Linear Programs

Niklas Rieken

July 20, 2019

A linear program (LP) consists of variables $x = (x_1, ..., x_n)$, an objective function $z(x) = c^T x$ with $c \in \mathbb{Q}^n$ that can either be maximized or minimized, and constraints $a^T x \sim b$ with $a \in \mathbb{Q}^n, b \in \mathbb{Q}, \sim \in \{\leq, =, \geq\}$. An LP is in canonical form if it is written as

$$\begin{array}{lll} \text{maximize } c_1x_1 + c_2x_2 + \ldots + c_nx_n \\ \\ \text{subject to } a_{11}x_1 + a_{12}x_2 + \ldots + a_{1n}x_n & \leq b_1 \\ \\ a_{21}x_1 + a_{22}x_2 + \ldots + a_{2n}x_n & \leq b_2 \\ \\ \vdots & \\ a_{m1}x_1 + a_{m2}x_2 + \ldots + a_{mn}x_n & \leq b_m \\ \\ x_1, x_2, \ldots, x_n & \geq 0 \end{array}$$

or shorter

maximize
$$\sum_{j=1}^{n} c_j x_j$$

subject to $\sum_{j=1}^{n} a_{ij} x_j \le b_i$ $i \in \{1, \dots, m\}$
 $x_j \ge 0$ $j \in \{1, \dots, n\}$

or even shorter

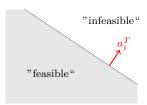
maximize
$$c^T x$$

subject to $Ax \le b$
 $x \ge 0$.

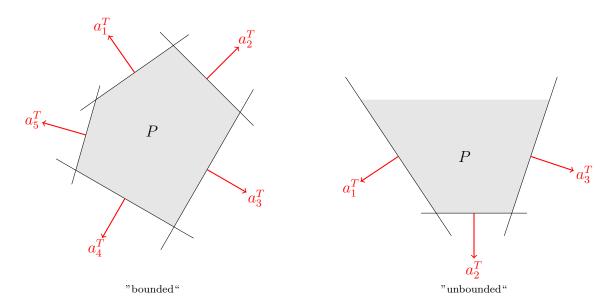
We call the x_j $(j \in \{1, ..., n\})$ decision variables, c^T the objective function coefficients, A the coefficient matrix, and b the right hand side of the LP. Moreover, we write a_i^T for the coefficients of the i-th constraint. Note that every LP has an "equivalent" LP in canonical form:

- $\bullet \ \min_x c^T x = \max_x -c^T x,$
- $a_i^T x \ge b_i \text{ iff } -a_i^T x \le -b_i,$
- $a_i^T x = b_i$ iff $a_i^T x \le b_i$ and $a_i^T x \ge b_i$,
- $x_j \le 0 \text{ iff } -x_j \ge 0$,
- x_j unbounded: Replace $x_j = x_j^+ x_j^-$ with $x_j^+, x_j^- \ge 0$.

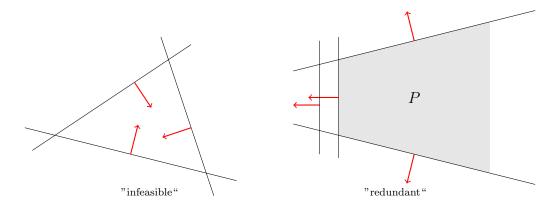
Every constraint (from an LP in canonical form) defines a halfspace in \mathbb{R}^n and its separating hyperplane has a_i^T as its normal vector.



We call the set of points that satisfy all constraints feasible region $P := \{x \in \mathbb{R}^n \mid Ax \leq b, x \geq 0\}$. P is a polyhedron, i.e. the intersection of finitely many halfspaces. If P is bounded, it is called a polytope.



If the constraints contradict themselves (for instance, $x + y \le 1$, $x \ge 2$, and $x, y \ge 0$), then $P = \emptyset$, a corresponding LP is called *infeasible*. Constraints might also be *redundant*, i.e. a constraint can be omitted without increasing the polyhedron (for example, $x + y \ge 0$ and $x, y \ge 0$).



Polyhedra are *convex*, i.e. they satisfy Jensen's inequality: For all $x, y \in P$ and all $\vartheta \in [0,1], (1-\vartheta)x + \vartheta y \in P$.

Proof. Let $x, y \in P$ and $\theta \in [0, 1]$, then

$$(\underbrace{1-\vartheta}_{\geq 0})\underbrace{x}_{\geq 0} + \underbrace{\vartheta}_{\geq 0}\underbrace{y}_{\geq 0} \geq 0$$

and moreover,

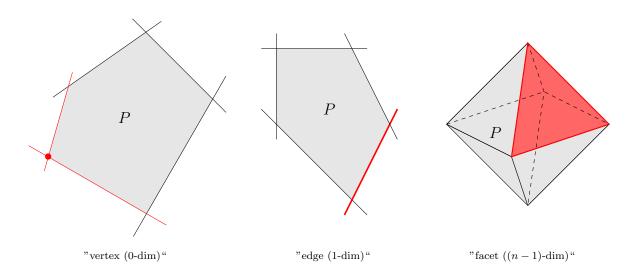
$$A((1 - \vartheta)x + \vartheta y) = (1 - \vartheta)\underbrace{Ax}_{\leq b} + \vartheta \underbrace{Ay}_{\leq b}$$

$$\leq (1 - \vartheta)b + \vartheta b$$

$$= b.$$

The dimension dim P is the dimension of the smallest affine subspace containg P. If $P \subseteq \mathbb{R}^n$ with dim P = n, then P is called full dimensional. For a given $x \in P$, a constraint $a_i^T x \leq b_i$ is called active (or binding) if $a_i^T x = b_i$. A face with respect to $H \subseteq \{1, \ldots, m\}$ is

$$F := \{ x \in P \mid a_i^T x \le b_i \text{ active in } x, i \in H \}.$$

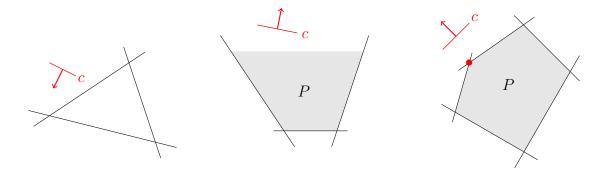


Every face itself is again a polyhedron. A point $x \in P$ is called *feasible solution*, $x^* \in P$ such that $c^T x^* \ge c^T x$ for all $x \in P$ is called *optimal solution* (provided that the objective function should be maximized), $c^T x^*$ is called *optimum*.

Theorem 1. For every LP exactly one of the following hold:

- (i) The LP is infeasible, i.e. $P = \emptyset$.
- (ii) The optimum is unbounded, i.e. for all M > 0, there exists $x \in P$ with $c^T x \ge M$.
- (iii) There exists a finite optimal solution.

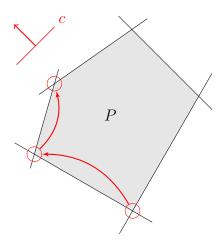
If the last case is true, then the optimal sollution is assumed at a vertex of P.



Lemma 2. An n-dimensional polyhedron given by m constraints has at most $\binom{m}{n}$ vertices, i.e. finitely many.

Thus, of all (usually infinitely many) feasible points, only finitely many are relevant. However, enumerating all those points and choosing the best solution (*brute force*) is still very inefficient.

Idea for the Simplex algorithm: Move from vertex to vertex such that the objective value only increases (decreases, respectively, if objective is to minimize).



We introduce *slack variables* to fill gaps between constraints and corresponding right hand side.

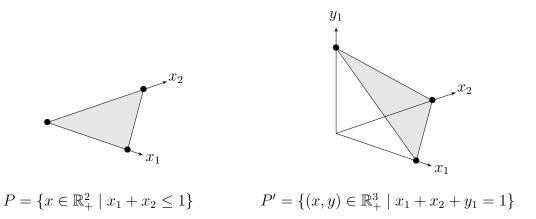
$$y \coloneqq b - Ax, \quad y \ge 0.$$

This yields to standard form for LPs:

minimize
$$c^T x$$
 minimize $c^T x$
subject to $Ax + y = b$ subject to $Ax = b$
 $x, y \ge 0$ $x \ge 0$

where the LP on the right is obtained by setting $x_{n+i} = y_i$ for $i \in \{1, ..., m\}$ and we extend c and A in the obvious way.

The transformation from canonical form to standard form preserves dimension and vertices of the polyhedron.



Note that the slack variable $y_i = 0$ iff the *i*-th constraint is active. We can also interpret x as slack variable, just note that $x_j = 0$ iff $x_j \ge 0$ active.

Let $A_1, A_2, \ldots, A_n, A_{n+1}, \ldots, A_{n+m}$ be the columns of A (the latter m columns are unit vectors for slack variables). For $J \subseteq (1, \ldots, n+m)$, let A_J denote the matrix consisting of columns A_j with $j \in J$, e.g. for

$$A = \begin{pmatrix} 3 & 7 & 0 & -1 & 1 & 0 \\ -1 & -1 & -2 & 2 & 0 & 1 \end{pmatrix}, \quad J = (5, 2) \implies A_J = \begin{pmatrix} 1 & 7 \\ 0 & -1 \end{pmatrix}.$$

A basis $B = (B_1, \ldots, B_m) \subseteq (1, \ldots, n+m)$ is a subset of m column indices such that the corresponding columns are linearly independent. $N = (1, \ldots, n+m) \setminus B$ is called non basis. Variables x_j with $j \in B$ are called basic variables, and non-basic variables if $i \in N$. A vector $x \in \mathbb{Q}^{n+m}$ is a basic solution to Ax = b, $x \geq 0$ if there is a basis B such that

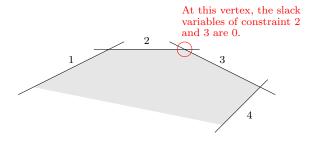
- $A_B x_B = b \ (uniqueness),$
- $x_N = 0$ (at boundary, vertex).

If additionally $x_B \ge 0$ holds x is called feasible basic solution.

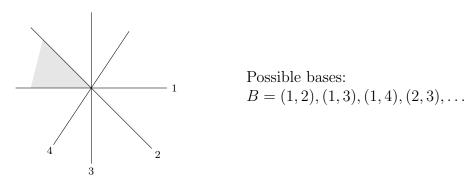
Theorem 3. Every feasible basic solution corresponds to exactly one vertex of P.

Basic solution are also called *extreme point solutions*.

We need $\dim P$ constraints to describe a vertex. The non-basic variables correspond to the active constraints.



Note that the basis in one vertex is not necessarily unique. We call those vertices degnerate.



Given a standard form LP with Ax = b, $x \ge 0$ and basis B:

$$A_B x_B + A_N x_N = b$$

$$\iff x_B = \underbrace{A_B^{-1} b}_{=:\bar{h}} - \underbrace{A_B^{-1} A_N}_{=:\bar{A}_N} \underbrace{x_N}_{=0}.$$

Using the objective function $z(x) = c^T x$:

$$\begin{split} z(x) &= c^T x \\ &= c^T_B x_B + c^T_N x_N \\ &= c^T_B (A_B^{-1} b - A_B^{-1} A_N x_N) + c^T_N x_N \\ &= c^T_B A_B^{-1} - c^T_B A_B^{-1} A_N x_N + c^T_N x_N \\ &= \underbrace{c^T_B A_B^{-1} b}_{=:\bar{z}} + \underbrace{(c^T_N - c^T_B A_B^{-1} A_N)}_{=:\bar{c}^T_N \ "reduced \ cost"} \underbrace{x_N}_{=0}. \end{split}$$

Optimality condition: Basis B (and the corresponding vertex) optimal if reduced cost $\bar{c}_N^T \leq 0$. Intuitively, no non-basic variable can be increased without decreasing the value of z.

Otherwise we can find a non-basic variable that can "improve" the objective value. This means we deactivate a constraint (increasing its slack) and move to another vertex:

- Initially: Vertex given by B, N.
- If there is a non-basic variable x_s , $s \in N$, with $\bar{c}_s > 0$, it is beneficial to increase x_s (currently $x_s = 0$).
- Since $x_B = A_B^{-1}b A_B^{-1}A_Nx_N$, the values of basic-variables decrease if $A_B^{-1}A_s > 0$.
- The maximum value for x_s is determined by "the first" basic variable which becomes 0.
- If this never happens, i.e. $A_B^{-1}A_s \leq 0$, then x_s can be arbitrarily increased; in this case the objective value is unbounded.

The first basis: If $b \ge 0$, all slack variables are a feasible basis, i.e. $B = (n+1, \ldots, n+m)$, and hence, $A_B = A_B^{-1} = \mathbb{1}_m$ and $\bar{A}_N = A_N$, $\bar{b} = b$. The first basic solution is then $x_{n+i} = b_i$ for $i \in \{1, \ldots, m\}$ and $x_1 = \ldots = x_n = 0$ (i.e. the origin). Since $c_B^T = 0$ (all slack), we have $\bar{c}_N^T = C_N^T$ and $\bar{z} = 0$. For calculation by hand, we can store all coefficients in a dictionary (or tableau):

$$x_B \begin{vmatrix} \bar{c}_N^T & 0 & \bar{z} \\ A_N & \mathbb{1}_m & b \\ x_N & x_B \end{vmatrix}$$