CNNTrainer_cartpole_master_dqn.py 3.25 KB
Newer Older
1
from reinforcement_learning.agent import DqnAgent
Nicola Gatto's avatar
Nicola Gatto committed
2
from reinforcement_learning.util import AgentSignalHandler
3 4
import reinforcement_learning.environment
import CNNCreator_cartpole_master_dqn
Nicola Gatto's avatar
Nicola Gatto committed
5 6 7 8

import os
import sys
import re
9 10 11
import logging
import mxnet as mx

Nicola Gatto's avatar
Nicola Gatto committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34
session_output_dir = 'session'
agent_name='cartpole_master_dqn'
session_param_output = os.path.join(session_output_dir, agent_name)

def resume_session():
    session_param_output = os.path.join(session_output_dir, agent_name)
    resume_session = False
    resume_directory = None
    if os.path.isdir(session_output_dir) and os.path.isdir(session_param_output):
        regex = re.compile(r'\d\d\d\d-\d\d-\d\d-\d\d-\d\d')
        dir_content = os.listdir(session_param_output)
        session_files = filter(regex.search, dir_content)
        session_files.sort(reverse=True)
        for d in session_files:
            interrupted_session_dir = os.path.join(session_param_output, d, '.interrupted_session')
            if os.path.isdir(interrupted_session_dir):
                resume = raw_input('Interrupted session from {} found. Do you want to resume? (y/n) '.format(d))
                if resume == 'y':
                    resume_session = True
                    resume_directory = interrupted_session_dir
                break
    return resume_session, resume_directory

35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
if __name__ == "__main__":
    env = reinforcement_learning.environment.GymEnvironment('CartPole-v0')
    context = mx.cpu()
    net_creator = CNNCreator_cartpole_master_dqn.CNNCreator_cartpole_master_dqn()
    net_creator.construct(context)

    replay_memory_params = {
        'method':'buffer',
        'memory_size':10000,
        'sample_size':32,
        'state_dtype':'float32',
        'action_dtype':'uint8',
        'rewards_dtype':'float32'
    }

    policy_params = {
        'method':'epsgreedy',
        'epsilon': 1,
        'min_epsilon': 0.01,
        'epsilon_decay_method': 'linear',
        'epsilon_decay': 0.01,
    }

Nicola Gatto's avatar
Nicola Gatto committed
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96
    resume_session, resume_directory = resume_session()

    if resume_session:
        agent = DqnAgent.resume_from_session(resume_directory, net_creator.net, env)
    else:
        agent = DqnAgent(
            network = net_creator.net,
            environment=env,
            replay_memory_params=replay_memory_params,
            policy_params=policy_params,
            state_dim=net_creator.get_input_shapes()[0],
            ctx='cpu',
            discount_factor=0.999,
            loss_function='euclidean',
            optimizer='rmsprop',
            optimizer_params={
                'learning_rate': 0.001            },
            training_episodes=160,
            train_interval=1,
            use_fix_target=True,
            target_update_interval=200,
            double_dqn = False,
            snapshot_interval=20,
            agent_name=agent_name,
            max_episode_step=250,
            output_directory=session_output_dir,
            verbose=True,
            live_plot = True,
            make_logfile=True,
            target_score=185.5
        )

    signal_handler = AgentSignalHandler()
    signal_handler.register_agent(agent)

    train_successful = agent.train()

    if train_successful:
        agent.save_best_network(net_creator._model_dir_ + net_creator._model_prefix_ + '_newest', epoch=0)