Skip to content
GitLab
Menu
Projects
Groups
Snippets
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
Menu
Open sidebar
monticore
EmbeddedMontiArc
languages
CNNArchLang
Commits
51c6e628
Commit
51c6e628
authored
Jul 03, 2019
by
Christian Fuß
Browse files
removed some unnecessary code
parent
a5b546e2
Pipeline
#156176
passed with stages
in 19 minutes and 6 seconds
Changes
3
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
src/main/java/de/monticore/lang/monticar/cnnarch/_symboltable/UnrollSymbol.java
View file @
51c6e628
...
...
@@ -202,12 +202,6 @@ public class UnrollSymbol extends ArchitectureElementSymbol {
@Override
public
List
<
ArchTypeSymbol
>
computeOutputTypes
()
{
try
{
System
.
err
.
println
(
"############################"
+
this
.
getIntValue
(
AllPredefinedLayers
.
BEAMSEARCH_MAX_LENGTH
).
get
());
}
catch
(
Exception
e
){
System
.
err
.
println
(
"44444444444444444444444444"
);
e
.
printStackTrace
();
}
if
(
getElements
().
isEmpty
()){
if
(
getInputElement
().
isPresent
()){
return
getInputElement
().
get
().
getOutputTypes
();
...
...
src/test/java/de/monticore/lang/monticar/cnnarch/cocos/AllCoCoTest.java
View file @
51c6e628
...
...
@@ -66,7 +66,6 @@ public class AllCoCoTest extends AbstractCoCoTest {
checkValid
(
"valid_tests"
,
"Alexnet_alt2"
);
checkValid
(
"valid_tests"
,
"MultipleOutputs"
);
checkValid
(
"valid_tests"
,
"MultipleStreams"
);
checkValid
(
"valid_tests"
,
"Alexnet_alt_OneHotOutput"
);
}
@Test
...
...
src/test/resources/valid_tests/Alexnet_alt_OneHotOutput.cnna
deleted
100644 → 0
View file @
a5b546e2
architecture Alexnet_alt_OneHotOutput(img_height=224, img_width=224, img_channels=3, classes=10){
def input Z(0:255)^{img_channels, img_height, img_width} image
def output Q(0:1)^{classes} predictions
image ->
Convolution(kernel=(11,11), channels=96, stride=(4,4), padding="no_loss") ->
Lrn(nsize=5, alpha=0.0001, beta=0.75) ->
Pooling(pool_type="max", kernel=(3,3), stride=(2,2), padding="no_loss") ->
Relu() ->
Split(n=2) ->
(
[0] ->
Convolution(kernel=(5,5), channels=128) ->
Lrn(nsize=5, alpha=0.0001, beta=0.75) ->
Pooling(pool_type="max", kernel=(3,3), stride=(2,2), padding="no_loss") ->
Relu()
|
[1] ->
Convolution(kernel=(5,5), channels=128) ->
Lrn(nsize=5, alpha=0.0001, beta=0.75) ->
Pooling(pool_type="max", kernel=(3,3), stride=(2,2), padding="no_loss") ->
Relu()
) ->
Concatenate() ->
Convolution(kernel=(3,3), channels=384) ->
Relu() ->
Split(n=2) ->
(
[0] ->
Convolution(kernel=(3,3), channels=192) ->
Relu() ->
Convolution(kernel=(3,3), channels=128) ->
Pooling(pool_type="max", kernel=(3,3), stride=(2,2), padding="no_loss") ->
Relu()
|
[1] ->
Convolution(kernel=(3,3), channels=192) ->
Relu() ->
Convolution(kernel=(3,3), channels=128) ->
Pooling(pool_type="max", kernel=(3,3), stride=(2,2), padding="no_loss") ->
Relu()
) ->
Concatenate() ->
FullyConnected(units=4096) ->
Relu() ->
Dropout() ->
FullyConnected(units=4096) ->
Relu() ->
Dropout() ->
FullyConnected(units=classes) ->
Softmax() ->
predictions;
}
\ No newline at end of file
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment