Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
E
EMADL2CPP
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
10
Issues
10
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
0
Merge Requests
0
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
monticore
EmbeddedMontiArc
generators
EMADL2CPP
Commits
4ce1e348
Commit
4ce1e348
authored
Jul 11, 2019
by
Nicola Gatto
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Fix RL tests
parent
0cc00c55
Pipeline
#159711
failed with stages
Changes
32
Pipelines
2
Hide whitespace changes
Inline
Side-by-side
Showing
32 changed files
with
660 additions
and
398 deletions
+660
-398
src/test/resources/models/reinforcementModel/cartpole/agent/CartPoleDQN.cnnt
...models/reinforcementModel/cartpole/agent/CartPoleDQN.cnnt
+1
-1
src/test/resources/models/reinforcementModel/mountaincar/agent/MountaincarCritic.cnna
...inforcementModel/mountaincar/agent/MountaincarCritic.cnna
+1
-1
src/test/resources/models/reinforcementModel/torcs/agent/dqn/TorcsDQN.cnnt
...s/models/reinforcementModel/torcs/agent/dqn/TorcsDQN.cnnt
+1
-1
src/test/resources/target_code/gluon/reinforcementModel/cartpole/CNNDataLoader_cartpole_master_dqn.py
...cementModel/cartpole/CNNDataLoader_cartpole_master_dqn.py
+58
-22
src/test/resources/target_code/gluon/reinforcementModel/cartpole/CNNNet_cartpole_master_dqn.py
...reinforcementModel/cartpole/CNNNet_cartpole_master_dqn.py
+0
-1
src/test/resources/target_code/gluon/reinforcementModel/cartpole/CNNTrainer_cartpole_master_dqn.py
...forcementModel/cartpole/CNNTrainer_cartpole_master_dqn.py
+1
-1
src/test/resources/target_code/gluon/reinforcementModel/cartpole/reinforcement_learning/agent.py
...inforcementModel/cartpole/reinforcement_learning/agent.py
+16
-7
src/test/resources/target_code/gluon/reinforcementModel/cartpole/reinforcement_learning/strategy.py
...orcementModel/cartpole/reinforcement_learning/strategy.py
+1
-1
src/test/resources/target_code/gluon/reinforcementModel/cartpole/reinforcement_learning/util.py
...einforcementModel/cartpole/reinforcement_learning/util.py
+53
-29
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/CNNCreator_mountaincar_master_actor.py
...tModel/mountaincar/CNNCreator_mountaincar_master_actor.py
+41
-38
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/CNNDataLoader_mountaincar_master_actor.py
...del/mountaincar/CNNDataLoader_mountaincar_master_actor.py
+58
-22
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/CNNNet_mountaincar_master_actor.py
...ementModel/mountaincar/CNNNet_mountaincar_master_actor.py
+23
-10
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/CNNPredictor_mountaincar_master_actor.h
...Model/mountaincar/CNNPredictor_mountaincar_master_actor.h
+14
-11
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/CNNTrainer_mountaincar_master_actor.py
...tModel/mountaincar/CNNTrainer_mountaincar_master_actor.py
+3
-3
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/mountaincar_master_actor.h
...reinforcementModel/mountaincar/mountaincar_master_actor.h
+2
-2
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/reinforcement_learning/CNNCreator_MountaincarCritic.py
...ar/reinforcement_learning/CNNCreator_MountaincarCritic.py
+41
-38
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/reinforcement_learning/CNNNet_MountaincarCritic.py
...aincar/reinforcement_learning/CNNNet_MountaincarCritic.py
+29
-15
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/reinforcement_learning/agent.py
...orcementModel/mountaincar/reinforcement_learning/agent.py
+16
-7
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/reinforcement_learning/strategy.py
...ementModel/mountaincar/reinforcement_learning/strategy.py
+1
-1
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/reinforcement_learning/util.py
...forcementModel/mountaincar/reinforcement_learning/util.py
+53
-29
src/test/resources/target_code/gluon/reinforcementModel/torcs/CNNCreator_torcs_agent_torcsAgent_dqn.py
...ementModel/torcs/CNNCreator_torcs_agent_torcsAgent_dqn.py
+41
-38
src/test/resources/target_code/gluon/reinforcementModel/torcs/CNNDataLoader_torcs_agent_torcsAgent_dqn.py
...ntModel/torcs/CNNDataLoader_torcs_agent_torcsAgent_dqn.py
+58
-22
src/test/resources/target_code/gluon/reinforcementModel/torcs/CNNNet_torcs_agent_torcsAgent_dqn.py
...forcementModel/torcs/CNNNet_torcs_agent_torcsAgent_dqn.py
+23
-10
src/test/resources/target_code/gluon/reinforcementModel/torcs/CNNPredictor_torcs_agent_torcsAgent_dqn.h
...mentModel/torcs/CNNPredictor_torcs_agent_torcsAgent_dqn.h
+14
-11
src/test/resources/target_code/gluon/reinforcementModel/torcs/CNNTrainer_torcs_agent_torcsAgent_dqn.py
...ementModel/torcs/CNNTrainer_torcs_agent_torcsAgent_dqn.py
+3
-3
src/test/resources/target_code/gluon/reinforcementModel/torcs/reinforcement_learning/_torcs_agent_dqn_reward_executor.so
...einforcement_learning/_torcs_agent_dqn_reward_executor.so
+0
-0
src/test/resources/target_code/gluon/reinforcementModel/torcs/reinforcement_learning/agent.py
.../reinforcementModel/torcs/reinforcement_learning/agent.py
+16
-7
src/test/resources/target_code/gluon/reinforcementModel/torcs/reinforcement_learning/environment.py
...orcementModel/torcs/reinforcement_learning/environment.py
+9
-3
src/test/resources/target_code/gluon/reinforcementModel/torcs/reinforcement_learning/strategy.py
...inforcementModel/torcs/reinforcement_learning/strategy.py
+1
-1
src/test/resources/target_code/gluon/reinforcementModel/torcs/reinforcement_learning/torcs_agent_dqn_reward_executor.py
...reinforcement_learning/torcs_agent_dqn_reward_executor.py
+27
-32
src/test/resources/target_code/gluon/reinforcementModel/torcs/reinforcement_learning/util.py
...n/reinforcementModel/torcs/reinforcement_learning/util.py
+53
-29
src/test/resources/target_code/gluon/reinforcementModel/torcs/torcs_agent_torcsAgent_dqn.h
...uon/reinforcementModel/torcs/torcs_agent_torcsAgent_dqn.h
+2
-2
No files found.
src/test/resources/models/reinforcementModel/cartpole/agent/CartPoleDQN.cnnt
View file @
4ce1e348
...
@@ -17,7 +17,7 @@ configuration CartPoleDQN {
...
@@ -17,7 +17,7 @@ configuration CartPoleDQN {
use_double_dqn : false
use_double_dqn : false
loss :
euclidean
loss :
huber
replay_memory : buffer{
replay_memory : buffer{
memory_size : 10000
memory_size : 10000
...
...
src/test/resources/models/reinforcementModel/mountaincar/agent/MountaincarCritic.cnna
View file @
4ce1e348
...
@@ -8,5 +8,5 @@ implementation Critic(state, action) {
...
@@ -8,5 +8,5 @@ implementation Critic(state, action) {
FullyConnected(units=300)
FullyConnected(units=300)
) ->
) ->
Add() ->
Add() ->
Relu()
;
Relu()
}
}
\ No newline at end of file
src/test/resources/models/reinforcementModel/torcs/agent/dqn/TorcsDQN.cnnt
View file @
4ce1e348
...
@@ -23,7 +23,7 @@ configuration TorcsDQN {
...
@@ -23,7 +23,7 @@ configuration TorcsDQN {
use_double_dqn : true
use_double_dqn : true
loss :
euclidean
loss :
huber
replay_memory : buffer{
replay_memory : buffer{
memory_size : 1000000
memory_size : 1000000
...
...
src/test/resources/target_code/gluon/reinforcementModel/cartpole/CNNDataLoader_cartpole_master_dqn.py
View file @
4ce1e348
...
@@ -3,8 +3,9 @@ import h5py
...
@@ -3,8 +3,9 @@ import h5py
import
mxnet
as
mx
import
mxnet
as
mx
import
logging
import
logging
import
sys
import
sys
from
mxnet
import
nd
class
cartpole_master_dqnDataLoader
:
class
CNNDataLoader_cartpole_master_dqn
:
_input_names_
=
[
'state'
]
_input_names_
=
[
'state'
]
_output_names_
=
[
'qvalues_label'
]
_output_names_
=
[
'qvalues_label'
]
...
@@ -14,21 +15,38 @@ class cartpole_master_dqnDataLoader:
...
@@ -14,21 +15,38 @@ class cartpole_master_dqnDataLoader:
def
load_data
(
self
,
batch_size
):
def
load_data
(
self
,
batch_size
):
train_h5
,
test_h5
=
self
.
load_h5_files
()
train_h5
,
test_h5
=
self
.
load_h5_files
()
data_mean
=
train_h5
[
self
.
_input_names_
[
0
]][:].
mean
(
axis
=
0
)
train_data
=
{}
data_std
=
train_h5
[
self
.
_input_names_
[
0
]][:].
std
(
axis
=
0
)
+
1e-5
data_mean
=
{}
data_std
=
{}
for
input_name
in
self
.
_input_names_
:
train_data
[
input_name
]
=
train_h5
[
input_name
]
data_mean
[
input_name
]
=
nd
.
array
(
train_h5
[
input_name
][:].
mean
(
axis
=
0
))
data_std
[
input_name
]
=
nd
.
array
(
train_h5
[
input_name
][:].
std
(
axis
=
0
)
+
1e-5
)
train_label
=
{}
for
output_name
in
self
.
_output_names_
:
train_label
[
output_name
]
=
train_h5
[
output_name
]
train_iter
=
mx
.
io
.
NDArrayIter
(
data
=
train_data
,
label
=
train_label
,
batch_size
=
batch_size
)
train_iter
=
mx
.
io
.
NDArrayIter
(
train_h5
[
self
.
_input_names_
[
0
]],
train_h5
[
self
.
_output_names_
[
0
]],
batch_size
=
batch_size
,
data_name
=
self
.
_input_names_
[
0
],
label_name
=
self
.
_output_names_
[
0
])
test_iter
=
None
test_iter
=
None
if
test_h5
!=
None
:
if
test_h5
!=
None
:
test_iter
=
mx
.
io
.
NDArrayIter
(
test_h5
[
self
.
_input_names_
[
0
]],
test_data
=
{}
test_h5
[
self
.
_output_names_
[
0
]],
for
input_name
in
self
.
_input_names_
:
batch_size
=
batch_size
,
test_data
[
input_name
]
=
test_h5
[
input_name
]
data_name
=
self
.
_input_names_
[
0
],
label_name
=
self
.
_output_names_
[
0
])
test_label
=
{}
for
output_name
in
self
.
_output_names_
:
test_label
[
output_name
]
=
test_h5
[
output_name
]
test_iter
=
mx
.
io
.
NDArrayIter
(
data
=
test_data
,
label
=
test_label
,
batch_size
=
batch_size
)
return
train_iter
,
test_iter
,
data_mean
,
data_std
return
train_iter
,
test_iter
,
data_mean
,
data_std
def
load_h5_files
(
self
):
def
load_h5_files
(
self
):
...
@@ -36,21 +54,39 @@ class cartpole_master_dqnDataLoader:
...
@@ -36,21 +54,39 @@ class cartpole_master_dqnDataLoader:
test_h5
=
None
test_h5
=
None
train_path
=
self
.
_data_dir
+
"train.h5"
train_path
=
self
.
_data_dir
+
"train.h5"
test_path
=
self
.
_data_dir
+
"test.h5"
test_path
=
self
.
_data_dir
+
"test.h5"
if
os
.
path
.
isfile
(
train_path
):
if
os
.
path
.
isfile
(
train_path
):
train_h5
=
h5py
.
File
(
train_path
,
'r'
)
train_h5
=
h5py
.
File
(
train_path
,
'r'
)
if
not
(
self
.
_input_names_
[
0
]
in
train_h5
and
self
.
_output_names_
[
0
]
in
train_h5
):
logging
.
error
(
"The HDF5 file '"
+
os
.
path
.
abspath
(
train_path
)
+
"' has to contain the datasets: "
for
input_name
in
self
.
_input_names_
:
+
"'"
+
self
.
_input_names_
[
0
]
+
"', '"
+
self
.
_output_names_
[
0
]
+
"'"
)
if
not
input_name
in
train_h5
:
sys
.
exit
(
1
)
logging
.
error
(
"The HDF5 file '"
+
os
.
path
.
abspath
(
train_path
)
+
"' has to contain the dataset "
test_iter
=
None
+
"'"
+
input_name
+
"'"
)
sys
.
exit
(
1
)
for
output_name
in
self
.
_output_names_
:
if
not
output_name
in
train_h5
:
logging
.
error
(
"The HDF5 file '"
+
os
.
path
.
abspath
(
train_path
)
+
"' has to contain the dataset "
+
"'"
+
output_name
+
"'"
)
sys
.
exit
(
1
)
if
os
.
path
.
isfile
(
test_path
):
if
os
.
path
.
isfile
(
test_path
):
test_h5
=
h5py
.
File
(
test_path
,
'r'
)
test_h5
=
h5py
.
File
(
test_path
,
'r'
)
if
not
(
self
.
_input_names_
[
0
]
in
test_h5
and
self
.
_output_names_
[
0
]
in
test_h5
):
logging
.
error
(
"The HDF5 file '"
+
os
.
path
.
abspath
(
test_path
)
+
"' has to contain the datasets: "
for
input_name
in
self
.
_input_names_
:
+
"'"
+
self
.
_input_names_
[
0
]
+
"', '"
+
self
.
_output_names_
[
0
]
+
"'"
)
if
not
input_name
in
test_h5
:
sys
.
exit
(
1
)
logging
.
error
(
"The HDF5 file '"
+
os
.
path
.
abspath
(
test_path
)
+
"' has to contain the dataset "
+
"'"
+
input_name
+
"'"
)
sys
.
exit
(
1
)
for
output_name
in
self
.
_output_names_
:
if
not
output_name
in
test_h5
:
logging
.
error
(
"The HDF5 file '"
+
os
.
path
.
abspath
(
test_path
)
+
"' has to contain the dataset "
+
"'"
+
output_name
+
"'"
)
sys
.
exit
(
1
)
else
:
else
:
logging
.
warning
(
"Couldn't load test set. File '"
+
os
.
path
.
abspath
(
test_path
)
+
"' does not exist."
)
logging
.
warning
(
"Couldn't load test set. File '"
+
os
.
path
.
abspath
(
test_path
)
+
"' does not exist."
)
return
train_h5
,
test_h5
return
train_h5
,
test_h5
else
:
else
:
logging
.
error
(
"Data loading failure. File '"
+
os
.
path
.
abspath
(
train_path
)
+
"' does not exist."
)
logging
.
error
(
"Data loading failure. File '"
+
os
.
path
.
abspath
(
train_path
)
+
"' does not exist."
)
...
...
src/test/resources/target_code/gluon/reinforcementModel/cartpole/CNNNet_cartpole_master_dqn.py
View file @
4ce1e348
...
@@ -101,7 +101,6 @@ class Net_0(gluon.HybridBlock):
...
@@ -101,7 +101,6 @@ class Net_0(gluon.HybridBlock):
self
.
fc3_
=
gluon
.
nn
.
Dense
(
units
=
2
,
use_bias
=
True
)
self
.
fc3_
=
gluon
.
nn
.
Dense
(
units
=
2
,
use_bias
=
True
)
# fc3_, output shape: {[2,1,1]}
# fc3_, output shape: {[2,1,1]}
self
.
last_layers
[
'qvalues'
]
=
'linear'
def
hybrid_forward
(
self
,
F
,
state
):
def
hybrid_forward
(
self
,
F
,
state
):
...
...
src/test/resources/target_code/gluon/reinforcementModel/cartpole/CNNTrainer_cartpole_master_dqn.py
View file @
4ce1e348
...
@@ -81,7 +81,7 @@ if __name__ == "__main__":
...
@@ -81,7 +81,7 @@ if __name__ == "__main__":
'qnet'
:
qnet_creator
.
net
,
'qnet'
:
qnet_creator
.
net
,
'use_fix_target'
:
True
,
'use_fix_target'
:
True
,
'target_update_interval'
:
200
,
'target_update_interval'
:
200
,
'loss
_function'
:
'euclidean
'
,
'loss
'
:
'huber
'
,
'optimizer'
:
'rmsprop'
,
'optimizer'
:
'rmsprop'
,
'optimizer_params'
:
{
'optimizer_params'
:
{
'learning_rate'
:
0.001
},
'learning_rate'
:
0.001
},
...
...
src/test/resources/target_code/gluon/reinforcementModel/cartpole/reinforcement_learning/agent.py
View file @
4ce1e348
...
@@ -114,6 +114,8 @@ class Agent(object):
...
@@ -114,6 +114,8 @@ class Agent(object):
agent_session_file
=
os
.
path
.
join
(
session_dir
,
'agent.p'
)
agent_session_file
=
os
.
path
.
join
(
session_dir
,
'agent.p'
)
logger
=
self
.
_logger
logger
=
self
.
_logger
self
.
_training_stats
.
save_stats
(
self
.
_output_directory
,
episode
=
self
.
_current_episode
)
self
.
_make_pickle_ready
(
session_dir
)
self
.
_make_pickle_ready
(
session_dir
)
with
open
(
agent_session_file
,
'wb'
)
as
f
:
with
open
(
agent_session_file
,
'wb'
)
as
f
:
...
@@ -177,6 +179,9 @@ class Agent(object):
...
@@ -177,6 +179,9 @@ class Agent(object):
return
states
,
actions
,
rewards
,
next_states
,
terminals
return
states
,
actions
,
rewards
,
next_states
,
terminals
def
evaluate
(
self
,
target
=
None
,
sample_games
=
100
,
verbose
=
True
):
def
evaluate
(
self
,
target
=
None
,
sample_games
=
100
,
verbose
=
True
):
if
sample_games
<=
0
:
return
0
target
=
self
.
_target_score
if
target
is
None
else
target
target
=
self
.
_target_score
if
target
is
None
else
target
if
target
:
if
target
:
target_achieved
=
0
target_achieved
=
0
...
@@ -268,8 +273,9 @@ class Agent(object):
...
@@ -268,8 +273,9 @@ class Agent(object):
def
_save_net
(
self
,
net
,
filename
,
filedir
=
None
):
def
_save_net
(
self
,
net
,
filename
,
filedir
=
None
):
filedir
=
self
.
_output_directory
if
filedir
is
None
else
filedir
filedir
=
self
.
_output_directory
if
filedir
is
None
else
filedir
filename
=
os
.
path
.
join
(
filedir
,
filename
+
'.params'
)
filename
=
os
.
path
.
join
(
filedir
,
filename
)
net
.
save_parameters
(
filename
)
net
.
save_parameters
(
filename
+
'.params'
)
net
.
export
(
filename
,
epoch
=
0
)
def
save_best_network
(
self
,
path
,
epoch
=
0
):
def
save_best_network
(
self
,
path
,
epoch
=
0
):
self
.
_logger
.
info
(
self
.
_logger
.
info
(
...
@@ -367,6 +373,8 @@ class DdpgAgent(Agent):
...
@@ -367,6 +373,8 @@ class DdpgAgent(Agent):
def
_make_pickle_ready
(
self
,
session_dir
):
def
_make_pickle_ready
(
self
,
session_dir
):
super
(
DdpgAgent
,
self
).
_make_pickle_ready
(
session_dir
)
super
(
DdpgAgent
,
self
).
_make_pickle_ready
(
session_dir
)
self
.
_save_net
(
self
.
_actor
,
'current_actor'
)
self
.
_save_net
(
self
.
_actor
,
'actor'
,
session_dir
)
self
.
_save_net
(
self
.
_actor
,
'actor'
,
session_dir
)
self
.
_actor
=
None
self
.
_actor
=
None
self
.
_save_net
(
self
.
_critic
,
'critic'
,
session_dir
)
self
.
_save_net
(
self
.
_critic
,
'critic'
,
session_dir
)
...
@@ -457,9 +465,9 @@ class DdpgAgent(Agent):
...
@@ -457,9 +465,9 @@ class DdpgAgent(Agent):
else
:
else
:
self
.
_training_stats
=
DdpgTrainingStats
(
episodes
)
self
.
_training_stats
=
DdpgTrainingStats
(
episodes
)
# Initialize target Q' and mu'
# Initialize target Q' and mu'
self
.
_actor_target
=
self
.
_copy_actor
()
self
.
_actor_target
=
self
.
_copy_actor
()
self
.
_critic_target
=
self
.
_copy_critic
()
self
.
_critic_target
=
self
.
_copy_critic
()
# Initialize l2 loss for critic network
# Initialize l2 loss for critic network
l2_loss
=
gluon
.
loss
.
L2Loss
()
l2_loss
=
gluon
.
loss
.
L2Loss
()
...
@@ -540,7 +548,7 @@ class DdpgAgent(Agent):
...
@@ -540,7 +548,7 @@ class DdpgAgent(Agent):
actor_qvalues
=
tmp_critic
(
states
,
self
.
_actor
(
states
))
actor_qvalues
=
tmp_critic
(
states
,
self
.
_actor
(
states
))
# For maximizing qvalues we have to multiply with -1
# For maximizing qvalues we have to multiply with -1
# as we use a minimizer
# as we use a minimizer
actor_loss
=
-
1
*
actor_qvalues
actor_loss
=
-
1
*
actor_qvalues
.
mean
()
actor_loss
.
backward
()
actor_loss
.
backward
()
trainer_actor
.
step
(
self
.
_minibatch_size
)
trainer_actor
.
step
(
self
.
_minibatch_size
)
...
@@ -732,6 +740,7 @@ class DqnAgent(Agent):
...
@@ -732,6 +740,7 @@ class DqnAgent(Agent):
def
_make_pickle_ready
(
self
,
session_dir
):
def
_make_pickle_ready
(
self
,
session_dir
):
super
(
DqnAgent
,
self
).
_make_pickle_ready
(
session_dir
)
super
(
DqnAgent
,
self
).
_make_pickle_ready
(
session_dir
)
self
.
_save_net
(
self
.
_qnet
,
'current_qnet'
)
self
.
_save_net
(
self
.
_qnet
,
'qnet'
,
session_dir
)
self
.
_save_net
(
self
.
_qnet
,
'qnet'
,
session_dir
)
self
.
_qnet
=
None
self
.
_qnet
=
None
self
.
_save_net
(
self
.
_target_qnet
,
'target_net'
,
session_dir
)
self
.
_save_net
(
self
.
_target_qnet
,
'target_net'
,
session_dir
)
...
@@ -897,4 +906,4 @@ class DqnAgent(Agent):
...
@@ -897,4 +906,4 @@ class DqnAgent(Agent):
def
_save_current_as_best_net
(
self
):
def
_save_current_as_best_net
(
self
):
self
.
_best_net
=
copy_net
(
self
.
_best_net
=
copy_net
(
self
.
_qnet
,
(
1
,)
+
self
.
_state_dim
,
ctx
=
self
.
_ctx
)
self
.
_qnet
,
self
.
_state_dim
,
ctx
=
self
.
_ctx
)
src/test/resources/target_code/gluon/reinforcementModel/cartpole/reinforcement_learning/strategy.py
View file @
4ce1e348
...
@@ -168,5 +168,5 @@ class OrnsteinUhlenbeckStrategy(BaseStrategy):
...
@@ -168,5 +168,5 @@ class OrnsteinUhlenbeckStrategy(BaseStrategy):
def
select_action
(
self
,
values
):
def
select_action
(
self
,
values
):
noise
=
self
.
_evolve_state
()
noise
=
self
.
_evolve_state
()
action
=
values
+
(
self
.
cur_eps
*
noise
)
action
=
(
1.0
-
self
.
cur_eps
)
*
values
+
(
self
.
cur_eps
*
noise
)
return
np
.
clip
(
action
,
self
.
_action_low
,
self
.
_action_high
)
return
np
.
clip
(
action
,
self
.
_action_low
,
self
.
_action_high
)
src/test/resources/target_code/gluon/reinforcementModel/cartpole/reinforcement_learning/util.py
View file @
4ce1e348
...
@@ -127,13 +127,15 @@ class TrainingStats(object):
...
@@ -127,13 +127,15 @@ class TrainingStats(object):
else
:
else
:
return
self
.
_all_total_rewards
[
0
]
return
self
.
_all_total_rewards
[
0
]
def
save
(
self
,
path
):
def
save
(
self
,
path
,
episode
=
None
):
np
.
save
(
os
.
path
.
join
(
path
,
'total_rewards'
),
self
.
_all_total_rewards
)
if
episode
is
None
:
np
.
save
(
os
.
path
.
join
(
path
,
'eps'
),
self
.
_all_eps
)
episode
=
self
.
_max_episodes
np
.
save
(
os
.
path
.
join
(
path
,
'time'
),
self
.
_all_time
)
np
.
save
(
os
.
path
.
join
(
path
,
'total_rewards'
),
self
.
_all_total_rewards
[:
episode
])
np
.
save
(
os
.
path
.
join
(
path
,
'eps'
),
self
.
_all_eps
[:
episode
])
np
.
save
(
os
.
path
.
join
(
path
,
'time'
),
self
.
_all_time
[:
episode
])
np
.
save
(
np
.
save
(
os
.
path
.
join
(
path
,
'mean_reward'
),
os
.
path
.
join
(
path
,
'mean_reward'
),
self
.
_all_mean_reward_last_100_episodes
)
self
.
_all_mean_reward_last_100_episodes
[:
episode
]
)
def
_log_episode
(
self
,
episode
,
start_time
,
training_steps
,
eps
,
reward
):
def
_log_episode
(
self
,
episode
,
start_time
,
training_steps
,
eps
,
reward
):
self
.
add_eps
(
episode
,
eps
)
self
.
add_eps
(
episode
,
eps
)
...
@@ -170,33 +172,43 @@ class DqnTrainingStats(TrainingStats):
...
@@ -170,33 +172,43 @@ class DqnTrainingStats(TrainingStats):
self
.
_logger
.
info
(
info
)
self
.
_logger
.
info
(
info
)
return
avg_reward
return
avg_reward
def
save_stats
(
self
,
path
):
def
save_stats
(
self
,
path
,
episode
=
None
):
if
episode
is
None
:
episode
=
self
.
_max_episodes
all_total_rewards
=
self
.
_all_total_rewards
[:
episode
]
all_avg_loss
=
self
.
_all_avg_loss
[:
episode
]
all_eps
=
self
.
_all_eps
[:
episode
]
all_mean_reward_last_100_episodes
=
self
.
_all_mean_reward_last_100_episodes
[:
episode
]
fig
=
plt
.
figure
(
figsize
=
(
20
,
20
))
fig
=
plt
.
figure
(
figsize
=
(
20
,
20
))
sub_rewards
=
fig
.
add_subplot
(
221
)
sub_rewards
=
fig
.
add_subplot
(
221
)
sub_rewards
.
set_title
(
'Total Rewards per episode'
)
sub_rewards
.
set_title
(
'Total Rewards per episode'
)
sub_rewards
.
plot
(
sub_rewards
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
self
.
_
all_total_rewards
)
np
.
arange
(
episode
),
all_total_rewards
)
sub_loss
=
fig
.
add_subplot
(
222
)
sub_loss
=
fig
.
add_subplot
(
222
)
sub_loss
.
set_title
(
'Avg. Loss per episode'
)
sub_loss
.
set_title
(
'Avg. Loss per episode'
)
sub_loss
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
self
.
_
all_avg_loss
)
sub_loss
.
plot
(
np
.
arange
(
episode
),
all_avg_loss
)
sub_eps
=
fig
.
add_subplot
(
223
)
sub_eps
=
fig
.
add_subplot
(
223
)
sub_eps
.
set_title
(
'Epsilon per episode'
)
sub_eps
.
set_title
(
'Epsilon per episode'
)
sub_eps
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
self
.
_
all_eps
)
sub_eps
.
plot
(
np
.
arange
(
episode
),
all_eps
)
sub_rewards
=
fig
.
add_subplot
(
224
)
sub_rewards
=
fig
.
add_subplot
(
224
)
sub_rewards
.
set_title
(
'Avg. mean reward of last 100 episodes'
)
sub_rewards
.
set_title
(
'Avg. mean reward of last 100 episodes'
)
sub_rewards
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
sub_rewards
.
plot
(
np
.
arange
(
episode
),
self
.
_
all_mean_reward_last_100_episodes
)
all_mean_reward_last_100_episodes
)
self
.
save
(
path
)
self
.
save
(
path
,
episode
=
episode
)
plt
.
savefig
(
os
.
path
.
join
(
path
,
'stats.pdf'
))
plt
.
savefig
(
os
.
path
.
join
(
path
,
'stats.pdf'
))
def
save
(
self
,
path
):
def
save
(
self
,
path
,
episode
=
None
):
super
(
DqnTrainingStats
,
self
).
save
(
path
)
if
episode
is
None
:
np
.
save
(
os
.
path
.
join
(
path
,
'avg_loss'
),
self
.
_all_avg_loss
)
episode
=
self
.
_max_episodes
super
(
DqnTrainingStats
,
self
).
save
(
path
,
episode
=
episode
)
np
.
save
(
os
.
path
.
join
(
path
,
'avg_loss'
),
self
.
_all_avg_loss
[:
episode
])
class
DdpgTrainingStats
(
TrainingStats
):
class
DdpgTrainingStats
(
TrainingStats
):
...
@@ -233,44 +245,56 @@ class DdpgTrainingStats(TrainingStats):
...
@@ -233,44 +245,56 @@ class DdpgTrainingStats(TrainingStats):
self
.
logger
.
info
(
info
)
self
.
logger
.
info
(
info
)
return
avg_reward
return
avg_reward
def
save
(
self
,
path
):
def
save
(
self
,
path
,
episode
=
None
):
super
(
DdpgTrainingStats
,
self
).
save
(
path
)
if
episode
is
None
:
episode
=
self
.
_max_episodes
super
(
DdpgTrainingStats
,
self
).
save
(
path
,
episode
=
episode
)
np
.
save
(
os
.
path
.
join
(
np
.
save
(
os
.
path
.
join
(
path
,
'avg_critic_loss'
),
self
.
_all_avg_critic_loss
)
path
,
'avg_critic_loss'
),
self
.
_all_avg_critic_loss
[:
episode
])
np
.
save
(
os
.
path
.
join
(
path
,
'avg_actor_loss'
),
self
.
_all_avg_actor_loss
)
np
.
save
(
os
.
path
.
join
(
path
,
'avg_actor_loss'
),
self
.
_all_avg_actor_loss
[:
episode
])
np
.
save
(
os
.
path
.
join
(
path
,
'avg_qvalues'
),
self
.
_all_avg_qvalues
)
np
.
save
(
os
.
path
.
join
(
path
,
'avg_qvalues'
),
self
.
_all_avg_qvalues
[:
episode
])
def
save_stats
(
self
,
path
,
episode
=
None
):
if
episode
is
None
:
episode
=
self
.
_max_episodes
all_total_rewards
=
self
.
_all_total_rewards
[:
episode
]
all_avg_actor_loss
=
self
.
_all_avg_actor_loss
[:
episode
]
all_avg_critic_loss
=
self
.
_all_avg_critic_loss
[:
episode
]
all_avg_qvalues
=
self
.
_all_avg_qvalues
[:
episode
]
all_eps
=
self
.
_all_eps
[:
episode
]
all_mean_reward_last_100_episodes
=
self
.
_all_mean_reward_last_100_episodes
[:
episode
]
def
save_stats
(
self
,
path
):
fig
=
plt
.
figure
(
figsize
=
(
120
,
120
))
fig
=
plt
.
figure
(
figsize
=
(
120
,
120
))
sub_rewards
=
fig
.
add_subplot
(
321
)
sub_rewards
=
fig
.
add_subplot
(
321
)
sub_rewards
.
set_title
(
'Total Rewards per episode'
)
sub_rewards
.
set_title
(
'Total Rewards per episode'
)
sub_rewards
.
plot
(
sub_rewards
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
self
.
_
all_total_rewards
)
np
.
arange
(
episode
),
all_total_rewards
)
sub_actor_loss
=
fig
.
add_subplot
(
322
)
sub_actor_loss
=
fig
.
add_subplot
(
322
)
sub_actor_loss
.
set_title
(
'Avg. Actor Loss per episode'
)
sub_actor_loss
.
set_title
(
'Avg. Actor Loss per episode'
)
sub_actor_loss
.
plot
(
sub_actor_loss
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
self
.
_
all_avg_actor_loss
)
np
.
arange
(
episode
),
all_avg_actor_loss
)
sub_critic_loss
=
fig
.
add_subplot
(
323
)
sub_critic_loss
=
fig
.
add_subplot
(
323
)
sub_critic_loss
.
set_title
(
'Avg. Critic Loss per episode'
)
sub_critic_loss
.
set_title
(
'Avg. Critic Loss per episode'
)
sub_critic_loss
.
plot
(
sub_critic_loss
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
self
.
_
all_avg_critic_loss
)
np
.
arange
(
episode
),
all_avg_critic_loss
)
sub_qvalues
=
fig
.
add_subplot
(
324
)
sub_qvalues
=
fig
.
add_subplot
(
324
)
sub_qvalues
.
set_title
(
'Avg. QValues per episode'
)
sub_qvalues
.
set_title
(
'Avg. QValues per episode'
)
sub_qvalues
.
plot
(
sub_qvalues
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
self
.
_
all_avg_qvalues
)
np
.
arange
(
episode
),
all_avg_qvalues
)
sub_eps
=
fig
.
add_subplot
(
325
)
sub_eps
=
fig
.
add_subplot
(
325
)
sub_eps
.
set_title
(
'Epsilon per episode'
)
sub_eps
.
set_title
(
'Epsilon per episode'
)
sub_eps
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
self
.
_
all_eps
)
sub_eps
.
plot
(
np
.
arange
(
episode
),
all_eps
)
sub_rewards
=
fig
.
add_subplot
(
326
)
sub_rewards
=
fig
.
add_subplot
(
326
)
sub_rewards
.
set_title
(
'Avg. mean reward of last 100 episodes'
)
sub_rewards
.
set_title
(
'Avg. mean reward of last 100 episodes'
)
sub_rewards
.
plot
(
np
.
arange
(
self
.
_max_episodes
),
sub_rewards
.
plot
(
np
.
arange
(
episode
),
self
.
_
all_mean_reward_last_100_episodes
)
all_mean_reward_last_100_episodes
)
self
.
save
(
path
)
self
.
save
(
path
,
episode
=
episode
)
plt
.
savefig
(
os
.
path
.
join
(
path
,
'stats.pdf'
))
plt
.
savefig
(
os
.
path
.
join
(
path
,
'stats.pdf'
))
src/test/resources/target_code/gluon/reinforcementModel/mountaincar/CNNCreator_mountaincar_master_actor.py
View file @
4ce1e348
import
mxnet
as
mx
import
mxnet
as
mx
import
logging
import
logging
import
os
import
os
from
CNNNet_mountaincar_master_actor
import
Net
from
CNNNet_mountaincar_master_actor
import
Net
_0
class
CNNCreator_mountaincar_master_actor
:
class
CNNCreator_mountaincar_master_actor
:
_model_dir_
=
"model/mountaincar.agent.MountaincarActor/"
_model_dir_
=
"model/mountaincar.agent.MountaincarActor/"
_model_prefix_
=
"model"
_model_prefix_
=
"model"
_input_shapes_
=
[(
2
,)]
def
__init__
(
self
):