Deep learning for new physics mining
at the LHC

Simon Kliuttermann

MASTER THESIS IN PHYSICS
submitted to the

FAcuLTY OF MATHEMATICS COMPUTER SCIENCE AND
NATURAL SCIENCES

RWTH AACHEN UNIVERSITY

DEPARTMENT OF PHYSICS

INSTITUTE FOR THEORETICAL PARTICLE PHYSICS AND
COSMOLOGY

First Referee: Prof. Dr. Michael Kramer
Second Referee: Prof. Dr. Felix Kahlhofer

November 2020

TABLE OF CONTENT Page 1
Table of content
Table of content 1
1 Motivation 3
2 Introduction and literature 5
2.1 New physics e)
2.2 Neuronal networks and autoencoder)
2.3 Graphs 8
2.4 Graph autoencoder L 10
3 Basic concepts 11
3.1 Binary classification oo 11
3.2 Datapreperation 14
3.3 Explaining figures used in this thesis 15
4 A working graph autoencoder 18
4.1 Graph neural networks 18
4.2 The compression algorithm 0oL 19
4.3 the decompression algorithm 00000 19
4.4 Our model setup L 20
4.5 Choosing the rigth loss 21
4.6 Difficulties when evaluating a model 0oL 24
4.7 Evaluating the autoencoder Lo 26
4.8 Evaluating the classifier L 28
5 Apparent questions 32
5.1 Scaling the network size oL 32
5.2 Simplicity and invertibility o o 37
6 Normalization 42
6.1 Introudicing normalization for autoencoder 42
6.2 Using this normalization oo 45
7 Mixed networks 51
7.1 Oneoff networks o1
7.2 Latent space oneoff learningo oo 53
7.3 Afinal classifier 54
7.4 Scaling with oneoff networks oL 57
8 Applying this model to other datasets 61
8.1 Ligth dark mattero 61
8.2 Other datasets 64
8.3 Cross compariSonso e e 67
9 Conclusion 69
9.1 Outlook e 70
9.2 Acknowledgements 71
Appendices 72

TABLE OF CONTENT Page 2

A Understanding certain choices 72
A.1 Changing the input feature space L. 72
A.2 Isit a good idea to relearn the graph at each step? 73
A.3 The consequences of sorting outputs by Ipt 74
A.4 The usage of a batchNormalization layer in the middle of the graph autoencoder 75
A.5 Changing the definition of the transverse momentum input 7
A.6 Comparing our graph update layer to particleNet 7

B Experiments using graph autoencoder 78
B.1 Variating the compression size L. 78
B.2 Things we learned from implementing a Graph Autoencoder in tensorflow and

keras 79
B.3 Metrik analysis 80
B.4 How topK works exactly 81
B.5 Trainingsize, and why graph autoencoder don‘t care about it 84
B.6 Why autoencoder reproduce mean values 85

C Overview of less useful networks 87
C.1 Failed approaches 87
C.2 The first graph autoencoder that could be considered working 88
C.3 Improving autoencoder 90
C.4 Improving autoencoder even further? 93
C.5 The compression algorithm that we wish we would be able to write 96

D More problems while writing a graph autoencoder 98
D.1 Choosing the rigth compression size 98
D.2 Building identities out of graphs Lo 98
D.3 Is permutation invariance good or bad?o oL 100
D.4 Why use graph autoencoder Lo 100
D.5 Why not to use graph autoencoder 100

E Understanding Oneoff networks with more precision 106
E.1 Other algorithms 106
E.2 Different algorithms for latent space training 108
E.3 Oneoff math 109
E.4 Self improving oneoff networkso 111
E.5 How an oneoff network can become noninvertible 115
E.6 Why c addition might not be perfect 117

F Other usecases for grapa 118
F.1 Abnormal account detection for social networks 118
F.2 Accelarating molecular networks through pooling 121
F.3 High level machine learning and feynman diagramms 122
F.4 Graph like generators and onoff initializers 127

G Additional Figures 129

List of Figures 133

List of Tables 137

References 137

1 MOTIVATION Page 3

1 Motivation

After starting currently the biggest particle accelerator (The Large Hadron Collider, in short
LHC) in 2008, hopes were high that it would allow us to find many signs of new physics[22].
Now, more than a decade later, the only notable discovery was the measurement of the last
standard model particle with the detection of the higgs boson in 2012 [5]. And even though this
is a remarkable achievement, it seems a bit unsatisfactory: There seems to be nothing wrong
with the standard model on a particle physics level, as we have no clear measurements violating
it. But we still know that it has to be incomplete, as it does not provide any explanation for
the nature of dark matter.

To combat this, there is a growing trend of improving analysis tools. One of these tools is
machine learning. Machine learning, and its subset deep learning, allow you to learn specific
tasks from data. And even though the LHC did not find any irregularities yet, it still generated
petabytes of data which can be used for machine learning. Next to other applications, this
is currently used at the LHC for jet classification and track reconstruction ([23] Gives a more
complete overview). One thing that makes applying machine learning to particle physics so
attractive, is that they are able to work on very low level data. While classical jet classification
algorithms use high level jet observables, like for example its invariant mass, machine learning
is capable of using detector level information to extract their own features. This can make
features from the jet substructure accessible to a classifier and is interesting since this ability of
machine learning algorithms to work on low level data might allow them also to find anomalies
that were previously inaccessible. To do this, jet physics seems to be a prime example: Raw
jets are fairly hard to understand for a human, while being easily presentable to a machine
learning algorithm. And also certain BSM (Beyond Standard Model) models, explaining for
example dark matter, should be detectable by jet physics[3].

In recent times, a special kind of deep learning, graph neuronal networks, have become very
interesting. While most neuronal networks look at pictures of energy depositions similar to
those of a calorimeter, graph neuronal networks look at the actual measured 4 momenta and
create a graph of particles. This makes it possible to encode relations between particles in a
machine learning algorithm. This results in graph neuronal networks beeing very useful for jet
classification [48].

But next to simply improving the quality of a classifier, there is another task that should
be considered: These neuronal networks are trained supervised, meaning that they need to
have examples for every anomalous event. This also means that a neuronal network trained
supervised can only find specific models. And since even only considering dark matter, there
are thousands of suggested models, this makes testing every alternative an exhausting job. So
nowadays there is a growing trend of training neuronal networks unsupervisedly: Using a special
kind of neuronal network, called an autoencoder, you can let your model learn the specifics of a
set of datapoints which are considered normal. This allows those neuronal networks to find jets
that dont match this definition of normality [24]. It would allow them to find anything that
does not match the current understanding of jet physics, without needing to know anything
more.

Graph neuronal networks have not yet been applied to this unsupervised task. And since
apparently they work well for the supervised task, the following chapters will apply them
to the unsupervised task: After introducing some basic concepts in chapters 2 and 3, chap-
ter 4 Focuses on the technical implementation of this unsupervised algorithm. Since this
implementation is not trivial, we provide our resulting code in an easily accessible way at
https://grapa.readthedocs.io/en/latest/ . You also find a digital version of this thesis there.
Afterwards chapter 5 highlights some physical problems with the resulting anomaly detection
algorithm. These are then solved in chapters 6 and 7, creating a much more useful anomaly

https://grapa.readthedocs.io/en/latest/

1 MOTIVATION Page 4

detection algorithm. This algorithm is then used in chapter 8 on other datasets, showing that
it is able to find much more general new physics than the algorithm implemented in chapter
4. Finally chapter 9 provides a conclusion and some final thoughts on how to improve our
algorithm further, which is followed by our extensive appendix going into detail about the most
interresting parts of this thesis.

2 INTRODUCTION AND LITERATURE Page 5

2 Introduction and literature

Referenced in: [1]

2.1 New physics

Modern particle physics seems to be in a standstill: The standard model seems to explain
everything on a small size, while also being clearly incomplete. At the same time, none of
the suggested extensions seems work, which is why there are now approaches changing the
fundamental way we do science. One of this approaches is suggested by QCDorWhat [24]
Instead of finding new physics events by hypothesizing theories and testing them afterwards,
they use an anomaly detection algorithm to filter out events that don’t match your expectation.
This would allow you to find events representing new physics models without needing to suggest
these models first. They work in jet physics, trying to find anomalous jets that are generated
by the decay of a top quark, while only knowing about those jets, which are generated by the
parton shower of QCD! Particles with lower mass. You can think of this task as trying to
finding new physics, while only knowing as much as we did before the detection of the top
quark in 1995[14]. So when we would be able to find top quarks at this point in time, we might
also be able to apply such an algorithm to the LHC now and use it to understand physics no
human knows about yet, which is why we also test most of our algorithm on this task.

2.2 Neuronal networks and autoencoder

Neural networks can be understood as being able to learn to reproduce any function you train
them on. The anomaly detection algorithm QCDorWhat uses, is based on a special kind
of neuronal network, which is called an Autoencoder [34]. Here this function learned is the
identity and thus should simply reproduce everything you feed into the autoencoder. Since
learning an identity is usually trivial, a point of lower dimension in the middle of the network
is introduced. This compressed (latent) State, containing less information than the network
input, is generated by a learnable function called encoder. After the encoder, the latent space
serves as input to another learnable function(called the decoder). This functions reconstructs
the input again from the compressed state. Since the reduced dimension requires the network
to throw away some information, this results in a reconstruction which is usually not perfect.
It can still be quite good, as long as the data contains some patterns. Learning those patterns
allows the autoencoder to work as anomaly detector, as data with different patterns cannot be
reproduced.

!Quantum ChromoDynamics, with QCD particles you usually mean low mass quarks and gluons.

2 INTRODUCTION AND LITERATURE Page 6

¢ data .
== |inear fit &

y (another feature)

X (one feature)

Figure 2.1: A simple example on how an autoencoder can reduce the number of parameters
that is needed to approximately encode an event. Instead of using two variables x and y to
define each of the points, you can use only the x value as latent space and an approximation
of the y value as a function of this latent space x value

As seen in figure 2.1, to completely encode the data you would still require 2 dimensions (a
x and a y Value), but you can approximately encode them into 1 dimension quite well. You
do this by using one value as this compressed state and reconstructing the second one in the
decoder, as a linear function of the compressed state? 3.

This combination of a compressor and a decompressor can be quite useful in multiple ways.
Ignoring the obvious task of compressing data (see [53] for an example of an autoencoder used
for this in particle physics), you can give the decompressor noise to generate new versions of an
already known kind of data (see [40]), and even though nowadays GANs(Generative adversial
networks see [40] or F.4) Are used for this task, autoencoder have still some benefits, by allowing
for more control over the generated data. This works, since (for good autoencoders®) similarity
in the compressed space represent similarity of the inputs. This does mean, that by identifiyng
features in the input space you can change just one specific attribute of the input, and you can
also use this to combine the features of two inputs into one, see for example [10] and figure 2.2.

2Since the number of trainingsamples is finite, you could map every sample into an index, and map those
indices again onto the inputs. This would reach a zero loss for any input with an compression size of 1. The
problem is not only that is finding such a function quite hard for a neural network, it would also not be useful
at all: On any new data (for example the validation data), the network would not work at all. This is why
these kind of functions are a part of what you can call overfitting for an autoencoder.

3In practice, this data contains structural noise, which is why the autoencoder would not learn a linear
function, but a more complicated on, better representing the data.

4This works better in a special way of training an autoencoder, called a variational autoencoder [29].

2 INTRODUCTION AND LITERATURE Page 7

Bl
'4\‘.’ f
WL
A
LU

Figure 2.2: Example images showing how an autoencoder can combine two images into one.
Taken from [1], generated by Ember, Bruno and ArgonOl

The application of autoencoders that is focussed on in this work, is the detection of anoma-
lies. Introduced on the informatics side by [52] and used in particle physics for example in [43]:
A well trained autoencoder should only be able to reconstruct the features it is trained on well.
This means that you can use the reconstruction loss® of this autoencoder, to find events that
are not of the same type as the data the autoencoder is trained on. This allows QCDorWhat
[24] to find top jets in a background of QCD jets with a notable precision, without ever needing
to know how a top jet looks like.

The task of anomaly detection, as finding abnormal events, has a surprising amount of use
cases: From improving the purity of a dataset [7] to fraud and fault detection (see [19] and [45]
respectively). To achieve this, there are also many more algorithms than just autoencoders.
(These will be introduced and applied in appendix E.2). One thing most of them share with
autoencoder is their unsupervised training. In contrast to usual neural networks, they never
have to see examples of anomalous data, which gives them applications where there is no
anomalous data jet, for example in motor failure detection and nuclear safety (see [42] and
[51]). These are not only tasks for which generating anomalous data is neirly impossible, but
also applications that need to find anomalies with very high accuracy: This is very similar to
the the task of finding new physics (of arbitrary form) in an abundance of noise.

5The difference between input and output of the autoencoder, measured in a way discussed in chapter 4.5.

2 INTRODUCTION AND LITERATURE Page 8

2.3 Graphs

Referenced in: [2.4] [A.3]

A graph[26] is a mathematical concept, that allows you to represent a more general form
of data than those encoded in vectors. Most importantly, graphs allow for storing relational
information of an arbitrary® amount of objects. This is done, by defining two objects: Nodes
which are the objects of interest and can be mathematically described by vectors” and edges
that are pairs of connected nodes and thus encode the relation between your objects of interest®.
See 2.3 for a simple example showing how a graph can for example encode features of a city
map.

SFor computional reasons, graphs are not completely unbounded in the following chapters, but have a
maximum size up to which their size is arbitrary.

“In theory you would not need to be able to define those objects as only vectors, but for practical application
this is quite useful. The more complicated compression algorithm, which is described in Appendix C.4 could be
interpreted as using graphs themselves as the information encoded in those nodes.

8There are multiple extensions for this simple graph, the two most important ones are directed graphs, in
which the edges gain a direction, and thus a connection between node ¢ and j does not automatically imply
a connection between j and ¢ and also weighted graphs, in which each edge gains an additional value, that
encodes how strong the connection between two nodes is.

2 INTRODUCTION AND LITERATURE Page 9

Figure 2.3: A representation of the city regions as a graph: You can understand a map as a
graph, where each region becomes a node and bridges between them represent edges. Here
using a map from [2]

Mathematically, these nodes and relations are defined in a list of feature vectors? X that
stores the features of each node, and an adjacency matrix A, which components Ag are 1, if the
nodes ¢ and j are connected, and 0 if not. This graph is usually invariant under permutation
of the node indices. You achieve this by permuting!® the adjacency matrix in the same way the
feature vectors are permuted!!, and by requiring any action on the graph to be permutation
invariant. This action is usually also local, and thus only acts on each node and the mean'? of
nodes that are connected to the current node. This has the benefit of making graphs ideal for

9Technically this is equivalent to a matrix, but list of vectors is more intuitive.

0With permuting we here mean switching two indices, or more generally multiplying with a permutation
matrix.

HThis is the reason why we don‘t call the list of feature vectors a matrix: As a matrix permutation requires
permutation matrices on each side (p- A - p), the feature vector ”Matrix” only requires one permutation matrix
(X -p).

12You also need to require each local action to be symmetric under changing the input ordering, since else
the output can depend on the order of the nodes. The usual way that is achieved is by using a function like the
mean on (or the maximum value of) all neighbouring nodes.

2 INTRODUCTION AND LITERATURE Page 10

modeling interactions between high numbers of objects, as the functions don’t change as you add
more nodes to the graph. In informatics, this is for example useful for social networks[15]: Data
that consists out of a huge amount of nodes, in which mostly only connected nodes (friends)
affect each other, are perfect applications for graphs, since else you would need to update your
model every time a new user joins (see for an example appendix F.1). In physics, this reminds
of nuclear science, and the approximation of pair interaction potentials[18], and so there are
applications using this kind of molecule encoding for chemical feature extraction (for a simple
example look at appendix F.2) [17] and medicine [46]. Next to those relational applications,
there are also applications that are not utilizing an existing relation, but use the locality of
the graph structure to encode the similarity of given data. This is done by letting the sense
of similarity between nodes be a learnable function. For example, by using a topK algorithm
(each node is connected to its nearest K neighbours, see appendix B.4), you can implement a
learnable version of whatever distance means. This allows networks like for example ParticleNet
[44], which uses a special kind of neural network, that is able to work on graphs, to seperate
top and QCD jets in a supervised way. They use the graph structure to be able to define and
redefine multiple times, which detected particles (nodes), should be considered close to each
other. This results in ParticleNet working quite well as a supervised classifier(see [27]).

2.4 Graph autoencoder

ParticleNet might be well suited for classifying jets, but when you want to use it for finding
new physics, then its supervised approach is still problematic. Supervised training means, that
each new physics model can only be detected, if you train a special network just for it. Not
only would this need a lot of networks, with the corresponding high number of false positives,
but this also limits their effectiveness, as you can only find new physics that has already been
thought of before. But maybe could you use the graph structure that makes ParticleNet so
great and combine it with the unsupervised approach of QCDorWhat. This is the main idea
that is implemented in this thesis. What you require is a autoencoder that can utilize graphs,
which is a task that is not trivial: Creating something like a graph autoencoder has some
problems, for example is a compression step usually not local'®. Most authors shy away from
any approach that changes the graph size(see for example [31]). The first approach you find,
when you search for a graph autoencoder, is paper [30] and a lot of paper referencing it. The
main problem using this is, that they use only one fixed adjacency matrix, and thus one equal
graph setup, for any input and at any point in the network. This allows for neither the learnable
meaning of similarity that seems to make ParticleNet so good, the variable inputsize discussed
in chapter 2.3 and, probably worst, not for any structural difference in different jets.

Other approaches come from the problem of graph pooling operations, meaning the defi-
nition of some kind of layer, that takes a graph as input, and returns a smaller graph as the
result of some learnable function®. DiffPool [54] and mincutpool [12] might be good examples
for this, but graph u nets [21] stand out, since they also give a suggestion on how to implement
an anti pooling layer, and thus allows for a graph autoencoder in the way we require it here.
This is the reason, why the first approach we tried is based on their approach. See for this
appendix C.1.

13Graph pooling operations are quite common, since the output of a graph network usually has a different
format than its input. The way this is usually achieved, is by applying a function (mean or max for example)
to each node. ParticleNet for example uses a GlobalAveragePooling [33], so it calculates the average over the
nodes for each feature. This kind of pooling works quite well, but is sadly not really appliable to autoencoders,
since functions like a mean are not invertible in any way.

14This is not an entirely solved problem. If solved, it would allow for hirachical learning, similar to the use of
pooling layers in convolutional networks. See appendix F.2 for an application of our algorithm as pooling layer.

3 BASIC CONCEPTS Page 11

3 Basic concepts

Referenced in: [1]

3.1 Binary classification

Referenced in: [4.6.4] [9.1]

Evaluating the difference between background! and signal'® data has been studied a lot
because of its use cases for example in medicine [49]. In general, you consider 4 fractions, the
fraction of events that are of type background or signal, which are classified either as background
and signal.

positive negative
positive | True positive False positive
negative | False negative True negative

Table 3.1: 4 fractions for evaluating boolean decision problems. Events are truly collumn and
classified as row

3.1.1 ROC curve

For most decision problems, these fractions are a function of some parameter. Consider the
loss distribution in figure 3.1.

800
—— current parameter

7007 B background
600 [signal

500
400
300
200
100

loss

Figure 3.1: A sample loss distribution, to explain how to calculate a ROC curve. To get your
ROC curve, you have to choose every possible position of the parameter. Given one parameter
value, everything with a loss higher than the parameter is classified as signal, and everything
with lower loss as background. Your ROC curve is now the collection of all true and false
positive rates for each possible parameter value

Here this parameter is the point at which to cut the distribution in a way that everything
above will be classified as signal, while also classifying everything below as background. Since
the choice of this cut is completely arbitrary, we evaluate every possible parameter and plot
two fractions from table 3.1 against each other:

15Here background data is the data we train our networks on. This what we consider normal.
16The signal events are those that are anomalous, and which finding is the main task.

3 BASIC CONCEPTS Page 12

e The first fraction, called the false positive rate, is given by the number of events that
are wrongly classified as type signal divided by the number of elements that truly are
background.

e The second fraction, called the true positive rate, is defined as the number of correctly
classified events in the signal category, divided by the total number of signal events.

These two fractions are plotted against each other in a way showing the fraction of correctly
classified events and the AUC score (see chapter 3.1.2). An example curve is shown in figure
3.2. Here the more area is under this curve the better the reconstruction is. A perfect classifier
would result in this curve beeing 1 for every false positive rate bigger than 0.

=
o

o o o
IN o o

true positive rate

o
N)

o
o

0.0 0.2 0.4 0.6 0.8 1.0
false positive rate
Figure 3.2: A sample ROC curve plotted in way showing its AUC score
Alternativly you visualise this curve showing the fraction of falsly called signal events, which

is usually called the background rejection rate (see figure 3.3). Here again a higher curve would
be better. A perfect classifier would here simply be infinite everywhere.

104_

=
o
w

102 i

101,

inverse false positive rate

=
o
o

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure 3.3: A sample ROC curve showing the background rejection rate

This resulting curve is called the ROC (Receiver operating characteristic) curve.

3 BASIC CONCEPTS Page 13

3.1.2 Area under the curve

Referenced in: [3.1.2] [4.6.4]

To simplify comparing ROC scores, you can use an AUC (Area Under the Curve) score
to summarize it. This AUC score is defined as the integral of the true positive rate over the
false positive rate. This simplification is not perfect, since you reduce a function into only
one number, but it is fairly wide accepted, as it is much easier to interpret: A perfect score
would result in an AUC score of 1, while a classifier that just guesses randomly, results in an
AUC score of 0.5 and a perfect anticlassifier would result in an AUC score of 0. This still has
the problem, that since not every part of the ROC curve is equally important for the current
problem (if you want to test, if somebody is ill, you might prefer more false positives over
more hidden illnesses), this could result in networks improving the AUC score by just changing
unimportant parts of the ROC curve.

3 BASIC CONCEPTS Page 14

3.2 Datapreperation

Referenced in: [4.4.1] [4.6.4] [7.1.1] [9.1] [A.1] [C.2.2] [E.5] [F.3.3]

Here jet data provided by [28] is used. This we do, since results on this data are easier
to compare. These jets have a transverse momentum between 550 - GeV and 650 - GeV and a
maximum radius(R? = n? + ¢?) of R; < 0.8.

These jets take the form of lists containing 200 momentum 4-vectors sorted by their trans-
verse momentum. So by taking only the first n vector for each jet, you get a list of the n
particles carrying the most transverse momentum, and thus probably the most important ones.
If a jet is defined by less than 200 final particles(which is always the case), those remaining 4
vectors are set to 0.

In the following, every network has a fixed maximum number of particles that can be
reconstructed with it. We use those particles that have the most transverse momentum, possibly
including zeros. Any further preprocessing is done by the network!”, namely each momentum
4 vector is transformed into a vector of 4 other variables:

e Flag: A constant 1 for each particle, but 0 if the 4 vector is 0. This input replaces the
biases of our update steps, since adding a constant bias would not differentiate between
those vectors that represent particles, and those that are just filler zeros. This means, that
Networks using it would not be completely independent under concatting zero vectors to
all inputs (increasing the graph size)'®. This is definitely a minor effect, but other results
appeared suggesting that it is a wise choice. We discuss them in chapter 4.4.1.

e An: n=log <p+p3>/2 (with p = |p]) which is shifted in such a way, that the mean of An
is 0, since the position of the jet should not have any meaning: An =7 — mean (7).
o A¢: ¢ = arctany (po, p1)'? which is again shifted in such a way, that the mean of A¢ is 0:

A¢ = ¢ — mean (¢)?°, since also the position of the jet in this variable should not have
any meaning.

o Ipr: p2 = p?+p3, and Ipy = —10g<]et>. We use a logarithm, to keep each value at

about the same order of magnitude, which makes the training more stable. We also divide
by the total jet transverse momentum, to make every jet look more similar. Finally the
sign is used to keep the values positive. 2!

You could try to use more variables: ParticleNet for example uses 4 more variables (different
representations of our variables, the energy as well as A% = A% + A2. The also don’t use flag),
but since these variables are strongly related to other variables, this results in an autoencoder
only learning those relations. This would not result in anything learned being usable as classifier.
And demanding that this and more is learned, just complicates the task, without providing any
real benefit??.

17The additional computation time for this is neglicible compared to the graph procedures and this also allows
for easier switching of data and preprocessing and even for (slightly) learnable preprocessing, like a learnable
normalization.

8By adding biases to zero vectors, you get vectors that are not neccesarily zero. But since the effect of a
vector in the graph update step is proportional to its size (see chapter 4.1), this means, that zero vectors can
have an measurable effect on non zero vectors.

9The function atans (y, z) is an extension of arctan (y/x) that is able to map to the full 2 - 7 output space.

0Here 1is shifting actually not that easy to implement, since you have to consider
the difference in a modular space, see appendix B.2.1 or the actual implementation at
https://github.com/psorus/grapa/blob/master/grapa/layers.py#L6488 for more information.

2L A consequence is that higher transverse momenta have lower values. Since the alternative in appendix A.5
explores the effects of changing this, we dont think that this matters much.

22But see appendix A.1 for some experiments in changing the features.

https://github.com/psorus/grapa/blob/master/grapa/layers.py#L6488

3 BASIC CONCEPTS Page 15

3.3 Explaining figures used in this thesis
3.3.1 Output images

Referenced in: [4.6.4] [C.3.2]

event number 0

@ truth ® @
0.0021 @ prediction O
0.0001
— O
e
o
—0.002 1
()
—0.0041 ®
® @
—0.025 -0.020 -0.015 -0.010 -0.005 0.000 0.005 0.010
eta

Figure 3.4: A sample reconstuction image

In figures like 3.4, you see the ¢ and 7 value of each particle, including any normalization,
plotted once for the input jet in red, and once for the output jet in blue. This means that a
perfect network would show both jets overlapping in violet. Zero particles are not shown and
there is some indication of the transverse momentum in the size of the dots, which is given
proportional to? 1 4 lm? —7- Lhis sadly does not allow you to see differences in Ipy very well,
which is why we also look only at Ipr reconstruction. We show those in figures like 3.5 here as

a function of the index (sorted by Ipr).

1.00{ © @ truth
0.751 © @® prediction

0.50+

0.25+

Ipt
@

0.00+

—0.254

—0.501 9

—0.75+

~100

particle

Figure 3.5: A sample momentum reconstruction image

ZInverse function, since higher py result in lower Ip7, and some constants to keep the radius finite.

3 BASIC CONCEPTS Page 16

This way of looking at the network performance is quite useful for finding patterns in the
data. There seem to be networks that show a high correlation between the angles (see for
example appendix C.2), and it is quite common for the reproduced values to have less spread
than the input one (see appendix C.3). A problem here is, that you can only look at a finite
number of images, and finding one nicely looking reproduction for pretty much each of our
trained networks is not that hard. To tackle this, we always use the same event for each
training set.

3.3.2 AUC Feature maps

Referenced in: [5.2.1]

AUC

4 -
=)
o
2
© 3
£
(@]
o
@2
=
©
o

1_

flég phi eta Ipt
Feature

Figure 3.6: A sample AUC Featuremap

A loss is usually just a mean over a lot of losses for each feature and particle. So you
could just not average them, to also be able to calculate an AUC score for each feature and
particle (If the loss function described in 4.5 does not allow this, we simply use a L2 loss for
this figure). These AUC scores are shown in feature maps like 3.6, showing the quality of
each combination of feature on the horizontal axis and particle on the vertical axis in the form
of pixels. A perfect classifier(AUC = 1) for one pixel would result in a dark blue pixel, a
perfect anti classifier(EQ (AUC, 0)) would be represented by a dark red pixel. Finally, a useless
classifier, that guesses if a jet is part of background or signal(or one that always uses the same
value)(AUC = 1/2) would be a white pixel. In short: The more colorful a pixel is, the better
it is, and an autoencoder trained on QCD events should have a feature map that is blue, while
an autoencoder trained on top events should be represented in red consistently.

The useful thing about those maps, is that they can show problems in the focus of the
network. Since a perfect and a terrible reconstruction, both have no decision power, a network
that has focus problems (meaning it reconstructs some things much better than other things,
making both parts worse as classifier), can be clearly seen in those maps. Also, it is fairly
common to get one feature and particle, that has alone more decision power than the whole

3 BASIC CONCEPTS Page 17

combined network (see 7.1 for an example and 5.1.4 for the explanation). Finally, an AUC map
that is completely blue or red is quite uncommon, more probably some features are red, some
are blue, which allows you to get an indication on which features are useful for the current task
(see for example appendix C.2).

4 A WORKING GRAPH AUTOENCODER Page 18

4 A working graph autoencoder

Referenced in: [1] [5.1.3] [6.1.2] [7.3.2] [C.5] [D.1] [D.5.1]

4.1 Graph neural networks

Referenced in: [3.2] [C.1.2] [D.2]

Graph neural networks are defined by a graph update layer. This layer takes all the feature
vectors of the current graph, as well as their corresponding graph connections to return an
updated feature vector. To achieve this, this layer uses two different interactions, the update
step of each node itself (which is called the self interaction term here) and the update step of
a node corresponding to its neighborhood in the graph (the neighbor interaction term).

Our graph update layer consists out of two matrices, a self interaction matrix, that get
multiplied with each feature vector to generate the first part of a new vector, and a neighbor
interaction matrix, that gets multiplied to the sum of the neighbor vectors of each node and
thus forms the second part of the new vector. So written as a formula, the new vector equals
(with the original feature vector z;, the learnable self and neighbor matrices sz and ni , as well
as the adjacency matrix Az and the activation f)

f(nf-A};-xmLs; xl) (4.1)

It should be noted, that this implementation is a bit slower than the usual approach(for a rea-
soning on why we cannot use the more usual approach of for example ParticleNet, see appendix
A.6)%') and since we don’t think the implementation (see git https://grapa.readthedocs.io/en/latest/
) is as fast possible, this is something that could be improved a lot .

4.1.1 Tensorproducts

Referenced in: [4.3] [C.4.3] [D.2]

The input feature vectors X are inherently 2 dimensional. You can understand how a
network updates them, by looking at how this update step would look if X would be flattened?®
into 1 dimension. The function used to generate this matrix from the matrices used in the
update step is called a tensor product. Considering general 2x2 update matrices for the self (s)
and neighborhood (n) interaction, as well as a given adjacency matrix A of?

(4.2)

S = O
_ o =
o = O

You can calculate a 1 dimensional update formulation of the update step as s®1+n® a, which
results in:

Soo So1 Moo Mo1 0 0
S10 S11 niw nip 0 0
Moo TMo1 Soo So1 Moo To1 (4_3)
Nio N1 S0 S11 Nio N1
0 0 mo mo1 Soo Sot
0 0 nip ni1 S0 Sn i

24Especcially since the usual approach can utilise GPUs better.

25 A vector, which first entries are those of the first vector in X, then of those in the second vector in X and
so continued until you finally have converted a vectors of size b into one vector of size a - b.

26Please note that we set here the diagonal entries to zero, while in our implementation those are usually one,
but this does not really matter, since this is just a change in learnable parameters. Here this is done to simplify
the following calculations.

https://grapa.readthedocs.io/en/latest/
https://grapa.readthedocs.io/en/latest/

4 A WORKING GRAPH AUTOENCODER Page 19

You might be able to see how a graph neural network uses less parameters than a dense
implementation and understand why this is permutation invariant. Our implementation uses
this exact calculation for an experiment explained in appendix D.2.

4.2 The compression algorithm

Referenced in: [B.4.2]

Compression is the first algorithmic problem we have to solve ourself: Find an algorithm
that transforms a graph with n nodes into one with m < n nodes in a learnable way, without
removing information®’, while keeping permutation invariance?® and while also beeing struc-
turaly invertible later on? and while beeing implementable in the branchless programming style
of tensorflow’.

Our algorithm works as follows:

We sort each node by their last value. This last value is usually not initially given, but a
learnable result of the network. After sorting each node, each set of ¢ nodes with similar value
is compressed into one output node each (using a simple dense layer3!). This means, that each
compression step reduces an initial number n of nodes into n/c nodes, where ¢ has to be an
integer factor of n. Also we simply ignore the edges of the graph here, since we can simply
relearn them in the next stage of the network. This actually does mean, that connected nodes
are more likely compressed together, as graph update steps usually average connected nodes in
some way, resulting in nodes that are connected to each other beeing more similar, and thus in
them more likely beeing compressed together®?.

In the appendix there is a chapter giving some physical intuition about this algorithm
(appendix C.4.1) and one suggesting a more complicated algorithm (appendix C.4.2) to show
that more complicated algorithms might not be a great idea.

4.3 the decompression algorithm

Referenced in: [B.4.2]

Finding a decoding algorithm is the true challenge in writing a graph autoencoder. Luckily
we wrote an encoding algorithm that can be easily inverted, and thus our decoding algorithm
works just in reverse:

Define a learnable transformation (Implemented as a simple dense network) that is able to
map a single node into ¢ nodes and apply this to each node. The graph connections could
be relearned again after this step, but it seems to be a good idea to use a more complicated
function here, and so we use the tensorproduct introduced in chapter 4.1.1 to combine the
graph before the decompression stage with a graph of ¢ nodes (This can be seen letting each
node becoming the same learnable graph). This graph is learnable, but constant with respect
to the nodes we train on®*. Also we use a fully connected graph before the first decompression
stage (with size 1), since there is no graph yet.

27 As a trivial algorithm, which just cuts away nodes would do.

28Which would not be the case, by for example applying a dense network to the collection of variables.

29This would not be kept by most graph pooling operations. Consider for example diffPool [54]: when you
transform an arbitrary number of nodes into one, we would also have to implement a transformation that
transforms a node into an arbitrary amount of nodes, which is not something easily done in tensorflow.

30Consider the algorithm explained in C.5, which is not implementable, or at least not in a reasonable time.

31Tt might be interresting to look at more complicated functions, but we usually saw worse networks, by
employing more advanced functions here.

32This is especcially useful, since input spaces having the same value multiple times are much easier compressed
together.

33This results in noninteger graph connection values, and thus in weighted graphs.

4 A WORKING GRAPH AUTOENCODER Page 20

As this handling of graphs is not very powerful, we also have a more complicated version
here. This is discussed in appendix C.4.3): In contrast to the better encoding algorithm, this
one might actually be worth considering, and is used in appendix F fairly commonly.

4.4 Owur model setup

Referenced in: [6.1.2] [6.2.2] [7.3.2] [C.1.2]

After transforming our input 4 vectors as decribed in chapter 3.2, we sort them by their [py
value to get our initial comparison value. This value will now be subject to a BatchNormal-
ization [25] layer, which helps the network converge(see appendix A.4) and, after generating
a graph between them(using a topK algorithm, see appendix B.4) and using them in 3 graph
update stages, we apply a compression stage. This is where the two networks we setup here, one
working on 4 the particles with the highest transverse momentum and one working on the first
9, show their first difference: The 4 node network simply compresses all 4 nodes into only one,
while the 9 node network gets compressed by a factor 3, is followed by 3 graph update layers,
just to be compressed again by a factor 3%4. All compression stages add additional parameters,
until the 4 node network has now 9 variables on its only node, while the 9 node network has
20 parameters in its node. This current stage is what is callled the latent space, and thus the
following layers are no longer part of the encoder but of the decoder. This decoder is build
completely in reverse to the encoder: We start by decompressing the latent space once (or twice
with 3 update steps inbetween for the 9 node network) and then we use 3 more graph update
steps, cut excess parameters and sort each node by their last value(This value is Ipy. More
about why this sorting is a good idea in appendix A.3). Now we have an input and output
value to define the loss of our network in a way defined by chapter 4.5.

Since we trained at O (1) models, we cannot show every model setup, so we show only this,
even though it is not optimal for the current task (Different models use 4 to 7 dimensions for
the 4 node case, reaching sligthly better classification scores). We still use this setup here, since
later networks use the same, while beeing depending much more on the network setup than the
models trained here.

For the training of every model, we use Tensorflow [6] and keras [16].

We train our networks with a learning rate of 0.003 and a batch size of 100 until the
validation loss does not improve for 100 epochs® of 50000 Training jets¢.We also train for at
least 500 epochs.

4.4.1 Our choice not to use biases

Referenced in: [3.2]

Every time you could use a dense layer, we only use the multiplicative part of it, and ignore
the usually learnable bias that is added to the output of this layer. This was originally so,
since we would like the exact number of nodes in the network not to matter, as long as you
can represent you whole yet. Then adding a constant to zero vectors, results in them not being
zeros anymore, and thus influencing connected nodes. This is definitely a minor effect, but we
kept is, since we can show that this improves the classification quality: An AUC value (that
is generated in the following chapter 4.8) of 0.811 falls to 0.796 by adding biases(here only to
the graph update layers in between). And even though this is again a minor effect, this is
already quite strange: Biases are usually considered a really good idea, and so understanding

34Tn our tests it generally seemed to be a good idea to compress into only one node.

35This patience is quite high, but seems to be needed to keep the networks fairly reproducable lateron.

36This number is about an order of magnitude less, than the data provided in 3.2 (600000), we use this low
number here to save some time, as we can show that changing this size does not affect our training quality (see
appendix B.5).

4 A WORKING GRAPH AUTOENCODER Page 21

why networks work better without biases, directly resulted in an approach on how to solve
some of our following problems. This is discussed in chapter 7.

4.5 Choosing the rigth loss

Referenced in: [2.2] [3.3.2] [4.4.1] [4.6.4] [5.1.4] [5.1.5] [7.2] [9] [B.6] [C.3.2] [D.5.1] [F.3.3]

Creating a good classifier means letting the network focus on exactly the things you want
it to care about. This focus can be influenced in two ways: The initial normalization, and the
loss function. While the size of the initial variables is relatively straigth forward®’, choosing
different loss functions makes less predictable changes, so here we will discuss some different
losses and their effect on controlling the focus of your networks.

4.5.1 L, loss

Setting the loss function to be the quadratic difference between input and output still is gen-
erally not the worst idea:
loss = mean (x — f(x)) (4.4)

(with the input = and the autoencoder f(z))

Not only is this easy to implement and fast to compute, but it also punishes bigger differences
more than multiple small differences (two acceptable reconstructions are preferred over one good
and one bad one), which we generally prefer over the alternative (see subsubsection 4.5.2), but
this also results in autoencoders that learns mean values: If you would need to choose either a
or —a, an Ly normalized network that does not know the right choice, will choose 0 all the time:
This is done since sometimes guessing the wrong result is punished more, than not choosing®®.
This results in the output of a Ly autoencoder usually having a lower width than its input (see
for example image 4.6. This is what we want to solve, by looking at different losses.

event number 0

0.002+ ‘
@ truth @
0.001{ @ prediction
0.000-
' —0.001 O.
 —VU. 7
o
@
—0.0021
O
-0.003{ o
O
—0.0041 ®
—0.025 —0.020 —0.015 —0.010 —0.005 0.000 0.005 0.010

eta

Figure 4.1: A L, reconstruction image, the reconstructed width is often lower than the input
width. Here you see this best in ¢

37The bigger each value, the bigger is its contribution to the loss.

38You might ask why this is a problem, since a network that does not know anything probably should not
choose one of the results, but there is a similar effect for non perfect guessing networks: Lets say the network
guesses rigth o times, then for a prediction of b < a, the loss is given by o - (a —b)> + (1 — a) - (a + b)*, which
is minimal for b=a- (2 - a —1).

4 A WORKING GRAPH AUTOENCODER Page 22

4.5.2 L, loss

Referenced in: [4.5.3]

The first other kind of loss you can look at, would be a L,, loss. For each 2 < n, this loss
still has the same problem of uncertain losses, but for smaller n it does not. L1 does not prefer
lower predictions®’, and a n lower than 1 would reverse the effect entirely*®. This works, as
those networks have a similar input width as output width, but this different loss has another
effect: Since now one big loss is as bad as two small ones, Networks, that remember some values
exactly, while guessing the remaining ones, are very common, as this is a much easier thing to
learn.

event number 16

0.2 @ ® truth
@ prediction
0.0 @

—0.24

phi

—0.44

—0.61

~0.81 @
-0.8 —-0.6 —-0.4 -0.2 0.0 0.2 0.4
eta

Figure 4.2: Reconstruction image for a model that only remembers 3 nodes perfectly trained
with an L loss

Since networks like for example in 4.2, are not just setting the remaining values to some
constant, but try to guess them right, we have the same situation as in the normal case: On
the known data, this guessing works, and on abnormal data this works less good. But not only
do less accurate guesses have way less decision power?!, this also ignores the remaining values
completely: Since copying is easily done even if the data is abnormal, there is no information
gained here. And even if it were, this difference would be tiny compared to the loss of the guessed
values, so the whole loss is dominated by only some inaccurate values, ignoring everything else.
This does not mean, that L,, losses are useless, since there are networks (like image 4.3) without
this problem, but retraining each network, until it does not do this, makes this loss much less
desirable

39The loss described above would now look like a-a+a- (1 —a)—b+b=a+b-(1 —2-) which is minimal
(for each 0.5 < « for b being as big as possible (this loss still assumes b < a), and anything guessing rigth less
than half of the time, would still result in the network learning not to guess, as we would want.

OWe tried n = 1/2, but this results in NANs (see appendix B.2.2), so we had to tweak y/|a — b| into
Vla —b] + 1 —1 since the NANs seem to be a result of the square root not being differentiable at 0.

“1You can model this, as a fixed distance between two gaussian peaks with variying width, a plot of the
relation between the width and the AUC is shown in 5.1.4.

4 A WORKING GRAPH AUTOENCODER Page 23

event number 0
—0.05 O truth @ o
—0.101 @® prediction

~0.15
= —0.20 ® O
<

—0.25]

p

—0.30

~0.35
®

~0.40 | | | | | | | O
-08 -0.7 -06 -05 -04 -03 -02 -01 00
eta

Figure 4.3: A L, reconstruction image, not working trivially, but also not working perfectly

4.5.3 Image like losses

Referenced in: [9.1] [A.5]

One thing to consider, is that image like networks usually do not have these problems. The
main difference in losses, is the fact, that image like networks do not compare all values to each
other. Instead the only compare one value, if the other values match. A pixel is restored with
zero loss, if its angles are nearly correct, and the momentum is correct. If the angles are a bit
too much off, the loss is derived by comparing the input to a zero, and the newly constructed
momentum to the zero of a pixel that was initially zero. This means, that each difference in
angles, is punished the same (if it is bigger than some constant), and the only way, for the
network to improve, is to guess those right. If we could implement this here, this would solve
the problem of guessing to low, at least in angles*?. To implement this, you can set the Ipy
reconstruction to zero, if the angles are more than a certain difference apart. This works fine,
but offers no control, is not easily differentiable, and for implementation purposes a symmetric
loss function would be nice. We choose the following extension

(1= f(d)) - c(x) + (Ip7 — Ipy) - f(d) (4.5)

where f(d) is some function of the angular difference, so for example a step function (f(d) = 1
for d < dy and f(d) = 0 else) and c(z) is some alternative loss, for example c(z) = |Ip} + IpY|.
This extension offers a lot more flexibility and is symmetric as long as ¢(x) is symmetric. From
our (limited) experimentation, choosing a continuous function f(d) seems to be a good idea.
f(d) = e~ with some O (a) = 1 works well. And even though this undermines the initial
point, choosing Ipr as alternative loss ¢(x) is not such a good idea either. The point here
is, that those networks heavily prefer angular information* so ideally you would choose some
alternative loss, that shifts the focus more on the transverse momentum. This is not so easy,
since simply choosing the difference between input and output [pr results in the network not
learning any angular information (since they now don’t have any effect), but you can set ¢(z)
to be a higher multiplicative of this difference. That being said, simply setting ¢(x) = 1 to be a

42The problem stays the same for Ipr, since guessing wrongly zero is punished way less, than guessing wrongly
a. So for the same setup as before, the new loss looks exactly the same as in the L, case a-(a —b)" + (1 — «) -
(a+0b)".

43This should be expected, since if Ipp is not correct, there is some loss, but if the angles are not correct, the
accuracy in Ipy simply does not matter.

4 A WORKING GRAPH AUTOENCODER Page 24

constant works best in practice and is what is used in the following. Another thing that is used
. . . —a-d . o .

there is a slightly different f(d) = k+ke+1 with a k& = 1/10. This is used here to balance the

network focus more onto Ipy**. This combination works quite well and can reach reconstruction

values with nearly exactly the same width for 4 particle networks

event number 16

0.4
© truth ®
0.21 @ prediction

0.0

—0.21 Q
—0.41 O

phi

—0.61

-0.81

—1.01 o)
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

eta

Figure 4.4: Reconstruction image of an image like loss working well

As you see in figure 4.4, this reconstruction matches the input quite well, and thus we will
be using image like losses often in the following.

4.6 Difficulties when evaluating a model

Referenced in: [5.2.1] [8.1]

Before we can look at the results of our network, we have to look at how to judge them,
as this is actually not completely trivial: We might be able to evaluate a binary classification
problem(see chapter 3.1), but evaluating a network basically means doing 2 things at the same
time: Creating an autoencoder and creating a classifier, so there might be situations in which
the autoencoder is good, but the classifier is bad and situations in which the classifier might
be good, but the autoencoder is basically useless.

4.6.1 AUC scores

If you want to evaluate a network, you might think that you can simply use the quality of the
classifier (the AUC Score, see chapter 3.1.2) since the classifier should work by the autoencoder
understanding the data, and thus should only be good if also the autoencoder is good. And in
most cases this works, there is a clear relation between the quality of the autoencoder and the
quality of the classifier (see chapter 6.1), but in general this is simply not true, as for example
chapter 5.2.1 shows. And even if your working in a region where this relation is true, Classifier
evaluation methods usually have a much higher uncertainity®® than other methods, which is
why in the regions in which there is a strong correlation, it was more useful to use the loss of

44This can be understood as follows: Introducing k is introducing a lower border for the effect the Ipr
comparison has on one particle: Even if the distance is hugh, k part of the loss of this particle is still given by
the momentum difference.

45Uncertainity in the sense that even a well trained network can change its AUC score by a couple of percent
after retraining, even if it has the same loss.

4 A WORKING GRAPH AUTOENCODER Page 25

the network to assert that the network improves, and to simply know that the AUC score will
correlate.

4.6.2 Losses

Using only the quality of the autoencoder and trying to optimize this would be conceptually
great, as you only need to use your anomalous data once?, but this again has problems:
Not only requires this still a strong relation between AUC and loss (That is here given even
less, consider the problem of finding the best compression size: The loss will usually?” fall
by increasing the compression size, but at some point, the autoencoder can just reconstruct
everything perfectly, and thus has no more classification potential), but the loss also relies
heavily on the definition of the network and the normalization of the input data (see chapter
3.2), which makes comparing different networks only possible, if you neither alter the loss nor
the normalization.

4.6.3 Images

This cross comparison problem can be easily solved by simply looking at the reconstruction
images instead of the losses*®. But while this is certainly very useful, as it also allows under-
standing more about your network(for example, there are networks, that simply ignore some
parameters, and thus have their whole loss in those parameters, this can be most easily seen
by looking at the images), this still relies on the relation between AUC and loss and more
importantly is less quantitative: Giving 2 images, finding out which autoencoder is better is
not always an easy task, especially since what differences you might see in those images do not
necessarily correspond to differences the network sees(see for this chapter 4.5). Most notably
in reconstruction images, you usually care more about angular differences, while sorting by the
transverse momentum introduces a slight preference for Ipr in Lo losses.

This you can solve, by also looking at the Ipy reproduction, but this demands weighting
importance between images, and thus does not make evaluating images any easier.

4.6.4 oneoff width

The final solution, and the solution that seems to be the best currently, is based on the things
introduced in chapter 7. Because of this, it will be explained in chapter 7.1. It works, by
defining the loss in a way, that does not change by changing the loss function or the initial
normalization. We do this by letting the network define its own observable, which we demand
to be constant over all background events. And by setting this constant to be 1, the variance of
this measurable is independent under changing the inputs. This still requires some correlation
between the variance of this variable and the AUC score, which we cannot assume in general,
but chapter E.4 at least suggests that this is common.

46Usual machine learning has a problem, in which your network can learn even data that it is not trained
on, simply by you comparing networks on it (this is why there is test data), the same can happen here, by you
often comparing qualities of your anomalous data and since finding new test data would require you to have
completely different anomalous systems, this can be difficult to do (even though we try this in chapter 8), which
is why choosing to ignore your anomalies in training would be great.

47 Always, except for noise and random change.

48The jet image showing input and output of the autoencoder, as explained in chapter 3.3.1.

4 A WORKING GRAPH AUTOENCODER Page 26

4.7 Evaluating the autoencoder
Referenced in: [8] [9]

4.7.1 4 nodes

For 4 nodes graphs, the number of connections for each node does not really seem to matter,
which is why we simply use a fully connected graph for those networks.

—— training
validation
(V)]
[7)]
e}
10—1_
PRGN Wy . .
0 100 200 300 400

epoch

Figure 4.5: Training history for a 4 node network

In image 4.5, the training curve converges nicely to one value, and you can notice one thing
here: the validation loss does not behave worse than the training loss. This is something that
you would usually expect, as it is a sign of overfitting, but is something that is very common for
the graph autoencoder in this thesis: It is basically impossible for those networks to overfit, in
fact we can reduce the number of training values drastically without letting the network overfit
(see appendix B.5).

event number 0

0.002+
@ truth @
0.001{ @ prediction
0.000
' —0.001 O.
 —VU. 7
o
O
—0.0021
[]
-0.003{ o
@)
—0.0041 P
—0.025 —0.020 —0.015 —0.010 —0.005 0.000 0.005 0.010

eta

Figure 4.6: Angular reconstruction images for a 4 node image.

4 A WORKING GRAPH AUTOENCODER Page 27

3.0 ® @ truth
@® prediction

2.51

2.0
g O

1.51

o

1.0

0.5 . L
' 1 2 3 4

particle

Figure 4.7: Momentum reconstruction images for a 4 node image.

The momentum reconstruction in images like 4.7 is nearly perfect and also the angular
reconstruction (see 4.6) show some resemblance between the input and the output. The only
problem is, that this network shown here seem to not care about ¢ as much as it does about
the other variables.

4.7.2 9 nodes

If we increase the size of the network to 9 particles, the training fails because of NANs (Not
A Number, numerical problems). In figure 4.8 this is shown as missing validation loss values.
The training stops, when the training loss is NAN, which is why this model does not train for
long.

5.91 —— training
validation
5.8
5.7
n D.61
— 5.51
5.4

5.3

5.2

epoch

Figure 4.8: Example training history for a 9 node network showing how NAN losses hurt the
training procedure

And since now this training effectively stops after only a few epochs, the loss is still really
big (over 5) reconstruction is also much worse (see images 4.9 and G.1 in the appendix)

4 A WORKING GRAPH AUTOENCODER Page 28

event number 0

0.03 © ® truth
@® prediction
0.021 -
0.01
< 0.00] ® e
R TR
-0.01{ © .‘
-0.021 .. P
-0.03 °
—0.06 -0.04 -0.02 0.00 0.02 0.04
eta

Figure 4.9: Angular reconstruction images for a 9 node image.

4.8 Evaluating the classifier

Referenced in: [4.4.1] [9]

4.8.1 4 nodes

As you see in image 4.10, these 4 particle networks already separate QCD from top jets quite
well, reaching an AUC score of over 0.81 in 4.11, which is quite good considering we only use
4 particles. By changing this networks parameters you can even reach AUC’s upwards of 0.85.

qcd jets

3501 B top jets

300
250+
#* 200
150
100
50

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
loss

Figure 4.10: Loss distribution of our 4 particle network

4 A WORKING GRAPH AUTOENCODER Page 29

3]
10 —— auc=0.8115
e —— random guessing
©
()
2 107
(%)
(]
o
()]
n
e
o 101_
o
()
>
£
100_
0.0 0.2 0.4 0.6 0.8 1.0
true positive rate
Figure 4.11: Roc curve for our 4 particle network
AUC
4-
=
o
)
5 3]
()
hd
|-
@)
£
@ 21
O
=
|-
(O
o
1
flag phi eta Ipt
Feature

Figure 4.12: AUC feature map for 4 nodes.

Figure 5.6 shows, that this good AUC score is mostly a product of the angular parts of the
loss function, as only using them reaches already an AUC value of 0.78
4.8.2 9 nodes

Since the 9 node network does not work well as an autoencoder, we don’t expect it to work
well as a classifier.

4 A WORKING GRAPH AUTOENCODER Page 30

qcd jets
500+ I top jets

400

300

200

100

20 30 40
loss

Figure 4.13: Loss distribution for the 9 particle network

3 |
10 —— auc=0.7244
—— random guessing

102 i

101 j

inverse false positive rate

100_

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure 4.14: Roc curve for our 9 particle network

In figures 4.13 and 4.14 you get a worse AUC score of a bit over 0.72. This is still an accept-
able classification, while the reconstruction is terrible. This inconsistency will be addressed in
the next chapter 5.1 and solved in chapter 7.4.2.

4 A WORKING GRAPH AUTOENCODER Page 31

AUC

=
o
> 7
O
© 6] =
3
55
£
o 4] —
3 =
£ 3
(©

1-

flég phi eta I|5t
Feature

Figure 4.15: Auc feature map for 9 nodes

Also for the 9 node network, figure 4.15 shows that the most important features are the
angles, they alone would reach an AUC of 0.63 here.

5 APPARENT QUESTIONS Page 32

5 Apparent questions

Referenced in: [1] [7.2] [8.3] [C.2.2] [C.4.3] [D.1] [D.5.1] [F.3.3]

Given the results of the classifier introduced in the last chapter, there are two problems
that limit the usefulness of these autoencoder. This chapter tries to understand them further,
so that chapters 6 and 7 can solve them.

5.1 Scaling the network size

Referenced in: [4.8.2] [D.5.1]

The number of particles used in chapter 4 is quite low. Since we only use at most 9 particles,
we usually ignore most of the jet. And when you also consider, that the 9 particle networks are
generally worse than the 4 node ones in every way, this becomes a problem. Just not the way
you might think right now.

5.1.1 Problems in scaling

A graph update layer scales theoretically like (nodes - params)® (see chapter 7.4.2) with the
number of particles nodes and the number of parameters params. This means, that by increas-
ing the number of nodes by a factor 2, we increase the time requirements per layer by a factor®®
4. Additionally, to this, you require more graph update layers for more compression steps, and
so scaling becomes time-consuming. But this is not the real problem, as 30 nodes would work
fine, and waiting 20 times longer than for a 9 node layer is acceptable. The real problem is the
number of failing layers: the more layers you use, and the more nodes you have in them, the
more probable a loss that is NAN seems to become, which would mean we need to retrain the
network or accept a nonoptimal loss. Combine this with each NAN debugging step now taking
days instead of minutes, and scaling is no longer easy. (You could say, that these NANs are
actually a problem of the data®®, since we are able to scale upwards of 50 nodes on easier data,
see appendix F.1).

This does not mean that scaling on jets is impossible, but just that scaling did not seem like
the best use of our time. Consider, that we actually can easily scale up the number of nodes,
when we are able to give up something for it. In the following section we see 2 possibilities:

5.1.2 Scaling through batches

Referenced in: [5.1.4]

Since we apparently can train 4 node networks quite well, instead of training one network
with n nodes, we can train n/4 networks with 4 nodes each (sorted by their transverse mo-
mentum) and just add their losses together. The price we pay here, is that particles that are
too different in their momentum cannot interact at all. This means that we will probably get
way less information from the relation of the particles. Also we use a 12 loss here for numerical
reasons. This is shown in figure 5.1.

49Since in each layer there are either twice as many nodes or twice as many parameters.
0In the sense, that there are some events with diverging gradients.

5 APPARENT QUESTIONS Page 33

Maximum auc value 0.8837 at gs=8

0.881

AUC Score
© © ©
[00] (00} 00]
N H [0)}
°

o
o)
o

0.78- o ° °
10 20 30 40 50 60
gs (Number of particles used)

Figure 5.1: AUC score scaling through multiple batches of 4 nodes each

There you see that the AUC falls at some point by adding more batches. This means, that
by adding information, we loose classification power, which is just strange.

5.1.3 Scaling through dense networks

Now this might be simply a feature of our batch approach. You do not only lose any interaction
between certain parts of your jets, but also later batches are more and more arbitrary and thus
less useful for classification. To show that this is not the central problem, here we simply solve
our time dependency and our NAN problems, by using dense autoencoder instead of graph ones

(see figure 5.2).

Maximum auc value 0.8663 at gs=6

.

o o o
(o) I N o o]
[]
o
[]
®

AUC Score
®

o
8]

101
gs (Number of particles used)

Figure 5.2: Scaling autoencoder, by using dense networks instead of of graph ones

Again, you see, that the AUC falls at some point and more information does not mean
better classification. Also this relation is much less clear, but this migth just be a consequence
of us having less expirience training dense autoencoder.

5 APPARENT QUESTIONS Page 34

5.1.4 C addition

Referenced in: [3.3.2] [4.5.3] [5.1.5] [5.2.1] [9] [D.5.1] [E.3] [E.4.1] [E.6]

To understand why more information can lead to worse classifiers, consider that all of our
approaches have in common, that they weight every particle in the same way, which is, as we
will show in this chapter, not a very good idea.

Instinctively you can understand this as follows: Particles with lower pr, are more random,
but more random parts have a higher loss in the autoencoder, and thus matter more in the
classifier. This is sligthly different in image like networks. Since the loss here is the transverse
momentum itself, parts of the network with higher randomness automatically have lower weight
in the loss function, since their momentum is also smaller. This is another reason, why we tried
to make our loss more image like in chapter 4.5.

Mathematically you can model this by considering features of the following kind: Given
two gaussian distributions like in figure 5.3, with variable overlapping, the gaussian peaks can
describe background and signal respectively. The quality of the described feature can be seen
as the inverse of the overlapping fraction. This is basically what an AUC score calculates®, and
so we can optimize the combination of two features by combining two different double gaussian
peaks in a way that minimizes their overlapping fraction.

B background
[signal

600+

500+

400

300+

200+

100

feature

Figure 5.3: An example of how we model AUC as a function of the overlapp of two gaussian
peaks

To do this, first notice, that the quality of one of those double peaks is translation invariant,
as well as scale invariant®®. This means, we can set two values to be fixed: We choose here the
mean values of those peaks to be g = 0 and p; = 1 and for simplicity we also set the width of
both peaks to be the same(cy = 7).

Now we want to add two double peaks with some constant relative factor®*:

f:C-f1+f0 (51)

51The AUC score is a monotonously falling function of the overlapping fraction.

52To be more precise, invariant under any monotonous transformation f(z).

53This assumption does really effect the final result, but simplifies the calculation. You get the exact result,
when you set the new sigma to the quadratic sum of the original widths: 02 = o + o3.

54You might ask if this is the most generall approach of combining two features, and in general it is not, but
the invariance of those features under fairly general transformation make most other combinations useless, and
something like a factor that depends on the current position would break our assumption of gaussian peaks,
and thus complicate the calculation for a probably quite low difference.

5 APPARENT QUESTIONS Page 35

The result is again a double gaussian peak feature, and thus we can evaluate it’s quality
by the same measure: The new means are given by puog = 0 and g1 = ¢ + 1, while the new
width are given by 0% = ¢ - 05 + o7. To be able to compare the overlapping fraction, we use
scale invariance to assert p; = 1, and thus the width, can be minimized to find the optimal
combination of two features. This width is given by:

203+ 0% (5.2)
c+1
which has the same minima as (with ¢ = 05/01)
2
. 1
% (5.3)
(c+1)
and which is minimal at]

So as expected, the bigger the width of one feature is (the more random it is), the less it
should contribute. Note that this exact relation is only true, when the mean of the signal is
constantly 1, and that if it is not true, one has to add another factor p;/us to the relation.

0.96

—— initial AUCs
0.94/ —— combined AUC

0.92;

0.82:
0
C

Figure 5.4: AUC as function of ¢ for two random gaussian double peaks that alone would reach
AUCSs represented by the horizontal lines

To test this relation, consider figure 5.4. It shows that there is an optimal ¢ value, at which
you can combine two features as good as possible. Also as long as you are close to this optimal
value, the resulting quality is still better than either single classifier. This is no longer the case
when you go too far away from the optimum. Then adding more information can actually hurt
the original quality. This might explain our problem of more information resulting in less good
classification. To test this on jets, we use the batchlike autoencoder from chapter 5.1.2. Instead
of simply adding these batches together, we use the derived formula for adding distributions
(This is actually done in an unsupervised way. The problem here would normally be the mean
values of the signal distribution, but we can approximate them, as well as the width of the

5 APPARENT QUESTIONS Page 36

distributions by the network loss, and thus multiply each feature by the inverse of the third

power of this 1055(10;53)55) This can improve our batch approach by about 1%.

0.8961
0.8941
2 0.892;
0.8901

0.888

200 225 250 275 3.00 325 350 3.75 4.00
loss power

Figure 5.5: AUC score as a function of the loss power (-3) for parts of a QCD jet, using 5 4
node networks combined in a way defined by the loss power

You might see some sligth deviations from the expected result in figure 5.5, but generally us-
ing the derived formula, a power of 3 seems to result in a good AUC value, proving our method.
If you assume that the difference is not just statistical, the difference might be explained by
carefully considering our quite extensive assumptions. We do this in appendix E.6.

5.1.5 Scaling through losses

Referenced in: [7.4.2]

Using only a few particles, ¢ addition does not seem to be such a problem, but this does
not help the training of bigger networks.

One way to achieve this, would be to redefine the loss function. You could do this in such a
way, that the loss of any particle gets multiplied by the factors used in the split networks. The
problem here is that this changes the focus of the autoencoder quite drastically: Since then it
can make more errors in the later particles, it will do so, making the later particles less useful
for classification. And also making the first particles more useless, since the focus is now lying
on them, making their reconstruction better, up to a point at which their reconstruction is too
good to find any meaningful difference between background and signal. Another idea might be
to just apply this loss weighing in the evaluation phase, and not in training. This definitely
helps, but in our tries does not seem to be enough, since the same effect as before works now in
the opposite way: Particles with lower p; have a higher inaccuracy, that translates to a higher
loss for them, and the autoencoder focussing more on them, making the lower particles and the
higher particles less useful. So it seems that this is an optimization problem: There still seems
to be an optimal loss weighing that gives optimal contribution to each part, but finding this
combination is not trivial. We tried multiple functions including a loss that weights using the
index of the particle or a loss that is weighted directly by the transverse momentum, but we

To be more precise, its square root (since the loss is quadrated): this works, since the 12 loss of the one sided
training is the variance of the first peak, and by noticing that both widths are not to differently in practice, and
that the higher the loss is, the second peak seems to move away too. We test this assumption more in appendix
EA4.

5 APPARENT QUESTIONS Page 37

have not found anything that generally works, and weighted networks always seem to result in
worse looking reconstruction.

You could even argue, that finding a good weighting is not actually worth it, since you need
to look at a lot of networks and compare their classification score. And by doing this a lot, this
means that the anomalies you use loose generality, and you find a network that is only able
to find this special kind of anomaly: The information in your anomaly dataset leaks into your
model setup, and more training results in less general models. That does not mean that a good
scaled network is impossible, the ideas from chapters 5.1.4,4.5 or 7, might be a good approach,
but this is not an easy task, even though chapter 7.4.2 solves the numerical problems.

5.2 Simplicity and invertibility

5.2.1 Simplicity
Referenced in: [4.6.4] [5.2.2] [6.1.2] [6.2.3] [7.1.1] [8.1] [9] [9.1]

One thing you can do, by comparing values directly, is to look only at parts of the loss.
This allows you to define qualities for each part of the input space. As a reminder of chapter

3.3.2, we show them here as AUC maps: each AUC value is one colored box, which is deeply
blue for an AUC of 1, completely red for an AUC of 0 and white for an AUC of 1/2.

AUC
1.0
4
= 0.8
o
)
© 3 | - 0.6
Q
-
| -
(@)
u
L 0.4
L 21 -
S .
=
| -
& 02
1 -
0.0

flég phi eta Ibt
Feature

Figure 5.6: AUC map for a simple network

As you see in figure 5.6, the classification quality is mostly set in the angular part. This is
fairly common, as there are networks, in which the nonangular parts are partially red.

On the other hand, if you look at the loss distribution in figure 5.7, the angles are the
variables known the least.

5 APPARENT QUESTIONS Page 38

100_

10—1_

relative average Error

flag deta dphi Ipt
Feature

meaﬂ(lﬂhf(ff)l))

Figure 5.7: Average relative error by feature (= .= Tzl)
This is a bit strange: The thing the network seems to not care about, is the thing that the
classifier considers most useful.
We understand this as follows: If you look at the 2d histogram of the angular distribution,
there is a clear difference between top and QCD events.

08 qcd top
0.4 10°
2o N
1071
—0.41
-0.8 : - - : : : 1072
-0.8 -04 0.0 0.4 0.8 -0.8 -0.4 0.0 0.4 0.8

eta eta

Figure 5.8: 2d histogram of angles comparing QCD vs top, here for example for the particle
with the fourth highest transverse momentum

You can see in figure 5.8, the width of top jets is much higher than the width of QCD jets,
so by comparing both angles to zero, the top jets statistically have a higher loss than the QCD
jets, and this can be used to differentiate between them easily. This is used especcially since
our neuronal networks tend to reproduce mean values. So how useful is this difference, and
how much better does the network do than this relatively trivial separator? First, a model that
only uses its angles to classify jets, works very similar to a model that also adds the loss in Ipr
(and flag), so we can assume that this is truly just a problem of angles: Now given a model
that just outputs 0 for the angles and only considers the angles in the loss, you scale it like in
figure 5.9.

5 APPARENT QUESTIONS Page 39

Maximum auc value 0.8965 at gs=6

0.901 Soce
[} []
0.88 e,
[}
0.86 %
S ‘
A ® ®
5 0.841 o
[]
<
0.82 %% M
...
%
0.801 'o.
()
L)
0 10 20 30 40 50 60

gs (Number of particles used)

Figure 5.9: Trivial width comparing angular scaling. Here we do not split each network in
batches of 4 anymore, but simply calculate the AUC for each number of nodes up to 60.

As you see, for a low number of particles, this works fairly well. But at some point, more
information does not mean better classification, and the quality drops. But this is a problem
we already know about (see chapter 5.1.4) and can simply solve through ¢ addition. So when
you add each particle together weighted accordingly to their loss (its angular difference to 0),
you gain a better scaling behavior (compare figures 5.10 and 5.9).

Maximum auc value 0.9153 at gs=44

0.911 M.
()
® (]

0.90; o °
v 0-891 g °
o | o
20.88 °
S 0.87-
<
0.86 ®
0851 o
0.841

0 10 20 30 40 50 60
gs (Number of particles used)
Figure 5.10: Trivial width comparing angular scaling with ¢ addition. The reason for the falloff

at the end might be the different shape in later indices of missing particles or the assumptions
tested in appendix E.4

This better classifier reaches an AUC of over 0.9155, which is comparable to the best anomaly
detection networks, for example QCDorWhat[24] reaches 0.93 but on slightly different data,
while the work of Thorben Finke[20] reached 0.908 on the same data. You could ask youself
what the value of those complicated models is, if they only improve the AUC by at most single
percentage differences.

5 APPARENT QUESTIONS Page 40

More importantly you also cannot assume that new physics has the same angular distribu-
tion difference, as QCD compared to top, making this alternative model useless in the task of
finding new physics®®,so the question of interest is just: do complicated models contain some-
thing more than this trivial difference? And unfortunately this is very hard to test. C addition
allows you to estimate the effect any small additional AUC would have, and an uncorrelated
AUC of about 0.6, optimally combined would only improve an AUC score of 0.9 to 0.904, while
0.7 would improve it up to 0.917. So both improvements would probably be nearly immeasur-
able. This means that there might be some hidden effect in a model, that allows them to find
new physics®”. What we can say, is that the networks we looked at so far, probably don‘t do
anything more than looking at angular information®® and thus their fairly good AUC score is
just a consequence of our trivial difference, and thus most likely completely useless for finding
new physics.

What we want to do in the following is to force our network to learn something nontrivial,
and thus actually to create a correlation between how the network works on top jet anomalies
and how it would behave on new physics.

Probably the most important result of this trivial model, is the effect it has on how to
evaluate a model. We already talked about why just choosing a model that has a good AUC is
a bad idea in chapter 4.6, but here this could probably not be clearer: Since we tried to train
a model to be a great classifier, when we changed the initial normalization, we choose those,
that makes the network ignore angles and focus on Ipy. This seamed useful, since this makes
the model more like the trivial one and thus get a good AUC. But this also means, that we
don’t have a good autoencoder anymore, since a worse reconstruction can actually improve the
quality of the network. You can also see this in the number of nodes we use: 4 node networks
seamed to result in good classifiers, which matches the pattern in the first 4 nodes, which you
can see in figures 5.10 and 5.9.

56Qr at least useless unless you search for one specific kind of abnormal data, there are some examples showing
other kinds of abnormal data behaving completely differently in 8.

5TWe assume here a lot: first, that in Ipy there is potential to differentiate all kinds of new physics, that this
potential is used perfectly by an algorithm that did not do this for angles, and also, maybe most improbable,
that the loss is combined perfectly, and there is no confusion from the angular part at all.

58Gince the classifier is dominated by the angular part, and it does not detoriate when you remove momenta,
and the resulting classifier again improves when you replace the returned angles by zero.

5 APPARENT QUESTIONS Page 41

5.2.2 Invertibility

Referenced in: [8.1]

Given a classifier that if trained on QCD, finds top jets anomalies, you should always ask
youself, if this is just a feature of your data, as shown in chapter 5.2.1 or if this is something
more general. One easy way to test this, is just to switch the meaning of signal and background:
Can an autoencoder trained on top jets classify QCD jets as anomalies. (To keep the usual
plots being easily readable, we keep QCD as background, which results in an AUC score of 0
being optimal for those switched networks). This does not yield the desired results at all. You
see in figure 5.11 that a model trained on top jets, is still a valid classifier for QCD jets.

102
—— random guess
—— on qcd: AUC=0.8115
2 —— on top: AUC=0.6047
©
()
=
=
g 10%;
o
[}
2]
e
—
109~ : ; . :
0.0 0.2 0.4 0.6 0.8 1.0

true positive rate

Figure 5.11: Roc curves for the invertibility of a 4 node model

This could actually been expected: As shown in the last chapter 5.2.1, our networks that
have a good AUC score, focus mostly on the difference between the angles and 0, and since this
model does not depend on the attributes of the training data, changing the training data does
not alter them, and so it does not affect their classification. In fact, by choosing a model that
focuses even more on the angular size, you can create models that are completely independent
of the training data.

All of this is obviously quite problematic, which is why the next two chapters (6 and 7)
suggest solutions, and after doing so, chapter 8 focusses entirely on other datasets and their
invertibility to make sure that our solution works in general.

6 NORMALIZATION Page 42

6 Normalization

Referenced in: [1] [5] [5.2.2] [9] [D.1]

6.1 Introudicing normalization for autoencoder

Referenced in: [4.6.4] [6.2.3] [7.4.2] [8.3] [D.5.1]
When we remove trivial features from our data, we can prevent our networks from only
learning those. This is what we try in this chapter.

6.1.1 The meaning of complexity

Since models seem to be not invertible since they contain a good trivial model (see chapter
5.2.1), it stands to reason that we might get an invertible model by removing this trivial
model from it. This would make these models more general, since they cannot rely on trivial
information to perform well. We can remove the kind of feature, that seems to allow for this
trivial comparison, by normating our input, since chapter 5.2.1 shows, that the width of the
angular input distribution is the trivial feature®®. This method has one obvious drawback: Not
only do we actively remove information, which might hurt the performance, but we remove
the information, that is most useful for the classification. This means, even if the resulting
classifier is invertible, it will look way worse than the trivial one before. This does not mean
that these networks are less useful, as we trade quality on the task of QCD v top jets against
the generality that is desperately needed in the networks of chapter 4, but an approach not
loosing quality would clearly be better (see out second solution in chapter 7).

6.1.2 How to normalise an autoencoder

One thing, we did not realize before trying to normalize the input data points, is that simply
demanding that the mean is zero and the standard deviation is one, just does not work. This
might be an effect that is most important when we talk about small networks®, but is still
somewhat of an effect in every network, and becomes especcially important in chapters 7.1
and 7. The problem is, that by demanding a value to be fixed, we remove the features from
the input space, and by having an autoencoder that only reduces 12+flag information onto 9
values, this means, we allow the network to trivially learn 3 informations per set feature®!, and
so by setting the standart deviation and mean to be fixed, the autoencoder can trivially learn
to compress 12+flag onto 6 values®, which is below the size of compression space. In practice
this is not so easy as there is no guarantee that these minima is found, as the graph structure
does not necessarily help this kind of transformation(see appendix D.2), but training this kind
of network definitely does not result in the model gaining any classification power. This can be
seen in the corresponding feature map (figure 6.1)

Tt would be enough to normate angular values, but to gain generality, we also normate the momentum
information.

60Networks with a low amount of input particles.

613, since there are 3 variables which mean and or standart deviation we fix, normalizing flag does not seem
to be a good idea.

62Tgnoring flag for now, the remaining three values are always enough to encode 4 flag values, since the first
flag values are neirly always one (the jet with the lowest number of particles has 3 particles in our trainingsset).

6 NORMALIZATION Page 43

AUC

1.0
4-
= 0.8
o
) B
© 3 | - 0.6
Q
)
| -
(@)
u
- 0.4
2
(O] =
] =
- =
& 02
1
0.0

flég phi eta Ibt
Feature

Figure 6.1: Aucmap for normally normalized networks, showing not much useful being learned.
We train here on top jets to test the invertibility

This seems as if there is a trivial solution: just reduce the compression size accordingly, but
this has three problems

e First, it is not completely trivial to misuse the normalization (Think of the standard
deviation, there is a formula giving you information about the 4th value, given the first
three. But even if we ignore the mean as being 0, this formula still involves squares and
roots, which the network has to learn, and even then, there are always two possibilities
for the resulting value.). So assuming that this is trivial, and that the network will always
learn it guaranteed, would be wrong.

e Even if this is learned, this would not be enough: the network still has to compress this
information further and this can lead to situations in which the network has to decide
between learning the easy compression and the learning the interesting compression. In
these situations it will probably always learn the trivial one.

e Trying to compress data with removed information further is not as easy as compressing
non-removed information. Think of two values distributed between 0 and 10 For example
4 and 6, or, after setting the mean to be 0: —1 and 1. In 4 and 6 the network can still
decide to just average both values and get a mediocre prediction of 5, which still describes
these values in a way. But if after removing the mean, the network still averages both
values, the predicted 0 is fairly unproductive®®. We conclude, that simply subtracting

63Note, that the difference between a good normalization and a bad one is just physical intuition. For example,
we still set the mean of the jet angles to be zero, just because the direction relative to the measurement should
be unimportant.

6 NORMALIZATION Page 44

each fixed value from the compression size does not work, as we would expect a less good
classifier.

So what we need, is a better way of normalizing the input data. From our thoughts above,
we suggest that this new method should satisfy these three conditions:

e Translation invariance: n(z) = n(a + z).
e Scale invariance:n(z) = n(a - x).
e No fixed features: you can not write any f(z) so that f(n(z)) = 0 for every x is given.

The first two rules are obvious, since we want to use this, to remove any size information, and
the third rule would solve the problem of an autoencoder focussing on normalization artefacts®.

All three rules® are solved by the following 3 normalization steps (x is the input, n the
output of the normalization method)

y = = — mean (x) (6.1)
» =y — mean (jy)) (62)
n= - (6.3)

max (|y|) + 0.001

Here the definitions of y and n assert translation and scale invariance respectively, while
n and z remove any kind of artifacts. Why they do this can be easily understood for n, by
diving through the maximum value instead of the standard deviation: The only relation given
is, that if none of the first three values is either 1 or —1, the last value is either 1 or —1. And
even if we ignore that misusing this relation would be quite complicated to implement for a
neural network % there is no way to differentiate between 1 and —1 in general®”. Also dividing
through the maximum value is generally a good idea compared to dividing through the standart
deviation, since it only divides by zero when every value is zero, and not when every value is the
same, which is more probable®®. Also dividing by the maximum is generally a bit faster, while
resulting in fewer NANs (appendix B.2.2). The other definition is less easily understandable:
First note, that it does not violate the first two rules, since y is already translation invariant,
2 is too, and since every z(y) is scale invariant, Scale invariance is also given®. Now consider
only the definition of z and two different vectors y given by [00] and [1 -1]. Both result in the
same first component, but different second components, so there is no clear function giving the
second value as a function of the first one, and thus rule 3 is satisfied.

64This last rule would actually already be solved by demanding the standart deviation to be constant.

65Except for scale invariance with a < 0.

66Neuronal network work with uncertainities: if you have a value of 0.997, is there still a 1 remaining?

57You could say, that this normalization uses the problem of mean reproducing networks (appendix B.6) to
its benefit, by making the errors of a 1 or —1 guessing network bigger than every other possible distance. But
this is a bit more complicated through the definition of z, since this kind of outputs have a clearly negative bias.

68There is a small constant in our definition to remove this divergences, but this still removes some big
gradients.

69You might notice, that this is only the case for positive multiplicators. You could also argue, that we only
want to remove nonphysical information, and since for Ipy this is not a problem (since Ipr is positive and it
has a peculiar shape), this is only interresting for angular information, and parity is broken.

6 NORMALIZATION

Page 45

6.2 Using this normalization

Using this kind of normalization, 4 node networks are invertible. And not only this, but also

most features are invertible (compare the feature maps in figures 6.2 and 6.3).

e

Particle (sorted by Ipt)

=

AUC

w

N

flag

phi eta
Feature

Ipt

1.0

0.0

Figure 6.2: Invertible 4node network auc maps achieved by a normalization. Here trained on

top jets

e

Particle (sorted by Ipt)

=

AUC

w

N

flag

phi eta
Feature

Ipt

0.0

Figure 6.3: Invertible 4node network auc maps achieved by a normalization. Here trained on

qcd jets

But figure 6.4 shows that the quality suffers (and that both networks only differ for true

positive rates above 0.2).

6 NORMALIZATION Page 46

3]

10 —— gcd:0.5113
9 —— top:0.4396
S —— random guess
g 102_

.4§

o

[}

[2]

RE

o 101_

&

(O]

>

£
100_

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure 6.4: Double roc curve for the invertibility of a normalized networks

and there are other consequences of the fact that this network actually has to learn some-
thing nontrivial: First, we were forced to increase the size of the compressed feature space from
5 to 9. This makes sense, as a network that compares angles to zero, has to just reconstruct
zeros in each angle, and thus only has to save Ip;™, needing only a smaller latent space. Also
networks, that before were very reproducable in their training” are now less stable, and often
vary their loss over about one order of magnitude. Interestingly, this variation shows a clear
relation between the loss, and the classification quality. Figure 6.5 shows that this relation even
extends to different training setups.

0.701
0.651
0.60
0.551

>

© 0.50
0.45+
0.40

0.351

102 10!
loss

Figure 6.5: More than 1500 Models, showing a clear relation between the network loss and the
AUC score, each color represents sligthly different training setups. It would be linear if the
x-axis would be linear

This relation is very useful, since it means, that finding a better autoencoder, automatically

70 And maybe flag, but as seen later in this chapter and more in chapter 7.1, this is actually usually not the
case.
""'Which makes sense, as they always just needed to learn to ignored the angles.

6 NORMALIZATION Page 47

results in a better classifier, and we thus can focus completely on improving the autoencoder.
Also by looking at this relation, we are able to justify the new compression size in figure 6.6,
since this is the first compression size, at which the network becomes invertible.

070 [top
cd ¢
0.651 g | ©C o™ o
o [
0.601 e o °
S 0.551
<C
0.501
P [J
0.451 e .::
[] ..
0.40- 0*
[}
0.02 0.04 0.06 0.08 0.10

loss

Figure 6.6: Invertibility for compressing 4 node networks into a 9 dimensional latent space.
Notice the jump of the top AUC from above 0.5 to below 0.5 for lower losses. It means
that when can use our loss to see if a trained network generates an invertible classifier. For
compression sizes lower than 9 this jump does not appear

This variation of the networks is the reason we started training as long as described in
chapter 4.4, as training for longer is required to get reproducibel networks:

05| © length 100 ¢ ¢
' length 500 - ow
0.601 length 1k ‘” o ®
0.551
%) ©
% 0.50
0.45+ @ &fci
o® L
040 . 926
0.35{ ¢
0.00 0.02 0.04 0.06 0.08 0.10

loss

Figure 6.7: Reproducability comparison of for different training lengths

As you see in figure 6.7, training for more epochs makes the network more predictable. The
most predictable results we get by not only training for at least 1000 epochs, but afterwards
also until the loss does not increase for 5000 epochs. This takes a bit too much time, so in
the following we use 500 epochs and we wait until 100 further epochs don’t improve the loss
anymore.

6 NORMALIZATION Page 48

6.2.1 Improving the AUC scores for normalized networks

Referenced in: [7.4.2] [D.5.1]

These initial normalized networks are not very good. This might be what we expected,
since we remove trivial information, but we still are able to improve on them quite a bit.
Namely by using the exact model setups and training parameters from 4.4 with one additional
normalization layer before the first comparison value™. Using this we are able to improve the
network trained on top up to 0.377.

6.2.2 Scaling in normalized networks

Sadly this normalization does not change scaling problems too much. Bigger networks still
contain more trivial information, as the number of parameters fixed is constant (see figure
7.4.2). And even when using batches to scale, the invertibility is just a feature of the first
batch, as figure 6.8 suggests.

0.60{)
o 0.55+ .
O 0.50 o °
=) H
<
0.45+
e AUC for gcd jets
0.401 AUC for top jets

1 2 3 4 5 6 7 8
Batch number

Figure 6.8: AUC values for higher normalized batches by their training data

6.2.3 Improving the normalization even further

After seeing what an effect some kind of normalization can have, we are not completely satisfied
anymore with the normalized feature maps like in figure 6.9.

"2You might be quite a bit confused, why we chose other models but those that work well for unnormalized
networks to test our normalization, but this is just a problem of way to many just sligthly varying network
setups: We used more quite different unnormalized networks, but since learning zeros does not depend to much
on network parameters, we simply use the new normalized network setups for both networks, to not need to
explain both.

6 NORMALIZATION Page 49

AUC
1.0
4 -
= 0.8
o
2
© 23- 0.6
£
(@)
)
2 2 i 0.4
L
& 02
1 i
T — T T 0.0
flag phi eta Ipt
Feature

Figure 6.9: AUC feature map for normalized top trained networks

consider the highest pr Value (the lower right corner). While being the generally most
interesting particle, there is no classification power in it at all, and by looking at its distribution
(figure 6.10) it becomes clear why

[predicted
truth
103 E
102;
101 E
10°;
-0.2 0.0

Figure 6.10: Distribution of the transverse momentum of the first particle

Its values are basically constant, so its input is the same as the flag values (first collumn),

6 NORMALIZATION Page 50

from which we don’t expect any physically useful information.

To solve this, consider the following: Since Ipr mostly has the same structure™, most jets
transverse momentum get divided by the first one, resulting in it always having the same value.
We can fix this by replacing the definition of n in chapter 6.1 to be:

2.z

"= max (|z]) + mean (|z|) (6.4)

removing the need to set one value to either positive or negative one, and thus making the
highest value in Ipr actually useful, and as you see in figure 6.11, this removes the difference
in the Ipy AUC scores.

AUC
1.0
4_
= 0.8
o
2
© 3- - 0.6
g
S
(V)]
E 7. L 0.4
L
s
Dr? 0.2
1 i
T —, T T 0.0
flag phi eta Ipt
Feature

Figure 6.11: AUC feature map for a well normated network

But, as you also see, now most of the classification power lies now in flag, which is quite
confusing: Something having no physical meaning being more useful than everything else.(Not
to different compared to chapter 5.2.1). This we will explain in chapter 7.1.

To be more precise, the difference between the first and the second particle is higher than the difference
between the last two ones.

7 MIXED NETWORKS Page 51

7 Mixed networks

Referenced in: [1] [4.4.1] [4.6.4] [5] [5.1.5] [5.2.2] [6.1.2] [9] [C.4.3] [D.1] [D.5.1] [E.3]

7.1 Oneoff networks

Referenced in: [3.3.2] [4.6.4] [6.1.2] [6.2.3] [7.2] [9] [C.3.2] [D.5.1]
Consider the following feature map of a well normalized network in figure 7.1.

AUC
1.0
4
= 038
L
2
© 3 0.6
ot
_
o
2]
E > 0.4
O
£
é-U 0.2
1
N 0.0
flag phi eta Ipt
Feature

Figure 7.1: AUC Feature map for an on top trained autoencoder, using a good normalization

You see, that most of the decision power is in the first feature, but the first feature, flag is
basically just one™. This might seem a bit counterintuitive or unphysical at first, how can a
variable without any physical meaning be a better separator than those variables with physical
meaning: To explain this, we need to take a bit more close look at what the network is doing:
First, just because the output is has no physical meaning, this does not mean, that no physical
variables are used in its calculation. In fact, before this we always just assumed that there
is one parameter in the latent space, that is learned to be just a one from the input space™,
but this distribution of decision power implies that this is not the case: If there would be
a constant feature in the compression space, the constant output would be a trivial copy of
this constant and thus have no physical meaning. More likely is the following: The network
is able to reconstruct an 1 from all the other parameters. This makes sense, as we got this
AUC distribution by changing the normalization in a way that made trivial ones in the input
space much less likely™®, and it also explains how an unphysical output can be physically useful:
Since they are utilizing physical inputs, the resulting constant has to be a function of the inputs.
And when you change the inputs, the constant is also changed and this change we can use to
differentiate signal and background events. And since this quality is better than every other
autoencoder decision quality (0.3 here, or 0.25 using only flag), it might be useful to use this
further: If apparently nonphysical outputs can be at least as good as physical outputs, why
not just use outputs that are nonphysical (Outputs that are one). This is what we call oneoff

"Flag is 1 as long as the current event does not contain fewer particles than the network demands, and since
this is a network with only 4 nodes, and there are very few jets with only 3 particles or even less, saying flag is
a constant (flag = 1) is a quite good approximation.

"This is a bit of a simplification, most importantly it would be untestable, since instead of learning a
constant, the network could learn a constant as a function of multiple parameters (for a simple example consider
To = x1 + 1, both variables are not constant, making it harder to find this, but still x5 has no additional
information with respect to 1, and there is a one learned as —x1 + x2).

"6Since we stopped dividing by max (|z|) and started dividing by (max (|z|) + mean (|x])) /2, it is no longer
the case that there is either a —1 or a 1 in each feature.

7 MIXED NETWORKS Page 52

networks”” As shown before (see chapter 5.2.1), complexity is to a big part just width. You may
be able to solve this by normalization, but this removes information, and oneoff networks would
not require this™ ™. Also there might be a certain kind of complexity benefit, since the whole
network is made to just minimize one distance®® that is always the same, instead of optimizing
some feature that might be useful for some events, but useless while considering other events,
in which this feature plays a less important role. This should result in the network being able
to learn more complicated functions.
We justify this idea mathematically in appendices E.3 and E.4

7.1.1 Oneoff quality

A simple dense network with just an output that should be one, sadly does not work well in
jets. First: the loss can go to basically zero(1/1000000000000), which is a bit unphysical, since
the loss as a distance to one, is basically the variance of the used feature, and you would not
expect there to be any physically significant feature of this accuracy in 4 particles®!. So there
are features that are more trivial to learn, and make any decision process meaningless. And it is
not necessarily trivial to find those, there might be those features that are just input variables
with value 1 (for example an input that would be set to flag), but not all of them are that easy
to find. ®2. This makes training an oneoff network is a bit like outsmarting your algorithm.
One thing that we found quite useful for this, is letting the network not only learn an 1 on the
data that you are interested in, but also a 0 on other random data.®*. When we use relu®*,
learning values to be zero, means learning them just to be negative, and is thus way easier.
This can demand that the network does not fixate on trivial features in the networksetup and
preprocessing®®. A simple oneoff network reaches usually an AUC of at best 0.6 for the task
of finding top jets, which is not too impressive. But if you look at the classification power as
a function of the training epoch, you see that this only is so bad, since those AUC scores are
way better at earlier epochs (see figure 7.2).

"Since the distance off 1 is the deciding quality indicator and it is a OneClass algorithm.

"8Since their output, 1 , is obviously automatically normalized.

7 Also in practice it seems to be still a good idea to normate also oneoff networks, this might be because this
normalization also lets features the oneoff network focusses on to be more similar and thus easier to combine,
or because similar sized inputs are easier to train on.

80 Actually, in practice it seems to simplify the training, if you don’t use only one output, but multiple ones,
that all are compared to 1 and which mean is used. This results in very high correlations in the outputs, but
seems to help in the convergence of the network.

81Especially, since the lowest difference there can be in the used float32 implementation is bigger than
1/100000000 and thus, since the final loss is the mean of each loss, this would mean, that at least a frac-
tion of 0.9999 of the events reproduce exactly 1.

82 A notable example might be the preprocessing of Ipr. As descibed in chapter 3.2, we used a preprocessing
similar to that of ParticleNet: x = log (prje:/pr), but this means (because of the implementation), that a sum
over e~ ” is always 1. This might also be a good time to talk about functions in this kind of networks. Since we
have to forbid any biases (a bias would just result in the network learning a zero and adding a one as bias), the
usual reason for a network to learn any function has to be modified a bit. Think about taylor approximations:
A function like e® could be written as 1 + z + O (2?) (with as many terms as the networks needs), but for a
network to learn 1, the input of e” would then be set to zero, the network output would be one and it would
basically be the same as adding a constant bias. But adding a bias is not allowed, and thus the network can
not learn e”. That beeing said, the network can learn e* — 1 =z + O (gcQ), and, when sum (e~%,4) = 1 then
is sum (—1 + e~ %) = —3 for 4 nodes, and thus the network can learn this, without having learned anything
physically useful.

83We choose here random events with the same mean and standart deviation in each feature, as the original
data, that still goes through the same preprocessing.

84A relu activation can be defined as + |z|. See Appendix B.2.3 for why this is useful.

85Later on, in chapter 7.2, this is no longer needed, and just complicates the training.

7 MIXED NETWORKS Page 53

0.80
0.75
0.70

2 0.65
0.60
0.55

0.50

0 10 20 30 40
epoch
Figure 7.2: AUC score as a function of the epoch, trained on QCD, here for a graph oneoff
network. Graph oneoffs are not used anymore in the following, but since they show the same

relation as a dense oneoff network much cleaner, we use this curve here. As you see, the relation
shows a maximum before the training ends.

Sadly, this observation is not really useful, since stopping the training at the optimal epoch
would not be unsupervised. But it is still quite interresting, since it shows, that there is some
potential in those kind of networks, which is just not utilised good enough. Another problem
is again invertibility: It is possible to create an invertible oneoff network, but it is not trivially
given. This becomes easier, when you use a lot of trainable parameters. To do this, a graph
network is less useful, than just a simple dense network.

Even though they are not yet appliable here, we show in appendix E.4.1 that oneoff networks
are very useful for finding anomalies in other datasets. This allows us also to suggest that
combining multiple oneoff retrains can increase the classification power even further. We also
show that you can use oneoff networks to extract human readable information from physical
events in appendix E.4.2.

7.2 Latent space oneoff learning

Referenced in: [7.1.1]

The main problem of autoencoder might be the fact that its loss function is not necessarily
the best possible separator(see chapters 4.5 and 5), while the problem of oneoff networks seem
to be that they focus on useless information, which keeps them from reaching their optimal
classification power(see chapter 7.1), but maybe combining both methods could solve both
problems: You train an autoencoder to convert the input space into the latent space, to be
able to run an oneoff algorithm on this compressed space®. This means that the separation
function is now quite good (as suggested in appendix E.4), and the autoencoder can filter out
those trivial inputs hurting the oneoff training curve.

This idea of combining networks is not exactly new(see for example [39];) and it also is
harder to train, since we now have two independent networks: Something that improves the
first network might hurt the second, but in practice this works quite well. It is not yet clear
if you want to train your autoencoder on the background data or on both the signal and the
background. Here we train on background data, since every bit of higher inaccuracy that might

86We also tried alternative algorithms, but oneoff networks result in the best results, see for this appendix
E.2 and E.1.

7 MIXED NETWORKS Page 54

be reached by giving the original autoencoder unknown data, will help the following algorithm,
but the effect of changing this is tiny anyways. Also choosing the most unsupervised algorithm
is not so easy: Defining a set with absolutely no anomalies is not completely unsupervised,
but defining a set that is exactly half abnormal might be even worse: The anomalies we search
are probably quite rare, and approximating this fraction as 0 seems to be more realistic than
approximating it as 0.5.

7.3 A final classifier

Referenced in: [A.5] [C.4.3]
With the same setup as before (see chapter 4.4) and normalization as well as after training
25 oneoff networks on each latent space we gain the final classifier for this thesis

7.3.1 Trained on QCD

e ged
top
102 i
#
101 j
0]
10 BT
3 4 6
oneoff loss
Figure 7.3: Oneoff loss distribution for a network trained on qcd jets
3]
10 — auc=0.6351

—— random guessing

102 j

101 j

inverse false positive rate)

100.

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure 7.4: Oneoff Roc curve for a network trained on qed jets

7 MIXED NETWORKS Page 55

In figures 7.3 and 7.4 you see AUCs worse than in chapter 4, but consistently better than by
using just normalization.
Interestingly this also helps the reconstruction quality (see figures 7.5 and 7.6).

event number 0

—0.051 @ truth ®
—0.10] @ prediction

—0.15;
.— —0.20 ®
<
o

—0.25]

—0.301

-0.35 @
~0.40 ®

-08 -0.7 -06 -05 -04 -03 -0.2 -0.1 0.0
eta

Figure 7.5: Angular reconstruction images for a normalized network trained on QCD

1.001{ © @ truth
0.751 © @® prediction

0.50+

0.25+

Ipt
@

0.00+

—0.251

—0.501 9

~0.751 8
] ' 4

particle

Figure 7.6: Momentum reconstruction images for a normalized network trained on QCD

7.3.2 Trained on top

Trained on top in figures 7.7 and 7.8, this improves quite a lot.

7 MIXED NETWORKS Page 56

103 e ged
S top
102.
#
101.
10 w 11 = I
6 8 10

oneoff loss

Figure 7.7: Oneoff loss distribution for a network trained on top jets

3]
10 — auc=0.1773
o —— random guessing
©
2 102
E 10]
[72]
o
o
()
0
©
1]
“G‘J 10
¥
()
>
£
100.

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure 7.8: ROC curve for a network trained on top jets

Also, here the reconstruction quality is quite good here, as figures 7.9 and 7.10 show.

7 MIXED NETWORKS

Page 57

event number 16

%4 @ truth ®
0.21 @ prediction
0.0
_—0.2 ®
fl—0.4- ®
—0.61
—0.81
~1.0 | | | | ®
-1.0 -0.8 -0.6 -0.4 -0.2 0.0

eta

Figure 7.9: Angular reconstruction images for a normalized network trained on top jets

0.75+
0.501
0.251

Ipt

—0.25+
—0.501
—0.75+
—1.001

0.00+

® © truth
O @® prediction
@
@
O
1 2 4

particle

Figure 7.10: Momentum reconstruction images for a normalized network trained on top jets

7.4 Scaling with oneoff networks

7.4.1 Scaling in batches

The batches considered in chapter 6.2.1 are now all invertible, as figure 7.11 shows.

7 MIXED NETWORKS Page 58

o
(0)]
°
°

° ° °] ®

0.51 : s - : :
Q
§ 0.4. s Oneoff AUC for qcd jets
O ' Oneoff AUC for top jets
<

0.3

0.2

1 2 3 4 5 6 7 8
Batch number

Figure 7.11: Invertibility of batches in oneoff networks

Here you see a much more interesting relation compared to before. The variance of each
AUC score grows with the batch index, which is expected as they are more random, but some
networks actually beat the AUC score of the first batch (batch 3 has an event below 0.15). This
is a result of the number of particles in each jet becoming a feature at some point. You see this,
by noticing that the relation between AUC and batch number is not linear: The AUC’s for the
second batch might even be some of the worst, even though they should have the second most
information next the first batch. Sadly this nonlinear relation makes combining batches hard.

7.4.2 Scaling without batches

Referenced in: [4.8.2] [5.1.3] [5.1.5] [6.2.2] [8.1] [B.5]

From a technical standpoint, bigger networks don’t train as well, since their loss becomes
NAN at some point. This we can fix for now, by giving up two things: We cannot use a
learnable graph anymore, and we train on fewer data. Using a fixed fully connected graph is
usually not a good idea, as it seems to slow down the training, but this also removes a lot of
NANs®”. Using less data should not matter to much, since for 4 nodes appendix B.5 shows
that it does not change anything to reduce the number of training samples to 5000 QCD jets.
This removes fewer NANs, but has the added effect of accelerating the training a bit. It is also
useful to use the normalization from chapter 6.1, as not using it seems to produce much more
NANS.

We train with a batch size of 100 and a learning rate of 0.003 for at least 500 Epochs and
afterwards with patience of 100 Epochs an autoencoder compressing 16 nodes twice by a factor
of 4 into one node with dimension 36 building our latent space. Also, between each compression
step, there are 3 graph update steps. This results in the training history shown in figure 7.12.
This training took more than 58 hours training on a cpu® 8%,

871t is always sadly possible for a network to NAN, which makes debugging harder. Removing the topK
algorithm seems to make them appear mostly earlier, resulting in NANs appearing either in the first epochs or
not at all, and thus allowing us to not waste any time training failing networks.

88 Training on a gpu would accelarate this quite a lot. We expect a factor between 3 and 5, but since this still
would not make gpus possible in our computation quota, we use cpus.

89Training a 4 node network takes about 3 hours, so the quadratic scaling expected for the graph update
layer expects a training time of about 48 hours. This difference is most prominent, when you consider that we
need train 4 node networks on 50000 training jets. You migth explain it by our model being to easy (we have
more than just graph update layers) or by our implementation not being as fast as possible.

7 MIXED NETWORKS Page 59

0.60 —— training
——— validation
0.55+
n 0.501
(V)]
o
0.451
0.40+
0 100 200 300 400 500 600
epoch

Figure 7.12: Training history for a 16 node network trained on QCD

More importantly, the reconstruction works fairly well, as figures 7.13 and 7.14 show.

event number 0

1.01
’ @ truth
0.8 @ prediction
0.6/
0.4/
< 0.2
0.01 ‘
0 My 8T °°
—0.41 ®
-1.0 -0.8 —-0.6 -0.4 —-0.2 0.0 0.2
eta

Figure 7.13: Angular reconstruction for a 16 node network trained on QCD

7 MIXED NETWORKS Page 60

0.75{ @ @ 8 @ truth
0.50- ® @ prediction
0.25- @ 8 8
0.001 ® @ e
° e 9 Q
= _0.25] ®
@
—0.501 ®
—0.751 ® Q
~1.00] ®

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
particle

Figure 7.14: Momentum reconstruction for a 16 node network trained on QCD

Without oneoff networks, the classification quality is also better than our best AUC on 4
nodes (0.635). We move figures G.2 and G.3 to the appendix, but they show an AUC value of
about 0.7.

Using oneoff network this AUC falls to 0.55 (see figure G.4). This might seem like oneoff
networks are not as good as we assumed before, but this is actually not the case. Consider the
same training done now on top jets. The training history (figure G.5) and the reconstructions
(figures G.6 and G.7) are very similarly good, which is why you find them in the appendix.
The problem lies in the ROC curves (figures G.8 and G.9). They reach an AUC score of 0.64,
and we thus would have networks that are not invertible. We think, that these networks are
not invertible (even though we use normalization) because the normalization has a much lower
effect: On 4 nodes, removing two values means removing 1/2 of all values, on 16 nodes this only
means removing 1/8 of all values. So, since the trivial difference is contained in each particle,
and slightly differently for each of the particles, removing 2 values might remove some width,
but in the substructure there is still enough contained for the network to only use a triviality.
So we need to use our improved way of handling trivialities: Using oneoff networks here results
in an AUC score of 0.48 (see figure G.10) and at least making this network invertible.

These terrible AUC scores show that simply solving the computation challenges of more
node networks is not enough: We think that by adding nodes that are more and more random,
the autoencoder focuses on reconstructing them more than about the first nodes. But since in
these initial nodes most of the classification power is contained, this just weakens the classifier.
So you would need to also keep the focus of the network right. One way of doing this, would
be weighting your loss function, but our experiments with losses that are functions of the node
index or the transverse momentum only worsened the reconstruction quality (see chapter 5.1.5).

8 APPLYING THIS MODEL TO OTHER DATASETS Page 61

8 Applying this model to other datasets

Referenced in: [1] [4.6.4] [5.2.1] [5.2.2] [9] [9.1] [D.5.1]

We might be able to supervised separate probably any kind of data, but as shown in the
previous chapters, if we remove the labels, this exercise becomes a lot harder. Here this problem
is usually stated as follows: Given a set of data points, can we write an algorithm to detect a
second set of data points. The only difference to the supervised case is the fact that we cannot
look at the anomaly set in training. And information from the validation dataset can leak into
the model setup[13]. This is an effect, that is usually solved by introducing test data. Data
that is only used once at the end of your analysis: If your network works worse on this data,
then your setup contains information about your validation data and is no longer as general.
We want to use this chapter to introduce our test data. The difference here is, that we cannot
simply use some part of our validation set: It are not the events of the validation set that are
leaking(as shown in 4.7 our networks do not overfit), but the specifics of our anomalies. So as
test set, we have to use completely different anomalies™.

You could see this, as changing our initial task: Instead of finding one specific anomaly, we
now want to find every other anomaly. One should notice the huge difference in complexity of
this task: Defining every alternative dataset as signals is not solved by looking at any attribute
to differentiate datasets: There will always be another dataset, that is entirely the same as the
background set, if you are looking at this attribute only. And there will even be a dataset, that
has an attribute that looks more than the background than the actual background®. You could
say, that finding all alternative datasets, is more about defining your background, than about
finding differences. But as even oneoff networks, that are designed to define your background
datasets, in theory are expected to be able to be trapped by some features(see appendix E.4),
the only way to truly evaluate an algorithm, is experimentally. And since we cannot generate
all alternative datasets, we have to work with comparing specific two datasets to each other.
But we can at least give some sense of generality to the networks, by looking at different kinds
of datasets.

8.1 Ligth dark matter

Referenced in: [8.2.2] [8.3] [9] [9.2] [E.5]

This set of data points is generated by Thorben Finke and consists out of jets of transverse
momentum between 150 - GeV and 270 - GeV of either QCD jets, or those initiated by a
dark matter candidate sugested in [11] (ldm data). This dataset implies an unsupervised
classification task that is way more difficult than the usual top tagging, and as we will see, even
more complicated than the other datasets that we test our algorithm on here. The first thing
that makes this dataset so much more complicated is the angular distribution: while you can
use this distribution to differentiate top jets from their QCD counterparts alone quite well (see
chapter 5.2.1), here both angular distributions (figure 8.1) are basically the same.

9OTraining on your anomalies to find your background can help, but even this can not really exclude that
your data leaks into your model(If your signal and background differ completely in one parameter, optimizing
either would result in a network only focussing on this parameter, and thus not beeing very general), so the
only real way might be to train on as much datasets as possible, and demand that all work.

91Looks the same as the background but with lower width.

8 APPLYING THIS MODEL TO OTHER DATASETS Page 62

qcd Idm

0.8 0.8

0.4 0.4
0.0 0.0

-0.4 -0.4

—08)8 -04 00 04 08°%8 -04 00 04 08

Figure 8.1: Angular distribution of ldm jets

Also the momentum distribution in figure 8.2 is not much better.

600 [lged
ldm
500
400
300
200

100

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
transverse momentum [GeV]

Figure 8.2: Momentum distribution of ldm vs 1QCD jets

That beeing said, there is one easily understandable parameter that can be used to differ-
entiate both datasets: The number of particles in the jet, which is shown in 8.3.

e Iged
Idm

40 60 80 100
number of nodes

Figure 8.3: Number size distribution of 1dm jets

8 APPLYING THIS MODEL TO OTHER DATASETS Page 63

Sadly, this parameter is not very useful because of two reasons:

e Our graph based networks, especially the ones we talk about in this chapter only have
4 particles. That means that the number of particles just does not enter the network at
all”2, and even though we can increase the number of particles that enter the network,
this will result in less well-trained networks (see for example chapter 7.4.2), and at the
end.

e We actually don’t want to have a network that just focuses on the number of nodes, as
this is a fairly weak way of differentiating jets, resulting only in O (1) AUC values in
the best case. And even though this is way better than any classification score that we
achieve in the following, focussing on only one parameter looses every sence of generality.

This means, that we train 4 node networks”, that hopefully find some sense of substructure,
which will make it possible to differentiate those jets. Sadly this also means, that every result
has to be fairly bad. There is a dataset with different substructure, but there is also another
dataset with completely different angular distribution, and since we want our networks to find
both, this also means, that having the same angular distribution has some effect making the
network consider those sets as more probably the same datatype. There might be still some
different substructure, but there are three effects here making the network weight its posible
differences:

e Your first thought might be, that this relative uncertainty is not affected by the function
complexity, and it is true, that if you got only two variables, their effect is completely
unaffected by it, but there is a catch.

e You cannot assume each variable to be exactly known, and a slight variation in a complex
formula can have a much bigger effect than in an easy formula (thing of a momentum 4
vector representing an electron: the formula getting the energy from this 4 vector is much
more stable under variations of the 4 momentum, than the formula getting its mass).

e Also, the number of neurons is finite, and you could argue, that so is the number of
calculable variables. This means that the network has to choose favorites. And since
every given feature can be weightedly added in a way that (at least for a tiny amount)
improves the current relative uncertainty, choosing a complicated /expensive feature also
means, not choosing multiple less complicated features.

This means, that there is a sligth preference of oneoff networks, to choose easier features™,

which means, that this is a really hard test for them, and the only thing that we can realistically
demand here is invertibility: A Network, trained on light QCD jets, that thinks ldm jets are
more complicated as well as the inverse.

92To be precise, there are O(10) jets with less than 4 particles in our dataset, so it actually is inputted, but
only to a neglicible amount.

93The low number of particles becomes a benefit, since we can be sure not to use the particle number.

94In general, this is actually a really good thing: Not only does is this statistically useful, but this also means,
that oneoffs have a build in regulator, that prevents them from overfitting (at least to a degree), making them
quite general.

8 APPLYING THIS MODEL TO OTHER DATASETS Page 64

0.5201 .
* ligth gcd .
ligth dm °
0.515} ___ random guess
0.510+ e
@)
:) []
< 0.505
0.500 .
0.495+ .
0.9 1.0 1.1 1.2

oneoff width

Figure 8.4: 1dm jet invertibility

As you see in figure 8.4, this is not at all trivial, but when we consider the loss of the oneoff
network, which is drawn on the x axis as quality, the best networks are actually invertible.
And since this is still completely unsupervised, just using the feature quality of a network, we
can say that we can generate invertible anomaly detection algorithms on this dataset. That
being said, this is obviously not useful at all, as half a percentage in AUC does not help
you finding differentiating new physics, but it is worth to note, that also top tagging after
normalization looked very quite bad (see chapter 5.2.2), and seeing that there the classification
quality improved a lot, we see no reason, why you could not improve and optimize this network
to be drastically better. Especcially, since we did not run any hyperparameter optimization
(except for the compression size, which is 1 bigger (at 10)%°), and still only use 4 particles. This
analysis is the reason, why we think that the oneoff width from chapter 4.6 is such a good way
of evaluating a model.

8.2 Other datasets

8.2.1 Quark or gluon

Quark and gluon data, is generated by Madgraph[9], Pythia[50] and Delphes[41]. One set
is generated as parton parton to gluon gluon collisions and another as parton parton to two
partons without gluon collisions. Jets are used, if their transverse jet momentum is between 550
and 650 GeV. This data was used originally generated to see if a QCD trained classifier makes
an easily accessible difference between quarks and gluons”, but even though this is seems not
to be the case, we can still use this dataset to test our algorithm a bit further. Again we use 4
particle networks, with a compression size of 9 and only negligible hyperparameter optimization
to reach quality of slightly above random.

95We think, that this higher compression size allows the network to understand more subfeatures.

96You could interpret this, as another form of complexity: while top jets are all the result of top quarks,
with QCD jets there are multiple options, we though this could explain why QCD trained encoder are generally
worse, but this seems not to be the case.

8 APPLYING THIS MODEL TO OTHER DATASETS Page 65

3 |

10 —— quark:0.5229
9 —— gluon:0.5477
S —— random guess
g 102_
Hg’
o
()]
)
S0
() 10]
&
()
>
£

100 o o

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure 8.5: Oneoff ROC curve for quark gluon. Here both curves should be above the line
representing random guesses, and as you see, this is the case, even though the quark line is
very close to randomly guessing.

As you see in figure 8.5, these are invertible networks, and even though they are not very
good ones, as described in the previous chapter 8.1 this does not really matter, since opti-
mization has the potential to improve them quite a lot. Here [36] could be seen as a reference
paper for this process, even though they use a supervised approach and high level input data
on different transverse momentum ranges, their achieved AUC values below 0.9 suggest that
this tagging job is a bit more complicated than the usual top tagging task. Chapter 8.3 will
support this hypothesis.

8.2.2 Leptons

This dataset is not very physically useful, but more interesting from an anomaly detection
standpoint: We again generate particle collisions using Madgraph, Pythia and Delphes, but
instead of partons colliding into partons, we use leptons colliding and producing partons. For
the first set, we use any combination of electrons and muons with arbitrary charge, and for the
second one we only use tau leptons. We also use a fairly big transverse momentum range for
the jet of 20 - GeV to 5000 - GeV to see if our algorithm is affected by this bigger range.

8 APPLYING THIS MODEL TO OTHER DATASETS Page 66

3|

10 —— 1ep:0.5078
9 — lept:0.5941
S —— random guess
g 102_
Hé
o
[}
o
gt
() 10]
o
(O]
>
=

100_

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure 8.6: Oneoff ROC curve for lepton data. Again both curves should be above the random
guessing line

Again you see a sligth invertibility here(figure 8.6), helping to support the suggested gener-
ality.

8 APPLYING THIS MODEL TO OTHER DATASETS Page 67

8.3 Cross comparisons

Referenced in: [8.2.2] [E.5]

At the beginning of this chapter, we called anomaly detection the task of finding everything
that is not similar to the trained on class. And even though we tried to evaluate this task, by
showing the invertibility on a multitude of datasets, we slowly are out of particles to test it
on””. That being said, one thing we did not yet do, is to mix the datasets. You might question
how useful this is from a physical standpoint, as there will probably never be a situation, in
which you want to find leptons, only knowing gluons. The point is that new physics could have
a nearly arbitrary form, and even though we will never live in a world in which we only know
about gluons, finding data that does not look like gluons is very useful. We think that these
experiments introduce thrust in the algorithm used, as chapter 5 clearly shows, that invertibility
and feature triviality can be linked. And since training unsupervised does mean that we don’t
have to train new anomaly detection models, there is no reason not to compare those jets.

1.0

qcd

top

0.8
Iqcd 1 ° o
C
o - 0.6
S Idm - [)
)]
= k
"= quark
E - 0.4
)
gluon 1 %
leptons A 0.2
tau 1

0.0

qéd t(Sp Iqlcd [dm qu:’:\rk gIL;on Ieptlons ta;u
compared to

Figure 8.7: Comparing each dataset to each other dataset, using oneoff networks. We use red
points to mark values below 0.5

In figure 8.7 you see, there are only few spots that are not invertible (we changed the
meaning of each AUC value, in such a way, that each slot should be deeply blue in the best
case). For simplicity, we mark the noninvertible networks with red dots, but this still does not
allow to see every value, so here are those comparisons again as a table.

As you see, everything is either invertible, or at least very close. Furthermore, only 4
noninvertible comparisons exist, and are always less than 2.5% worse than random guessing,
and are trained on ligth dark matter or ligth QCD data, which as explained in 8.1 is hard to
differentiate”.

9"Especcially since the initial toptagging dataset already contained the whole of QCD.
98Tt seems a bit weird, that ligth QCD jets are more similar to ligth dark matter data, than to QCD of higher

8 APPLYING THIS MODEL TO OTHER DATASETS Page 68

QCD top 1QCD Idm quark gluon lepton tau

QCD 0.5 0.5958 0.5048 0.5181 0.6333 0.5792 0.606 0.644

top | 0.7893 0.5 0.7589 0.7656 0.8905 0.8248 0.8672 0.8879

1QCD | 0.5476 0.6219 0.5 0.5022 0.4936 0.5037 0.4822 0.5471

ldm | 0.5339 0.6043 0.5134 0.5 0.4863 0.5 0.4768 0.5456

quark | 0.5429 0.6019 0.5828 0.5773 0.5 0.5251 0.5063 0.5535

gluon | 0.5063 0.5831 0.514 0.509 0.5455 0.5 0.5167 0.5744

lep | 0.5448 0.6173 0.5448 0.5403 0.504 0.512 0.5 0.5089
lept | 0.6254 0.7018 0.6753 0.6595 0.5647 0.6283 0.6023 0.5

Table 8.1: Cross invertibility auc scores trained on row to be compared to collumn

Also note, that the rows and columns that are related to top jets are clearly visible: It seems
to be a much easier task to differentiate top jets, than every other dataset, even when we use
normalized networks. This suggests that only using top jets as anomalies artificially inflates
your performance.

energy, especially since every value is normalized quite thorougly (chapter 6.1). This still does not mean, that
there is something wrong with the data, as the normalization has no effect on the number of particles, but just
on the size of each value. And since higher energy jets can decay differently, this might explain why ligth QCD
and ligth dark matter jets look so similar.

9 CONCLUSION Page 69

9 Conclusion

Referenced in: [1]

In this thesis, we were able to implement a working graph autoencoder. Consisting out of
multiple different encoder and decoder algorithms we optimized it to work well on jets. Since our
code (grapa) is very modular(see the documentation at https://grapa.readthedocs.io/en/latest/
), you should also be able to use it on other tasks. We provide some examples for this in the
documentation (see appendix F). For jets, we created a custom loss function to make our
Autoencoder work more image like (see chapter 4.5) and show that our autoencoder it is not
only able to reconstruct jets (see 4.7), but also that it works well as a classifier: On only 4
particles it already reaches a good AUC value for the task of unsupervised top tagging of over
0.85 (see 4.8). Optimizing this, using among other things a method we call ¢ addition (see
5.1.4), we were able to extract from those networks an easy feature allowing for a comparison
with an AUC of over 0.9155. This result might be comparable to our literature comparisons
(see 5.2.1), but since this feature is fairly trivial, this also means that our networks, and this
feature especially, is not useful for finding new physics at all, as it only uses a trivial difference
in the angular radius between our background and signal dataset.

So we were in a situation, in which we cannot assume this difference to be there in new
physics models, and in which we can also show, that our networks coincidently tends to use
this feature regardless of the data we consider as background. This means, that if we ever want
to be able to find new physics events, we have to make a network ignore this trivial difference.
Chapter 6 tries to remove this trivial difference from jets using a creative normalization. This
hurts the classification power, since we removed information from each jet. But this also creates
a network that, if we consider our usual signal top jets as background, is also able to find our
usual background QCD jets as anomalous, which suggests that it is no longer using a trivial
feature. Considering QCD jets as anomalous it reaches an AUC of about 0.623 on 4 particles.
By changing the normalization, we can produce a classifier that seems not directly to use
physical features, while still improving the networks classification quality to 0.75. Chapter 7
uses this apparent inconsistency to create what we call oneoff networks: Networks that are
trained to output a constant and use differences to this constant to find anomalies(see 7.1). We
mold these oneoff networks into a tool being a better nontrivial classifier on the latent space
of our autoencoder, improving the previous task of anomalous QCD jets to an AUC of 0.823.
And while the more classical task of finding top jets as anomalies is a bit worse (0.635), this
should still be more useful than the trivial AUC of 0.9155 above, since it might be able to
find anomalous events of any form. To test this, and to make sure that our networks are not
again only learning a trivial feature, chapter 8 uses other datasets to test how generally oneoff
networks can find anomalies. From the 56 comparisons in this chapter, 52 contain anomalies
that can be classified as more anomalous than the training data. And even though we still have
some problems with jets from a specific dark matter model (see chapter 8.1), the fact that our
algorithms seems to be able to handle every other dataset, suggests that our oneoff networks
can help find many new physics models.

https://grapa.readthedocs.io/en/latest/
https://grapa.readthedocs.io/en/latest/

9 CONCLUSION Page 70

9.1 Outlook

In this subchapter we want to give a brief overview of every other idea which we had at some
point, but were not able to make work in reasonable time, or were just never looked at for some
other reason. Additionally to this chapter, appendix F suggests more creative applications of
our autoencoder code, including some easy to follow tutorials. Also each dataset in chapter 8
migth profit from an extensive hyperparameter optimization.

e We only used simulated data. It might be interesting to see if actual detector data works
the same, or if maybe our network misuses some feature only present in the simulation.

e Changing the loss function.

— You could use actual image like losses (Calculate histograms and compare them).
This might cost computation time, but give you more comparable results.

— Create a permutation invariant loss: Defining your loss function in a permutation
invariant way allows to remove the sorting algorithm from the networks. This should
simplify the training a lot. Sadly our tries for a permutation invariant loss did not
produce as good reproductions as the non permutationinvariant versions.

— As a simple alternative loss function, choosing an L1 loss results in trivial learning
networks. You might solve those problems, by using a power between 1 and 2, for
example resulting in a L1.5 loss.

— Improving image like losses (see chapter 4.5.3).

* Switch the roles of momentas and angles.
« Instead of testing different ¢(z) functions, you can find an optimal combination
of different c¢(z).

« Use a linear part in f(d).
e Datasetup.

— It seems to be easier to work on transformed 4 momenta (like in 3.2), then on classical
4 vectors, explaining this might help make graph autoencoder converges faster and
more reliably.

— You could still add variables like the mass to the input data, which are not very
strongly correlated to the other features, and thus should not confuse the autoen-
coder.

— You could use autoencoders to test assumptions about symmetry (like the position
of the jet in the detector does not matter): is the classifier on symmetrized data at
least as good as the one on non symmetrized data.

e Grapa (our graph autoencoder code).

— It definitely migth profit from a bit more NAN debugging.
— Also the speed should be able to be optimized quite a lot.

— Adding something that is called attention mechanisms in the literature, might be a
better alternative/improvement to the topK graph learning algorithm. This should
reduce the number of NANs if used without learnable graphs, and speed up the
training with learnable graphs, while allowing for more creative graph autoencoder
applications.

9 CONCLUSION Page 71

e Improve oneoff networks.

— Make this work better. This will be a really hard task, but should make them able
to classify events truly unsupervised and contamination size independent. (The link
is quite long, so you need to click on "this” in the digital version of this thesis, or
just write me an email at Simon.Kluettermann@gmx.de).

— Improve the results of the argumentation in E.4.
— Train oneoffs only on parts of your latent space.
— Apply oneoffs to other datasets.

* Use the reconstruction error(add to/replace the latent space).

* (add) physically useful variables, like for example the trivial feature from chapter
9.2.1.

e Instead of evaluating a network only by its AUC score, you could use alternative ones
(see chapter 3.1), and try to implement oneoff networks that optimize also them.

e Appendices.

— Explain why in appendix C.4.2 better compression algorithm work worse.

— Explain the variance in AUCs you get by using better decompression algorithms (see
appendices C.4.3 and D.5).

— Explain the minkowski metric appearing in appendix A.1.
— Write the algorithms suggested in appendix C.5.

— Make the inverse update layers of appendix D.2 more stable.

9.2 Acknowledgements

I would like to thank Prof. Dr. Michael Kramer for allowing me to write this thesis, Dr.
Alexander Miick for beeing the pretty much perfect supervisor, aswell as Thorben Finke for his
help, and especcially in generating the data used in chapter 8.1 and for sharing his computation
resources.

I would also like to thank Yuriy Popovich for proofreading this thesis, and my friends and
family for supporting me, even though this meant listening to probably way too many pointless
thoughts about graphs and anomalies.

Simulations were performed with computing resources granted by RWTH Aachen University
under project thes0678.

https://colab.research.google.com/drive/14lNlb2s3-2cEXiserMzu3getwCisvUT_?usp=sharing

A UNDERSTANDING CERTAIN CHOICES Page 72

Appendices

"Beware all ye who read here” The following chapters might provide more precision on some
interesting points, but they often got less attention than the previous ones, and migth contain
deep dives into topics that do not really affect the content of this thesis. And even though we
dont think that anything in the following is wrong, these chapters may grammatically /visually
be less than perfect.

A Understanding certain choices

A.1 Changing the input feature space

Referenced in: [3.2] [9.1] [B.3]

The choice of input features described in chapter 3.2 is by no means unique. The only
demand at our input data points we have, is that each particle is not compressible without its
neighbours. This suggests that simply adding features might not be the best idea, but that we
should replace the feature vectors entirely. The alternative way we want to discuss here is just
taking the usual 4 momenta.

These data points contain more physically useless information (the position of the jet relative
to the detector should not matter) and the distance that is generated in appendix B.3 for the
topK algorithm is no longer easily accessible.

We care here about two fairly general results:

First, the metric used in those networks seems to take a peculiar form.

0.101
0.08: ¢

0.06- o
0.041
0.021

metrik

0.00
—0.021
—0.04

—0.06

p1 p2 p3
Figure A.1: Metrik of a topK layer for a 4 momenta input

Figure A.1 shows two interesting things: First of, the first value, corresponding to the jet
energy, is negative. In the current implementation, this means, that two points are more likely
connected, the more different their energy is. You could interpret this as unphysical and try to
justify using this that this choice of input parameters is not a good one”, but you could also
note, that this difference is essentially a minkowski metric. That being said, we are not sure,
if this has any significance, as compared to the other monkowski metric that appears in this

99You can much more easily justify this, since the resulting training is way less stable.

A UNDERSTANDING CERTAIN CHOICES Page 73

thesis (appendix E.4.2), this cannot simply be interpreted as a mass, since
— (B1 — E2)" + (p1 — p2)” (A1)

does not really have a meaning, that is known to us. So maybe this is just random.
As a second point, the loss function in figure A.2 shows a much less useful training curve.

0.8 —— training

0.7 validation

0 5 10 15 20 25 30
epoch

Figure A.2: Training history for the 4 momentum input.

Instead of training for many epochs, it only shows improvement in the first few epochs. This
seems to be a consequence of the fact that training such a network seems to be less stable than
the usual ones. But if this is just a consequence of our lack ofexperience with this datasetup or
if this is a general feature is anyone’s guess. Finally, this at least suggests that the input choice
introduced in chapter 3.2 is not a bad idea.

A.2 1Is it a good idea to relearn the graph at each step?

Referenced in: [A.6]

Quick answer: No. Long answer: Probably not, not because the quality is necessarily
worse, but because the number of NANs (appendix B.2.2) increases a lot, making training for
an effective time very hard and thus resulting in worse classifiers. That being said, this still
means, that if you could handle the NANs, you might profit from more gtopk layer, but we
are not able to test this at the moment, and even though multiple different graphs would allow
you to see them as something similar to activations, we dont know of any physically useful
definition of similarity in angles and momenta, except for the angles themselves (and maybe
momenta to a lower degree), so changing the graph setup in the middle of the layers, might not
have any effect at all.

A UNDERSTANDING CERTAIN CHOICES Page 74

A.3 The consequences of sorting outputs by Ipt

Referenced in: [4.4.1] [C.2.2] [C.5] [D.3]

Sorting nodes at the end of the autoencoder breaks the permutation symmetry that we
praised at the beginning of this thesis (chapter 2.3), and since we use Ipr for this sorting, we
artificially inflate the importance of the momentum variable compared to the other variables.
That being said, turning of this sorting, does hurt the network performance: Given two networks
as comparison for this, the sorted network reduces an AUC value (trained on QCD) of 0.6351
into 0.5788 and probably even more importantly, the training curve looks way worse: Compare
figures A.3 and A.4.

0.6 1 —— loss
—— val_loss
0.5 A1
0.4 1
0.3 A1
0.2 1
0.1 A
0 50 100 150 200 250 300 350
epoch

Figure A.3: Training curve using sorting

— loss

—— val_loss
0.55 A

0.50 1

0.45

0.40 1

0.35 1

0 100 200 300 400 500

Figure A.4: Training curve using without sorting

A UNDERSTANDING CERTAIN CHOICES Page 75

You might consider the not sorted curve more clean, but it also does not really improve any
further at a fairly early epoch, result in the sorting network reaching a loss of about a factor 3
smaller. Seeing this, sorting seems like a clear choice for us, and so basically all networks in this
thesis are sorted. That being said, the original deficits of breaking permutation symmetry, could
actually be interpreted to mean the opposite: while it is true, that switching each value, except
the sorted one, would not result in the same loss, switching any whole node position, still would
result in exactly the same loss. In fact, we can use this, to understand why not sorted networks
are so bad: The encoding includes a random!'® node permutation, while the decoding does
not, so after the autoencoder, the result is a random permutation of the input features, which
then are compared to the still initially ordered input features. That this does not work that
well should be clear: So either choose the momentum axis as sorting value'®! or compare your
predictions nearly randomly. In fact, you could argue, that this breaks permutation symmetry,
as you impose a defined ordering on your node indices. Finally, if you would want to improve
this, you might look at two things: making the comparison variable learnable, would remove the
artificial inflated importance of Ipy!°? and making the decompression change the node ordering,
in the best case in a learnable way, would make this whole discussion moot, as the network
could converge as good with, as without sorting. That beeing suggested, implementing this is
not neccesarily easy, as you would not want any function to apply to all nodes, to make sure
you don‘t break permutation symmetry, which for me looks like you restrict yourself to finding
a variable to sort by and to reverse an initial sorting would in general not be easy at all, as
the initial sorting could be completely random, but would result here probably in a network
sorting the nodes by their transverse momentum, as this is the sorting of the initial data, but
this seems to us, as a more complicated implementation of our final sorting layer'®1%4. So
finally: sorting seems to be the rigth choice for us, but a more advanced algorithm, might still
be useful: consider the data from appendix F.3: sorting by one parameter is not that useful,
when you only have boolean datapoints!®®

A.4 The usage of a batchNormalization layer in the middle of the
graph autoencoder

Referenced in: [4.4.1]
BatchNormalization layers usually are used to speed up the convergence of your network,
but result in usually more chaotic training, so here a brief comparison of a network with and

100 A ctually not random, but you could see it like this, if you only see the initial and final node indices.

101\Which would not be what you would want, since locality in real space is much more important than similar
energies, as appendix B.3 shows.

102Byt maybe also make the training less stable, and add a less controlable importance to some other mixture
of features.

103That could actually work less well, not only since it needs more calculcation time, but also since this sorting
is done at deconstruction, meaning that later graph update layer wont have an effect on it.

104You might also ask yourself if you could not just remove the permutation from the encoding layer, but this
is easier said than done: As it is true, that the sorting is generally just done for implementation, but as you
combine 4 values into for example two, you could have situations, in which node 0 and 3, as well as node 1
and 2 are combined together into (0,3) and (1,2), and even without sorting, reconstruction this, would result in
0,3,1,2, so you would still either need some kind of permutation in the decompression, or some kind of shortcuts
between the layers, that encodes the original position: This would not be bad style, as it could result in the
network learning to misuse this information to encode arbitrary information, but would also not be very easy
to implement, and might require a nonpermutation invariant compression and decompression function to work
well, which would obviously not be ideal, as keeping permutation invariance is the main reason for this chapter.

105Even though in this chapter no real sorting was used, and you could still work with our approach and
multiple sorting layers fairly well, assuming tf.math.top_k is stable (their documentation does not say so, but
the implementation is, but this may change since also tf.argsort is stable at the time of writing this, but they
want to implement a not stable version later to improve the speed of this algorithm).

A UNDERSTANDING CERTAIN CHOICES Page 76

without a BatchNormalisation

0.50+

0.45+

0.50

0.45+

0.40+

loss

0.351

0.30+

0.251

| —— training
validation
0 100 200 300 400 500

epoch

Figure A.5: Training history with a batchnormalization layer

—— training
validation
.
0 100 200 300 400 500

epoch

Figure A.6: Training history without a batchnormalization layer

If you compare figures A.5 and A.6 you see, that the loss is clearly better with a batchnor-

malization layer

So even though you might not be able to induce this from a single test only, Batchnormaliza-
tions seem like a good idea. As a sidenote, using a batchNormalization before the comparison
is usually not a good idea, since this normalization includes a learnable scale, which results in
the network only learning to compare zeros to zeros.

A UNDERSTANDING CERTAIN CHOICES Page 77

A.5 Changing the definition of the transverse momentum input

Referenced in: [3.2]

If you are familiar with image based neuronal networks, choosing our momentum preprocess-
ing might seem a bit strange. Since — log (x) is monotonously falling, low momenta correspond
to high Ipr values. And since image based networks weight each part with the absolute value
of this value, this seems like no good idea (to understand this further, see chapter 4.5.3). But
graph neuronal networks don’t weigh a loss with its transverse momentum, so we don’t expect
this to be a problem!%.

To test this, we train a network similar to those from chapter 7.3 with log (pr + 1) instea
of Ipr. This would also include information over the total jet momentum, but since we still
use normalization, this mostly gets filtered out automatically. Comparing both networks is not
easy, as the loss is defined differently, and the reconstruction is nearly perfect. So we simply
use the AUC (with oneoffs): With Ipr we reach an AUC score of 0.635 and with log (pr + 1)
we get an AUC score of 0.621 on the same model. So we get very slightly worse AUC scores
and use [pr thanks to this. It should be noted that this is not the most effective test, as
hyperparameter or just repetition could change this completely, but it does not seem to have a
big effect anyway.

d107

A.6 Comparing our graph update layer to particleNet

Referenced in: [4.1.1]

There are multiple different ways of implementing a graph update layer, a notable one is
the one used by ParticleNet [44]: Their graph connectivity is implemented, by just storing all
neighbouring vector to each given vector in a set of vectors, this means, they can implement the
update procedure as a function of the original and a vector representing its neighborhood!%.
This is not exactly what we do here, mostly since the implementation of the graph as just a
corresponding set of neighbourvectors demands for computational reasons that each node is
connected to a same number of other nodes, and also requires relearning your graph after each
step, which we don‘t want to force our network to do, as explained in appendix A.2. And
also this would make this less of a graph autoencoder, and more into an autoencoder with
some graph update layers in front of it, since there is no way to reduce the number of nodes
for such an implementation, without completely ignoring the graph structure. Please note
the difference: Since we use an adjacency matrix itself to define the graph(in comparison to
calculating some derivative from it), you not only have complete control over the graph, that
can be used to shrink the graph structure with the number of feature vectors, but you also
allow for an arbitrary number of connections for each node!®.

106This story becomes a lot more complicated when using image like losses, but generally, as long as the
alternative loss is not related to Ipr this is not a problem here either.

107We add 1 to keep each value positive and to remove divergences.

108Thig function is actually a bit complicated, involving not only convolutions, but also normalisations between
them, and they end by concatting the updated vector to the original one, which is something that is not very
useful, when you want to reduce the size of your graph.

109This is mostly interresting, since it extends the number of possible compression algorithms: They do not
anymore have to satisfy keeping the number of connections constant: The number of possible graphs with n
nodes is 27 (n=1)/2 (ignoring permutation invariance, self connectivity and directed graphs), for n = 4 this
results in 64 possible graphs, of which only 6 are of this kind. This means that much less compressed graphs
are possible, and that finding an algorithm, that can pick only those graphs, is much more complicated (see
appendix B.4.2 for more).

B EXPERIMENTS USING GRAPH AUTOENCODER Page 78

B Experiments using graph autoencoder

B.1 Variating the compression size
Referenced in: [C.2.2] [D.1]

Compression sizes are usually a bit arbitrary (for our solution to this, see appendix D.1)
and so to find an optimal compression size, testing every possible one is generally a good idea.
See for this figures B.1 and B.2. We do this here for non normalized networks, so our choice
that we extracted from this analysis whas to choose a compression size of 7.

—— training loss
—— validation loss
—— other design

10—2_

loss

10—3_

0 2 4 6 8 10 12
compression size

Figure B.1: Rastering each compression size for a 4 node network (normalized) and showing
each loss

0.8
0.7
O
>
[}
0.61
— AUC
0.5 —— AUC angular
— AUC pt
—— other design
0.4+

0 2 4 6 8 10 12
compression size

Figure B.2: Rastering each compression size for a 4 node network (normalized) and showing
cach AUC value (without oneoff networks)

For latent spaces of at least 9, we use a sligthly different network setup, adding additional
parameters in 2 steps. You see the effects of this sligthly in figure B.2.

B EXPERIMENTS USING GRAPH AUTOENCODER Page 79

B.2 Things we learned from implementing a Graph Autoencoder in
tensorflow and keras

B.2.1 Overflow in angular differences, and how to solve it

Referenced in: [3.2]

Our input data contains a ¢ that is centered around its mean: so the most simple imple-
mentation would simply subtract the mean of ¢ from each ¢ value. This can lead to overflow
problems, since ¢ = 2 - 7 is equivalent to ¢ = 0 and thus a mean of about 6 could be sutracted
from a tiny value!'® resulting in weird phi distributions. Not solving this, results in a loss
distribution with a small peak at very high losses

So how to solve this? first we need the true mean value (—0.1 + 2 -7 and 0.1 have mean
0 and not), and then we use a modular operator to restrict every difference (the difference
—0.14 2 -7 modulo 2 - 7 equals the true difference of —0.1). And for finding this mean value
we can cheat a little, but calculating the mean 4 vector, and finding out its ¢ value. For
a more indepth look at out solution, you can also take a look at the actual implementation
https://github.com/psorus/grapa/blob/master/grapa/layers.py#1L6488 .

B.2.2 How to deal with NANs

Referenced in: [4.5.3] [6.1.2] [A.2]

When setting up your own graph autoencoder, one thing you might have to deal with are
networks that return NANs. We observed three kinds: Networks, which loss goes NAN at some
point: These NANs you can deal with the best, since there is a keras callback terminateOnNAN
which stops the training from escalating further, and so such NANs just stop the training a bit
too early and make the network just a bit worse. That being said, sometimes these NANs can
be simply avoided by

e Making sure your functions are continuously differentiable, we had a problem with 4/|z|,
even though it is only not differentiable at a single point, that you probably never reach,

but \/|z| + 1 — 1 works.

e Often enough it can be enough to simply retrain your networks, as some NANs are fairly
rarely called, but if the loss is NAN it usually stays NAN.

e [t seems like it helps to reduce the complexity of your function, we saw that while thinking

about normalization: z/std () NANs, while (. does not.

Giving those NANs, there are two other cases: NANs in a learnable parameter, that either
results in a loss that is NAN or not. Both cases are fairly rare, but appeared. You might ask
how a parameter that is NAN can result in a loss that is not NAN, as every function of NAN
is NAN, but there are parameters, like the metrik in the topk algorithm, which only affect the
ordering, and apparently is the sorting able to handle NANs'!'. We mention these here, since
hidden NANs are very hard to detect and can still hurt the performance!'? The only way to
check for NANs is to go over each parameter and check it, which we do after each training,
but even when doing this, we are not be sure that we did not miss a NAN parameter in an
automatically repeated network.

100y the inverse.
1 Even though we have no idea what the sorting algorithm of tensorflow exactly does to NANs.
12Consider topK NANs: instead of a useful graph, this graph is just random.

https://github.com/psorus/grapa/blob/master/grapa/layers.py#L6488

B EXPERIMENTS USING GRAPH AUTOENCODER Page 80

B.2.3 Why relus are great

Referenced in: [7.1.1]

Activations like relu (z) = x + |z| allow a neuronal network to learn nonlinear functions.
You can also use them, and relus specifically(since it is probably the easiest one) to implement
functions yourself. Consider the following function heaviside function: f(z) = 1 for every
0 <z and f(x) = 0 else. Using this function in tensorflow is not easy, notably since it is not
differentiable. But you can approximate it quite well as —relu (C' - z) +relu (C' - z + 1) (using a
high value for C'). This trick is used multiple times in grapa, but you should be careful: Since
the higher C' is, the less differentiable this function is, choosing a to high C' Might be a bad
idea. Also, this specific example can also be implemented as sigmoid (C' - x).

B.3 Metrik analysis

Referenced in: [A.1] [A.3] [B.4.2]

As explained in appendix B.4, our topK algorithm, on which all graphs are based, uses
a learnable diagonal metric, which is used to define similarities in the network. This metric
can be extracted to understand this sense of similarity. Figure B.3 shows that unnormalized
networks use the angular differences between nodes to define similarity. Interrestingly figure
B.4 suggests that using a normalization changes this. Now networks only use one angle, and a
negative metric value for the other one. This means that two nodes are more similar the more
one angle is different, but also the more different the other is.

1.24

1.04

0.8

0.61

metrik

0.41

0.21

-0.2

flég e’ta phi pt

Figure B.3: Typical metrik of unnormalized networks

B EXPERIMENTS USING GRAPH AUTOENCODER Page 81

metrik

flég eta phi bt
Figure B.4: Typical metrik of normalized networks

For a metrik on different features see appendix A.1.

B.4 How topK works exactly

Referenced in: [2.3] [4.4.1] [B.3]

The probably most commonly used algorithm, to construct a set of graph connections from
a list of vectors, topK, seems to be quite easy to understand: you connect each vector, to the
K vectors that are most similar to it. The difficulty lies in the word similar: Here two vectors
are more similar, the smaller the 12 difference is. In an attempt, to make this more powerful,
we also use a learnable metric in this 12 difference. Even though this might not be strictly
necessary, since the network can change parameters to accommodate its sense of similarity,
this still allows the network to better choose what to focus on in each topK layer. It can be
quite useful for autoencoder, since for example ignoring a parameter, could else only be done,
by decreasing its size in relation to the other parameters, which might not be optimal, when
you want an accurate reproduction. This also allows you to create a graph, before having
any learnable layers. On the other hand, these metric can complicate the calculation of the
adjacency matrix, which we try to manage by demanding that the metric is entirely diagonal,
reducing also the needed time drastically, and the parameters of the metric can increase the
occurrence of divergences in training, since even a small change of those parameters can affect
the network output in huge ways. That being said, having a humanly understandable metric,
can lead to interesting insights (see appendix B.3). You could ask yourself, if a topK algorithm
is the best choice, since the number of possible adjacency matrices is quite low, see for this
appendix B.4.2. Finally, it should be noted, that the topK layer can increase the size of each of
the feature vectors, which is useful for the compression algorithm, even though in this specific
example this is not used.

B EXPERIMENTS USING GRAPH AUTOENCODER Page 82

B.4.1 Problems

Writing a topK layer to connect each node just to its K neighbours is actually not really
possible: The idea of a graph in which each node afterwards has K nodes does not always
work, consider the following graph and K = 1 in figure B.5!3.

Figure B.5: Example of a set of nodes that cannot perfectly be connected using a topK algorithm
(here k = 1). The problem here is, that 2 nodes have the same distance. We connect in this
case both

When there are two nodes of the same distance, which to connect? We simply connect
both, as states in which both are of the exactly same distance are very rare, but there is a more
complicated problem in figure B.6.

Figure B.6: Example of a set of nodes that cannot perfectly be connected using a topK algorithm
(here k = 1. The problem here is, we want to connect the last node to a node that has no more
open connections. We solve this by using asymmetric adjacency matrices

113Choosing a low K is done here to make the example easily accessible.

B EXPERIMENTS USING GRAPH AUTOENCODER Page 83

How to connect to nodes that don’t have neighbors open? We solve this by no longer
requiring the adjacency matrix to be symmetric, and thus allowing the graph to be directed.

B.4.2 Why topK might actually not be the best idea

Referenced in: [A.6] [B.4.2] [F.2.3]

Since this is just an appendix, I want to take the time, of starting this chapter with a story:
A while ago, I was in a chapel. This does not happen very often, and judging from the chapel,
it is also not used very often. One thing you immediately notice, is that this chapel did not
utilize church banks, but just used a lot of chairs, and since at that moment, I desperately
wanted to think about something else, I became fascinated by those chairs: For some reason,
even though these chairs are fairly unordered, I didn’t think of them as just n chairs, but as
r rows of ¢ chairs each. Why? How do we abstract those unordered amount of chairs into
need rows and collumns, and do we have an algorithm that can do this for us? Since this is
still a thesis about graph autoencoder you might guess the relation: if you simply draw graph
connection between each neighbouring chair, you generate a graph like in figure B.7.

Figure B.7: A graph representing chairs.

This graph is easily abstracted and reconstructed using the algorithms explained in chapters
4.2 and 4.3: You can use one axis of the diagram (probably y) as seperation variable. This
results in subgraphs for each row, which get compressed into one object that we might call a
row. Then, this row graph tensorproducted to the sitting plan as graph of rows gives the original
graph. There are problems, notably you need to know the number of rows before!'4, but this
is still an application of a point cloud, that is well compressed using my graph autoencoder.
There is just one problem: the graph we use is not a topK graph! To be precise: A topK
graph is defined by each node having the same number of neighbors, but the chairs next to the
edge have fewer neighbors than chairs in the middle of the chapel. This means that this graph
cannot be the output of the topK algorithm. And you can show quite easily, that the tensor
product of a topK graph with a topK graph is the only way to return a topK graph.

So how to solve this? One way would be to connect everything below a fixed distance, but
testing this requires more effective high node networks, as in our tests this did not make any
difference. Also choosing a fixed distance is an arbitrary choice which we dont like.

114 Ag the compression number has to be a factor of the number of chairs, and finding half rows or double rows,
still would be good representation, this is actually not that big of an problem.

B EXPERIMENTS USING GRAPH AUTOENCODER Page 84

B.5 Trainingsize, and why graph autoencoder don‘t care about it

Referenced in: [4.4.1] [4.7.2] [7.4.2] [C.2.2] [D.4]

Graph networks with oneoff networks show some properties that a usual network don’t. One
thing is the apparent independence of the training size, and even when you can easily explain
this, as having few parameters in your network, this still might allow you to train on data that
was not usable before (see chapter F). We show training histories in figures B.8 and B.9, while
figures B.10 and B.11 show that this requires oneoff networks.

—— training
0.5 validation
0.4
?
©20.3
0.2
0.1
0 100 200 300 400 500
epoch
Figure B.8: Training curve trained on 50k top jets
| —— training
1.0 validation
0.8
£06
0.4
0.21
0 100 200 300 400 500

epoch

Figure B.9: Training curve trained on 5k top jets

The training history for 5000 jets seems actually even less noisy. This is why we can use a
reduced size to remove NANs (see chapter 7.4.2).

B EXPERIMENTS USING GRAPH AUTOENCODER Page 85

3]
10 —— on_50k:0.3771
o —— on_5k:0.4366
S —— random guess
()
2102,
2]
o
o
)
w
S o
Q 10]
&
()
>
£
100_
0.0 0.2 0.4 0.6 0.8 1.0
true positive rate
Figure B.10: Double ROC curve for different training sizes
3]
10 —— on_50k:0.2003
Q —— on_5k:0.1982
S —— random guess
v
2102,
7]
o
o
[}
0
S o1
5, 101
&
o
>
£
100_

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure B.11: Double ROC curve on oneoff networks comparing training sizes. You should see
no actual difference here

B.6 Why autoencoder reproduce mean values

Referenced in: [6.1.2]

One thing you often see your autoencoder do, is learn mean values of distributions instead
of the whole distribution. This you see most clearly as the width of each output distribution
being smaller than its input distribution, and even though these distributions are not exactly
constant this is still the same effect, which is why we want to explain it here a bit more closely.
As mentioned in chapter 4.5 you most prominently see this effect with a 12 loss, and you can
easily see why: consider an easy example of a network either requiring —1 or 1 and being able
to output every value in between. Let’s say it guesses either 1 or —1 With an accuracy of a,
then the loss is 4 - (1 — ¢) if on the other hand, it guesses b - value where value is its rounded
guess, then the loss becomes q- (1 — b)*+ (1 — q)- (b 4 1)* which can be smaller than the original
loss for every ¢ < 1, being minimal at b = 2- ¢ — 1, which for every ¢ < 1 is not equal to 1, and

B EXPERIMENTS USING GRAPH AUTOENCODER Page 86

thus choosing a prediction smaller than the true prediction is beneficial in minimizing the loss.
Also for ¢ = 1/2 you see the prediction to regress to 0 and thus the network to learn the mean
of the network. This also explains why at the beginning of the training, where the network
does not really have a clue what the real distribution is, the first thing learned is the mean of
this distribution.

C OVERVIEW OF LESS USEFUL NETWORKS Page 87

C Overview of less useful networks

C.1 Failed approaches

Referenced in: [2.4]

In this chapter we will quickly go over some bad ideas you could have, on how to implement
a graph autoencoder and finish with the first implementation that could be considered working
at least a bit. These implementations are usually defined by an encoding and a decoding
algorithm, so basically something to go from a big graph to a small graph, and something to
reverse this again. In addition to this, the graph update and the graph construction stay mostly
the same as it was explained in chapter 4.1 and 4.4.

C.1.1 Trivial models

Let us start with the probably most simple autoencoder algorithms: To make a n node graph
into a m node graph, we just cut away the last nodes until there are only m nodes left'*> to
reduce the graph size, and add zero valued particles to it again. One difficulty here lies in the
fact that those particles have no more graph connections, this we solved by just keeping the
original graph connections stored. Sadly, those networks just don’t work: even when we would
set the compression size over the input size, the reproduced jets hardly bare any resemble to the
input jets: This is the first example of the central problem of graph autoencoding: Permutation
invariance. Consider the following encoder: two numbers a and b where a = b + 1, this would
be trivial to compress into one number for a normal(dense) Autoencoder(maybe just take a),
but here we have to respect permutation symmetry, so basically we do not know what the first
and what the second particle is and how do we decompress now? In this context you could keep
one of the parameters and try to encode if the other one is bigger or smaller than this, maybe
you also know that 0 < a and you could multiply it by —1 if it is the smaller one, but this is
less than trivial, and by increasing the number of parameters this gets even more complicated.
This is a problem that mostly appears as the inability of even a "good” Autoencoder to work
with and compression size that is equal to the input size, building an identity (see appendix
D.2). That beeing said, permutation invariance can also be a benefit, especially in permutation
invariant input data, more to this in appendix D.3

C.1.2 Minimal models

To improve this model, we started working with smaller graph sizes (mostly the first 4 particles),
making the structure less complicated, and allowing for more experimentation thanks to the
lower time cost. Notable improvements include replacing the added zeros by a learnable function
of the remaining parameters, relearning the graph on the new parameter space and adding some
dense layers after the graph interactions, but the most important improvement was achieved
by making the compression and decompression local in some learning axis. Instead of just
removing parameters in an arbitrary way of physical intuition, we demand that particles which
are similar in some way are to be compressed together: This is achieved by the creation of a
function that compresses a set of particles into one particle, and allow the network to learn what
similarity means''®. These networks still have problems, as we will discuss in the following,

115Please note the importance of the pr ordering here: Cutting the last particles means cutting the particles
with lowest pr and thus the probably least important particles.

H16Tn the compression step, we define a new feature for each node, by which we sort the set of nodes, and
afterwards we build sets of n particles from this ordering, and compress them using a linear function (it might
be interresting to look at nonlinear functions, but we generally see worse results by adding an alinearity). Please
note that since we use a feature to sort the elements, and in the graph update step there are neighbour steps,
that generally increase similarity, connected particles are more probably compressed together, even though we

C OVERVIEW OF LESS USEFUL NETWORKS Page 88

but generally produce respectable decision qualities, and show similarities between input and
output image. These network is discussed in the next subchapter.

C.2 The first graph autoencoder that could be considered working

Referenced in: [3.3.2]

This autoencoder takes QCD jets, transforms them as introduced in 3.2, does some addi-
tional preprocessing, after which a graph is constructed, a graph update step is run, after which
a graph compression algorithm is applied just to be reversed afterwards, reconstructing a new
graph, which is again used to update the feature vector, after which (and after a sorting step),
the current graph is compared.

After this graph compression, which reduces 4 times flag + 3 parameters into one vector
with 10 parameters, we use 3 dense layers reducing the parameter count down to 67

C.2.1 Training setup

Another thing that has to be clarified concerning this model, is the training procedure. We
use the adam optimizer, with a learning rate of 0.001, with a batch size of 200 and train the
network, using an earlyStopping callback, until it does no longer improve its validation loss
for 10 epochs and afterwards use the epoch with the minimal validation loss. We use 600000
training and 200000 validation jets to plot here the loss for each epoch in figure C.1.

— loss
0.37 1 val_loss

0.36 \/\/’__//\\,
0.35
0.34
0.33
0.32

0.31 A1

0.30 1

0 2 4 6 8 10 12
epoch

Figure C.1: Training history for first working autoencoder

As you see, there is not really any progress made in the training!'®, but you already see
one fact, that will be quite common in the following: The validation loss is not (much) bigger
than the training loss, neither at the end, not anywhere. This is fairly uncommon, as usually
earlyStopping is used to combat overfitting, and validation losses that seem to increase at
some point, but also easily explained, since encoder and decoder only amount to a total of 840

do not demand this.

H7Contrary to usual autoencoder, choosing a compression size as small as possible does not really matter to
us, since the classification power has a complicated relation to it (see appendix B.1).

18Fxcept for maybe the first epoch, which is not shown in these kind of plots.

C OVERVIEW OF LESS USEFUL NETWORKS Page 89

trainable parameters, which is not enough to store information for O (1) events. Interestingly,
this seems to be a clear benefit for graph autoencoder, as even bigger networks with similar
amounts of parameters, trained on fewer data, don’t seem to show any tendency to overfit. This
allows us to reduce the training size to at least 2 orders of magnitude less, without any quality
loss (see appendix B.5), and you could even ask yourself if it would not be possible to remove
the whole need of splitting your data into training and validation data. That being said, this
dataseperation is maintained for the rest of the thesis, and this overfitting safety comes at a
price: the validation loss might not increase in relation to the training loss, but that does not
mean that both cannot increase in parallel. This, and the fact that graph training curves are
way more noisy than usual training curves, make earlyStopping still a viable training callback,
and result in most of the reasons, each training stops.

C.2.2 Results

So why do we consider this the first working model? This might be the first model, that can
show some resemblence between the input and the output in figure C.2.

event number 7638

0.041
. @ truth
@ prediction
()
0.00f @ O
£ O ®
—0.021
—0.04
—0.06 . | . e
-0.10 —-0.05 0.00 0.05 0.10
eta

Figure C.2: A reconstruction image for this model, we choose here one of the best reconstructed
events

And even though this resemblance is not very good, and this is even one of the better
examples. This might also be the first model, that consistently returns finite values, which was
not necessarily trivial at the beginning. But most importantly, this network already returns
a seemingly good AUC score of over 0.8, which for taking only 4 particles seems to be quite
impressive!!?

19 A bit to impressive actually, see chapter 5.

C OVERVIEW OF LESS USEFUL NETWORKS Page 90

AUC
1.0
4
= 0.8
o
)
© 3 = 0.6
Q
e
| -
(@)
u
0.4
w?2 -
S]
=
| -
& 02
1

0.0

flag phi eta Ibt
Feature

Figure C.3: AUC feature map for this model

If we look at the featuremap in figure C.3, the first thing you should notice is the perfect
score in the flag column. This is sadly just numerical noise, that happens, when a reconstruction
is nearly perfect, which sometimes happen, when the autoencoder just copies a value, and not
very useful if you want to differentiate between jets. So ignoring this, the angular columns seem
useful for comparison, and as if most of the classification power comes from here. Finally, the
momentum column seems fairly useless as it has AUC’s below and above 0.5.

C.3 Improving autoencoder

Referenced in: [3.3.2]

Given the fairly good AUC score, it looks like the only thing we now need to do, is to
increase the size of this autoencoder, and we probably have a really great anomaly detection
algorithm. But before we try, and fail, at this, let us improve our autoencoder first. As you
might agree, the training curve does not look very impressive, and the reconstruction is also
not very good. Thats why we suggest some changed model'?°.

C.3.1 Training setup

Here we still train on the first 4 nodes, and with the same batch size of 200, but with a lower
learning rate of 0.0003 and with a higher patience, stopping only after the network does not
improve for 30 epochs. We also increase the compression size from 6 to 7.

120We alter models iteratively, but since we don‘t want to show tausends of models here, you only see sum-
maries, which is why the changes seem a bit random.

C OVERVIEW OF LESS USEFUL NETWORKS Page 91

C.3.2 Results

10°
— loss
val_loss

10—1 4

1072 4

N

N

0 20 40 60 80 100 120 140 160
epoch

Figure C.4: Training history for a better autoencoder

As you see in figure C.4, the training history looks way better: The training does not stop
after only a few epochs'?!, and it is less random than before, while still not showing any signs
of overfitting. On the other hand, you might notice a peak in the validation loss at epoch 24.
Sadly this is fairly common: The validation loss is not worse, since many events are slightly less
good reconstructed, but through very few really inaccurate ones. This might be a consequence
of some slight variation of a parameter, that completely changes the reconstruction in some
edge case. The metric of the topK algorithm or the sorting feature for the compression might
be such parameters. Luckely those peaks disappear, when the problematic parameter has a less
dangerous value, and since we always take the model with the minimal validation loss, we can
just ignore those peaks'?2. You also might notice that the learning is done basically completely
in steps: the loss is constant for some time, after which it suddenly improves rapidly. Finally,
please notice, that the most improvement is done in the very first epochs. This is quite common,
up to networks that do 0.9 of their training before the first validation loss is calculated.
Also the roc curve improves, reaching an AUC score of over 0.85

121 And this is not only an effect of the patience beeing bigger.
122You can control the number of peaks by tweaking the learning rate, but a lower learning rate generally
keeps the loss from improving further at some point, and thus might not be a good idea.

C OVERVIEW OF LESS USEFUL NETWORKS Page 92

event number 7638

()
0.002- ® tuth
Py @® prediction
0.001-
o
0.000- °®
-_g []
~0.001- ®
—0.0021 [
—0.0031
®
—0.0075-0.0050-0.0025 0.0000 0.0025 0.0050 0.0075 0.0100 0.0125
eta

Figure C.5: Reconstruction image for the same event as in the previous chapter, on the left for
the current model, and on the rigth for the previous one

In figure C.5 you see the difficulty of comparing a reconstruction image. Is this one is
reconstructed better than figure C.27 Sure both are not very good reconstructions, but clearly
saying that the new one is better seems not possible. One reason why we think this new
reconstruction is better, is because it shows one feature, that will be a common feature in the
next models: The reconstruction has a lower angular width than the input (this is explained
in chapters 3.3.1 and 4.5).

AUC

4
=1
3
- 3
e
)
2
2
D
©
(a8

1

flag phi eta Ipt
Feature

Figure C.6: AUC feature map for this model

C OVERVIEW OF LESS USEFUL NETWORKS Page 93

Finally, the AUC Feature map in figure C.6 is way better than before: The angular collumns
are still the most important part of the reconstruction, but the flag collumn is no longer showing
numerical problems'?®, and even the transverse momentum can be used to compare jets 24,

C.4 Improving autoencoder even further?

Referenced in: [2.3] [C.5]
There are some algorithmically changes that we thought of, that will be tested in this
chapter.

C.4.1 Physical intuition behind the encoding algorithm

Referenced in: [4.2] [C.5]

The usual encoding algorithm could be seen, as inverting a particle decay: Taking for exam-
ple a simple two particle decay: On the graph, you could understand it as some function, which
is making 1 node into two nodes. And as you can find the original particle by some function
of the resulting particles, you can use an original particle with some additional attributes'?®
to reconstruct the new particles from it. This might suggest that this kind of autoencoder is
optimal for particle physics, but this setup is even more useful as it does not simply cut away
additional information, and the physical problem is actually not that optimal, since the number
of particles in each decay does not only have to be constant, but also known before in every
compression step. Also, particles don’t decay in steps: It could well be, that the initial particle
decays into two particles, of which only one continuous to decay further. That being said, the
optimal encoding algorithm, that we would like to be able to write (appendix C.5), would be
solve this, and thus have even more physical intuition.

C.4.2 Better encoding

Referenced in: [4.2] [9.1]

Since writing this much more advanced graph abstraction algorithm, would have taken very
much time, let us focus first on a bit more simple better encoding algorithm: The current
encoding basically completely ignores any graph information. After any compression stage the
whole graph has to be relearned, and connections only indirectly!?® affect the corresponding
feature vectors. Why not use the graph a bit more? Here we suggest that using a function of
the original graph as the compressed graph might be a good idea: When compressing n vectors,
you can see the adjacency matrix as a matrix of matrices, and the only task you need to solve,
is how to extract some form of this initial global matrix. This is done here, by applying a
function to each submatrix. We try out setting this function to be the mean, the maximum
or the minimum of the original connections and compare them with or without rounding each
entry to be one or zero to the usual graph compression. With the rounding you can see those
options as setting a connection to exist when more original connections exist than don’t, when
at least one connection exist, or when all connections exist. Values in the following of —1 are
networks that resulted NAN losses.

The data we compare it on here, includes all the stuff we implement over the remaining
chapters, which is why there is an oneoff AUC in those tables(see chapter 7), and also why the
quality is generally worse (see chapter 5).

123This also suggests, that flag is no longer just a flag input value, that is copied until here. Sadly it took until
7.1, for us to notice what this means.

124The transverse momentum alone would reach an AUC of 0.78 and flag would reach 0.69.

125 ike what it decays into (also ignoring uncertainities for now).

126Through the preciding graph update steps.

C OVERVIEW OF LESS USEFUL NETWORKS Page 94

auc oneoff auc
0.511 0.635

mean loss loss std n
comparison 0.309 0.048 5

rounded min 0.366 0.037 5 0.533 0.623

rounded max 0.388 0.042 6 0.563 0.484

rounded mean 0.342 0.036 5 0.56 0.556

' 6

6

5

min 0.371 0.025 0.559 0.562
max 0.372 0.025 0.565 0.541
mean 0.351 0.04 0.54 0.486

Table C.1: Quality differences for different encoder with a learnable handling of the feature
vectors

As you see, this is generally a bad idea, as our comparison network (the one explained in
the chapter 7.3 beats them basically everywhere. Finding this here, does not mean that the
corresponding layers are useless, as they simply could not be good for the data at hand, but
only says that we should not use them here, which is why they are not used for the rest of this
thesis, but still included in grapa.

Another thing we test, is how well a learnable parameter transformation, as used before,
works, compared to also applying a function (mean, max, min) to each feature vector

function | mean loss loss std n auc oneoff auc

comparison 0.309 0.048 5 0.511 0.635

rounded min mean 0.366 0.016 4 0.656 0.472

rounded max mean 0.333 -1 1 0.656 0.549

rounded mean mean 0.372 0.016 4 0.656 0.542

min mean 0.37 0.007 4 0.656 0.503

max mean 0.362 0.002 3 0.654 0.55

mean mean 0.363 0.01 4 0.655 0.505

rounded mean min 0.296 0.022 5 0.579 0.543
rounded mean max -1 -1 -1 -1 -1

Table C.2: Quality differences for different encoder with a fixed function

Evaluating this test series is not as easy as the last one. In the loss, the comparison network
is better than all other layers, excluding rounded means with a min function, but the oneoff
AUC is worse at this model, and at all other ones. That being said, when setting the function to
be the mean, the usual AUC beats the oneoff one a bit. We choose not to use this, because the
higher loss means that worse autoencoder produce these results, and a consistent AUC score,
that is not reproduced by the oneoff AUC suggests trivial features, which suggest no generality
and invertibility.

C.4.3 Better decoding

Referenced in: [4.3] [9.1]

Also, the decoder, does not use the graph structure completely. So we try to replace
the abstraction with a constant learnable graph, by an abstraction with a graph that is not
constant. The problem here, is that the tensorproduct introduced in 4.1.1 does not work for
a product of one graph with multiple graphs. The main difficulty lies in finding out how to
work with the nondiagonal terms: Consider again adjacency matrices of adjacency matrices:
When each feature vector becomes a vector of feature vectors, also each entry in the adjacency
matrix becomes a new matrix. These matrices, multiplied with the original entry would result

C OVERVIEW OF LESS USEFUL NETWORKS Page 95

in a tensor product, when the new matrices would always be the same, but this is what we
want to change. Finding now the diagonal matrices can be left to a learnable function of the
feature vector, but for the off diagonal matrices, we have two suggestions: The first, graph like
decompressor, define those matrices as functions of the two corresponding diagonal matrices.
Here we compare a product, a sum and those rounded versions and or not only to the abstraction
with a constant graph, but also to the second suggestion: param like decompressor: instead
of the diagonal matrices being functions of a feature vector, every submatrix is a learnable
function of its two corresponding original feature vectors.

mean loss loss std n auc oneoff auc
comparison 0.309 0.048 5 0.511 0.635
4

product 0.265 0.019 0.568 0.557
sum 0.305 0.026 5 0.566 0.514
or 0.404 0.248 18 0.562 0.502
and 0.354 0.074 22 0.587 -1

Table C.3: Quality differences for different graph like decoder

This table looks much more interesting: the product based graph like decoder is able to
improve the loss compared to the comparison model, while also being very reproducible. And
even though the oneoff AUC is worse, this does not seem enough to exclude this model from
further consideration. That being said, we will see later, that graph like decoder (and also
param like ones) have a much less strong relation between the loss and the AUC, making them
very good autoencoder, but not so good anomaly detectors.

We can also look at the way, the original graph is combined with the newly generated graph.
Instead of using a product, we can also use a sum, or again round the result to an or'?” or an
and. Since the combination with a constant graph is not very interesting, we use param like
decompression for the practical results:

mean loss lossstd n auc oneoff auc
comparison 0.309 0.048 5 0.511 0.635
4

product 0.28 0.037 0.553 0.522

sum 0.3 0.024 4 0.549 0.526
or -1 -1 10 -1 -1

and 0.348 0.038 16 0.631 0.546

Table C.4: Quality differences for different param like decoder

Here we see the same thing as in table C.3 Products seem to be a good idea, beating the
comparison network in loss, but not in AUC.

Finally, since we now have a little adjacency matrix, and a list of feature vectors for each
original feature vector, we can apply a graph update step on those subgraphs, to hopefully
enhance the decompression by mixing the decompression of the adjacency matrix and the
feature vectors. This was already enabled in all previous compression and decompression tests,
but is tested here again on param like decompression:

This shows basically no difference, so since we like the subgraph actions from a theoretical
standpoint (and because they seem to help the network converge a little faster), we keep them
enabled, when we use more advanced networks.

127Tn practice we expect the product to be virtually identical to the or, since the inputs are either 1 or 0.

C OVERVIEW OF LESS USEFUL NETWORKS Page 96

mean loss lossstd n auc oneoff auc
yes 0.28 0.037 4 0.553 0.522
no 0.277 0.0335 3 0.571 0.528

Table C.5: Quality difference for either running learnable sub graph updates or not

C.5 The compression algorithm that we wish we would be able to
write

Referenced in: [4.2] [9.1] [C.4.3]

Our approach to encoding and decoding, as discussed in chapter 4 might work fairly well,
but if not already the more complicated approaches discussed in appendix C.4 would work
worse than our more simple solution, and maybe even more importantly, the best possible
algorithm we can think of, would not be nearly impossible to write, improving the compression
and decompression would be fascinating. This is why we want to briefly talk about how you
could do this: Consider the graph in figure C.7.

Figure C.7: A sample 6 node graph splitted using our algorithm

In the current algorithm, we would try to seperate this 6 node graph into for example 2 3
node graphs, but how useful would that be? Sure you could seperate them by one of their axis
values, but would not the seperation in figure C.8 be much more useful?

C OVERVIEW OF LESS USEFUL NETWORKS Page 97

Figure C.8: A sample 6 node graph splitted how we would like to split it

To create this graph, you would use a more graph based pooling algorithm. The algorithm
MinCut!?®, would be really hard to write, since we would want it to result in graphs of different
size, whatever algorithm is then applied to the subgraphs compressing them, would be able to
handle different numbers of nodes. This also means that the decompression algorithm, would
return either different sizes of graphs, which would not only be hard to write but also be difficult
to handle considering that this could not work in a graph like manner, and might be at least
limited in a param like manner, or would be combined into a graph bigger than the original
one (while also limiting subgraph sizes). And considering that already sorting graph nodes is
worthy of discussion (see appendix A.3) and sorting is much easier than cutting your graph
into an usable size, this is definitely not trivial to implement.

So why do it? Appendix C.4.1 gives you some more physical intuition why this might work
better on jets, but even when this would not work, choosing a better encoding and decoding
algorithm still might be very useful as a graph pooling and a graph generating algorithm (see
appendices F.2 and F.4 respectively)

128From [12], mincut tries to seperate graphs by the least number of graph lines.

D MORE PROBLEMS WHILE WRITING A GRAPH AUTOENCODER Page 98

D More problems while writing a graph autoencoder

D.1 Choosing the rigth compression size

Referenced in: [B.1] [D.2]

One problem of each autoencoder anomaly detection approach is that the size of the latent
space is arbitrary. Mixed approaches like in chapter 7 solve this by working with every com-
pression size, as long as the autoencoder is not trivial. But not using mixed approaches this is
not so trivial.

There are two things to consider:

e The compression size for the autoencoder in chapter 4 we choose by optimizing their AUC
value. And as we have discussed in detail for example in chapter 5, this is a bad idea:
This resulted in the compression size being way too low to contain the whole information,
and thus no useful feature. Generally you can say that you dont want your latent space
to be to small, as you loose information in this case.

e The other thing you don’t want, is a compression size that is too big. A perfect recon-
struction is invariant under chancing the training data, and you won’t be able to use this
Autoencoder at all. We also noticed that there seems to be a minimal compression size
for a normalized network to be invertible. This minimal size we chose in chapter 6.

We are quite happy with our choice of compression size, but it is still a good idea to raster
every possible compression size. This is done for a specific unnormated network in appendix
B.1.

D.2 Building identities out of graphs

Referenced in: [4.1.1] [6.1.2] [9.1] [C.1.2]

An optimal autoencoder should be equivalent to the network with the compression size set
to the input size. The problem here is, that this trivial model does not necessarily reproduce
its input perfectly. As described in chapter 4.1, the graph update step is given by

f(anZscz—i—s;xz) (D.1)

and this kind of update step is not always invertible through another step. To see this, let us
first ignore the activation function as f(x) = = and let us use a fixed size. Given 3 nodes of 2
features each, let the adjacency matrix and thus the graph be fixed to be:

(D.2)

o = O

1
0
1

S = O

While the 2x2 matrices are general, we can use the tensor product from chapter 4.1.1 to convert
them, corresponding to converting the 2 dimensional feature vector in a one dimensional one,
into a corresponding matrix that can be multiplied to this new one dimensional feature vector.
This matrix will then be given by

Soo Sor noo nor 0 0
S10 S11 nw nir 00
Tioo To1 Soo So1 Moo 7ol (D.3)
N0 N1 S0 S11 Mio N1
0 0 mo mor Soo So1
0 0 nip ni1 S0 Su

D MORE PROBLEMS WHILE WRITING A GRAPH AUTOENCODER Page 99

This example we already use in chapter 4.1.1, but the point here is now, that, to be able to
create a good identity, the inverse of this matrix has to be of the same structure, but the inverse
of this matrix is not of the same form. This can be most easily seen by considering the last
element of the first and second line of the resulting identity. We call the corresponding neighbor
interaction matrix of the second step here m, while the self interaction does not appear'?®

0= Mo1 - Noo + M1 * No1 (D4)
0= mop1 - N1o +mq - Ny (D5)
which can only be solved for
Moo _ Mo (D.6)
o1 n11

but since n is given, the matrix cannot be invertible!.

You could ask yourself if this is actually a problem, since even though two nonactivated
update steps cannot invert themselves, but surely a bunch of update steps are invertible to-
gether. We also assumed the adjacency matrix to be the same, which does not actually has to
be the case. And even if not, since the compression size is not the same as the input size, the
problem is anyway different. Sadly this is not something that we are able to easily calculate,
but what we can do, is test this experimentally. As shown above, any graph update step can
be rewritten as a product with a specific matrix. This allows us to create an inverse update
step, that is equivalent to the normal one, except for a numerical inverse of the update matrix
and train networks using those inverse update steps to decompress our data (You could ask
yourself if the update matrix is invertible, and in general it is not (a trivial example might be
no neighbour interaction and a nonivertible self interaction!!), but in practice this is a problem
that can be controlled: It happens that the function used (tf.linalg.inv) fails, but this is rare,
can be controlled by the initialiser of those matrices, and even if it fails, the documentation
states that this function might'3? just return noise instead of showing errors. And considering
that having a matrix that is not invertible requires each parameter to be exactly tuned, this
can be ignored by the parameters constantly changing. A bigger problem, and the reason, why
we do not use these invertible matrices in each decompression phase are those matrices that
are nearly not invertible (have a determinant very close to zero). Since the determinants of the
inverts of those matrices are huge, they can amplify noise and thus confuse the minimization
algorithm. In practice that means that a network that once has reached a quite low loss, can
have quite a bigger loss after a couple more training steps). Sadly this results in less stable
training, which is enough for us to not use inverse update layers.

So finally we see those invertibility problems as another kind of loss. Next to allowing only
for n out of m features to be used, these n features have to work around the structure of the
graph. This means, that comparable autoencoder of a non graph type work better for smaller
compression size. This might seem terrible, but we think it only means, that each compression
size for a graph network is equivalent to a smaller one for a nongraph network, and thus, some
compression sizes close to the maximum are impossible. Finally, you could even see this as a
benefit for graph autoencoder, since choosing the right compression size is not a trivial task
(see chapter D.1), and this gives you kind of a regulator, saving you from choosing a too high
one. Also, please note, that the ability for the autoencoder to reconstruct data, does not imply
anything concerning its effectiveness as classifier

129This is to expect, since the self interaction part has to obviously invertible (at least in most cases).

130You could argue, that n is learnable, but this expects a bit much from the learning algorithm. More
explicitely reducing the possible neigbourinteractions into a small subset reduces the possibilities of the learning
algorithm and the worth of the graph drastically.

131 Aka a no self interaction.

132¥es, the documentation is not very precise what happens in such a case.

D MORE PROBLEMS WHILE WRITING A GRAPH AUTOENCODER Page 100

D.3 Is permutation invariance good or bad?

Referenced in: [C.1.2]

Permutation invariance is a central feature of any (good) graph network, but is this actually
a benefit? On the one hand, you can use permutation invariant data in a more natural way,
but on the other one, you also have to find a way of making your whole algorithm permutation
invariant. The only point this becomes critical in this thesis, is in the decompression algorithm.
Since the compression algorithm changes the order of nodes, but the decompression algorithm
not, might compare reconstructions in a suboptimal way. We see two ways of solving this. One
would be to make your loss function permutation invariant. But when we have tried this, it
did seem to hurt the overall performance. The easier alternative is simply to sort each particle
by one of their variables. We discuss this in appendix A.3.

D.4 Why use graph autoencoder

Referenced in: [D.5.1]

From our experience, Graph autoencoder have some clear advantages over classical autoen-
coder. This does not mean, that they don’t have problems(as discussed in appendix D.5),
or even that those benefits usually outweigh the problems, but at least that there might be
situations, in which choosing a graph autoencoder would be a good choice. The most obvious
situation, in which graph autoencoder should be chosen, is if by their input data has the form of
a graph: That means multiple vectors (or more general objects), with some relational informa-
tion between them, that should not be ignored. This can also be beneficial for variable number
of vectors, or when a permutation symmetry between the input vectors in a set is expected.
Another benefit is the separation in multiple similarly handled vectors. This similar handling
does not only keep the number of trainable parameters low, and thus makes overfitting hard!?3,
but also makes interpreting the output easier, since when every attribute of the same kind is
treated the same, there are not many differences between the qualities of different particles, but
more between different attributes. Also and probably most useful, these shared parameters'*
keep the number of needed training samples quite low: Even though more training sample can-
not really hurt the network quality, we could without problems, reduce the training size down
by more than two orders of magnitude from 600k to 5k (see appendix B.5), and it seems to be
possible to reduce these training size oven further, allowing us to build useful networks with
only O (1) training samples (see appendix F.3). Finally, changing the graph setup layer can
change the whole meaning of a graph layer, transforming a layer that handles physical distance
into one that cares only about momenta. This can allow for variable metric setups, that can
iteratively focus on whatever is important at the current position.

D.5 Why not to use graph autoencoder

Referenced in: [9.1] [D.4]
Given the reasons for why to use graph autoencoder in chapter D.4, here we want to list
some reasons why not to use autoencoder in general.

D.5.1 Reproduding vs classifing quality

When we started working on anomaly detection, Autoencoder seemed like are quite a good idea,
a simple way to differentiate between things that are known, and things that are not known,
while still giving you a way of testing how good your models are trained, without needing
anything else but background data by just evaluating the quality of the autoencoder. It stands

1330r in the models we trained basically impossible.
134The low count and the demanded similarity.

D MORE PROBLEMS WHILE WRITING A GRAPH AUTOENCODER Page 101

to reason that a bad autoencoder did not understand the background data in any way, that can
be used to differentiate it from the signal data, but this is basically just an assumption, and
so after having a bit more experience encoding and classifying data, and especially when we
now have another method of separating data, we first want to spend some time evaluating this
hypothesis. To do this, let’s look first at the loss of the autoencoder: Since it is basically just the
difference between input and output(simplifying chapter 4.5 a bit), it is a measurement about
how good the autoencoder reproduces whatever we put into it'*>, and so by just calculating the
loss on background data, we have a measure for the quality of the autoencoder. So basically
we want to see a strong falling correlation between the loss of our network and the AUC
score!®® do we see this? We show here the loss in training against the decision quality of the
corresponding network in this training step. Please note that this is exactly what we want,

since the correlation we want here, would mean, that in training, a classifier gets continously
bette1"137138139

0.861
0.84- :
0.82
0.801
S0.78
20.
0.761
0.741

0.72+

0.70+

0.004 0.006 0.008 0.010 0.012 0.014
loss

Figure D.1: A simple old AUC by epoch plot for a unnormalized network with thus focus on
angular data

At first glance almost all networks, at least since we consider them working autoencoder,
are monotonously falling like in figure D.1, but there some side marks: Most importantly is
this one of those networks that we trained just to have a high AUC, and thus is a network that
basically just compares angles to zero(see chapter 4). This does not mean that this image is
useless, as it shows, that at least a networks finds out that a way less useful feature should be
ignored, but we should look at the AUC by epoch of a good network:

135This is also a bit of a simplification, since the normalization of the data matters a lot, but we will come
back to this later.

136The lower the loss, the higher the AUC, since we train on QCD jets.

13TYes you could argue, that it is enough when the highest AUC is reached at the lowest loss, but in practice
this is not enough because the network does not always reach the same point.

1387t should be noted, that a network cancels the training when it does not improve for a certain number of
epochs, so in theory you do not know if there may not even be a better classifier at a way later epoch, but with
worse loss. This is usually assumed to be false, since overfitting defines the rest of training, but since we do not
see basically any overfitting, this might not be so easily ignored.

139We should also note, that this is an analysis that we did only for a small fraction of all networks, since
evalutating the quality of hunderts of networks takes considerable time, often even more than training itself.
This is also why we change this method later, to consider only those epochs in which the network improves its
loss.

D MORE PROBLEMS WHILE WRITING A GRAPH AUTOENCODER Page 102

As you see, this relation is basically the same as before, except for two differences: The new
networks are worse, and we do have way fewer epochs. This is since we stopped calculcating the
AUC for each epoch, but now only calculcate it for each epoch in which the network improved!4?
More interestingly, please note a peculiarity in the preceding images: As you see the relations
are almost linear. This is not neccesarily always the case, consider figure D.2.

0.8]

0.7
9 g
< 0.6 2

0.5

0.4]

0.0 0.5 1.0 1.5 2.0 2.5
loss

Figure D.2: AUC as function of the losses without normalization using a trivial decompressor.

It should be noted, that this image is still of the bad kind, focussing mostly on the angular
part, but as you see, this image still shows a strictly falling relation, while this time it seems
to be exponential in nature(something like ¢ — e~%%). You could ask yourself what is better?
The exponential one might be limited in its quality, but is also easier to saturate. And this
is most likely a feature of our network architecture, since you get this curve when you replace
the decoder with a more trivial one. Interestingly the quality in the linear seeming case cannot
be linear, since the AUC has to always be below 1, so you could ask yourself how this curve
continuous. The obvious first assumption would be that both curves are exponential in nature,
but we are not able to saturate the capacities of a nontrivially decoding network. As logically as
this seems, testing this is a bit of a different story: Since apparently our networks don’t reach
the necessary quality to saturate themselves, this is hard, if not impossible to test. Which
is why give up testing just one autoencoder, either by stopping to test just one network, or
by testing other kind of classifiers, and as you will see, both suggest a similar, again falling
quality curve for little losses: Let’s start with multiple networks, instead of plotting parts of
one network, we plot the result of multiple networks:

10This we did for computational reasons, not only to save time, but also disc space. And even though this
makes our reasoning a bit less accurate, this should be a reasonable compromise.

D MORE PROBLEMS WHILE WRITING A GRAPH AUTOENCODER Page 103

0.70
0.65/
0.60/
0.55

% 0.50
0.45
0.40/
0.35

102 1071
loss

Figure D.3: Comparison of multiple network, with other decompressors. green represents graph
like and orange parameter like decompression. Compare this to figure 6.5 in chapter 6.1

As you see in figure D.3, this relation is basically the same. Since the problem in this
step was reproducability, you have a lot of different random network qualities, but, as already
mentioned in chapter 5, there is a strong relation, that would be linear if the x-axis would
be linear, and that is growing, since it is trained on top data, and in our definitions, the
optimal AUC would now be 0 instead of 1. The more interesting part is now those part at tiny
loss, that seams to deviate from the relation. These are two network types, that have a more
complicated decoder, and as you see: They are definitely way better autoencoder, but are also
less good classifier. Then consider chapter 7.1, and oneoff networks that show basically the
same relation(see figure D.4).

0.80+ L
0.751 o ©° o o
0.701 °. . °.°, : ¢
LD) ° °
= 0.65+
0.60+
0.551 °

0.507

0 10 20 30 40
epoch

Figure D.4: AUC by epoch for oneoff showing a growing relation, that at some point starts to
fall again

So lets us assume, that the quality falls of again at some point, why could that be? One
reason might be, that signal and background are similar in certain features. Consider the
following network: you feed it one particle only, but not only the 4 momentum, but also the

D MORE PROBLEMS WHILE WRITING A GRAPH AUTOENCODER Page 104

mass: An autoencoder with the right compression size would learn to reconstruct the mass from
the momentum 4 vector, probably more than it could ever find patterns in the 4 momentum
itself. And if you consider that top quarks decay similarly as QCD quarks, there are certainly
similarities that an autoencoder should not focus on. This explains mostly why oneoff networks
decrease in quality, since the just focus on one feature, but this is also a problem we can solve
with a mixed approach, as shown in chapter 7. On the other hand, this might explain why
autoencoder this effect less, since they combine features, instead of relying on only one. That
being said, this combination of features might be the real problem: while talking about feature
combination, we assumed that a saturated classifier, is an optimal classifier, but this is not
actually the case. Consider the ¢ addition explained in chapter 5.1.4 and tested in chapter E.4:
Any feature that is less useful has a bigger influence, that has to be compensated by a power
3 in this width, and since the leading pt particle is easier to reconstruct'*! than for example
the particle with the 7th highest pt, certain parts of the reconstruction are more or less useful,
but the combination makes no difference between particles, so their combination will not be
optimal, and thus the combination might only be saturated with bad combination factors. In
fact we can look at this, by looking at the partial networks from chapters 5.1 and 6.2.1'? when
we don’t add them together with their optimal factors, but with each factor being 1

Auc Scaling

0.9 1

0.8

0.7

auc

0.6

0.5 1

QCDorWhat
0.4 1 —@— Graph Network

—— compare angles to zero
—— Splitted Graph Network

10t 102
gs

Figure D.5: Partial network combinations, AUC as function of the graph size(gs) comparing a
combination with equal weigths to one with a loss power of 3

141Meaning the leading pt particle is less random.

142\We should point out, that this is not entirely the same, since instead of adding particles, we here add
bunches of 4 particles each, but we would not expect single particles to add differently than particle bunches,
and training a graph on a single particle does not exactly make the best use of their relational setup.

D MORE PROBLEMS WHILE WRITING A GRAPH AUTOENCODER Page 105

You see first in figure D.5, that the combination of equal factors reaches less good AUC,
while still converging against a certain AUC Value. You might also notice that the equal
factor one does only decrease at some point, but this happens, because as seen in chapter
5.1.4 There is a zone of factors, in which adding them together is not optimal, while still
increasing the AUC score, so a decreasing classifier combination is just a more extreme version
of nonoptimal combinations, that appears when two classifiers are "too different”. Also we
just talked about different particles but same features, how about different features? How to
you combine features with different meanings? C addition only works, since we assume that
similar good reconstructed features have a similar width, and when you give this up, the width
is no longer a measure only for quality but also for certain attributes of the feature itself'43,
and any algebraic combination becomes less useful, and also learnable approaches are tricky:
Even though a perfect combination (a combination is a normalization here), might result in the
maximal AUC score, finding it can lead to nearly optimal maxima (as seen in 5.1.4).Another
idea might be a learnable combination but here there is still the question of focus: When we
talk about ¢ addition, we also assume that there is a certain choice of things the network should
focus on, and anything the network does not care to reproduce, is less accurate information
144 but by making this focus basically learnable there is also a problem that you might call
normalizing and this is absolutely nontrivial. If you ignore normalizing your combination vector,
the network will just learn zeros into it (a loss is always minimal if you compare zeros to zeros),
but even when you assert that for example |c¢| = 1, this does not neccesarily solve your problem,
since the network might focus entirely on the smallest feature, and even if you assert that the
size of each feature is the same, it might focus on the feature that is easiest to reconstruct, and
thus it might still be nonoptimal'®. As a final note in this subchapter: Please consider that
oneoff networks should in theory solve all of this combination problems, since they work on
minimizing their width only, and the optimal combination for a minimal width can be assumed
to be the same as the combination for maximum AUC (see appendices E.3 and E.4), but as
chapter 7 and 8 show, they have their own problems.

143Consider the following network: it has some features and the same features times 4 as input (with some
noise, that the autoencoder ignores), sure it will find out that all of its features are twice to reconstruct, and it
will just learn to set the second batch of features to the first batch times 4, but how to combine those features
now? If we just let the mse do this, the second batch is way more important, but this is unlogical, the best
addition (ignoring noise for now) would be the first feature*4 + the second feature, and we can get it by simply
normating the features in a certain way, but now consider the following: what if the noise of the second one
has a different size than the noise of the first one? Then we would have to consider this, first multiply the first
feature by 4 and then use ¢ addition, but to do this, we need to know the multiplicative factor, and in general
we wont.

44T here is also the inverse effect: when the network just copies a certain information, there is less decision
quality in this feature potentially failing ¢ addition.

145\We think you might be able to do solve this, by playing reconstruction complexity against size using c
addition, but we have not tried this, and we expect it to be quite finicky.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 106

E Understanding Oneoff networks with more precision

E.1 Other algorithms

Referenced in: [7.2]

Since oneoff networks seem to have potential, that is just not used that well on jets, you could
ask yourself if other oneclass methods work better. So this chapter serves as an introduction
into several of those classical algorithms for finding signal events after training on background
events, as well as a reasoning why this is not the case. The field these algorithms belong to, is
called one class learning.

E.1.1 Support vector machines

Classically, SVMs are used to differentiate two sets of data points, by drawing lines between
them, so that they are completely separated. Instead of using deep learning, this problem could
be solved analytically, even with the extension no longer requiring only lines, but a learnable
transformation of a line, and thus allowing SVMs to not only work on linearly separable data.
This might be more powerful, but still cannot handle every possible data distribution, and this
problem stays the same for the one class learning version. Here you draw some shape (usually a
circle) with some transformation (an ellipse) around your given background data, in a way that
minimizes the volume. This restricted amount of possible shapes can be useful, keeping the
SVM from overfitting, but it also only allows it to learn certain distributions, so distributions
like figure E.1could not ever be learned.

@ background
signal

1.0 1

0.5 1

0.0 1

—0.5 1

—-1.01

-1.0 -0.5 0.0 0.5 1.0

Figure E.1: A simple example of a shape, that an SVM cannot differentiate

This is a problem, since a shape like this, could be the result of a simple rotational symmetry,
which are not uncommon in physics, so as you might expect, training an SVM¢ on QCD jets
to find top jets does not result in any useful results (an AUC of 0.53).

146Tmplementent in sklearn.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 107

E.1.2 K neirest neighbours

Another usually quite useful algorithm is also an extension of a supervised task: Given two
classes of vectors, you can classify each new point, by looking at the class of the vector that
is closest to it, or at the mean of the classes of the k& Nearest vectors to it. This you can
extend to the one class case, by setting the loss of one vector to be the mean of the differences
to its k£ Nearest neighbors. Since those known points are only background events, you can
expect an abnormal event to have a higher loss, while background events are probably more
similar to already known background events. The problem comes from its ability to overfit.
This can easily be understood in the supervised case, since single weird background cases can
lead to a region in which no signal can be detected. You could say that autoencoder focus on
the distribution of events, Support vector machines focus on the outliers of their distribution,
while k neirest neighbour focusses on the whole volume, which means, it could solve the above
distributionE.1, with a quite good AUC of 0.89 for & = 1 and 0.96 for & = 10047, and in the
jet case, this algorithm does better, reaching an AUC of about 0.37 (on top), but it is still
limited by the curse of dimensionality: One class learning algorithm usually work better on
low dimensional inputs than on high dimensional one, and here this can be understood quite
easily, since the volume of possible vectors grows exponentially with the dimension, while the
number of training samples won’t change too much, making the difference between each of the
background events statistically bigger.

E.1.3 Isolation forests

An isolation forest[35] works quite different to the algorithms explained before. Instead of
defining what a normal event looks like, this algorithm tries to isolate anomalies. It does this,
by randomly classifying points into a tree: Given some attributes, it picks a random one and
a point at which to separate the data by. By iterating this procedure, you build a tree, in
which abnormal data usually is separated easier than the normal data, which means you can
use the depth of a position in the tree as separator. That being said, this algorithm might be
interesting, but still does not work very well, possible since it is also not immune to the curse
of dimensionality, and so the result on QCD vs top is also only an AUC of 0.502.

147There is some overlay between signal and background in the image, which limits the AUC.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 108

E.2 Different algorithms for latent space training

Referenced in: [2.2] [7.2]

Here we test different one class algorithms on one autoencoder that trains on the first 4
particles of top jets and tries to find QCD jets as a signal. For comparison, simply looking at
the loss of this network, you get an AUC score of about 0.377 and the best (the lowest, since
we train on top jets here) AUC score we have seen for an autoencoder is about 0.25. We choose
this one, since its reconstruction seems to be quite accurate!®® (see figure E.2), meaning that
most information about the jet has to be still contained in the feature space

event number 16

0.4
@ truth ®
0.21 @ prediction

0.0

o2l °

=
5 04 @

—0.61

—0.81

-1.01 o

-1.0 -0.8 -0.6 -0.4 -0.2 0.0
eta
Figure E.2: Reconstruction image for the comparison algorithm

E.2.1 SVM

An SVM works better on the compressed space, now reaching an AUC of 0.434, but even though
this is definitely an improvement, it is still worse than just using the autoencoder

E.2.2 Isolation forest

Also the isolation forest improves, now reaching an AUC of 0.377, so it is at least as good as
simply using the autoencoder.

E.2.3 k neirest neighbour

K nearest neighbor is the first algorithm that improves over simply using the autoencoder loss,
reaching an AUC of 0.307, even though it should be noted, that this is for £ = 1 and gets worse
for any higher k. Also, this is still worse than our best autoencoder.

E.2.4 Oneoff

Oneoffs seem to be the way to go here, and will thus be used exclusively for this thesis: One
network reached about 0.247 with an error of 0.005, already beating all our autoencoder, and
by combining multiple ones, you can reach an AUC of about 0.2 beeing quite good.

148 At the point of testing one of the most accurate algorithms.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 109

E.3 Oneoff math

Referenced in: [7.1.1] [D.5.1] [E.4]

To give you a better understanding on how oneoff networks work, let’s talk about the math
behind this idea a bit, especially how this kind of networks should handle multiple kinds of
information. To do this, let us consider a simple model: Each feature is build out of two gaussian
distributions, the first distribution describes the training/background data, and thus has a mean
of 1 and some width o; and the second one describes the signal data, it has a mean of and a

width of o9. This means the decision quality of this feature can be described by s = \/Z;Tl‘ag

The higher s is, the bigger the difference between both peaks, and the better the separation and
thus the higher the AUC. This might remind the reader of the math considered in the chapter
about ¢ addition (5.1.4), and it actually concludes, that by considering how to combine two
background, the math is exactly same as for ¢ addition: Given two distributions, with width
s1 and s9 and mean values of 1, you can combine both distributions into one distribution with

smaller width. This width of the distribution C"iﬁr—ﬁdl is given by —Vcijgﬁs% while the mean is
still 1. This function is exactly the same, as was minimized to find the combination with the
best AUC in chapter 5.1.4. This might suggest, that the resulting combination of an oneoff
network is the combination with the highest possible AUC. Sadly this is simply not so easy: The
problem are the assumptions made in the chapter about ¢ addition(5.1.4) We set the distance
between the background and the signal peak to be constant, which results in the width of the
distributions to be the only important thing to consider, when combining two distributions.
This is fine, when considering features of similar kind, since you can assume their distributions
to be similar, but does not anymore here: And when you assume this distance to be more or
less random, the calculation becomes a bit more complicated. In fact, you can assume, that any
other possible peak could be some sort of signal data, that you want to exclude (see chapter
E.4). So consider the following model: Given a background peak around 1 width a certain
width s;, and an improvement of this peak, being more focussed with a width sy < s;: Which
peak is more probable to separate a random signal from the background? Since the second

peak is less wide, it is less probable for a signal peak to overlap it and thus probably results in
a higher AUC score (figure E.3)'9

14976 be more precise, you optimize the background peak by improving on the function that generates it, this
clearly also changes the signal peak, but does this in a more or less random manner. It could improve the AUC,
but could also hurt it. The point is, that this change is random, and thus on average, optimizing an oneoff
network might be useful. We do this more precisely in chapter E.4.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 110

600 A wide background
narrow background
signal

500

400 A
300 4

200 1

100 A '
0 T T

0.6 0.8 1.0 1.2 1.4 1.6 1.8

Figure E.3: Two different widths of a background peak, resulting in different overlappings to
the signal peak

This combination of two improving methods, C addition for similar features, and statistical
improvement for asimilar features, is why we think, that oneoff networks might work well, but
there are two caveats we need to talk about here: First, this optimization does not help at
all, when the distance between the background the signal peak is zero, since when the oneoff
network focuses on something that is the same in background and signal, making a distribution
less wide, only results in both getting smaller. In practice this becomes only a big problem,
when you have trivial inputs, consider the case of the autoencoder discussed at the beginning
of the chapter: If you change the normalization to have a trivial 1 in one of the other outputs,
you lose all decision power of the flag variables. A possible solution to this problem will be
discussed in the next chapter 7. Another caveat that should be mentioned, is the loss you use
for training an oneoff network. The first choice might be to just minimize (x — 1), but if you
try this, you notice that the resulting mean is not 1 but smaller than 1. To understand this,
consider the following model: given a gaussian peak ¢ with a width ¢ and a mean of 1, which
distribution i - p, with a constant p, minimizes (i - u — 1)2? This loss can be written!®? as

gauss ((z — D1 — - o) (E.1)

where we write gauss (a, i1, 0) as the application of a gaussian kernel with mean p and width o
around a. This function has the same minima as'®!

gauss (22,1 — pp-0) = p* - s>+ (1 — 1) (E.2)
This function is minimal at u = 821+1. Since this value is not always 1, training on this loss,
while comparing the signal peak to 1, does not work. You can fix this, by simply training on a
different loss (mean (x) — 1)* + std? ()52 works quite well, or you can just read the mean of
the output distribution, by subtracting the mean of the background peak, instead of 1. Both
methods work with similarly good results, even though their output is not always the same. In
the following basically always readjusted means are used.

150When approximating the number of training samples as infinite.
151Gince the constant part does not change the minima, and the linear part is zero by symmetry.
152Where mean (z) returns the mean of the input distribution, while std® (x) returns its variance.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 111

E.4 Self improving oneoff networks

Referenced in: [4.6.4] [5.1.4] [5.2.1] [7.1.1] [7.2] [8] [9.1] [D.5.1] [E.3]

We justified oneoff networks before (see E.3) by showing that the factor needed to combine
two double gaussian features is the same, when we talk about minimizing the the width of
the first peak, or when we use ¢ addition to find the maximum AUC value. That might seem
great, but there is one assumption, that we kind of glossed over a bit in the chapter about c
addition: The difference between both peaks, is not necessarily defined by the size of the first
peak. So here we want to go into detail about why this is not necessarily a problem, and what
consequences can follow from breaking this assumption. The way we try to understand this,
is by looking at width vs AUC plots, of different ¢ values combining random gaussian double
peaks, that have each a random width between 0 and 2, while having fixed means of 0 and
1 each!. After simulating a lot of random distributions, three nontrivial'®® classes seem to
emerge. Those are shown in figure E.4.

o8 . oe0 . 079 o
076 .'\ \\\ 078 "/. K\ 078

N i \
RN I\ w
/

el o o5
Sa
N 074
\\ 072

~ 073

-
\\\ 070 072
on

T 1z 13 1s 15 [) s s o o 0z o4 ds 08 10 1z 14 1s

Figure E.4: The three kinds of simulated AUC by loss behaviours

As you see, the first relation is pretty much perfect: the lower the width of the first combined
resulting peak, the higher the AUC value is. This is the class we want, and we would get if
the assumption would be true. Sadly this is not the only possible result and the second class
is not that optimal: These are distributions of suboptimal combination, where the lowest loss,
does not result in the highest AUC, but at least into some value that is close to the expected
optimum. This class appears in different levels of accuracy, reaching from distributions, that
are nearly indifferable from the optimal case, to some, that are definitely not good. Finally, the
third class, contains combinations that are completely suboptimal: The optimal AUC value is
reached at a basically terrible loss, and by decreasing the loss, the AUC becomes bad again.
These are what you might call traps: a very bad classifier is hidden behind a small initial
distribution. You can easily see why this cannot ever be filtered out, by considering the case
of a trivial feature, that is just always (for signal and background) 1: the oneoff network will
focus entirely on it, since it can reach a loss that is exactly zero, ignoring every feature that
would be better at classification, and thus reach a useless classification score, and by looking
only at the background distribution, there is nothing you can do'®®. Please note, that in this
case, the autoencoder would actually solve the problem: since the feature is trivial, it will be
filtered out, and thus cannot be learned from the oneoff network. Combine this with the fact
that, from a quick simulation, this case does not seem to appear too commonly

and you can suggest that this will not be a problem.

But to test this, we have to work on actual data, so this is the loss vs AUC relation for a
network trained on the compressed space of top jets, trying to find QCD as signal. Please note,
that there is a huge difference to the simple case of optimally adding gaussian double peaks:
Firstly, there is an unknown'®® number of features being combined. This won’t change too

153This is still general, since translation and scale invariance give us 2 degrees of freedom per doublepeak.
154With trivial we mean relations that are defined by at least one doublepeak with an AUC of 1.

155Except for using a different algorithm, for example a SVM.

156Unknown, as we cannot really find out, how many informations the network uses to classify a feature.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 112

Class Number
optimal 12
close to optimal
very close to optimal
between close to optimal and terrible
terrible

Ct Ot ot O

Table E.1: Distribution of types of loss vs AUC plots for random gaussian double peaks

much, since the quadratic addition of n features can be understood as the quadratic addition
of one feature with the quadratic addition of n — 1 features, but might be valuable to keep
in mind. Secondly, instead of looking at different values of a ¢ factor, combining the peaks,
we only look those ¢ values, the network considers at the end of each epoch: That means, we
could overlook an optimal AUC in the middle of an epoch, or even miss a good classifier never
considered by the network.

auc

0.27 A [
[

0.26 o

00.3 o
0.25 'M.!*. °
0.24 ‘:’.

1.150 1.175 1.200 1.225 1.250 1.275 1.300 1.325
loss

Figure E.5: AUC as function of the loss for a oneoff network

In figure E.5, the AUC seems to fall with the width of the first distribution(this is what we
want, since we train on top jets), but not reaching the true optimal value. Comparing this to
the theoretical expectation is not that easy: the most obvious reason why this does not matter
might be the inaccuracy of the AUC values: the value might not be optimal, but is very close
to the optimal value, while the AUC seems to fluctuate about more than the expected value.
More interesting is the relation at less than optimal AUC values. Sadly there are not that
many points here. This correlates to the fact, that oneoff networks gain most of their progress
in their first epochs(if not epoch), but the points that we see, seem to fit quite nicely to one, if
not two lines, building the tails of the theoretically expected relations for an at least close to
optimal case. That beeing said, even ignoring the theoretical expectation, and the possibility
of another even better combination, this is a relation that validates our training procedure,
suggests that the initial autoencoder works at removing traps, and might even suggest, that
one of the reasons, multiple oneoff networks combined are better than only one, comes from

Since 12 normalised networks usually don‘t set trained parameters to zero, and any gaussian peak can usually
help reduce the width of a peak (Central limit theorem), it is actually reasonable to assume, that the whole
compressed space, as a transformation of a here 9 dimensional feature vector, is used.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 113

the fact, that multiple distributions reduce the noise in the AUC loss relation, and thus gain
statistically better AUC values'®7.

E.4.1 Oneoff outside of physics

Referenced in: [7.1.1]

This apparently unused potential led us to try them out on more classical evaluation
datasets, and we found a paper[47], that not only works fairly similar to oneoff networks!®®, but
also evaluates them quite thourougly on MNIST'. One algorithm they test their algorithm
against is based on autoencoders while another uses GANs, and they constantly outperform
them. We test here oneoffs on the following task: Given drawings of the number 7, how well
can you detect other numbers. They provide also the results from assuming every other number
to be the background, but here we focus on 7 for now (the other numbers are very similar),
since it seems not too easy, while also not being to hard of a task. They reach an AUC score of
0.946 with an error of 0.009, while oneoffs reach a quality of 0.914 with and error of 0.018. You
could see this, and think that again, they have potential, but they are definitely worse than the
reference paper, but this would ignore one fact: There approach does take the whole datavector
to retrieve its loss, while our only takes some part, and by retraining the oneoff network, they
do not predict the exact same thing'®®. This means that it should be easy to combine multiple
runs into one good classifier, and the math for this (see chapter 5.1.4) is even easier here, since
every network could reach the same quality, you can set ¢ = 1 and just add each value of |z — 1]
together. If you do this with enough reruns'®', the AUC converges against a value of 0.981,
beating the comparison paper, and thus showing the true potential of oneoff networks for one
class learning.

157Even though it should be noted, that this cannot be the only effect, since this combination usually results
in about an increase of 5%, while this only seems to account for at most 1%.

158They use something called a support vector machine, which is probably most easily described as an algorithm
that draws a circle like shape around the known data points, and classifies everything inside the shape to be
background, and everything outside to be signal. Their main idea is to make the shape to be learnable in a
deep way. So the main difference to oneoff networks is the fact that here there is a certain region, with the
smallest possible size, optimal to be in for the background events, while in oneoff networks the only values that
are optimal are exactly one.

IS9MNIST is a set of handwritten digits, that is often used to test new algoritms [32].

1600n average there is a correlation of about 0.6 between each retraining.

161We used here 25 runs.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 114

Loss: 0.13472 Loss: 0.10806 Loss: 0.09764 Loss: 0.09757 Loss: 0.09666

0 0 0 0 0
10 10 10 10 10
20 20 20 20 20

Loss: 0.00899 Loss: 0.00953 Loss: 0.00979 Loss: 0.00986

0 0 0 0 0
10 10 10 10 10
20 20 20 20 20

Figure E.6: On the top: The 5 least 7 like 7th in the training set. On the bottom: The 5 most
7 like not 7th in the evaluation sample. Our favorite image is that in the lower right corner, as
you can clearly see that it is a 9, while also allowing you to see how it can be interpreted as a

7.
We show some classification examples in figure E.6.

E.4.2 Physical interpretability for oneoff networks

Referenced in: [7.1.1] [A.1]

Another example, why oneoff networks might be quite useful, comes from our experiments to
understand them more . Instead of constructing arbitrary features by utilizing deep networks,
the algorithm used here only combines input features linearly. The data we work on here is
provided by cern open data as two lepton events from the 2010 datasets. Momentum 4 vectors
of muons[38] as background and of electrons[37] as signals. These 4 vectors are squared with a
linear metric, reducing it into one dimension, that is evaluated to minimize (|g,, - p* - p*| — 1)
This results in the network learning the following metric

€ D1 D2 D3
e | —0.4997 0.0011 —0.0002 0.0002

p1 | 0.0011 0.5069 0.0014 —0.0008
p2 | —0.0002 0.0014 0.493 —0.0006
ps | 0.0002 —0.0008 —0.0006 0.4998

Table E.2: Learned metrik values of oneoff networks trained on muon events

As you see, the result is very similar to a Minkowski metric: The nondiagonal parts are
zero in the range of numerical uncertainty (and symmetric for 5 digits behind the commata),
the signs are randomly this way, because of the absolute value in the loss function and the
absolute value of the diagonal parts scales the resulting expected output of 1 that the loss
expects. Other than this, this simple network is able to understand itself, that characterizing
a particle is best done through what we call its mass. That being said, the AUC score is not
optimal, only reaching 0.5988, but we can improve this, by assuming the metric to be strictly
diagonal, which results in a learned metric of E.3.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 115

€ y4i D2 D3
14198 —1.413 —-1.4151 —1.4197

Table E.3: Learned metrik values for a diagonal metrik oneoff networks trained on muon events

As you see, this still results in a minkowski metric like result. This time with a flipped
sign, and a different scale, which is just a feature of the implementation. Most importantly,

this simplified metric definition, including less noise, results in a much higher AUC value of
0.800762

E.5 How an oneoff network can become noninvertible

The easiest model for understanding the oneoff width is something like \/ |z — mean (z)|* + std? (z).
And while the means usually match the training data, the standard deviation can be of any
size. So training on a dataset and comparing it to another dataset with the same mean and
less width, results in a noninvertible network. This is nothing we can do anything about, and
an effect that is the same when we talk about autoencoder classifier, and is even less probable
here, as we try to minimize the width, making it less probable that there is a distribution with
lower width. Still this can happen (you can see the frequency in chapter 8.3), but here we want
to mention one effect, that is even worse: antiinvertibility: if trained on a, b has lower loss,
and if trained on b, a has lower loss. This is an ultra rare effect, as we have only observed it
once (or multiple times if you think of the statistical invertibility of chapter 8.1), and an effect
that cannot happen just with an autoencoder, so how does this happen? In general, an oneoff
network should not be able to do this, as if one feature has a certain width in a, and a lower
feature in b, you should be able to pick the same feature in b resulting in b finding a more
complicated, except for the case in which there is another feature in b with lower width, but
this would also mean, that the width of the second feature in a would be bigger than of the first
feature, since else it would have been chosen, resulting again in b finding a more complicated.
Or in math: given f° < f& the network is not antiinvertible unless f2 < f?, but since f& < f2
it has also to be true that f2 < f¢ so no network can be antiinvertible!%®. That being said,
since we use autoencoder in the front, it can happen, that a feature of the first autoencoder
just does not exist in the second one, thus breaking the logical chain, and making antiinvertible
networks possible. We only ever saw a single event doing this, and it was a network working
on ldm data (see chapter 8.1). Ldm data is hard to differentiate at best, making noninvertible
networks much more likely (in fact, as seen in chapter 8.3, all noninvertible oneoffs in this thesis
are trained on ldm data), and by trying to scale using dense networks, at a node number of 25
we got an antiinvertible network. This is shown in figure E.7.

162You could ask yourself, why we use muons as background events: This is because the relative uncertainity of
each electron mass value is much bigger, since the mass is more than two orders of magnitude smaller. Training
a (only diagonal) network like this, still results in a minkowski like metrik (—0.0058,0.0043,0.0043,0.0058), but
the AUC value is way worse reaching only 0.5003 as the expected mean value has way less physical meaning.
163We simplify here a tiny bit, since you could mix two features, but this does not change the math.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 116

true positive rate
° o I
Y ® o
14 o =
EY © °

o
S

o
N

o

N

0.0 0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
false positive rate false positive rate

Figure E.7: Antiinvertibility for ldm data, left using the autoencoder loss, and on rigth using
oneoff networks

Interestingly is the separation quality here much better (even if reversed), as we will be able
to do in chapter 8.1 with node sizes of 4. This we interpret that this difference is basically just

the jet size, as the number of nodes show a difference between both 1dm datapoints in figure
E.8.

e Iged
Idm

1400
1200
1000

800
600
400
200

0 20 40 60 80 100
number of nodes

Figure E.8: Number of jet particles for Idm jets

and a network with fewer nodes (we tried 9 and 16, sizes that don‘t show many zero particles

does not show any real difference between both datasets. 36 nodes show a difference, but
while not being invertible, this dataset is at least not antiinvertible, showing how rare those
networks are.

164)

1647610 padded particles to be precise, for more information see chapter 3.2.

E UNDERSTANDING ONEOFF NETWORKS WITH MORE PRECISION Page 117

E.6 Why c addition might not be perfect

Referenced in: [5.1.4]

C addition (chapter 5.1.4) is a very simple model. And while it seems to match our
assumption approximately, there is a difference that can be explained by the assumption we
made.

e We assume the loss to correlate to the signal peak, which in generally can not be assumed.

e We also assume no correlation between those features, which is definitely not the case.

e And there are some other minor assumptions, like gaussian like peaks!®.

e As well as an assumption on the equivalence of each trained part, while at later points,
Jets with particles that do not exist start to become important, and even though they
will be reconstructed easier, this events definitely are of an a bit different kind, possibly
requiring different combinatorics.

165To be precise: Peaks of the shape of an strictly monotonous transformation applied to a gaussian.

F OTHER USECASES FOR GRAPA Page 118

F Other usecases for grapa

Referenced in: [4.3] [9] [9.1] [B.5]

This chapter is based on 4 graph autoencoder applications, that were originally written as
easy tutorials for the documentation of our graph layers'®. And, even though there are some
quite interesting insights about graph autoencoder to be found here, this also means, that this
appendix can be skipped, without losing too much information. Finally, this also means, that
each of those applications are not optimized in any way, and maybe not even completely though
through, since their main goal is just to be a quick explanation of the code structure and maybe
to be some inspiration on what is possible using a graph autoencoder.

F.1 Abnormal account detection for social networks

Referenced in: [2.3] [5.1.3] [F.3.3]

Social networks provide data that is naturaly described by graphs™®’, so by training a
network on them, with the hope of finding abnormal users, we not only get a new possible use
case for graph autoencoder, but also an example code for a network that does not generate its
own graph.

The corresponding tutorial can be found at https://grapa.readthedocs.io/en/latest /nets.html

167

F.1.1 Datageneration

Data generation is often the most time-consuming part of a new neural network, and it would
not be different here. So to save some time, we just generate a sample social network. This
allows you to ignore privacy settings'®®, simplifies the problem a bit'%’, and allows you to clearly
define the anomalous data points. That being said, this also means, that we could tweak the
data in every possible way to make the results arbitrarily good, which is also why this is the
only subchapter that works with self generated data. This generated network consists of 5000
randomly generated users with 4 attributes (A constant 1 (flag), a:an integer between 1 and
3, b:an integer either 0 or 1 as well as a normal distributed value that depends on a'™). The
corresponding connections are generated the following way: each connection has a probability,
that depends on the difference in the person vector(a factor e~1#=?il) and on the difference in
the node index(another factor e(=%1"=7) This means, that more similar persons are connected
more closely, and that friends of friends are more probably friends. Now we guess on average
5 connections for each person, with respect to the given probabilities, or 2 for the alternative
data points. We choose these anomalies, since defining less used accounts as signals allows us
later to show a benefit of oneoff networks. Now for each person in this network, we only look at
the local surrounding of this person. This is done, by taking only the connection of the friends,
or friends of friends of this person into account. This generates a bunch of smaller graphs, that
we can now feed into the autoencoder'™, but for simplicity we cut a bit on the size of those

166https: / /grapa.readthedocs.io/en/latest/ .

167Tf you let users be nodes, while friendships provide the edges.

168You might not know everything about every user: you would need to decide how to handle a friend about
whom you do not know some critical information.

169Gince an usual facebook user has a lot of information, and often enough hundrets of friends.

179 A normal distributed value with mean 0 and standard deviation 1 added to 2?/16 times another normal
distribution with mean 1 and standard deviation 0.1. This is done just to have some relation between the
elements.

1"1You could ask yourself if this reusing of nodes does not result in a lot of overfitting (by learning the nodes
themself), but as you see below, that is not the case, possibly because of the low number of parameters in the
graph autoencoder.

https://grapa.readthedocs.io/en/latest/nets.html
https://grapa.readthedocs.io/en/latest/nets.html
https://grapa.readthedocs.io/en/latest/

F OTHER USECASES FOR GRAPA Page 119

new graphs, as we allow for at most 70 nodes'™.

F.1.2 Training

To train this network, we use a fairly simple setup, compressing the 70 nodes once by a factor
5, resulting in 14 nodes for which we allow 12 informations each. The training curve is quite
boring, showing the loss being basically the same for trainings and validation loss. Much more
interestingly, is the loss distribution in figure F.1.

training
anomalies
102
1S
=}
o
o
101]
100
0.1 0.2 0.3 0.4 0.5 0.6 0.7

loss

Figure F.1: Loss distribution for social networks

As you see, the reconstruction is not very good, as basically all events have a nonzero loss,
but maybe even more important: there is some difference in the reconstruction of our abnormal
data points. This might seems like you could use this to seperate datapoints, but there is a
difficulty: If you use an autoencoder to seperate datasets, you assume that a dataset which
the network never saw, will be reconstructed worse than a dataset that is trained on, but here
the opposite is the case: the data that is abnormal is easier reconstructed!™, so any separation
is a bit weird: you could just look at something like 1 — [oss, but since you do not have any
reasoning for this makes the training no longer unsupervised. Also probably only this kind
of abnormal data will be reconstructed easier!™, and by negating the loss, you would not get
any useful separation on other data points. So what can we do? Use oneoff networks: In their
easiest version, they take the mean of the training peak, and define distance as difference to this
peak, which would already solve this problem, and in their deep implementation they might
even improve this further. In any case, this works quite well as seen in figure F.2.

172This still keeps 0.9932 of all data points.

173 This reminds of of the case of nonnormalized nets trained on top jets.

174This is here probably the case, sine the abnormal data is less complicated, as it contains less nodes, you
might be able to handle this, by defining your loss relative to the number of nodes, but this misses the point a
bit, as more easy anomalies can still exist, and we can show that oneoff networks can handle them.

F OTHER USECASES FOR GRAPA Page 120

[0 training
anomaly

101 .

100 _

10—1 .

L |

0.00 0.02 0.04 0.06 0.08 0.10

Figure F.2: Oneoff loss distribution on social networks

Please note that we dispense of using any number here, measuring how good the reconstruc-
tion is, as we could improve it arbitrarily by changing the data generation

F.1.3 Whats next

Given these examples, you might notice, that they are not thougth through completely. This
is why we include these kinds of subchapter to give you some ideas on what could be improved
further. The first thing you might need, is to work with more kinds of anomalous data points,
and not just neglected profiles. It might also be a good idea to work on an actual social network,
and if you do this, it would be interesting to just look at the users in the training set, that are
reconstructed worst, as this would allow you to find abnormal users in a truly unsupervised
way.

F OTHER USECASES FOR GRAPA Page 121

F.2 Accelarating molecular networks through pooling

Referenced in: [2.3] [2.4] [C.5]

Our second example alternative use case works on molecules: As they are usually described
only by interactions between pairs of atoms, they are well described by graphs. Here we want to
use this to suggest that the compression step in a graph autoencoder can accelerate a network
trying to learn a function from this molecule.

The corresponding tutorial can be found at https://grapa.readthedocs.io/en/latest /mol.html

F.2.1 Datageneration

All our datapoints here are random molecules, that come from www.chemspider.com , mostly
since they allow you to easily download a complete description of a molecule. This includes
not only all atoms, but also suggested connections'”™, as well as molecular mass, here given
in g/mol, which is what we use as the network output. Every atom is given by 3 spacial
coordinates, that give the position relative to the other atoms in the molecule, and another
attribute detailing the type of atom!™. Every other information given for each atom is ignored,
similar to information given about edges, except for which atoms are connected. Those data
points, get filtered a lot, since fewer events do not really matter as much faulty ones, at least
as long as overfitting is not a problem. First, we only allow molecules constructed entirely from
the atoms H, C, O and N, which take values 1, 2, 3 and 4 respectively. Then we allow at most
50, and at least 25 molecules, of which between 10 and 25 have to be hydrogen, and check if
the downloaded file is consistent!"".

F.2.2 Training

We again use a fairly simple setup, consisting only out of a handful of graph update layers, and
possibly a graph compression layer, comparing its effect in figure F.3.

10° 105

os oss
| val_loss val_loss
104) 1044
‘\
- K 1 k

102 102 4

Figure F.3: Training curves on the left without compression step and on the rigth with one

There are two things to note here: first, since the mass can reach order of magnitude of
1000 - g/mol, and since the difference is squared, this can reach very high loss values at the
beginning of the training. Combine this with the fact, that masses are very easy to predict,
and this is why you see orders of magnitude of change in the loss function. As you also
see, the change in loss is different between the compressing network, and the noncompressed
version: As both networks require similar times to calculate a training epoch, the compressed

175You could also generate those connections yourself, but this would require a different algorithm instead of
topK, more something that connects everything in a fixed distance (see appendix B.4.2).

176Onehot encoding this might actually be a better idea.

17"The molecular formula matches the distribution of atoms.

https://grapa.readthedocs.io/en/latest/mol.html
https://grapa.readthedocs.io/en/latest/mol.html
http://www.chemspider.com/Default.aspx

F OTHER USECASES FOR GRAPA Page 122

version requires more than 100 epochs less to reach a similar result. That being said, therefore
the noncompressed version reaches a slightly lower minimal loss of 73 in comparison to 78,
even though it should be noted, that this difference is tiny compared to initial losses, and the
compressing version has a bunch more parameters that might be able to be tweaked to change
this.

F.2.3 Whats next?

We don’t want to call using a compression layer to pool graph networks generally a good idea,
but if you have a network that takes a long time, trying out inserting a compression layer might
be a good idea. It might also be interesting to optimize the hyperparameters of the compression
layer, or even to alter the setup by for example using an abstraction layer. Finally, this is tested
on a fairly easy setup, and it might be interesting to use this on a more complicated setup like
ParticleNet and applies to a more complicated task.

F.3 High level machine learning and feynman diagramms

Referenced in: [A.3] [D.4]

Machine learning and anomaly detection is usually only used on low level data. Inputs that
are easily generated but time-consuming for humans to understand. But here we want to apply
machine learning to highly abstracted concepts. You might ask why one would want this: One
result might be something like a theory evaluation method: If you have a number of predictions,
this could classify weirdness in the sense of finding predictions that don’t match the rest. In
the best case you could also extend theories consistently: You can generate new predictions
from existing ones. You could automatically bring structure to your predictions, by looking at
the compression space of an autoencoder or you could use this to simplify complicated theories.
So why don’t we do this? Two things come to mind: most theories can not be brought into
vector form, and generating a lot of predictions is quite hard. Luckily both are solved by the
graph setup: This graph structure is way more powerful, to the point that artificial intelligence
research often encodes knowledge in graphs , and since overfitting has not been a problem
at all here, also the low number of training samples should not matter here!™® Now consider
feynman diagrams: As they are able to encode particle physics in a finite set of graphs, they
are at the same time very high level, while also still providing O (1) samples, which should be
barely enough for us to train on, and finding anomalous feynman diagrams might actually be
an interesting way to solve this thesis initial idea of using graphs and autoencoding to find new
physics.

The corresponding tutorial can be found at https://grapa.readthedocs.io/en/latest /feyn.html

F.3.1 Data generation

Data generation for feynman diagrams means more converting data, instead of outright gen-
erating them. The problem is, that all diagrams that you find, are usually given as images,
and writing an program to read every image into a diagram is absolutely nontrivial, which is
why we just converted those diagramms by hand!™. That being said, you could actually ask
yourself, if writing an image like autoencoder to work on those images would not be much less

178 There is a second price you pay, when you train on a few datapoints: Not only becomes overfitting more
probable, but you also loose generality, as density fluctuations of the different kind of training samples (where
these types of samples are defined by the training itself, which makes them hard to filter out) start to matter
more. Sadly we cannot really change this to much.

19You could actually use a graph neural network for this, build similar to the one from the next chapter F.4.

https://grapa.readthedocs.io/en/latest/feyn.html
https://grapa.readthedocs.io/en/latest/feyn.html

F OTHER USECASES FOR GRAPA Page 123

work. And even though we would agree, we think this would also work way worse, as you could
not differentiate between an image that just looks like a feynman diagram, and an image that
actually represents some physical insigth!®. If everything looks like a feynman diagram, you
can easily use the loss to differentiate those two cases, since a change in loss now definitely
represents a better reconstruction in the autoencoder we will train. Also, by training on images
you could again more probably see overfitting, resulting in higher needed training samples, that
we don’t have. We use all diagrams from [4]'®] that match our filter of only SM diagrams and
at most 9 lines, and represent each diagram in the following way (visualised in figure F.4):
Each line becomes a node, and each two lines that meet in an edge, are connected. This might
seem counterintuitive at first, as we basically switch nodes and edges, but is actually necessary,
since each edge requires two nodes, and in most usual feynman diagram this is not given, as
input as well as output lines, only have one edge. Then each line(node) is represented by a 14
dimensional vector, onehot'®? encoding the particle type (gluon,quark,lepton,muon,Higgs, W
Boson, Z Boson, photon, proton,jet), 3 special boolean values encoding anti particles'®® input
lines, output lines and a fourteenth value that is 1 (similar to flag (see chapter 3.2)).

Figure F.4: Example image of the conversion used for feynman diagramms, transforming the
left diagramm into the rigth one

F.3.2 Training

Also, here a fairly easy setup is used, but instead of the compression algorithm, we use the
abstraction one, and the param like deconstruction algorithm replaces the classical one, to
encode the abstraction of a factor 3 (Reducing 9 nodes into 3). Therefore, we add 3 parameters,
as well as a couple more graph update steps. One thing that might be important later, is that we
don’t punish the resulting graph structure directly, even though the paramlike decompression
algorithm should make this possible, but only indirectly through the fact that a nonsensical
graph structure will worsen the quality of the update step.

180You see this quite clearly in another usecase we were thinking about: Recipes are easily generated by a
text based gan, or better texts that look like recipes, but generating recipes that actually taste good is much
harder, and you don‘t really have a way to test this(beside cooking for a long time), as your loss could also just
say how much your text looks like a recipe.

181 These diagramms are of fairly low order.

1820nehot encoding means encoding a number that is smaller than a by a vector of values which element i is
1 is the number is ¢ and 0 else.

183For simplicity this variable is always zero for lines that are neither input nor output.

F OTHER USECASES FOR GRAPA Page 124

—— loss
. —— val_loss
0.12 A

0.10 A1

0.08 A1

0.06 -

0 20 40 60 80 100
epoch

Figure F.5: Training history plot for feynman diagramm networks

In figure F.5 you see that, the training curve improves after the initial plateau first quite
drastically, just to slow down later, and reach a validation loss below 0.05 at the end, which we
are fairly happy with, since this means, that converted to booleans, only about 1 in 20 values
is wrong'®. More interestingly, you also see, that the validation loss is consistently lower than
the training loss, which means, that even this network does not overfit, and we thus might be
able to train a network on only O (1) events.

0.6 1
0.5
0.4 1
0.3

P .)

8] ! o

R ® I S 8

024 & 8 8 °
° °

Figure F.6: Loss of each training graph compared to its number of lines.

One problem, that was prevalent for example in chapters 5 and F.1 is that complexity
defines the loss at least as much as accuracy. This means, that when you have multiple levels

184Gince the results are not booleans, this is only true for the average.

F OTHER USECASES FOR GRAPA Page 125

of complexity in your training data, you might not be able to differentiate more complex from
more abnormal data points. So, since complexity for feynman graphs instinctively correlates
to the number of lines, looking at the loss as a function of the number of lines is interesting
(figure F.6): as you see, a bigger loss is generally more probable for higher line counts, but
the relation is not so strong, as the difference is marginal. This suggests, that the complexity
the network sees, is not the same, as the complexity we see, and it thus encodes more valuable
information. Finally, to see this valuable information, we have to compare the loss to the loss
of other diagrams. We first though of looking at BSM diagrams, but different particles, which
are fairly common in BSM graphs, would require different encoding, which is why we simply
try 6 diagrams, which contribution vanishes. Those diagramms are shown in figures F.7 and

N L
/N

Figure F.7: vanishing diagrams (visualized using [8])

w w

P P > >
P
Y
z
w w

Figure F.8: more vanishing diagramms

20.0 A

17.5 A

15.0 A

12.5 A

10.0 A

7.5

5.0 1

2.5

0.0 -

0.4 0.5 0.6

Figure F.9: Loss distribution for feynnp, with anomalies in orange showing their index by their
height. We also cap the loss at 0.6, as the second anomaly would else result in a loss way over
10

F OTHER USECASES FOR GRAPA Page 126

If we plot the loss in figure F.9, for those diagrams into the loss distribution, you see some
loss difference: the loss of those diagrams is generally bigger, and the lowest loss, that actually
definitely overlaps the training loss, is achieved by the least complex diagram. This we can
support by splitting the prediction by their line number. Those are the yellow dots in figure
F.6. There you see, the difference between SM and non SM diagrams becomes even more clear.

F.3.3 Whats next?

These six diagrams might suggest that this method works, but at the end, these are only 6
diagrams. So looking at more alternative diagrams is definitely a good idea. This might result
in some diagrams that vanish, reaching fairly low losses, but might allow you to understand
what the network considers complexity. In this note!® You find the diagrams that have extreme
losses for each line count. And here are two other things we noticed: Not every graph that is
reconstructed actually exist. Through the original conversion, there are diagrams that could
not be translated back to feynman diagrams

This might suggest, that weighting the adjacency matrix directly would be a good idea.
you might also want to take a look at permutation invariant losses (see chapter 4.5). Secondly,
most diagrams have two inputs, and the network is fairly good at reconstructing them

1201 truth
prediction

100 ~

80 A

60 -

40 -

20 A

0.00 0.25 050 0.75 1.00 1.25 150 175 2.00

Figure F.10: input number histogramm for feynman networks

As you see, it might even be a bit too good, as it reconstructs even more 2 input diagrams.
Checking for the errors in our representation might be useful. Finally, reproducibility and the
applicability of oneoff networks might also be interesting here.

185From 42 diagramms with 5 notes LL601000002 has the lowest loss, while LL90000001 has the highest, for
the 12 diagramms with 6 lines these are LL9I0000009 and LL9I0000005, for 44 of size 7 you find LL10200011 and
LL21000001 and for the 21 graphs of size 8 the extremal cases are LL51100101 and LL52200005.

F OTHER USECASES FOR GRAPA Page 127

F.4 Graph like generators and onoff initializers

Referenced in: [2.2] [C.5] [F.3.3]

As we had an example for autoencoder, and an example for a supervised graph network, we
want to also highlight the possibility of having a graph as output. So we implement a graph
generative adversial network (A graph gan). We experimented with multiple different datasets,
but finally use recipes.

The corresponding tutorial can be found at https://grapa.readthedocs.io/en/latest /tipsy.html

F.4.1 Data generation

Finding recipes encoded as graphs is not really easy. So we use some simple text analysis to
interpret recipes as graphs. Also, to make matters easier, we use drink recipes, since we don’t
need to implement the cooking steps. Each graph consists now out of at most 9 nodes of 45
one hot encoded ingredients. The list of ingredients is soft maxed, so that each ingredient is
unique.

F.4.2 Training

We generate 9 nodes, by decompressing 1 dimensional data twice by a factor of 3 into 9 nodes
of 45 values, that we consider to be the coordinates of edges.

4.51 —— discriminator

generator
4.01

3.5
3.0
= 2.5
2.04
1.51
1.0
0.5

0 50 100 150 200
epoch

Figure F.11: Training curve for the generator. The training usually finishes when both losses
are similar

Generative adversial networks are usually stopped if both losses (see figure F.11 are similar.
This point is also reached here without problems.

One thing we want to point out here, is an idea we had while trying to make this network
work. You can use an oneoff network to initialize the discriminator. By removing the bias from
the dense layers you train the discriminator like an oneoff network on the background data.
And since this sets the mean of this dataset to one, but does not fix the mean of the alternative
dataset, this can help the network converge. So here the training curve of a network, that trains
for 10 epochs as an oneoff network first.

https://grapa.readthedocs.io/en/latest/tipsy.html
https://grapa.readthedocs.io/en/latest/tipsy.html

F OTHER USECASES FOR GRAPA Page 128

—— discriminator
1.34 generator

0 50 100 150 200
epoch

Figure F.12: Training curve now with an oneoff initializer (not shown) trained for 10 epochs

By comparing figure F.12 to F.11, you see that this training happens a lot quicker. So our
oneoff initialization seems actually to a good idea
Also there is a website, at which you can take a look at example recipes http://tipsy.pythonanywhere.cor

F.4.3 Whats next?

For generating actual recipes you would need a way of encoding cooking steps.

Oneoff initialization should be tested on other datasets and by someone with more experience
in training generative adversial networks.

But the most interesting application might be other datasets. Here the obvious choice
would be jets. This we tried, but the results are not good enough to show them here, as
the distributions are nearly constant and require oneoff initializers to work at all. If you are
interested in this, maybe just write me an email at Simon.Kluettermann@gmx.de.

http://tipsy.pythonanywhere.com/
http://tipsy.pythonanywhere.com/

G ADDITIONAL FIGURES

G

Additional Figures

4.0

3.5

3.0

2.51

Ipt

2.01

1.5

1.0

0.5

103_

inverse false positive rate

100_

® © truth
® @ prediction

o0

1 2 3 4 5 6 7 8 9
particle

Figure G.1: Momentum reconstruction images for a 9 node image.

102 j

101 j

—— auc=0.6925
—— random guessing

0.4 0.6 0.8 1.0

true positive rate

0.0 0.2

Figure G.2: ROC curve for a 16 node network trained on QCD

Page 129

G ADDITIONAL FIGURES Page 130

inverse false positive rate)

160

1401
1201
1001
80
60
401
20

103_

102 i

101 j

100_

qcd jets
I top jets

0.1 0.2 0.3 0.4 0.5 0.6 0.7
loss

Figure G.3: Loss distribution for a 16 node network trained on QCD

—— auc=0.5552
—— random guessing

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure G.4: Oneoff ROC curve for a 16 node network trained on QCD

G ADDITIONAL FIGURES Page 131
1.61 —— training
‘\ validation
1.4
1.2 ‘\
?
1.0y |
|
08| |
|
06 |
0.4 vA “—‘W
0 100 200 300 400 500 600
epoch
Figure G.5: Training history for a 16 node network trained on top
event number 16
0.61 @ truth ® ‘
0.4/ @ prediction o
0.2 2)
0.0
5 —0.21 ‘ ®
B X 1
-0.61 @ ®
-0.8
@
-1.01 o
-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2
eta

Figure G.6: Angular reconstruction for a 16 node network trained on top

G ADDITIONAL FIGURES Page 132

0.61 Q o @ truth

@® prediction

QO
_ ®
0.2 @06!

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
particle

Figure G.7: Momentum reconstruction for a 16 node network trained on top

3 |

10 —— auc=0.6409
9 —— random guessing
©
S
= 102
=
o
o
[}
i)
SR
o 10%1
o
()
>
£

100_

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure G.8: ROC curve for a 16 node network trained on top

LIST OF FIGURES Page 133

350
qcd jets

300 I top jets
250
200
150
100

50

0.2 0.4 0.6 0.8 1.0 1.2 1.4
loss

Figure G.9: Loss distribution for a 16 node network trained on top

3 |
10 —— auc=0.4836
—— random guessing

102 i

101 j

inverse false positive rate)

100_

0.0 0.2 0.4 0.6 0.8 1.0
true positive rate

Figure G.10: Oneoff ROC curve for a 16 node network trained on top

List of Figures

2.1 A simple example on how an autoencoder can reduce the number of parameters
that is needed to approximately encode an event. Instead of using two variables
x and y to define each of the points, you can use only the x value as latent space

and an approximation of the y value as a function of this latent space x value. . 6
2.2 Example images showing how an autoencoder can combine two images into one.
Taken from [1], generated by Ember, Bruno and ArgonOl 7

2.3 A representation of the city regions as a graph: You can understand a map as
a graph, where each region becomes a node and bridges between them represent
edges. Here using a map from [2] oL 9

LIST OF FIGURES

Page 134

3.1 A sample loss distribution, to explain how to calculate a ROC curve. To get
your ROC curve, you have to choose every possible position of the parameter.
Given one parameter value, everything with a loss higher than the parameter is
classified as signal, and everything with lower loss as background. Your ROC
curve is now the collection of all true and false positive rates for each possible
parameter value Lo

3.2 A sample ROC curve plotted in way showing its AUC score

3.3 A sample ROC curve showing the background rejection rate

3.4 A sample reconstuction image

3.5 A sample momentum reconstruction image L

3.6 A sample AUC Featuremap

4.1 A L, reconstruction image, the reconstructed width is often lower than the input
width. Here you see thisbestin¢

4.2 Reconstruction image for a model that only remembers 3 nodes perfectly trained
with an Ly loss

4.3 A L, reconstruction image, not working trivially, but also not working perfectly

4.4 Reconstruction image of an image like loss working well

4.5 Training history for a 4 node network oo

4.6 Angular reconstruction images for a 4 node image.

4.7 Momentum reconstruction images for a 4 node image.

4.8 Example training history for a 9 node network showing how NAN losses hurt the
training procedure Lo

4.9 Angular reconstruction images for a 9 node image.

4.10 Loss distribution of our 4 particle network

4.11 Roc curve for our 4 particle network

4.12 AUC feature map for 4 nodes.o

4.13 Loss distribution for the 9 particle network

4.14 Roc curve for our 9 particle network L

4.15 Auc feature map for 9nodes

5.1 AUC score scaling through multiple batches of 4 nodeseach

5.2 Scaling autoencoder, by using dense networks instead of of graph ones

5.3 An example of how we model AUC as a function of the overlapp of two gaussian
peaks L

5.4 AUC as function of ¢ for two random gaussian double peaks that alone would
reach AUCs represented by the horizontal lines.

5.5 AUC score as a function of the loss power (-3) for parts of a QCD jet, using 5 4
node networks combined in a way defined by the loss power.

5.6 AUC map for a simple network

5.7 Average relative error by feature (%W)

5.8 2d histogram of angles comparing QCD vs top, here for example for the particle
with the fourth highest transverse momentum

5.9 Trivial width comparing angular scaling. Here we do not split each network in
batches of 4 anymore, but simply calculate the AUC for each number of nodes

5.10 Trivial width comparing angular scaling with ¢ addition. The reason for the
falloff at the end might be the different shape in later indices of missing particles
or the assumptions tested in appendix E.4o

5.11 Roc curves for the invertibility of a 4 node model

6.1 Aucmap for normally normalized networks, showing not much useful being learned.
We train here on top jets to test the invertibility

LIST OF FIGURES Page 135

6.2
6.3

6.4
6.5

6.6

6.7
6.8
6.9
6.10
6.11
7.1
7.2

7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
8.1
8.2
8.3
8.4
8.5

8.6
8.7

Al
A2
A3
A4
A5

Invertible 4node network auc maps achieved by a normalization. Here trained

ontop jets 45
Invertible 4node network auc maps achieved by a normalization. Here trained

onqed jets . . . oL 45
Double roc curve for the invertibility of a normalized networks 46

More than 1500 Models, showing a clear relation between the network loss and
the AUC score, each color represents sligthly different training setups. It would
be linear if the x-axis would be linear 46
Invertibility for compressing 4 node networks into a 9 dimensional latent space.
Notice the jump of the top AUC from above 0.5 to below 0.5 for lower losses.
It means that when can use our loss to see if a trained network generates an
invertible classifier. For compression sizes lower than 9 this jump does not appear 47

Reproducability comparison of for different training lengths A7
AUC values for higher normalized batches by their training data 48
AUC feature map for normalized top trained networks 49
Distribution of the transverse momentum of the first particle 49
AUC feature map for a well normated network 50

AUC Feature map for an on top trained autoencoder, using a good normalization 51
AUC score as a function of the epoch, trained on QCD, here for a graph oneoff
network. Graph oneoffs are not used anymore in the following, but since they
show the same relation as a dense oneoff network much cleaner, we use this curve

here. As you see, the relation shows a maximum before the training ends. 53
Oneoff loss distribution for a network trained on qed jets 54
Oneoff Roc curve for a network trained on qed jets 54
Angular reconstruction images for a normalized network trained on QCD 55
Momentum reconstruction images for a normalized network trained on QCD . . 55
Oneoff loss distribution for a network trained on top jets 56
ROC curve for a network trained on top jets L. 56
Angular reconstruction images for a normalized network trained on top jets . . . 57
Momentum reconstruction images for a normalized network trained on top jets . 57
Invertibility of batches in oneoff networks 58
Training history for a 16 node network trained on QCD 59
Angular reconstruction for a 16 node network trained on QCD 59
Momentum reconstruction for a 16 node network trained on QCD 60
Angular distribution of ldm jets L 62
Momentum distribution of Idm vs IQCD jets 62
Number size distribution of Idm jets 62
Idm jet invertibility 64

Oneoff ROC curve for quark gluon. Here both curves should be above the line
representing random guesses, and as you see, this is the case, even though the

quark line is very close to randomly guessing. L. 65
Oneoff ROC curve for lepton data. Again both curves should be above the

random guessing line Lo 66
Comparing each dataset to each other dataset, using oneoff networks. We use

red points to mark values below 0.5o Lo 67
Metrik of a topK layer for a 4 momenta input 72
Training history for the 4 momentum input. 73
Training curve using sortingo 74
Training curve using without sorting 74

Training history with a batchnormalization layer 76

LIST OF FIGURES Page 136

A.6 Training history without a batchnormalization layer 76
B.1 Rastering each compression size for a 4 node network (normalized) and showing

each loss 78
B.2 Rastering each compression size for a 4 node network (normalized) and showing

each AUC value (without oneoff networks) 78
B.3 Typical metrik of unnormalized networks 80
B.4 Typical metrik of normalized networks 81
B.5 Example of a set of nodes that cannot perfectly be connected using a topK

algorithm (here k& = 1). The problem here is, that 2 nodes have the same

distance. We connect in this case botho 82
B.6 Example of a set of nodes that cannot perfectly be connected using a topK

algorithm (here k = 1. The problem here is, we want to connect the last node to

a node that has no more open connections. We solve this by using asymmetric

adjacency matriceso 82
B.7 A graph representing chairs.o 83
B.8 Training curve trained on 50k top jets 84
B.9 Training curve trained on bk top jets 84
B.10 Double ROC curve for different training sizes 85
B.11 Double ROC curve on oneoff networks comparing training sizes. You should see

no actual difference here oo 85
C.1 Training history for first working autoencoder 88
C.2 A reconstruction image for this model, we choose here one of the best recon-

structed events oL L 89
C.3 AUC feature map for thismodel, 90
C.4 Training history for a better autoencoder 91
C.5 Reconstruction image for the same event as in the previous chapter, on the left

for the current model, and on the rigth for the previousone 92
C.6 AUC feature map for thismodel 92
C.7 A sample 6 node graph splitted using our algorithm 96
C.8 A sample 6 node graph splitted how we would like to splitit 97
D.1 A simple old AUC by epoch plot for a unnormalized network with thus focus on

angular data Lo 101
D.2 AUC as function of the losses without normalization using a trivial decompressor.102
D.3 Comparison of multiple network, with other decompressors. green represents

graph like and orange parameter like decompression. Compare this to figure 6.5

in chapter 6.1 103
D.4 AUC by epoch for oneoff showing a growing relation, that at some point starts

tofall again 103
D.5 Partial network combinations, AUC as function of the graph size(gs) comparing

a combination with equal weigths to one with a loss powerof 3. 104
E.1 A simple example of a shape, that an SVM cannot differentiate 106
E.2 Reconstruction image for the comparison algorithm 108
E.3 Two different widths of a background peak, resulting in different overlappings to

the signal peak 110
E.4 The three kinds of simulated AUC by loss behaviours 111
E.5 AUC as function of the loss for a oneoff network 112
E.6 On the top: The 5 least 7 like 7th in the training set. On the bottom: The 5

most 7 like not 7th in the evaluation sample. Our favorite image is that in the
lower right corner, as you can clearly see that it is a 9, while also allowing you
to see how it can be interpreted asa 7. 114

REFERENCES Page 137

E.7 Antiinvertibility for ldm data, left using the autoencoder loss, and on rigth using

oneoff networks 116
E.8 Number of jet particles for ldm jets 0L 116
F.1 Loss distribution for social networks 119
F.2 Oneoff loss distribution on social networks 120

F.3 Training curves on the left without compression step and on the rigth with one . 121
F.4 Example image of the conversion used for feynman diagramms, transforming the

left diagramm into the rigthone 0oL 123
F.5 Training history plot for feynman diagramm networks 124
F.6 Loss of each training graph compared to its number of lines. 124
F.7 vanishing diagrams (visualized using [8]) 125
F.8 more vanishing diagramms Lo L 125

F.9 Loss distribution for feynnp, with anomalies in orange showing their index by
their height. We also cap the loss at 0.6, as the second anomaly would else result

inalossway over 10 Lo 125
F.10 input number histogramm for feynman networks 126
F.11 Training curve for the generator. The training usually finishes when both losses

are similar L 127
F.12 Training curve now with an oneoff initializer (not shown) trained for 10 epochs . 128
G.1 Momentum reconstruction images for a 9 node image. 129
G.2 ROC curve for a 16 node network trained on QCD 129
G.3 Loss distribution for a 16 node network trained on QCD 130
G.4 Oneoff ROC curve for a 16 node network trained on QCD 130
G.5 Training history for a 16 node network trained ontop 131
G.6 Angular reconstruction for a 16 node network trained on top 131
G.7 Momentum reconstruction for a 16 node network trained on top 132
G.8 ROC curve for a 16 node network trained ontop 132
G.9 Loss distribution for a 16 node network trained on top 133
G.10 Oneoff ROC curve for a 16 node network trained on top 133

List of Tables

3.1 4 fractions for evaluating boolean decision problems. Events are truly collumn

and classified asrow 11
8.1 Cross invertibility auc scores trained on row to be compared to collumn 68
C.1 Quality differences for different encoder with a learnable handling of the feature

VECTOTS . . . o o o o e e e e e e e 94
C.2 Quality differences for different encoder with a fixed function 94
C.3 Quality differences for different graph like decoder 95
C.4 Quality differences for different param like decoder 95
C.5 Quality difference for either running learnable sub graph updates or not 96
E.1 Distribution of types of loss vs AUC plots for random gaussian double peaks . . 112
E.2 Learned metrik values of oneoff networks trained on muon events 114
E.3 Learned metrik values for a diagonal metrik oneoff networks trained on muon

EVENES . . L L L e e 115

References

[1] URL: https://www.ostagram.me/static_pages/lenta?last_days=1000&locale=en.

https://www.ostagram.me/static_pages/lenta?last_days=1000&locale=en

REFERENCES Page 138

2]

[15]

[16]
[17]

URL: https://www.google.de/maps/@54.7134816,20.5119317,4270m/data=!3m1!
le3.

Jetting into the dark side: a precision search for dark matter. URL: https://atlas.
cern/updates/physics-briefing/precision-search-dark-matter.

List of feynman diagrams. URL: https://www.physik.uzh.ch/~che/FeynDiag/
Listing.php.

G. Aad, T. Abajyan, B. Abbott, J. Abdallah, S. Abdel Khalek, A.A. Abdelalim, O. Abdi-
nov, R. Aben, B. Abi, M. Abolins, and et al. Observation of a new particle in the search
for the standard model higgs boson with the atlas detector at the lhc. Physics Letters B,
716(1):1-29, Sep 2012. URL: http://dx.doi.org/10.1016/j.physletb.2012.08.020,
doi:10.1016/j.physletb.2012.08.020.

Martin Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis, Jeffrey Dean,
Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving, Michael Isard, et al. Tensorflow:
A system for large-scale machine learning. In 12th { USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 16), pages 265-283, 2016.

Ajiboye Abdulraheem, J. Abdul-Hadi, Abimbola Akintola, and A.O. Ameen. Anomaly de-
tection in dataset for improved model accuracy using dbscan clustering algorithm. African
Journal of Computing, ICT, Vol 8. No. 1, 03 2015.

Alec Aivazis. URL: https://feynman.aivazis.com/.

Johan Alwall, Michel Herquet, Fabio Maltoni, Olivier Mattelaer, and Tim Stelzer. Mad-
graph 5: going beyond. Journal of High Energy Physics, 2011(6), Jun 2011. URL:
http://dx.doi.org/10.1007/JHEP06(2011)128, doi:10.1007/jhep06(2011)128.

AndilL99. image combiner. https://github.com/AndiLi99/image-combiner, 2018.

Elias Bernreuther, Thorben Finke, Felix Kahlhoefer, Michael Kramer, and Alexander
Miick. Casting a graph net to catch dark showers, 2020. arXiv:2006.08639.

Filippo Maria Bianchi, Daniele Grattarola, and Cesare Alippi. Mincut pooling in graph
neural networks, 2020. URL: https://openreview.net/forum?id=BkxfshNYwB.

Jason Brownlee. Data leakage in machine learning, Aug 2020. URL: https://
machinelearningmastery.com/data-leakage-machine-learning/.

Claudio Campagnari and Melissa Franklin. The discovery of the top quark. Rev. Mod.
Phys., 69:137-212, Jan 1997. URL: https://1link.aps.org/doi/10.1103/RevModPhys.
69.137, doi:10.1103/RevModPhys.69.137.

Anwesha Chakraborty, Trina Dutta, Sushmita Mondal, and Asoke Nath. Application
of graph theory in social media. INTERNATIONAL JOURNAL OF COMPUTER SCI-
ENCES AND ENGINEERING, 6:722-729, 10 2018. doi:10.26438/ijcse/v6i10.722729.

Francois Chollet et al. Keras, 2015. URL: https://github.com/fchollet/keras.

Connor W. Coley, Wengong Jin, Luke Rogers, Timothy F. Jamison, Tommi S. Jaakkola,
William H. Green, Regina Barzilay, and Klavs F. Jensen. A graph-convolutional neural
network model for the prediction of chemical reactivity. Chem. Sci., 10:370-377, 2019.
URL: http://dx.doi.org/10.1039/C85C04228D, doi:10.1039/C83SC04228D.

https://www.google.de/maps/@54.7134816,20.5119317,4270m/data=!3m1!1e3
https://www.google.de/maps/@54.7134816,20.5119317,4270m/data=!3m1!1e3
https://atlas.cern/updates/physics-briefing/precision-search-dark-matter
https://atlas.cern/updates/physics-briefing/precision-search-dark-matter
https://www.physik.uzh.ch/~che/FeynDiag/Listing.php
https://www.physik.uzh.ch/~che/FeynDiag/Listing.php
http://dx.doi.org/10.1016/j.physletb.2012.08.020
https://doi.org/10.1016/j.physletb.2012.08.020
https://feynman.aivazis.com/
http://dx.doi.org/10.1007/JHEP06(2011)128
https://doi.org/10.1007/jhep06(2011)128
https://github.com/AndiLi99/image-combiner
http://arxiv.org/abs/2006.08639
https://openreview.net/forum?id=BkxfshNYwB
https://machinelearningmastery.com/data-leakage-machine-learning/
https://machinelearningmastery.com/data-leakage-machine-learning/
https://link.aps.org/doi/10.1103/RevModPhys.69.137
https://link.aps.org/doi/10.1103/RevModPhys.69.137
https://doi.org/10.1103/RevModPhys.69.137
https://doi.org/10.26438/ijcse/v6i10.722729
https://github.com/fchollet/keras
http://dx.doi.org/10.1039/C8SC04228D
https://doi.org/10.1039/C8SC04228D

REFERENCES Page 139

[18] Jorge Dukelsky, G. Dussel, Jorge Hirsch, and P. Schuck. The pairing interaction in nuclei:
comparison between exact and approximate treatments. 07 2002.

[19] Mohammad Esmalifalak. A data mining approach for fault diagnosis: An application of
anomaly detection algorithm. Measurement, 05 2014.

[20] Thorben Finke. Deep learning for new physics searches at the lhc, 2020.
[21] Hongyang Gao and Shuiwang Ji. Graph u-nets, 2019. arXiv:1905.05178.

[22] F. Gianotti. Physics at the LHC. Phys. Rept., 403:379-399, 2004. doi:10.1016/j.
physrep.2004.08.027.

[23] Dan Guest, Kyle Cranmer, and Daniel Whiteson. Deep learning and its applica-
tion to lhc physics. Annual Review of Nuclear and Particle Science, 68(1):161-181,
Oct 2018. URL: http://dx.doi.org/10.1146/annurev-nucl-101917-021019, doi:
10.1146/annurev-nucl-101917-021019.

[24] Theo Heimel, Gregor Kasieczka, Tilman Plehn, and Jennifer M Thompson. QCD or What?
SciPost Phys., 6:30, 2019. URL: https://scipost.org/10.21468/SciPostPhys.6.3.
030, doi:10.21468/SciPostPhys.6.3.030.

[25] Sergey Ioffe and Christian Szegedy. Batch normalization: Accelerating deep network train-
ing by reducing internal covariate shift, 2015. arXiv:1502.03167.

[26] U. S. R. Murty J. A. Bondy. Graph theory with applications.

[27] G. Kasieczka, T. Plehn, A. Butter, D. Debnath, M. Fairbairn, W. Fedorko, C. Gay,
L. Gouskos, P. T. Komiske, S. Leif; A. Lister, S. Macaluso, E. Metodiev, L. Moore,
B. Nachman, K. Nordstrom, J. Pearkes, H. Qu, Y. Rath, M. Riegler, D. Shih, J. M.
Thompson, and S. Varma. The machine learning landscape of top taggers. arXiw: High
Energy Physics - Phenomenology, 7:014, 2019.

[28] Gregor Kasieczka, Tilman Plehn, Jennifer Thompson, and Michael Russel. Top quark
tagging reference dataset, March 2019. doi:10.5281/zenodo.2603256.

[29] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2014. arXiv:
1312.6114.

[30] Thomas N. Kipf and Max Welling. Variational graph auto-encoders, 2016. arXiv:1611.
07308.

[31] Boris Knyazev, Xiao Lin, Mohamed R. Amer, and Graham W. Taylor. Image classification
with hierarchical multigraph networks, 2019. arXiv:1907.09000.

[32] Yann LeCun and Corinna Cortes. MNIST handwritten digit database. 2010. URL:
http://yann.lecun.com/exdb/mnist/ [cited 2016-01-14 14:24:11].

[33] Min Lin, Qiang Chen, and Shuicheng Yan. Network in network, 2014. arXiv:1312.4400.

[34] Cheng-Yuan Liou, Wei-Chen Cheng, Jiun-Wei Liou, and Daw-Ran Liou. Autoencoder for
words. Neurocomputing, 139:84-96, 2014.

[35] Fei Tony Liu, Kai Ting, and Zhi-Hua Zhou. Isolation forest. pages 413 — 422, 01 2009.
doi:10.1109/ICDM.2008.17.

http://arxiv.org/abs/1905.05178
https://doi.org/10.1016/j.physrep.2004.08.027
https://doi.org/10.1016/j.physrep.2004.08.027
http://dx.doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://doi.org/10.1146/annurev-nucl-101917-021019
https://scipost.org/10.21468/SciPostPhys.6.3.030
https://scipost.org/10.21468/SciPostPhys.6.3.030
https://doi.org/10.21468/SciPostPhys.6.3.030
http://arxiv.org/abs/1502.03167
https://doi.org/10.5281/zenodo.2603256
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1312.6114
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1611.07308
http://arxiv.org/abs/1907.09000
http://yann.lecun.com/exdb/mnist/
http://arxiv.org/abs/1312.4400
https://doi.org/10.1109/ICDM.2008.17

REFERENCES Page 140

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[46]

[47]

[49]

[50]

Hui Luo, Ming xing Luo, Kai Wang, Tao Xu, and Guohuai Zhu. Quark jet versus gluon
jet: fully-connected neural networks with high-level features, 2019. arXiv:1712.03634.

Thomas McCauley. Events with two electrons from 2010. URL: http://opendata.cern.
ch/record/304.

Thomas McCauley. Events with two muons from 2010. URL: http://opendata.cern.
ch/record/303.

Erik Norlander and Alexandros Sopasakis. Latent space conditioning for improved classi-
fication and anomaly detection, 2019. arXiv:1911.10599.

Sydney Otten, Sascha Caron, Wieske de Swart, Melissa van Beekveld, Luc Hendriks,
Caspar van Leeuwen, Damian Podareanu, Roberto Ruiz de Austri, and Rob Verheyen.
Event generation and statistical sampling for physics with deep generative models and a
density information buffer, 2019. arXiv:1901.00875.

S. Ovyn, X. Rouby, and V. Lemaitre. Delphes, a framework for fast simulation of a generic
collider experiment, 2010. arXiv:0903.2225.

Thomas Petsche, Angelo Marcantonio, Christian Darken, Stephen Hanson, Gary Kuhn,
and Iwan Santoso. A neural network autoassociator for induction motor failure prediction.
02 1996.

Adrian Alan Pol, Gianluca Cerminara, Cecile Germain, Maurizio Pierini, and Agrima
Seth. Detector monitoring with artificial neural networks at the cms experiment at the
cern large hadron collider, 2018. arXiv:1808.00911.

Huilin Qu and Loukas Gouskos. Jet tagging via particle clouds. Physical Review D,
101(5), Mar 2020. URL: http://dx.doi.org/10.1103/PhysRevD.101.056019, doi:10.
1103/physrevd.101.056019.

Mohammad Mahdi Rezapour Mashhadi. Anomaly detection using unsupervised methods:
Credit card fraud case study. International Journal of Advanced Computer Science and
Applications, 10, 01 2019. doi:10.14569/IJACSA.2019.0101101.

N. Rohani and Changiz Eslahchi. Drug-drug interaction predicting by neural network
using integrated similarity. Scientific Reports, 9, 2019.

Lukas Ruff, Robert Vandermeulen, Nico Goernitz, Lucas Deecke, Shoaib Ahmed Siddiqui,
Alexander Binder, Emmanuel Miiller, and Marius Kloft. Deep one-class classification. vol-
ume 80 of Proceedings of Machine Learning Research, pages 4393-4402, Stockholmsmassan,
Stockholm Sweden, 10-15 Jul 2018. PMLR. URL: http://proceedings.mlr.press/v80/
ruffi18a.html.

Jonathan Shlomi, Peter Battaglia, and jean-roch vlimant. Graph neural networks in
particle physics. Machine Learning: Science and Technology, Oct 2020. URL: http:
//dx.doi.org/10.1088/2632-2153/abbf9a, doi:10.1088/2632-2153/abbf9a.

Jenni Sidey-Gibbons and Chris Sidey-Gibbons. Machine learning in medicine: a prac-
tical introduction. BMC Medical Research Methodology, 19, 03 2019. doi:10.1186/
$12874-019-0681-4.

Torbjorn Sjostrand. The pythia event generator: Past, present and future. Computer
Physics Communications, 246:106910, Jan 2020. URL: http://dx.doi.org/10.1016/j.
cpc.2019.106910, doi:10.1016/j.cpc.2019.106910.

http://arxiv.org/abs/1712.03634
http://opendata.cern.ch/record/304
http://opendata.cern.ch/record/304
http://opendata.cern.ch/record/303
http://opendata.cern.ch/record/303
http://arxiv.org/abs/1911.10599
http://arxiv.org/abs/1901.00875
http://arxiv.org/abs/0903.2225
http://arxiv.org/abs/1808.00911
http://dx.doi.org/10.1103/PhysRevD.101.056019
https://doi.org/10.1103/physrevd.101.056019
https://doi.org/10.1103/physrevd.101.056019
https://doi.org/10.14569/IJACSA.2019.0101101
http://proceedings.mlr.press/v80/ruff18a.html
http://proceedings.mlr.press/v80/ruff18a.html
http://dx.doi.org/10.1088/2632-2153/abbf9a
http://dx.doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1088/2632-2153/abbf9a
https://doi.org/10.1186/s12874-019-0681-4
https://doi.org/10.1186/s12874-019-0681-4
http://dx.doi.org/10.1016/j.cpc.2019.106910
http://dx.doi.org/10.1016/j.cpc.2019.106910
https://doi.org/10.1016/j.cpc.2019.106910

REFERENCES Page 141

[51] David Tax. One-class classification; concept-learning in the absence of counter-examples.
01 2001.

[52] B. B. Thompson, R. J. Marks, J. J. Choi, M. A. El-Sharkawi, Ming-Yuh Huang, and
C. Bunje. Implicit learning in autoencoder novelty assessment. In Proceedings of the 2002
International Joint Conference on Neural Networks. IJCNN’02 (Cat. No.02CHS37290), vol-
ume 3, pages 2878-2883 vol.3, 2002. doi:10.1109/IJCNN.2002.1007605.

[53] Eric Wulff. Deep autoencoders for compression in high energy physics, 2020. Student
Paper.

[54] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William L. Hamilton, and Jure
Leskovec. Hierarchical graph representation learning with differentiable pooling, 2019.
arXiv:1806.08804.

https://doi.org/10.1109/IJCNN.2002.1007605
http://arxiv.org/abs/1806.08804

	Table of content
	Motivation
	Introduction and literature
	New physics
	Neuronal networks and autoencoder
	Graphs
	Graph autoencoder

	Basic concepts
	Binary classification
	Datapreperation
	Explaining figures used in this thesis

	A working graph autoencoder
	Graph neural networks
	The compression algorithm
	the decompression algorithm
	Our model setup
	Choosing the rigth loss
	Difficulties when evaluating a model
	Evaluating the autoencoder
	Evaluating the classifier

	Apparent questions
	Scaling the network size
	Simplicity and invertibility

	Normalization
	Introudicing normalization for autoencoder
	Using this normalization

	Mixed networks
	Oneoff networks
	Latent space oneoff learning
	A final classifier
	Scaling with oneoff networks

	Applying this model to other datasets
	Ligth dark matter
	Other datasets
	Cross comparisons

	Conclusion
	Outlook
	Acknowledgements

	Appendices
	Understanding certain choices
	Changing the input feature space
	Is it a good idea to relearn the graph at each step?
	The consequences of sorting outputs by lpt
	The usage of a batchNormalization layer in the middle of the graph autoencoder
	Changing the definition of the transverse momentum input
	Comparing our graph update layer to particleNet

	Experiments using graph autoencoder
	Variating the compression size
	Things we learned from implementing a Graph Autoencoder in tensorflow and keras
	Metrik analysis
	How topK works exactly
	Trainingsize, and why graph autoencoder don`t care about it
	Why autoencoder reproduce mean values

	Overview of less useful networks
	Failed approaches
	The first graph autoencoder that could be considered working
	Improving autoencoder
	Improving autoencoder even further?
	The compression algorithm that we wish we would be able to write

	More problems while writing a graph autoencoder
	Choosing the rigth compression size
	Building identities out of graphs
	Is permutation invariance good or bad?
	Why use graph autoencoder
	Why not to use graph autoencoder

	Understanding Oneoff networks with more precision
	Other algorithms
	Different algorithms for latent space training
	Oneoff math
	Self improving oneoff networks
	How an oneoff network can become noninvertible
	Why c addition might not be perfect

	Other usecases for grapa
	Abnormal account detection for social networks
	Accelarating molecular networks through pooling
	High level machine learning and feynman diagramms
	Graph like generators and onoff initializers

	Additional Figures
	List of Figures
	List of Tables
	References

