Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
Niklas Rieken
tcs_pdfs
Commits
0c910cf5
Commit
0c910cf5
authored
Mar 28, 2018
by
Niklas Rieken
Browse files
unified algorithm display
parent
9039d0be
Changes
2
Hide whitespace changes
Inline
Side-by-side
FoSAP/Skript/fosap.pdf
View file @
0c910cf5
No preview for this file type
FoSAP/Skript/fosap.tex
View file @
0c910cf5
...
...
@@ -1202,7 +1202,6 @@ Mit Hilfe der Erreichbarkeitsrelation und Lemmata~\ref{lem:reach1} und~\ref{lem:
\SetKwInOut
{
Input
}{
Input
}
\SetKwInOut
{
Output
}{
Output
}
\underline
{
NFA-Akzeptanz
}{$
(
\mathcal
{
A
}
, w
)
$}
\\
\Input
{
NFA
$
\mathcal
{
A
}$
, Wort
$
w
$}
\Output
{
Ja
{
g.d.w.
}
$
\mathcal
{
A
}$
akzeptiert
$
w
=
a
_
0
\ldots
a
_{
n
-
1
}$
.
}
$
u
\coloneqq
\varepsilon
$
\\
$
E
(
\mathcal
{
A
}
, u
)
\coloneqq
\{
q
_
0
\}
$
\\
...
...
@@ -1288,8 +1287,7 @@ Wir verwenden die Potenzmengenkonstruktion aus Lemma~\ref{lem:nfa2dfa} zur Deter
\begin{algorithm}
\SetKwInOut
{
Input
}{
Input
}
\SetKwInOut
{
Output
}{
Output
}
\underline
{
Potenzmengenkonstruktion
}{$
(
\mathcal
{
A
}
)
$}
\\
\Input
{
NFA
$
\mathcal
{
A
}
=
(
Q,
\Sigma
,
\Delta
, q
_
0
, F
)
$}
\underline
{
Potenzmengenkonstruktion
}{$
(
\mathcal
{
A
}
=
(
Q,
\Sigma
,
\Delta
, q
_
0
, F
))
$}
\\
\Output
{
äquivalenter, reduzierter DFA
$
\mathcal
{
A
}^
\prime
=
(
Q
^
\prime
,
\Sigma
,
\delta
, q
_
0
^
\prime
, F
^
\prime
)
$}
$
Q
^
\prime
\coloneqq
\{\{
q
_
0
\}\}
$
\\
$
q
_
0
^
\prime
\coloneqq
\{
q
_
0
\}
$
\\
...
...
@@ -1980,8 +1978,7 @@ Dieses Korollar liefert intuitiv den Algorithmus~\ref{alg:mnc} zum Finden von My
\begin{algorithm}
\SetKwInOut
{
Input
}{
Input
}
\SetKwInOut
{
Output
}{
Output
}
\underline
{
Myhill-Nerode-Klassifizierer
}{
(
$
L
$
)
}
\\
\Input
{
Sprache
$
L
\subseteq
\Sigma
^
\ast
$}
\underline
{
Myhill-Nerode-Klassifizierer
}{
(
$
L
\subseteq
\Sigma
^
\ast
$
)
}
\\
\Output
{
Myhill-Nerode-Äquivalenzklassen
$
\mathcal
{
P
}
=
\{
[
w
]
_
L : w
\in
\Sigma
^
\ast\}
$
.
}
$
\mathcal
{
P
}
\coloneqq
\{
[
\varepsilon
]
_
L
\}
$
\\
\For
{$
[
u
]
_
L
\in
\mathcal
{
P
}$}{
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment