Understanding Data Chunking

Chunking demo for Edu Pilot

Lina M. Estupinan-Suarez Felix Cremer
Fabian Gans

2023-04-28

Table of contents

Introduction 1

Data exploration 2

Visual inspection 3

Chunks overview 5

Data access performance 7

Statistical computation 8

Mean 9

Mean by pixelo 9

Mean by timestep 10

Median 11

Median by pixelo 11

Final remarks 14
Introduction

In this notebook you will learn how the chunking of large grid-
ded data sets affects the reading and processing speed depend-
ing on data chunking and on the access patterns you need for
your analysis.

To start, chunking is important when working with datasets
that do not fit into memory which is often the case for climate
and remote sensing data. This can severely limit the compu-
tation performance of data analysis due to the time to access,
load and process the data. To learn more about hardware and
the speed implications see: https://biojulia.github.io/post/ha
rdware/

Task: Use your favorite NetCDF package and method to
compute the a) mean and b) median per spatial pixel for the
air__temperature_2m variable without loading the whole data
set into memory (7 GB uncompressed file).

For this tutorial, we will use two different chunk sizes of the
same air__temperature 2m data set which has three dimensions
(i.e., longitude, latitude, time). The files and chunks are:

e t2_map.nc: This chunked file setting aims at fast access
to spatial layers i.e., grids in latitude and longitude

e t2_blocks.nc: This chunked file setting aims at an inter-
mediate access to both the spatial and temporal dimen-
sions (box chunking)

Data exploration

Let’s launch Julia and explore the data

load environment
using Pkg
Pkg.activate(".")
Pkg.instantiate()

load libraries

using Pkg.Artifacts

using NetCDF # for loading of NetCDF data

using DiskArrays: eachchunk # for exploring the chunking of the data
using DelimitedFiles # for handling delimited files like cs

import code for plotting maps and figures
include("plots4chunking.j1")

https://biojulia.github.io/post/hardware/
https://biojulia.github.io/post/hardware/

to access data in the cloud
filebase = artifact"example_nc"

load files metadata
xmap0 = NetCDF.open(joinpath(filebase,"t2m_map.nc"))
xbox0 = NetCDF.open(joinpath(filebase,"t2m_blocks.nc"));

load data indices

xmap = xmapO["air_temperature_2m"];

xbox

xbox0["air_temperature_2m"];

Activating project at ~~/nfdidearth/chunking_tutorial/v002/scripts”

WebIO._IJuliaInit()

Visual inspection

To get more familiar with the data let’s do a few plots. First,
let’s observe air temperature at 2 m for one day at the global
scale.

map of air temperature at 2 m for the first time step
calling a function from the code imported previously
geoplotsfx(xmapl[:,:,1])

Warning: Could not find font regular, using TeX Gyre Heros Makie
@ Makie ~/.julia/packages/Makie/Iqcri/src/conversions.jl:983

40

Air temperature (°C)

-40

Figure 1: Global map of air temperature at 2 m on 05-Jan-1979.

Now, let’s observe a time series of air temperature from 2012
to 2021 at the crossing between the equator and the prime
meridian.

libraries for plotting
using CFTime, Dates

load time axis
xmapO["time"] .atts
timevalues = timedecode(xmapO["time"][:],xmapO["time"].atts["units"]);

subset dates for plotting and assing the dates format

dictl = Dict(Dates.value(x) => Dates.format(x, "u-yy") for x in timevalues)
tsub = timevalues[1519:end] # subset for the selected years

tax = Dates.value. (tsub)

tax2 = map(x->dicti[x],tax);

time series of air temperature at 2 m for
a pixel at 0° N 0° E
define input data and y-axis limits

timeseriesfx (xmap[720,360,1519:end], 20, 30)

30

251

Air temperature (°C)

20

T T R — T — T T
o o NN MM YT ¥ WO N W O~ M~ O @0 o0 O D Qo -
B RS
c c > 5 B = c c o > B = a o 5 o > > s Q o

s 5 2 38 & 2558 §f oo 3 0T o 2o o E
= 5 =z < = < 5 50 =z nuw ozz<o0ouw<g

Figure 2: Time series of air temperature at 2 m at 0° N 0° E
from Jan-2012 to Dec-2021.

Chunks overview

Now, we will access two files for the same air_temperature_2m
data set, but with different chunk settings to explore and com-
pare their properties.

with the 'eachchunk' command we visualize

the index range of each chunk

chunkl = eachchunk(xmap) # spatial chunk

sizel = first(chunkl)

chunk2 = eachchunk(xbox); # box chunk

size2 = first(chunk?2)

print("The indices for the first spatial chunk are", sizel)
println("\nThe indices for the first box chunk are", size2)

The indices for the first spatial chunk are(1:1440, 1:720, 1:1)

The indices for the first box chunk are(1:90, 1:90, 1:256)

As we notice, the spatial chunk size is 1440x720x1 which cor-
responds to the dimensions of one map layer. On the other
hand, the box chunk is stored in small blocks with the fol-
lowing dimensions 90x90x256' As we will discover later, these

storage settings have different implications for the computation
speed.

A graphical representation of the spatial chunk is below.

call function for plotting box chunks
spatialchunkfx (chunk1)

Spatial chunking

E)
z
[e]
S 4P
o 1 -
g)
GO I
2 'LQQ -
=G, T W 7
(7 o < >
% e W &
G T o) &
O, ® b 7 ~
v N @ &
“ (% J 7 o
'?O v & @
iy B 5 &
o

Similarly, we can also represent a few blocks of the box chunk
file in the next plot.

import function for plotting box chunks
boxchunkfx (chunk?2)

I The spatial chunk’s size is based
on the spatial grid’s size. In this ex-
ample the grid is 720 x 1440 pixels
(a map layer). Conversely, The box
chunk’s size is more flexible and deter-

mined by considering the target anal-
yses.

Box chunking

I .\f_,E)
G
=
* A0
[n]
3 o
R
—
[)
© 'y L)“»\QB o
o
é"o P oY
2
e o <0y &
% o &
Yo & &
I\
7. o 7 o
‘/o,) EEe % &
“ & &
N
&

Data access performance

Now, let’s estimate the time requiered to access data along
different axes for each chunk storage.

spatial access (one map layer)
@time xmapl[:,:,1];

temporal access (time series)
Q@time xmap[1,1,:];

0.014955 seconds (43 allocations: 3.957 MiB)

35.481612 seconds (210.81 k allocations: 11.063 MiB, 0.47% compilation time)

As expected, for the spatial chunk (xmap), access along spatial
strides is much faster than access to time series because of the
internal storage in the NetCDF file. In this particular case we
can access a map layer a few hundred times faster than a time
series even though the map stores much more data than the

single time series.

spatial access (one map layer)
@time xbox[:,:,1];

temporal access (time series)
@time xbox[1,1,:]1;

4.881677 seconds (43 allocations: 3.957 MiB)
0.308748 seconds (41 allocations: 9.453 KiB)

For the intermediate chunk (xbox), there is a good compromise
between accessing the spatial and temporal axes. In this case,
access to the temporal axis is faster than access to the spatial
axis. These intermediate chunks are prefered when performing
analyses in all axes.

@ Take home message (1)

In summary, the time required to access geospatial data
and time series varies depending on the characteristics of
the chunks in the dataset. In this example, we found that:

e Spatial chunking can access spatial layers about a
hundred times faster than time series.

e The box chunk provides a good trade-off when anal-
yses are required across all axes.

Statistical computation

Now, we want to compute the mean and median values
for both chunks and across differente axes. Keep in mind
that the computational resources needed for the mean and
median are different. Specifically, the mean is a cumulative
computation that does not require to load the entire data into
memory. Conversely, the median needs to load and sort all
data to be computed. We will use the same input variable

air__temperature_2m variable with the two different chunk
settings.

input chunks

xmap # spatial chunking
xbox; # box chunking

Mean

Our input data is stored on disk and accessed as DiskArrays.
The DiskArrays.jl package uses the internal chunking
structure and provides special implementations for the

mapreduce function used in the implementation of the mean
for AbstractArray.

Mean by pixel

using Statistics
@time xmeanl = mean(xmap, dims=3);

@time xmean2 = mean(xbox,dims=3);

42.328429 seconds (4.50 M allocations: 7.869 GiB, 0.65% gc time, 4.55) compilation time)

42.548797 seconds (50.26 k allocations: 7.646 GiB, 0.29% gc time)

Note that the computational time of the mean across all dimen-
sions is similar regardless of the chunking.

Next, we plot the output of our computation.

geoplotsfx(xmeanl[:,:])

40

Air temperature (°C)

60°E 120°E 180°E

-40

Figure 3: Multianual mean of air temperature at 2 m from 1979
to 2021 pixel-wise.

Mean by time step

Our next step is to compute the global mean per time step.

@time tmeanl = mean(xbox,dims=(1,2));

@time tmean? = mean(xmap, dims=(1,2));

40.777476 seconds (670.62 k allocations: 7.672 GiB, 0.76% gc time, 0.88) compilation time)

38.881553 seconds (100.96 k allocations: 7.644 GiB, 0.29% gc time)

time series of air temperature at 2 m for all pixels
timeseriesfx(tmeanl[1519:end], 0, 10) # define input data and y-axis limits

10

Air temperature (°C)
w

T T

o O = -
T T TLOLTLTTIYTILLLLTTTIEOTOTIOTOY YA A
cC £ 2 = 8 = oD c c O =€ = 005 0 >=3> = oo o
m:oﬂ-a‘“:m:m Smmm%mmoﬂmmz
S 5z < =15 50 = oo uw oz=2 <ouw g

Figure 4: Global mean of time series of air temperature at 2 m
from Jan-2012 to Dec-2021.

@ Take home message (2)

e In the case of the mean, the computation time is sim-
ilar regardless of the chunking properties and used
axes. This is due to the fact that the mean is a
cumulative operation and does not need to load the
data set along the entire reduction dimension at the
same time.

e The mean computation is properly handled by
DiskArrays.jl.

Median
Median by pixel

The computation of a reduction gets more difficult for the me-
dian, because here we need the full time series in memory. This

11

makes it impossible to compute the median in a single pass.
Let’s try this on a small subset.

subset spatial chunking
subl = view(xmap,1:2, 1:2,:)
outl zeros(size(subl,1),size(subl,2));

Note: this way of reading the data is used for demonstrative purposes,
but keep in mind, it is a very unefficient looping through the dataset.
More efficient approaches are mentioned at the end.
Otime for ilat in axes(subil,2), ilon in axes(subi,1)

outl[ilon,ilat] = median(subl[ilon,ilat,:])
end

127.834806 seconds (2.16 M allocations: 119.666 MiB, 0.63%, compilation time)

This already takes ages with 4 grid cells when working with
spatial chunking. For this calculation it would be better to
read e.g. approx. 1 GB of data each time and perform the
calculations one after the other as we show later.

subset box chunking
sub2 = view(xbox,1:2, 1:2,:)
out2 = zeros(size(sub2,1),size(sub2,2))

@time for ilat in axes(sub2,2), ilon in axes(sub2,1)
out2[ilon,ilat] = median(sub2[ilon,ilat,:])
end

1.148053 seconds (386 allocations: 77.078 KiB)

Regarding the subset with the box chunking, the computation
runs much faster, because this chunking is more suitable to
access time series. Here we compare and see that both results
are exactly the same:

outl

12

2x2 Matrix{Float64}:
-48.8034 -49.0315
-48.8035 -49.0294

out2

2x2 Matrix{Float64}:
-48.8034 -49.0315
-48.8035 -49.0294

One way to deal with these inefficient calculations is to read
the data in blocks. This means that a block is read and the
calculation immediately follows. In this way, one block after
the other is read and calculated until all the data has been
read and calculated. In this way, the calculation becomes more
efficient.

here we fix latitude ranges that will be used to read the data in blocks
out3 = zeros(size(xmap,1),size(xmap,2))

latsteps = 90

latranges = [(i*90-latsteps+1):(i*90) for i in 1:(720+latsteps)];

Otime for ilat in latranges
out3[:,ilat] = median(xmapl[:,ilat,:],dims=3)
end

308.150469 seconds (16.23 M allocations: 8.078 GiB, 0.50% gc time, 0.41%, compilation time)
outd = zeros(size(xbox,1),size(xbox,2));
Otime for ilat in latranges

outd4[:,ilat] = median(xbox[:,ilat,:],dims=3)
end

88.740848 seconds (14.08 M allocations: 7.962 GiB, 0.79% gc time)

13

In general, results are obtained from the entire dataset in a
reasonable time for both chunking settings. Nevertheless, we
find that chunking by boxes is again more efficient than chunk-
ing by maps. Alternatively, we can use YAXArrays.jl, which
performs exactly this workflow for a given cache size (see last
section).

geoplotsfx(out3[:,:])

40

Airtemperature (°C)

60°E

-40

Figure 5: Multiannual median of air temperature at 2 m from
1979 to 2021 pixel-wise.

Final remarks

@ Take home message (3)

Our last remarks are:

e Chunking is critical for efficient data access when
the entire data set cannot be loaded into memory.
e Calculations such as the mean are not affected by

14

chunking if an appropriate library and code are
used.

e To ensure optimal performance for all operations an
appropriate chunking size should be chosen consid-
ering the type of analyses and required dimensions.

e For a given dataset rechunking is only feasible if the
rechunked data needs to be accessed multiple times.

As a final note, there are already libraries that efficiently deal
with data partitioning and processing, one example is YAXAr-
rays (https://github.com/JuliaDataCubes/YAXArrays.jl).
These libraries contribute significantly to improve processing
performance but full efficieny is only achieved when consider-
ing chunking.

A short syntax for the median example using YAXArrays is:
ds = open_dataset(joinpath(filebase,"t2_map.nc"))
ds.air_temperature_2m

medtair = mapslices(median, ds.air_temperature_2m, dims="Time",
max_cache=1e9)

15

https://github.com/JuliaDataCubes/YAXArrays.jl

	Introduction
	Data exploration
	Visual inspection
	Chunks overview
	Data access performance

	Statistical computation
	Mean
	Mean by pixel
	Mean by time step

	Median
	Median by pixel

	Final remarks

