Skip to content
GitLab
Projects
Groups
Snippets
Help
Loading...
Help
Help
Support
Community forum
Keyboard shortcuts
?
Submit feedback
Sign in
Toggle navigation
E
EMADL2CPP
Project overview
Project overview
Details
Activity
Releases
Repository
Repository
Files
Commits
Branches
Tags
Contributors
Graph
Compare
Locked Files
Issues
10
Issues
10
List
Boards
Labels
Service Desk
Milestones
Iterations
Merge Requests
0
Merge Requests
0
Requirements
Requirements
List
CI / CD
CI / CD
Pipelines
Jobs
Schedules
Test Cases
Security & Compliance
Security & Compliance
Dependency List
License Compliance
Operations
Operations
Incidents
Environments
Packages & Registries
Packages & Registries
Container Registry
Analytics
Analytics
CI / CD
Code Review
Insights
Issue
Repository
Value Stream
Wiki
Wiki
Snippets
Snippets
Members
Members
Collapse sidebar
Close sidebar
Activity
Graph
Create a new issue
Jobs
Commits
Issue Boards
Open sidebar
monticore
EmbeddedMontiArc
generators
EMADL2CPP
Commits
0cc00c55
Commit
0cc00c55
authored
Jul 09, 2019
by
Sebastian N.
Browse files
Options
Browse Files
Download
Email Patches
Plain Diff
Updated version numbers and fixed some tests
parent
6fbb6934
Pipeline
#158802
failed with stages
in 1 minute and 9 seconds
Changes
4
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
4 changed files
with
152 additions
and
23 deletions
+152
-23
pom.xml
pom.xml
+3
-3
src/test/resources/target_code/CNNCreator_cifar10_cifar10Classifier_net.py
...s/target_code/CNNCreator_cifar10_cifar10Classifier_net.py
+88
-4
src/test/resources/target_code/gluon/CNNNet_mnist_mnistClassifier_net.py
...ces/target_code/gluon/CNNNet_mnist_mnistClassifier_net.py
+3
-2
src/test/resources/target_code/gluon/CNNSupervisedTrainer_mnist_mnistClassifier_net.py
...e/gluon/CNNSupervisedTrainer_mnist_mnistClassifier_net.py
+58
-14
No files found.
pom.xml
View file @
0cc00c55
...
@@ -16,11 +16,11 @@
...
@@ -16,11 +16,11 @@
<!-- .. SE-Libraries .................................................. -->
<!-- .. SE-Libraries .................................................. -->
<emadl.version>
0.2.8-SNAPSHOT
</emadl.version>
<emadl.version>
0.2.8-SNAPSHOT
</emadl.version>
<CNNTrain.version>
0.3.
2
-SNAPSHOT
</CNNTrain.version>
<CNNTrain.version>
0.3.
4
-SNAPSHOT
</CNNTrain.version>
<cnnarch-generator.version>
0.0.
1
-SNAPSHOT
</cnnarch-generator.version>
<cnnarch-generator.version>
0.0.
2
-SNAPSHOT
</cnnarch-generator.version>
<cnnarch-mxnet-generator.version>
0.2.16-SNAPSHOT
</cnnarch-mxnet-generator.version>
<cnnarch-mxnet-generator.version>
0.2.16-SNAPSHOT
</cnnarch-mxnet-generator.version>
<cnnarch-caffe2-generator.version>
0.2.12-SNAPSHOT
</cnnarch-caffe2-generator.version>
<cnnarch-caffe2-generator.version>
0.2.12-SNAPSHOT
</cnnarch-caffe2-generator.version>
<cnnarch-gluon-generator.version>
0.2.
1
-SNAPSHOT
</cnnarch-gluon-generator.version>
<cnnarch-gluon-generator.version>
0.2.
2
-SNAPSHOT
</cnnarch-gluon-generator.version>
<embedded-montiarc-math-opt-generator>
0.1.4
</embedded-montiarc-math-opt-generator>
<embedded-montiarc-math-opt-generator>
0.1.4
</embedded-montiarc-math-opt-generator>
<!-- .. Libraries .................................................. -->
<!-- .. Libraries .................................................. -->
...
...
src/test/resources/target_code/CNNCreator_cifar10_cifar10Classifier_net.py
View file @
0cc00c55
...
@@ -104,10 +104,83 @@ class CNNCreator_cifar10_cifar10Classifier_net:
...
@@ -104,10 +104,83 @@ class CNNCreator_cifar10_cifar10Classifier_net:
logging
.
error
(
"Data loading failure. File '"
+
os
.
path
.
abspath
(
train_path
)
+
"' does not exist."
)
logging
.
error
(
"Data loading failure. File '"
+
os
.
path
.
abspath
(
train_path
)
+
"' does not exist."
)
sys
.
exit
(
1
)
sys
.
exit
(
1
)
def
loss_function
(
self
,
loss
,
params
):
label
=
mx
.
symbol
.
var
(
name
=
self
.
_output_names_
[
0
],
)
prediction
=
self
.
module
.
symbol
.
get_children
()[
0
]
margin
=
params
[
'margin'
]
if
'margin'
in
params
else
1.0
sparseLabel
=
params
[
'sparse_label'
]
if
'sparse_label'
in
params
else
True
if
loss
==
'softmax_cross_entropy'
:
fromLogits
=
params
[
'from_logits'
]
if
'from_logits'
in
params
else
False
if
not
fromLogits
:
prediction
=
mx
.
symbol
.
log_softmax
(
data
=
prediction
,
axis
=
1
)
if
sparseLabel
:
loss_func
=
mx
.
symbol
.
mean
(
-
mx
.
symbol
.
pick
(
prediction
,
label
,
axis
=-
1
,
keepdims
=
True
),
axis
=
0
,
exclude
=
True
)
else
:
label
=
mx
.
symbol
.
reshape_like
(
label
,
prediction
)
loss_func
=
mx
.
symbol
.
mean
(
-
mx
.
symbol
.
sum
(
prediction
*
label
,
axis
=-
1
,
keepdims
=
True
),
axis
=
0
,
exclude
=
True
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
loss_func
,
name
=
"softmax_cross_entropy"
)
elif
loss
==
'cross_entropy'
:
prediction
=
mx
.
symbol
.
log
(
prediction
)
if
sparseLabel
:
loss_func
=
mx
.
symbol
.
mean
(
-
mx
.
symbol
.
pick
(
prediction
,
label
,
axis
=-
1
,
keepdims
=
True
),
axis
=
0
,
exclude
=
True
)
else
:
label
=
mx
.
symbol
.
reshape_like
(
label
,
prediction
)
loss_func
=
mx
.
symbol
.
mean
(
-
mx
.
symbol
.
sum
(
prediction
*
label
,
axis
=-
1
,
keepdims
=
True
),
axis
=
0
,
exclude
=
True
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
loss_func
,
name
=
"cross_entropy"
)
elif
loss
==
'sigmoid_binary_cross_entropy'
:
loss_func
=
mx
.
symbol
.
LogisticRegressionOutput
(
data
=
prediction
,
name
=
self
.
module
.
symbol
.
name
)
elif
loss
==
'l1'
:
loss_func
=
mx
.
symbol
.
MAERegressionOutput
(
data
=
prediction
,
name
=
self
.
module
.
symbol
.
name
)
elif
loss
==
'l2'
:
label
=
mx
.
symbol
.
reshape_like
(
label
,
prediction
)
loss_func
=
mx
.
symbol
.
mean
(
mx
.
symbol
.
square
((
label
-
prediction
)
/
2
),
axis
=
0
,
exclude
=
True
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
loss_func
,
name
=
"L2"
)
elif
loss
==
'huber'
:
rho
=
params
[
'rho'
]
if
'rho'
in
params
else
1
label
=
mx
.
symbol
.
reshape_like
(
label
,
prediction
)
loss_func
=
mx
.
symbol
.
abs
(
label
-
prediction
)
loss_func
=
mx
.
symbol
.
where
(
loss_func
>
rho
,
loss_func
-
0.5
*
rho
,
(
0.5
/
rho
)
*
mx
.
symbol
.
square
(
loss_func
))
loss_func
=
mx
.
symbol
.
mean
(
loss_func
,
axis
=
0
,
exclude
=
True
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
loss_func
,
name
=
"huber"
)
elif
loss
==
'hinge'
:
label
=
mx
.
symbol
.
reshape_like
(
label
,
prediction
)
loss_func
=
mx
.
symbol
.
mean
(
mx
.
symbol
.
relu
(
margin
-
prediction
*
label
),
axis
=
0
,
exclude
=
True
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
loss_func
,
name
=
"hinge"
)
elif
loss
==
'squared_hinge'
:
label
=
mx
.
symbol
.
reshape_like
(
label
,
prediction
)
loss_func
=
mx
.
symbol
.
mean
(
mx
.
symbol
.
square
(
mx
.
symbol
.
relu
(
margin
-
prediction
*
label
)),
axis
=
0
,
exclude
=
True
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
loss_func
,
name
=
"squared_hinge"
)
elif
loss
==
'logistic'
:
labelFormat
=
params
[
'label_format'
]
if
'label_format'
in
params
else
'signed'
if
labelFormat
not
in
[
"binary"
,
"signed"
]:
logging
.
error
(
"label_format can only be signed or binary"
)
label
=
mx
.
symbol
.
reshape_like
(
label
,
prediction
)
if
labelFormat
==
'signed'
:
label
=
(
label
+
1.0
)
/
2.0
loss_func
=
mx
.
symbol
.
relu
(
prediction
)
-
prediction
*
label
loss_func
=
loss_func
+
mx
.
symbol
.
Activation
(
-
mx
.
symbol
.
abs
(
prediction
),
act_type
=
"softrelu"
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
mx
.
symbol
.
mean
(
loss_func
,
0
,
exclude
=
True
),
name
=
"logistic"
)
elif
loss
==
'kullback_leibler'
:
fromLogits
=
params
[
'from_logits'
]
if
'from_logits'
in
params
else
True
if
not
fromLogits
:
prediction
=
mx
.
symbol
.
log_softmax
(
prediction
,
axis
=
1
)
loss_func
=
mx
.
symbol
.
mean
(
label
*
(
mx
.
symbol
.
log
(
label
)
-
prediction
),
axis
=
0
,
exclude
=
True
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
loss_func
,
name
=
"kullback_leibler"
)
elif
loss
==
'log_cosh'
:
loss_func
=
mx
.
symbol
.
mean
(
mx
.
symbol
.
log
(
mx
.
symbol
.
cosh
(
prediction
-
label
)),
axis
=
0
,
exclude
=
True
)
loss_func
=
mx
.
symbol
.
MakeLoss
(
loss_func
,
name
=
"log_cosh"
)
else
:
logging
.
error
(
"Invalid loss parameter."
)
return
loss_func
def
train
(
self
,
batch_size
=
64
,
def
train
(
self
,
batch_size
=
64
,
num_epoch
=
10
,
num_epoch
=
10
,
eval_metric
=
'acc'
,
eval_metric
=
'acc'
,
loss
=
'softmax_cross_entropy'
,
loss_params
=
{},
optimizer
=
'adam'
,
optimizer
=
'adam'
,
optimizer_params
=
((
'learning_rate'
,
0.001
),),
optimizer_params
=
((
'learning_rate'
,
0.001
),),
load_checkpoint
=
True
,
load_checkpoint
=
True
,
...
@@ -136,7 +209,6 @@ class CNNCreator_cifar10_cifar10Classifier_net:
...
@@ -136,7 +209,6 @@ class CNNCreator_cifar10_cifar10Classifier_net:
del
optimizer_params
[
'step_size'
]
del
optimizer_params
[
'step_size'
]
del
optimizer_params
[
'learning_rate_decay'
]
del
optimizer_params
[
'learning_rate_decay'
]
train_iter
,
test_iter
,
data_mean
,
data_std
=
self
.
load_data
(
batch_size
)
train_iter
,
test_iter
,
data_mean
,
data_std
=
self
.
load_data
(
batch_size
)
if
self
.
module
==
None
:
if
self
.
module
==
None
:
if
normalize
:
if
normalize
:
...
@@ -144,6 +216,14 @@ class CNNCreator_cifar10_cifar10Classifier_net:
...
@@ -144,6 +216,14 @@ class CNNCreator_cifar10_cifar10Classifier_net:
else
:
else
:
self
.
construct
(
mx_context
)
self
.
construct
(
mx_context
)
loss_func
=
self
.
loss_function
(
loss
=
loss
,
params
=
loss_params
)
self
.
module
=
mx
.
mod
.
Module
(
symbol
=
mx
.
symbol
.
Group
([
loss_func
,
mx
.
symbol
.
BlockGrad
(
self
.
module
.
symbol
.
get_children
()[
0
],
name
=
"pred"
)]),
data_names
=
self
.
_input_names_
,
label_names
=
self
.
_output_names_
,
context
=
mx_context
)
begin_epoch
=
0
begin_epoch
=
0
if
load_checkpoint
:
if
load_checkpoint
:
begin_epoch
=
self
.
load
(
mx_context
)
begin_epoch
=
self
.
load
(
mx_context
)
...
@@ -157,9 +237,11 @@ class CNNCreator_cifar10_cifar10Classifier_net:
...
@@ -157,9 +237,11 @@ class CNNCreator_cifar10_cifar10Classifier_net:
if
not
os
.
path
.
isdir
(
self
.
_model_dir_
):
if
not
os
.
path
.
isdir
(
self
.
_model_dir_
):
raise
raise
metric
=
mx
.
metric
.
create
(
eval_metric
,
output_names
=
[
'pred_output'
])
self
.
module
.
fit
(
self
.
module
.
fit
(
train_data
=
train_iter
,
train_data
=
train_iter
,
eval_metric
=
eval_
metric
,
eval_metric
=
metric
,
eval_data
=
test_iter
,
eval_data
=
test_iter
,
optimizer
=
optimizer
,
optimizer
=
optimizer
,
optimizer_params
=
optimizer_params
,
optimizer_params
=
optimizer_params
,
...
@@ -656,8 +738,10 @@ class CNNCreator_cifar10_cifar10Classifier_net:
...
@@ -656,8 +738,10 @@ class CNNCreator_cifar10_cifar10Classifier_net:
num_hidden
=
10
,
num_hidden
=
10
,
no_bias
=
False
,
no_bias
=
False
,
name
=
"fc32_"
)
name
=
"fc32_"
)
softmax32_
=
mx
.
symbol
.
softmax
(
data
=
fc32_
,
softmax
=
mx
.
symbol
.
SoftmaxOutput
(
data
=
fc32_
,
axis
=
1
,
name
=
"softmax32_"
)
softmax
=
mx
.
symbol
.
SoftmaxOutput
(
data
=
softmax32_
,
name
=
"softmax"
)
name
=
"softmax"
)
self
.
module
=
mx
.
mod
.
Module
(
symbol
=
mx
.
symbol
.
Group
([
softmax
]),
self
.
module
=
mx
.
mod
.
Module
(
symbol
=
mx
.
symbol
.
Group
([
softmax
]),
...
...
src/test/resources/target_code/gluon/CNNNet_mnist_mnistClassifier_net.py
View file @
0cc00c55
...
@@ -120,7 +120,7 @@ class Net_0(gluon.HybridBlock):
...
@@ -120,7 +120,7 @@ class Net_0(gluon.HybridBlock):
self
.
fc3_
=
gluon
.
nn
.
Dense
(
units
=
10
,
use_bias
=
True
)
self
.
fc3_
=
gluon
.
nn
.
Dense
(
units
=
10
,
use_bias
=
True
)
# fc3_, output shape: {[10,1,1]}
# fc3_, output shape: {[10,1,1]}
self
.
last_layers
[
'predictions'
]
=
'softmax'
self
.
softmax3_
=
Softmax
()
def
hybrid_forward
(
self
,
F
,
image
):
def
hybrid_forward
(
self
,
F
,
image
):
...
@@ -134,6 +134,7 @@ class Net_0(gluon.HybridBlock):
...
@@ -134,6 +134,7 @@ class Net_0(gluon.HybridBlock):
fc2_
=
self
.
fc2_
(
fc2_flatten_
)
fc2_
=
self
.
fc2_
(
fc2_flatten_
)
relu2_
=
self
.
relu2_
(
fc2_
)
relu2_
=
self
.
relu2_
(
fc2_
)
fc3_
=
self
.
fc3_
(
relu2_
)
fc3_
=
self
.
fc3_
(
relu2_
)
outputs
.
append
(
fc3_
)
softmax3_
=
self
.
softmax3_
(
fc3_
)
outputs
.
append
(
softmax3_
)
return
outputs
[
0
]
return
outputs
[
0
]
src/test/resources/target_code/gluon/CNNSupervisedTrainer_mnist_mnistClassifier_net.py
View file @
0cc00c55
...
@@ -6,6 +6,31 @@ import os
...
@@ -6,6 +6,31 @@ import os
import
shutil
import
shutil
from
mxnet
import
gluon
,
autograd
,
nd
from
mxnet
import
gluon
,
autograd
,
nd
class
CrossEntropyLoss
(
gluon
.
loss
.
Loss
):
def
__init__
(
self
,
axis
=-
1
,
sparse_label
=
True
,
weight
=
None
,
batch_axis
=
0
,
**
kwargs
):
super
(
CrossEntropyLoss
,
self
).
__init__
(
weight
,
batch_axis
,
**
kwargs
)
self
.
_axis
=
axis
self
.
_sparse_label
=
sparse_label
def
hybrid_forward
(
self
,
F
,
pred
,
label
,
sample_weight
=
None
):
pred
=
F
.
log
(
pred
)
if
self
.
_sparse_label
:
loss
=
-
F
.
pick
(
pred
,
label
,
axis
=
self
.
_axis
,
keepdims
=
True
)
else
:
label
=
gluon
.
loss
.
_reshape_like
(
F
,
label
,
pred
)
loss
=
-
F
.
sum
(
pred
*
label
,
axis
=
self
.
_axis
,
keepdims
=
True
)
loss
=
gluon
.
loss
.
_apply_weighting
(
F
,
loss
,
self
.
_weight
,
sample_weight
)
return
F
.
mean
(
loss
,
axis
=
self
.
_batch_axis
,
exclude
=
True
)
class
LogCoshLoss
(
gluon
.
loss
.
Loss
):
def
__init__
(
self
,
weight
=
None
,
batch_axis
=
0
,
**
kwargs
):
super
(
LogCoshLoss
,
self
).
__init__
(
weight
,
batch_axis
,
**
kwargs
)
def
hybrid_forward
(
self
,
F
,
pred
,
label
,
sample_weight
=
None
):
loss
=
F
.
log
(
F
.
cosh
(
pred
-
label
))
loss
=
gluon
.
loss
.
_apply_weighting
(
F
,
loss
,
self
.
_weight
,
sample_weight
)
return
F
.
mean
(
loss
,
axis
=
self
.
_batch_axis
,
exclude
=
True
)
class
CNNSupervisedTrainer_mnist_mnistClassifier_net
:
class
CNNSupervisedTrainer_mnist_mnistClassifier_net
:
def
__init__
(
self
,
data_loader
,
net_constructor
):
def
__init__
(
self
,
data_loader
,
net_constructor
):
self
.
_data_loader
=
data_loader
self
.
_data_loader
=
data_loader
...
@@ -15,6 +40,8 @@ class CNNSupervisedTrainer_mnist_mnistClassifier_net:
...
@@ -15,6 +40,8 @@ class CNNSupervisedTrainer_mnist_mnistClassifier_net:
def
train
(
self
,
batch_size
=
64
,
def
train
(
self
,
batch_size
=
64
,
num_epoch
=
10
,
num_epoch
=
10
,
eval_metric
=
'acc'
,
eval_metric
=
'acc'
,
loss
=
'softmax_cross_entropy'
,
loss_params
=
{},
optimizer
=
'adam'
,
optimizer
=
'adam'
,
optimizer_params
=
((
'learning_rate'
,
0.001
),),
optimizer_params
=
((
'learning_rate'
,
0.001
),),
load_checkpoint
=
True
,
load_checkpoint
=
True
,
...
@@ -68,19 +95,36 @@ class CNNSupervisedTrainer_mnist_mnistClassifier_net:
...
@@ -68,19 +95,36 @@ class CNNSupervisedTrainer_mnist_mnistClassifier_net:
trainers
=
[
mx
.
gluon
.
Trainer
(
network
.
collect_params
(),
optimizer
,
optimizer_params
)
for
network
in
self
.
_networks
.
values
()]
trainers
=
[
mx
.
gluon
.
Trainer
(
network
.
collect_params
(),
optimizer
,
optimizer_params
)
for
network
in
self
.
_networks
.
values
()]
loss_functions
=
{}
margin
=
loss_params
[
'margin'
]
if
'margin'
in
loss_params
else
1.0
sparseLabel
=
loss_params
[
'sparse_label'
]
if
'sparse_label'
in
loss_params
else
True
for
network
in
self
.
_networks
.
values
():
if
loss
==
'softmax_cross_entropy'
:
for
output_name
,
last_layer
in
network
.
last_layers
.
items
():
fromLogits
=
loss_params
[
'from_logits'
]
if
'from_logits'
in
loss_params
else
False
if
last_layer
==
'softmax'
:
loss_function
=
mx
.
gluon
.
loss
.
SoftmaxCrossEntropyLoss
(
from_logits
=
fromLogits
,
sparse_label
=
sparseLabel
)
loss_functions
[
output_name
]
=
mx
.
gluon
.
loss
.
SoftmaxCrossEntropyLoss
()
elif
loss
==
'sigmoid_binary_cross_entropy'
:
elif
last_layer
==
'sigmoid'
:
loss_function
=
mx
.
gluon
.
loss
.
SigmoidBinaryCrossEntropyLoss
()
loss_functions
[
output_name
]
=
mx
.
gluon
.
loss
.
SigmoidBinaryCrossEntropyLoss
()
elif
loss
==
'cross_entropy'
:
elif
last_layer
==
'linear'
:
loss_function
=
CrossEntropyLoss
(
sparse_label
=
sparseLabel
)
loss_functions
[
output_name
]
=
mx
.
gluon
.
loss
.
L2Loss
()
elif
loss
==
'l2'
:
else
:
loss_function
=
mx
.
gluon
.
loss
.
L2Loss
()
loss_functions
[
output_name
]
=
mx
.
gluon
.
loss
.
L2Loss
()
elif
loss
==
'l1'
:
logging
.
warning
(
"Invalid last layer, defaulting to L2 loss"
)
loss_function
=
mx
.
gluon
.
loss
.
L2Loss
()
elif
loss
==
'huber'
:
rho
=
loss_params
[
'rho'
]
if
'rho'
in
loss_params
else
1
loss_function
=
mx
.
gluon
.
loss
.
HuberLoss
(
rho
=
rho
)
elif
loss
==
'hinge'
:
loss_function
=
mx
.
gluon
.
loss
.
HingeLoss
(
margin
=
margin
)
elif
loss
==
'squared_hinge'
:
loss_function
=
mx
.
gluon
.
loss
.
SquaredHingeLoss
(
margin
=
margin
)
elif
loss
==
'logistic'
:
labelFormat
=
loss_params
[
'label_format'
]
if
'label_format'
in
loss_params
else
'signed'
loss_function
=
mx
.
gluon
.
loss
.
LogisticLoss
(
label_format
=
labelFormat
)
elif
loss
==
'kullback_leibler'
:
fromLogits
=
loss_params
[
'from_logits'
]
if
'from_logits'
in
loss_params
else
True
loss_function
=
mx
.
gluon
.
loss
.
KLDivLoss
(
from_logits
=
fromLogits
)
elif
loss
==
'log_cosh'
:
loss_function
=
LogCoshLoss
()
else
:
logging
.
error
(
"Invalid loss parameter."
)
speed_period
=
50
speed_period
=
50
tic
=
None
tic
=
None
...
@@ -95,7 +139,7 @@ class CNNSupervisedTrainer_mnist_mnistClassifier_net:
...
@@ -95,7 +139,7 @@ class CNNSupervisedTrainer_mnist_mnistClassifier_net:
predictions_output
=
self
.
_networks
[
0
](
image_data
)
predictions_output
=
self
.
_networks
[
0
](
image_data
)
loss
=
\
loss
=
\
loss_function
s
[
'predictions'
]
(
predictions_output
,
predictions_label
)
loss_function
(
predictions_output
,
predictions_label
)
loss
.
backward
()
loss
.
backward
()
...
...
Write
Preview
Markdown
is supported
0%
Try again
or
attach a new file
.
Attach a file
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Cancel
Please
register
or
sign in
to comment