names and color values formats defined by HTML and CSS." +optional = false +python-versions = ">=3.7" +files = [ {file = "webcolors-1.12-py3-none-any.whl", hash = "sha256:d98743d81d498a2d3eaf165196e65481f0d2ea85281463d856b1e51b09f62dce"}, {file = "webcolors-1.12.tar.gz", hash = "sha256:16d043d3a08fd6a1b1b7e3e9e62640d09790dce80d2bdd4792a175b35fe794a9"}, ] -webencodings = [ + +[[package]] +name = "webencodings" +version = "0.5.1" +description = "Character encoding aliases for legacy web content" +optional = false +python-versions = "*" +files = [ {file = "webencodings-0.5.1-py2.py3-none-any.whl", hash = "sha256:a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78"}, {file = "webencodings-0.5.1.tar.gz", hash = "sha256:b36a1c245f2d304965eb4e0a82848379241dc04b865afcc4aab16748587e1923"}, ] -websocket-client = [ + +[[package]] +name = "websocket-client" +version = "1.4.2" +description = "WebSocket client for Python with low level API options" +optional = false +python-versions = ">=3.7" +files = [ {file = "websocket-client-1.4.2.tar.gz", hash = "sha256:d6e8f90ca8e2dd4e8027c4561adeb9456b54044312dba655e7cae652ceb9ae59"}, {file = "websocket_client-1.4.2-py3-none-any.whl", hash = "sha256:d6b06432f184438d99ac1f456eaf22fe1ade524c3dd16e661142dc54e9cba574"}, ] -werkzeug = [ + +[package.extras] +docs = ["Sphinx (>=3.4)", "sphinx-rtd-theme (>=0.5)"] +optional = ["python-socks", "wsaccel"] +test = ["websockets"] + +[[package]] +name = "werkzeug" +version = "2.2.2" +description = "The comprehensive WSGI web application library." +optional = false +python-versions = ">=3.7" +files = [ {file = "Werkzeug-2.2.2-py3-none-any.whl", hash = "sha256:f979ab81f58d7318e064e99c4506445d60135ac5cd2e177a2de0089bfd4c9bd5"}, {file = "Werkzeug-2.2.2.tar.gz", hash = "sha256:7ea2d48322cc7c0f8b3a215ed73eabd7b5d75d0b50e31ab006286ccff9e00b8f"}, ] -wheel = [ + +[package.dependencies] +MarkupSafe = ">=2.1.1" + +[package.extras] +watchdog = ["watchdog"] + +[[package]] +name = "wheel" +version = "0.38.4" +description = "A built-package format for Python" +optional = false +python-versions = ">=3.7" +files = [ {file = "wheel-0.38.4-py3-none-any.whl", hash = "sha256:b60533f3f5d530e971d6737ca6d58681ee434818fab630c83a734bb10c083ce8"}, {file = "wheel-0.38.4.tar.gz", hash = "sha256:965f5259b566725405b05e7cf774052044b1ed30119b5d586b2703aafe8719ac"}, ] -zope-event = [ + +[package.extras] +test = ["pytest (>=3.0.0)"] + +[[package]] +name = "zope-event" +version = "4.6" +description = "Very basic event publishing system" +optional = false +python-versions = "*" +files = [ {file = "zope.event-4.6-py2.py3-none-any.whl", hash = "sha256:73d9e3ef750cca14816a9c322c7250b0d7c9dbc337df5d1b807ff8d3d0b9e97c"}, {file = "zope.event-4.6.tar.gz", hash = "sha256:81d98813046fc86cc4136e3698fee628a3282f9c320db18658c21749235fce80"}, ] -zope-interface = [ + +[package.dependencies] +setuptools = "*" + +[package.extras] +docs = ["Sphinx"] +test = ["zope.testrunner"] + +[[package]] +name = "zope-interface" +version = "5.5.2" +description = "Interfaces for Python" +optional = false +python-versions = ">=2.7, !=3.0.*, !=3.1.*, !=3.2.*, !=3.3.*, !=3.4.*" +files = [ {file = "zope.interface-5.5.2-cp27-cp27m-macosx_10_14_x86_64.whl", hash = "sha256:a2ad597c8c9e038a5912ac3cf166f82926feff2f6e0dabdab956768de0a258f5"}, {file = "zope.interface-5.5.2-cp27-cp27m-win_amd64.whl", hash = "sha256:65c3c06afee96c654e590e046c4a24559e65b0a87dbff256cd4bd6f77e1a33f9"}, {file = "zope.interface-5.5.2-cp310-cp310-macosx_10_9_x86_64.whl", hash = "sha256:d514c269d1f9f5cd05ddfed15298d6c418129f3f064765295659798349c43e6f"}, @@ -3618,3 +3443,16 @@ zope-interface = [ {file = "zope.interface-5.5.2-cp39-cp39-win_amd64.whl", hash = "sha256:7e66f60b0067a10dd289b29dceabd3d0e6d68be1504fc9d0bc209cf07f56d189"}, {file = "zope.interface-5.5.2.tar.gz", hash = "sha256:bfee1f3ff62143819499e348f5b8a7f3aa0259f9aca5e0ddae7391d059dce671"}, ] + +[package.dependencies] +setuptools = "*" + +[package.extras] +docs = ["Sphinx", "repoze.sphinx.autointerface"] +test = ["coverage (>=5.0.3)", "zope.event", "zope.testing"] +testing = ["coverage (>=5.0.3)", "zope.event", "zope.testing"] + +[metadata] +lock-version = "2.0" +python-versions = "^3.10" +content-hash = "4e091df20a346acba6e61be209699459a9d67d1231a89465544a078ef04ac239" diff --git a/pyproject.toml b/pyproject.toml index 77eaf4b0ddcb866f2e3404e5efec1c025c9bd7ad..f8d7054470bba9ea0d80b95442b9b7cace63f77f 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -25,6 +25,9 @@ torchaudio = "^0.13.1" lime = "^0.2.0.1" +[tool.poetry.group.dev.dependencies] +ipykernel = "^6.29.5" + [build-system] requires = ["poetry-core"] build-backend = "poetry.core.masonry.api"