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A linear program (LP) consists of variables x = (x1, . . . , xn), an objective function z(x) =
cTx with c ∈ Qn that can either be maximized or minimized, and constraints aTx ∼ b
with a ∈ Qn, b ∈ Q,∼∈ {≤,=,≥}. An LP is in canonical form if it is written as

maximize c1x1 + c2x2 + . . . + cnxn

subject to a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2

...

am1x1 + am2x2 + . . . + amnxn ≤ bm

x1, x2, . . . , xn ≥ 0

or shorter

maximize
n∑

j=1

cjxj

subject to
n∑

j=1

aijxj ≤ bi i ∈ {1, . . . ,m}

xj ≥ 0 j ∈ {1, . . . , n}

or even shorter

maximize cTx

subject to Ax ≤ b

x ≥ 0.

We call the xj (j ∈ {1, . . . , n}) decision variables, cT the objective function coefficients, A
the coefficient matrix, and b the right hand side of the LP. Moreover, we write aTi for the
coefficients of the i-th constraint. Note that every LP has an ”equivalent“ LP in canonical
form:

• minx c
Tx = maxx−cTx,

• aTi x ≥ bi iff −aTi x ≤ −bi,

• aTi x = bi iff aTi x ≤ bi and aTi x ≥ bi,

• xj ≤ 0 iff −xj ≥ 0,

• xj unbounded: Replace xj = x+
j − x−j with x+

j , x
−
j ≥ 0.
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Every constraint (from an LP in canonical form) defines a halfspace in Rn and its sepa-
rating hyperplane has aTi as its normal vector.

aTi

”feasible“

”infeasible“

We call the set of points that satisfy all constraints feasible region P := {x ∈ Rn | Ax ≤
b, x ≥ 0}. P is a polyhedron, i.e. the intersection of finitely many halfspaces. If P is
bounded, it is called a polytope.

P

aT1
aT2

aT3

aT4

aT5

”bounded“

P

aT1

aT2

aT3

”unbounded“

If the constraints contradict themselves (for instance, x + y ≤ 1, x ≥ 2, and x, y ≥ 0),
then P = ∅, a corresponsing LP is called infeasible. Constraints might also be redundant,
i.e. a constraint can be omitted without increasing the polyhedron (for example, x+y ≥ 0
and x, y ≥ 0).

”infeasible“

P

”redundant“

Polyhedra are convex, i.e. they satisfy Jensen’s inequality: For all x, y ∈ P and all ϑ ∈
[0, 1], (1− ϑ)x + ϑy ∈ P .

Proof. Let x, y ∈ P and ϑ ∈ [0, 1], then

(1− ϑ︸ ︷︷ ︸
≥0

) x︸︷︷︸
≥0

+ ϑ︸︷︷︸
≥0

y︸︷︷︸
≥0

≥ 0
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and moreover,

A((1− ϑ)x + ϑy) = (1− ϑ) Ax︸︷︷︸
≤b

+ϑ Ay︸︷︷︸
≤b

≤ (1− ϑ)b + ϑb

= b.

The dimension dimP is the dimension of the smallest affine subspace containg P . If
P ⊆ Rn with dimP = n, then P is called full dimensional. For a given x ∈ P , a constraint
aTi x ≤ bi is called active (or binding) if aTi x = bi. A face with respect to H ⊆ {1, . . . ,m}
is

F := {x ∈ P | aTi x ≤ bi active in x, i ∈ H}.

P

•

”vertex (0-dim)“

P

”edge (1-dim)“

P

”facet ((n− 1)-dim)“

Every face itself is again a polyhedron. A point x ∈ P is called feasible solution, x∗ ∈ P
such that cTx∗ ≥ cTx for all x ∈ P is called optimal solution (provided that the objective
function should be maximized), cTx∗ is called optimum.

Theorem 1. For every LP exactly one of the following hold:

(i) The LP is infeasible, i.e. P = ∅.

(ii) The optimum is unbounded, i.e. for all M > 0, there exists x ∈ P with cTx ≥M .

(iii) There exists a finite optimal solution.

If the last case is true, then the optimal sollution is assumed at a vertex of P .

c
P

c

P

•

c

Lemma 2. An n-dimensional polyhedron given by m constraints has at most
(
m
n

)
vertices,

i.e. finitely many.

3



Thus, of all (usually infinitely many) feasible points, only finitely many are relevant.
However, enumerating all those points and choosing the best solution (brute force) is still
very inefficient.
Idea for the Simplex algorithm: Move from vertex to vertex such that the objective value
only increases (decreases, respectively, if objective is to minimize).

P

c

We introduce slack variables to fill gaps between constraints and corresponding right hand
side.

y := b− Ax, y ≥ 0.

This yields to standard form for LPs:

minimize cTx minimize cTx

subject to Ax + y = b subject to Ax = b

x, y ≥ 0 x ≥ 0

where the LP on the right is obtained by setting xn+i = yi for i ∈ {1, . . . ,m} and we
extend c and A in the obvious way.
The transformation from canonical form to standard form preserves dimension and ver-
tices of the polyhedron.

x1

x2

•

•

•

P = {x ∈ R2
+ | x1 + x2 ≤ 1}

x1

x2

y1

•

•

•

P ′ = {(x, y) ∈ R3
+ | x1 + x2 + y1 = 1}

Note that the slack variable yi = 0 iff the i-th constraint is active. We can also interpret
x as slack variable, just note that xj = 0 iff xj ≥ 0 active.
Let A1, A2, . . . , An, An+1, . . . , An+m be the columns of A (the latter m columns are unit
vectors for slack varaiables). For J ⊆ (1, . . . , n + m), let AJ denote the matrix consisting
of columns Aj with j ∈ J , e.g. for

A =

(
3 7 0 −1 1 0
−1 −1 −2 2 0 1

)
, J = (5, 2) =⇒ AJ =

(
1 7
0 −1

)
.
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A basis B = (B1, . . . , Bm) ⊆ (1, . . . , n + m) is a subset of m column indices such that
the corresponding columns are linearly independent. N = (1, . . . , n+m) \B is called non
basis. Variables xj with j ∈ B are called basic variables, and non-basic variables if i ∈ N .
A vector x ∈ Qn+m is a basic solution to Ax = b, x ≥ 0 if there is a basis B such that

• ABxB = b (uniqueness),

• xN = 0 (at boundary, vertex ).

If additionally xB ≥ 0 holds x is called feasible basic solution.

Theorem 3. Every feasible basic solution corresponds to exactly one vertex of P .

Basic solution are also called extreme point solutions.
We need dimP constraints to describe a vertex. The non-basic variables correspond to
the active constraints.

1

2

3

4

At this vertex, the slack
variables of constraint 2
and 3 are 0.

Note that the basis in one vertex is not necessarily unique. We call those vertices degnerate.

1

2

3

4

Possible bases:
B = (1, 2), (1, 3), (1, 4), (2, 3), . . .

Given a standard form LP with Ax = b, x ≥ 0 and basis B:

ABxB + ANxN = b

⇐⇒ xB = A−1
B b︸ ︷︷ ︸
=:b̄

−A−1
B AN︸ ︷︷ ︸
=:ĀN

xN︸︷︷︸
=0

.

Using the objective function z(x) = cTx:

z(x) = cTx

= cTBxB + cTNxN

= cTB(A−1
B b− A−1

B ANxN) + cTNxN

= cTBA
−1
B − cTBA

−1
B ANxN + cTNxN

= cTBA
−1
B b︸ ︷︷ ︸

=:z̄

+(cTN − cTBA
−1
B AN︸ ︷︷ ︸

=:c̄TN ”reduced cost“

) xN︸︷︷︸
=0

.

Optimality condition: Basis B (and the corresponding vertex) optimal if reduced cost
c̄TN ≤ 0. Intuitively, no non-basic variable can be increased without decreasing the value
of z.
Otherwise we can find a non-basic variable that can ”improve“ the objective value. This
means we deactivate a constraint (increasing its slack) and move to another vertex:
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• Initially: Vertex given by B,N .

• If there is a non-basic variable xs, s ∈ N , with c̄s > 0, it is beneficial to increase xs

(currently xs = 0).

• Since xB = A−1
B b− A−1

B ANxN , the values of basic-variables decrease if A−1
B As > 0.

• The maximum value for xs is determined by ”the first“ basic variable which becomes
0.

• If this never happens, i.e. A−1
B As ≤ 0, then xs can be arbitrarily increased; in this

case the objective value is unbounded.

The first basis: If b ≥ 0, all slack variables are a feasible basis, i.e. B = (n+ 1, . . . , n+m),
and hence, AB = A−1

B = 1m and ĀN = AN , b̄ = b. The first basic solution is then xn+i = bi
for i ∈ {1, . . . ,m} and x1 = . . . = xn = 0 (i.e. the origin). Since cTB = 0 (all slack), we have
c̄TN = CT

N and z̄ = 0. For calculation by hand, we can store all coefficients in a dictionary
(or tableau):

c̄TN 0 z̄
xB ĀN 1m b̄

xN xB
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