agent.py 34.5 KB
Newer Older
1 2 3 4 5 6 7
import mxnet as mx
import numpy as np
import time
import os
import sys
import util
import matplotlib.pyplot as plt
Nicola Gatto's avatar
Nicola Gatto committed
8 9
import pyprind
from cnnarch_logger import ArchLogger
10
from replay_memory import ReplayMemoryBuilder
Nicola Gatto's avatar
Nicola Gatto committed
11 12 13 14
from strategy import StrategyBuilder
from util import copy_net, get_loss_function,\
    copy_net_with_two_inputs, DdpgTrainingStats, DqnTrainingStats,\
    make_directory_if_not_exist
15 16
from mxnet import nd, gluon, autograd

Nicola Gatto's avatar
Nicola Gatto committed
17 18 19 20

class Agent(object):
    def __init__(
        self,
21 22
        environment,
        replay_memory_params,
Nicola Gatto's avatar
Nicola Gatto committed
23
        strategy_params,
24
        state_dim,
Nicola Gatto's avatar
Nicola Gatto committed
25
        action_dim,
26 27 28 29
        ctx=None,
        discount_factor=.9,
        training_episodes=50,
        train_interval=1,
Nicola Gatto's avatar
Nicola Gatto committed
30
        start_training=0,
31
        snapshot_interval=200,
Nicola Gatto's avatar
Nicola Gatto committed
32
        agent_name='Agent',
33
        max_episode_step=99999,
Nicola Gatto's avatar
Nicola Gatto committed
34
        evaluation_samples=1000,
35 36
        output_directory='model_parameters',
        verbose=True,
Nicola Gatto's avatar
Nicola Gatto committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
        target_score=None
    ):
        assert 0 < discount_factor <= 1,\
            'Discount factor must be between 0 and 1'
        assert train_interval > 0, 'Train interval must be greater 0'
        assert snapshot_interval > 0, 'Snapshot interval must be greater 0'
        assert max_episode_step > 0,\
            'Maximal steps per episode must be greater 0'
        assert training_episodes > 0, 'Trainings episode must be greater 0'
        assert replay_memory_params is not None,\
            'Replay memory parameter not set'
        assert type(state_dim) is tuple, 'State dimension is not a tuple'
        assert type(action_dim) is tuple, 'Action dimension is not a tuple'

        self._logger = ArchLogger.get_logger()
        self._ctx = mx.gpu() if ctx == 'gpu' else mx.cpu()
        self._environment = environment
        self._discount_factor = discount_factor
        self._training_episodes = training_episodes
        self._train_interval = train_interval
        self._verbose = verbose
        self._state_dim = state_dim
59 60

        replay_memory_params['state_dim'] = state_dim
Nicola Gatto's avatar
Nicola Gatto committed
61 62
        replay_memory_params['action_dim'] = action_dim
        self._replay_memory_params = replay_memory_params
63
        rm_builder = ReplayMemoryBuilder()
Nicola Gatto's avatar
Nicola Gatto committed
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85
        self._memory = rm_builder.build_by_params(**replay_memory_params)
        self._minibatch_size = self._memory.sample_size
        self._action_dim = action_dim

        strategy_params['action_dim'] = self._action_dim
        self._strategy_params = strategy_params
        strategy_builder = StrategyBuilder()
        self._strategy = strategy_builder.build_by_params(**strategy_params)
        self._agent_name = agent_name
        self._snapshot_interval = snapshot_interval
        self._creation_time = time.time()
        self._max_episode_step = max_episode_step
        self._start_training = start_training
        self._output_directory = output_directory
        self._target_score = target_score

        self._evaluation_samples = evaluation_samples
        self._best_avg_score = -np.infty
        self._best_net = None

        self._interrupt_flag = False
        self._training_stats = None
86 87

        # Training Context
Nicola Gatto's avatar
Nicola Gatto committed
88 89
        self._current_episode = 0
        self._total_steps = 0
90

Nicola Gatto's avatar
Nicola Gatto committed
91 92 93
    @property
    def current_episode(self):
        return self._current_episode
94

Nicola Gatto's avatar
Nicola Gatto committed
95 96 97
    @property
    def environment(self):
        return self._environment
98

Nicola Gatto's avatar
Nicola Gatto committed
99
    def save_config_file(self):
100
        import json
Nicola Gatto's avatar
Nicola Gatto committed
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
        make_directory_if_not_exist(self._output_directory)
        filename = os.path.join(self._output_directory, 'config.json')
        config = self._make_config_dict()
        with open(filename, mode='w') as fp:
            json.dump(config, fp, indent=4)

    def set_interrupt_flag(self, interrupt):
        self._interrupt_flag = interrupt

    def _interrupt_training(self):
        import pickle
        self._logger.info('Training interrupted; Store state for resuming')
        session_dir = self._get_session_dir()
        agent_session_file = os.path.join(session_dir, 'agent.p')
        logger = self._logger

        self._make_pickle_ready(session_dir)

        with open(agent_session_file, 'wb') as f:
            pickle.dump(self, f, protocol=2)
        logger.info('State successfully stored')

    def _make_pickle_ready(self, session_dir):
        del self._training_stats.logger
        self._logger = None
        self._environment.close()
        self._environment = None
        self._save_net(self._best_net, 'best_net', session_dir)
        self._best_net = None

    def _make_config_dict(self):
        config = dict()
        config['state_dim'] = self._state_dim
        config['action_dim'] = self._action_dim
        config['ctx'] = str(self._ctx)
        config['discount_factor'] = self._discount_factor
        config['strategy_params'] = self._strategy_params
        config['replay_memory_params'] = self._replay_memory_params
        config['training_episodes'] = self._training_episodes
        config['start_training'] = self._start_training
        config['evaluation_samples'] = self._evaluation_samples
        config['train_interval'] = self._train_interval
        config['snapshot_interval'] = self._snapshot_interval
        config['agent_name'] = self._agent_name
        config['max_episode_step'] = self._max_episode_step
        config['output_directory'] = self._output_directory
        config['verbose'] = self._verbose
        config['target_score'] = self._target_score
        return config

    def _adjust_optimizer_params(self, optimizer_params):
        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-8
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                optimizer_params['step_size'],
                factor=optimizer_params['learning_rate_decay'],
                stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

        return optimizer_params

    def _sample_from_memory(self):
        states, actions, rewards, next_states, terminals\
            = self._memory.sample(batch_size=self._minibatch_size)
        states = nd.array(states, ctx=self._ctx)
        actions = nd.array(actions, ctx=self._ctx)
        rewards = nd.array(rewards, ctx=self._ctx)
        next_states = nd.array(next_states, ctx=self._ctx)
        terminals = nd.array(terminals, ctx=self._ctx)
        return states, actions, rewards, next_states, terminals

    def evaluate(self, target=None, sample_games=100, verbose=True):
        target = self._target_score if target is None else target
        if target:
            target_achieved = 0
        total_reward = 0

        self._logger.info('Sampling from {} games...'.format(sample_games))
        for g in pyprind.prog_bar(range(sample_games)):
            state = self._environment.reset()
            step = 0
            game_reward = 0
            terminal = False
            while not terminal and (step < self._max_episode_step):
                action = self.get_next_action(state)
                state, reward, terminal, _ = self._environment.step(action)
                game_reward += reward
                step += 1

            if verbose:
                info = 'Game %d: Reward %f' % (g, game_reward)
                self._logger.debug(info)
            if target:
                if game_reward >= target:
                    target_achieved += 1
            total_reward += game_reward

        avg_reward = float(total_reward)/float(sample_games)
        info = 'Avg. Reward: %f' % avg_reward
        if target:
            target_achieved_ratio = int(
                (float(target_achieved)/float(sample_games))*100)
            info += '; Target Achieved in %d%% of games'\
                % (target_achieved_ratio)

        if verbose:
            self._logger.info(info)
        return avg_reward

    def _do_snapshot_if_in_interval(self, episode):
        do_snapshot =\
            (episode != 0 and (episode % self._snapshot_interval == 0))
        if do_snapshot:
            self.save_parameters(episode=episode)
            self._evaluate()

    def _evaluate(self, verbose=True):
        avg_reward = self.evaluate(
            sample_games=self._evaluation_samples, verbose=False)
        info = 'Evaluation -> Average Reward in {} games: {}'.format(
            self._evaluation_samples, avg_reward)

        if self._best_avg_score is None or self._best_avg_score <= avg_reward:
            self._save_current_as_best_net()
            self._best_avg_score = avg_reward
        if verbose:
            self._logger.info(info)

    def _is_target_reached(self, avg_reward):
        return self._target_score is not None\
            and avg_reward > self._target_score

    def _do_training(self):
        return (self._total_steps % self._train_interval == 0) and\
            (self._memory.is_sample_possible(self._minibatch_size)) and\
            (self._current_episode >= self._start_training)

    def _check_interrupt_routine(self):
        if self._interrupt_flag:
            self._interrupt_flag = False
            self._interrupt_training()
            return True
        return False

    def _is_target_reached(self, avg_reward):
        return self._target_score is not None\
            and avg_reward > self._target_score

    def _save_parameters(self, net, episode=None, filename='dqn-agent-params'):
        assert self._output_directory
        assert isinstance(net, gluon.HybridBlock)
        make_directory_if_not_exist(self._output_directory)

        if(episode is not None):
            self._logger.info(
                'Saving model parameters after episode %d' % episode)
            filename = filename + '-ep{}'.format(episode)
        else:
            self._logger.info('Saving model parameters')
        self._save_net(net, filename)

    def _save_net(self, net, filename, filedir=None):
        filedir = self._output_directory if filedir is None else filedir
        filename = os.path.join(filedir, filename + '.params')
        net.save_parameters(filename)

    def save_best_network(self, path, epoch=0):
        self._logger.info(
            'Saving best network with average reward of {}'.format(
                self._best_avg_score))
        self._best_net.export(path, epoch=epoch)

    def _get_session_dir(self):
        session_dir = os.path.join(
            self._output_directory, '.interrupted_session')
        make_directory_if_not_exist(session_dir)
        return session_dir

    def _save_current_as_best_net(self):
        raise NotImplementedError

    def get_next_action(self, state):
        raise NotImplementedError

    def save_parameters(self, episode):
        raise NotImplementedError

    def train(self, episodes=None):
        raise NotImplementedError


class DdpgAgent(Agent):
    def __init__(
        self,
        actor,
        critic,
        environment,
        replay_memory_params,
        strategy_params,
        state_dim,
        action_dim,
        soft_target_update_rate=.001,
        actor_optimizer='adam',
        actor_optimizer_params={'learning_rate': 0.0001},
        critic_optimizer='adam',
        critic_optimizer_params={'learning_rate': 0.001},
        ctx=None,
        discount_factor=.9,
        training_episodes=50,
        start_training=20,
        train_interval=1,
        snapshot_interval=200,
        agent_name='DdpgAgent',
        max_episode_step=9999,
        evaluation_samples=100,
        output_directory='model_parameters',
        verbose=True,
        target_score=None
    ):
        super(DdpgAgent, self).__init__(
            environment=environment, replay_memory_params=replay_memory_params,
            strategy_params=strategy_params, state_dim=state_dim,
            action_dim=action_dim, ctx=ctx, discount_factor=discount_factor,
            training_episodes=training_episodes, start_training=start_training,
            train_interval=train_interval,
            snapshot_interval=snapshot_interval, agent_name=agent_name,
            max_episode_step=max_episode_step,
            output_directory=output_directory, verbose=verbose,
            target_score=target_score, evaluation_samples=evaluation_samples)
        assert critic is not None, 'Critic not set'
        assert actor is not None, 'Actor is not set'
        assert soft_target_update_rate > 0,\
            'Target update must be greater zero'
        assert actor_optimizer is not None, 'No actor optimizer set'
        assert critic_optimizer is not None, 'No critic optimizer set'

        self._actor = actor
        self._critic = critic

        self._actor_target = self._copy_actor()
        self._critic_target = self._copy_critic()

        self._actor_optimizer = actor_optimizer
        self._actor_optimizer_params = self._adjust_optimizer_params(
            actor_optimizer_params)

        self._critic_optimizer = critic_optimizer
        self._critic_optimizer_params = self._adjust_optimizer_params(
            critic_optimizer_params)

        self._soft_target_update_rate = soft_target_update_rate

        self._logger.info(
            'Agent created with following parameters: {}'.format(
                self._make_config_dict()))

        self._best_net = self._copy_actor()

        self._training_stats = DdpgTrainingStats(self._training_episodes)

    def _make_pickle_ready(self, session_dir):
        super(DdpgAgent, self)._make_pickle_ready(session_dir)
        self._save_net(self._actor, 'actor', session_dir)
        self._actor = None
        self._save_net(self._critic, 'critic', session_dir)
        self._critic = None
        self._save_net(self._actor_target, 'actor_target', session_dir)
        self._actor_target = None
        self._save_net(self._critic_target, 'critic_target', session_dir)
        self._critic_target = None
378 379

    @classmethod
Nicola Gatto's avatar
Nicola Gatto committed
380
    def resume_from_session(cls, session_dir, actor, critic, environment):
381 382 383 384 385 386 387
        import pickle
        if not os.path.exists(session_dir):
            raise ValueError('Session directory does not exist')

        files = dict()
        files['agent'] = os.path.join(session_dir, 'agent.p')
        files['best_net_params'] = os.path.join(session_dir, 'best_net.params')
Nicola Gatto's avatar
Nicola Gatto committed
388 389 390 391 392 393
        files['actor_net_params'] = os.path.join(session_dir, 'actor.params')
        files['actor_target_net_params'] = os.path.join(
            session_dir, 'actor_target.params')
        files['critic_net_params'] = os.path.join(session_dir, 'critic.params')
        files['critic_target_net_params'] = os.path.join(
            session_dir, 'critic_target.params')
394 395 396

        for file in files.values():
            if not os.path.exists(file):
Nicola Gatto's avatar
Nicola Gatto committed
397 398 399
                raise ValueError(
                    'Session directory is not complete: {} is missing'
                    .format(file))
400 401 402 403

        with open(files['agent'], 'rb') as f:
            agent = pickle.load(f)

Nicola Gatto's avatar
Nicola Gatto committed
404 405 406 407 408 409 410 411 412 413 414 415 416 417
        agent._environment = environment

        agent._actor = actor
        agent._actor.load_parameters(files['actor_net_params'], agent._ctx)
        agent._actor.hybridize()
        agent._actor(nd.random_normal(
            shape=((1,) + agent._state_dim), ctx=agent._ctx))

        agent._best_net = copy_net(agent._actor, agent._state_dim, agent._ctx)
        agent._best_net.load_parameters(files['best_net_params'], agent._ctx)

        agent._actor_target = copy_net(
            agent._actor, agent._state_dim, agent._ctx)
        agent._actor_target.load_parameters(files['actor_target_net_params'])
418

Nicola Gatto's avatar
Nicola Gatto committed
419 420 421 422 423 424 425 426 427 428 429 430 431 432
        agent._critic = critic
        agent._critic.load_parameters(files['critic_net_params'], agent._ctx)
        agent._critic.hybridize()
        agent._critic(
            nd.random_normal(shape=((1,) + agent._state_dim), ctx=agent._ctx),
            nd.random_normal(shape=((1,) + agent._action_dim), ctx=agent._ctx))

        agent._critic_target = copy_net_with_two_inputs(
            agent._critic, agent._state_dim, agent._action_dim, agent._ctx)
        agent._critic_target.load_parameters(files['critic_target_net_params'])

        agent._logger = ArchLogger.get_logger()
        agent._training_stats.logger = ArchLogger.get_logger()
        agent._logger.info('Agent was retrieved; Training can be continued')
433 434 435

        return agent

Nicola Gatto's avatar
Nicola Gatto committed
436 437
    def _save_current_as_best_net(self):
        self._best_net = self._copy_actor()
438

Nicola Gatto's avatar
Nicola Gatto committed
439 440 441
    def get_next_action(self, state):
        action = self._actor(nd.array([state], ctx=self._ctx))
        return action[0].asnumpy()
442

Nicola Gatto's avatar
Nicola Gatto committed
443 444
    def save_parameters(self, episode):
        self._save_parameters(self._actor, episode=episode)
445

Nicola Gatto's avatar
Nicola Gatto committed
446 447 448 449 450
    def train(self, episodes=None):
        self.save_config_file()
        self._logger.info("--- Start DDPG training ---")
        episodes = \
            episodes if episodes is not None else self._training_episodes
451

Nicola Gatto's avatar
Nicola Gatto committed
452 453 454 455 456 457 458
        resume = (self._current_episode > 0)
        if resume:
            self._logger.info("Training session resumed")
            self._logger.info(
                "Starting from episode {}".format(self._current_episode))
        else:
            self._training_stats = DdpgTrainingStats(episodes)
459

Nicola Gatto's avatar
Nicola Gatto committed
460 461 462
        # Initialize target Q' and mu'
        self._actor_target = self._copy_actor()
        self._critic_target = self._copy_critic()
463

Nicola Gatto's avatar
Nicola Gatto committed
464 465
        # Initialize l2 loss for critic network
        l2_loss = gluon.loss.L2Loss()
466

Nicola Gatto's avatar
Nicola Gatto committed
467 468 469 470 471 472 473
        # Initialize critic and actor trainer
        trainer_actor = gluon.Trainer(
            self._actor.collect_params(), self._actor_optimizer,
            self._actor_optimizer_params)
        trainer_critic = gluon.Trainer(
            self._critic.collect_params(), self._critic_optimizer,
            self._critic_optimizer_params)
474

Nicola Gatto's avatar
Nicola Gatto committed
475 476 477 478 479
        # For episode=1..n
        while self._current_episode < episodes:
            # Check interrupt flag
            if self._check_interrupt_routine():
                return False
480

Nicola Gatto's avatar
Nicola Gatto committed
481 482 483 484 485 486 487 488
            # Initialize new episode
            step = 0
            episode_reward = 0
            start = time.time()
            episode_critic_loss = 0
            episode_actor_loss = 0
            episode_avg_q_value = 0
            training_steps = 0
489

Nicola Gatto's avatar
Nicola Gatto committed
490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
            # Get initialial observation state s
            state = self._environment.reset()

            # For step=1..T
            while step < self._max_episode_step:
                # Select an action a = mu(s) + N(step) according to current
                #  actor and exploration noise N according to strategy
                action = self._strategy.select_action(
                    self.get_next_action(state))

                # Execute action a and observe reward r and next state ns
                next_state, reward, terminal, _ = \
                    self._environment.step(action)

                self._logger.debug(
                    'Applied action {} with reward {}'.format(action, reward))

                # Store transition (s,a,r,ns) in replay buffer
                self._memory.append(
                    state, action, reward, next_state, terminal)

                if self._do_training():
                    # Sample random minibatch of b transitions
                    # (s_i, a_i, r_i, s_(i+1)) from replay buffer
                    states, actions, rewards, next_states, terminals =\
                         self._sample_from_memory()

                    actor_target_actions = self._actor_target(next_states)
                    critic_target_qvalues = self._critic_target(
                        next_states, actor_target_actions)

                    rewards = rewards.reshape(self._minibatch_size, 1)
                    terminals = terminals.reshape(self._minibatch_size, 1)

                    # y = r_i + discount * Q'(s_(i+1), mu'(s_(i+1)))
                    y = rewards + (1.0 - terminals) * self._discount_factor\
                        * critic_target_qvalues

                    # Train the critic network
                    with autograd.record():
                        qvalues = self._critic(states, actions)
                        critic_loss = l2_loss(qvalues, y)
                    critic_loss.backward()
                    trainer_critic.step(self._minibatch_size)

                    # Train the actor network
                    # Temporary critic so that gluon trainer does not mess
                    # with critic parameters
                    tmp_critic = self._copy_critic()
                    with autograd.record():
                        actor_qvalues = tmp_critic(states, self._actor(states))
                        # For maximizing qvalues we have to multiply with -1
                        # as we use a minimizer
                        actor_loss = -1 * actor_qvalues
                    actor_loss.backward()
                    trainer_actor.step(self._minibatch_size)

                    # Update target networks:
                    self._actor_target = self._soft_update(
                        self._actor, self._actor_target,
                        self._soft_target_update_rate)
                    self._critic_target = self._soft_update(
                        self._critic, self._critic_target,
                        self._soft_target_update_rate)

                    # Update statistics
                    episode_critic_loss +=\
                        np.sum(critic_loss.asnumpy()) / self._minibatch_size
                    episode_actor_loss +=\
                        np.sum(actor_loss.asnumpy()) / self._minibatch_size
                    episode_avg_q_value +=\
                        np.sum(actor_qvalues.asnumpy()) / self._minibatch_size
562

Nicola Gatto's avatar
Nicola Gatto committed
563
                    training_steps += 1
564

Nicola Gatto's avatar
Nicola Gatto committed
565 566 567 568
                episode_reward += reward
                step += 1
                self._total_steps += 1
                state = next_state
569

Nicola Gatto's avatar
Nicola Gatto committed
570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612
                if terminal:
                    # Reset the strategy
                    self._strategy.reset()
                    break

            # Log the episode results
            episode_actor_loss = 0 if training_steps == 0\
                else (episode_actor_loss / training_steps)
            episode_critic_loss = 0 if training_steps == 0\
                else (episode_critic_loss / training_steps)
            episode_avg_q_value = 0 if training_steps == 0\
                else (episode_avg_q_value / training_steps)

            avg_reward = self._training_stats.log_episode(
                self._current_episode, start, training_steps,
                episode_actor_loss, episode_critic_loss, episode_avg_q_value,
                self._strategy.cur_eps, episode_reward)

            self._do_snapshot_if_in_interval(self._current_episode)
            self._strategy.decay(self._current_episode)

            if self._is_target_reached(avg_reward):
                self._logger.info(
                    'Target score is reached in average; Training is stopped')
                break

            self._current_episode += 1

        self._evaluate()
        self.save_parameters(episode=self._current_episode)
        self.save_best_network(os.path.join(self._output_directory, 'best'))
        self._training_stats.save_stats(self._output_directory)
        self._logger.info('--------- Training finished ---------')
        return True

    def _make_config_dict(self):
        config = super(DdpgAgent, self)._make_config_dict()
        config['soft_target_update_rate'] = self._soft_target_update_rate
        config['actor_optimizer'] = self._actor_optimizer
        config['actor_optimizer_params'] = self._actor_optimizer_params
        config['critic_optimizer'] = self._critic_optimizer
        config['critic_optimizer_params'] = self._critic_optimizer_params
        return config
613

Nicola Gatto's avatar
Nicola Gatto committed
614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684
    def _soft_update(self, net, target, tau):
        net_params = [p.data() for _, p in net.collect_params().items()]
        for i, (_, p) in enumerate(target.collect_params().items()):
            target_params = p.data()
            p.set_data((1.0 - tau) * target_params + tau * net_params[i])
        return target

    def _copy_actor(self):
        assert self._actor is not None
        assert self._ctx is not None
        assert type(self._state_dim) is tuple
        return copy_net(self._actor, self._state_dim, ctx=self._ctx)

    def _copy_critic(self):
        assert self._critic is not None
        assert self._ctx is not None
        assert type(self._state_dim) is tuple
        assert type(self._action_dim) is tuple
        return copy_net_with_two_inputs(
            self._critic, self._state_dim, self._action_dim, ctx=self._ctx)


class DqnAgent(Agent):
    def __init__(
        self,
        qnet,
        environment,
        replay_memory_params,
        strategy_params,
        state_dim,
        action_dim,
        ctx=None,
        discount_factor=.9,
        loss_function='euclidean',
        optimizer='rmsprop',
        optimizer_params={'learning_rate': 0.09},
        training_episodes=50,
        start_training=0,
        train_interval=1,
        use_fix_target=False,
        double_dqn=False,
        target_update_interval=10,
        snapshot_interval=200,
        evaluation_samples=100,
        agent_name='Dqn_agent',
        max_episode_step=99999,
        output_directory='model_parameters',
        verbose=True,
        target_score=None
    ):
        super(DqnAgent, self).__init__(
            environment=environment, replay_memory_params=replay_memory_params,
            strategy_params=strategy_params, state_dim=state_dim,
            action_dim=action_dim, ctx=ctx, discount_factor=discount_factor,
            training_episodes=training_episodes, start_training=start_training,
            train_interval=train_interval,
            snapshot_interval=snapshot_interval, agent_name=agent_name,
            max_episode_step=max_episode_step,
            output_directory=output_directory, verbose=verbose,
            target_score=target_score, evaluation_samples=evaluation_samples)

        self._qnet = qnet
        self._target_update_interval = target_update_interval
        self._target_qnet = copy_net(
            self._qnet, self._state_dim, ctx=self._ctx)
        self._loss_function_str = loss_function
        self._loss_function = get_loss_function(loss_function)
        self._optimizer = optimizer
        self._optimizer_params = optimizer_params
        self._double_dqn = double_dqn
        self._use_fix_target = use_fix_target
685

Nicola Gatto's avatar
Nicola Gatto committed
686 687 688
        # Initialize best network
        self._best_net = copy_net(self._qnet, self._state_dim, self._ctx)
        self._best_avg_score = -np.infty
689

Nicola Gatto's avatar
Nicola Gatto committed
690
        self._training_stats = None
691

Nicola Gatto's avatar
Nicola Gatto committed
692 693 694 695 696
    @classmethod
    def resume_from_session(cls, session_dir, net, environment):
        import pickle
        if not os.path.exists(session_dir):
            raise ValueError('Session directory does not exist')
697

Nicola Gatto's avatar
Nicola Gatto committed
698 699 700 701 702 703
        files = dict()
        files['agent'] = os.path.join(session_dir, 'agent.p')
        files['best_net_params'] = os.path.join(session_dir, 'best_net.params')
        files['q_net_params'] = os.path.join(session_dir, 'qnet.params')
        files['target_net_params'] = os.path.join(
            session_dir, 'target_net.params')
704

Nicola Gatto's avatar
Nicola Gatto committed
705 706 707 708 709
        for file in files.values():
            if not os.path.exists(file):
                raise ValueError(
                    'Session directory is not complete: {} is missing'
                    .format(file))
710

Nicola Gatto's avatar
Nicola Gatto committed
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738
        with open(files['agent'], 'rb') as f:
            agent = pickle.load(f)

        agent._environment = environment
        agent._qnet = net
        agent._qnet.load_parameters(files['q_net_params'], agent._ctx)
        agent._qnet.hybridize()
        agent._qnet(nd.random_normal(
            shape=((1,) + agent._state_dim), ctx=agent._ctx))
        agent._best_net = copy_net(agent._qnet, agent._state_dim, agent._ctx)
        agent._best_net.load_parameters(files['best_net_params'], agent._ctx)
        agent._target_qnet = copy_net(
            agent._qnet, agent._state_dim, agent._ctx)
        agent._target_qnet.load_parameters(
            files['target_net_params'], agent._ctx)

        agent._logger = ArchLogger.get_logger()
        agent._training_stats.logger = agent._logger
        agent._logger.info('Agent was retrieved; Training can be continued')

        return agent

    def _make_pickle_ready(self, session_dir):
        super(DqnAgent, self)._make_pickle_ready(session_dir)
        self._save_net(self._qnet, 'qnet', session_dir)
        self._qnet = None
        self._save_net(self._target_qnet, 'target_net', session_dir)
        self._target_qnet = None
739 740

    def get_q_values(self, state, with_best=False):
Nicola Gatto's avatar
Nicola Gatto committed
741 742
        return self.get_batch_q_values(
            nd.array([state], ctx=self._ctx), with_best=with_best)[0]
743 744

    def get_batch_q_values(self, state_batch, with_best=False):
Nicola Gatto's avatar
Nicola Gatto committed
745 746
        return self._best_net(state_batch)\
            if with_best else self._qnet(state_batch)
747 748 749 750

    def get_next_action(self, state, with_best=False):
        q_values = self.get_q_values(state, with_best=with_best)
        action = q_values.asnumpy().argmax()
Nicola Gatto's avatar
Nicola Gatto committed
751
        return action
752

Nicola Gatto's avatar
Nicola Gatto committed
753 754 755 756 757
    def __determine_target_q_values(
        self, states, actions, rewards, next_states, terminals
    ):
        if self._use_fix_target:
            q_max_val = self._target_qnet(next_states)
758
        else:
Nicola Gatto's avatar
Nicola Gatto committed
759
            q_max_val = self._qnet(next_states)
760

Nicola Gatto's avatar
Nicola Gatto committed
761 762 763 764 765
        if self._double_dqn:
            q_values_next_states = self._qnet(next_states)
            target_rewards = rewards + nd.choose_element_0index(
                q_max_val, nd.argmax_channel(q_values_next_states))\
                * (1.0 - terminals) * self._discount_factor
766
        else:
Nicola Gatto's avatar
Nicola Gatto committed
767 768 769
            target_rewards = rewards + nd.choose_element_0index(
                q_max_val, nd.argmax_channel(q_max_val))\
                * (1.0 - terminals) * self._discount_factor
770

Nicola Gatto's avatar
Nicola Gatto committed
771
        target_qval = self._qnet(states)
772 773 774 775 776 777
        for t in range(target_rewards.shape[0]):
            target_qval[t][actions[t]] = target_rewards[t]

        return target_qval

    def __train_q_net_step(self, trainer):
Nicola Gatto's avatar
Nicola Gatto committed
778 779 780 781
        states, actions, rewards, next_states, terminals =\
            self._sample_from_memory()
        target_qval = self.__determine_target_q_values(
            states, actions, rewards, next_states, terminals)
782
        with autograd.record():
Nicola Gatto's avatar
Nicola Gatto committed
783 784
            q_values = self._qnet(states)
            loss = self._loss_function(q_values, target_qval)
785
        loss.backward()
Nicola Gatto's avatar
Nicola Gatto committed
786
        trainer.step(self._minibatch_size)
787 788 789
        return loss

    def __do_target_update_if_in_interval(self, total_steps):
Nicola Gatto's avatar
Nicola Gatto committed
790 791 792
        do_target_update = (
            self._use_fix_target and
            (total_steps % self._target_update_interval == 0))
793
        if do_target_update:
Nicola Gatto's avatar
Nicola Gatto committed
794 795 796 797
            self._logger.info(
                'Target network is updated after {} steps'.format(total_steps))
            self._target_qnet = copy_net(
                self._qnet, self._state_dim, self._ctx)
798 799

    def train(self, episodes=None):
Nicola Gatto's avatar
Nicola Gatto committed
800 801 802 803 804 805 806 807 808 809
        self.save_config_file()
        self._logger.info("--- Start training ---")
        trainer = gluon.Trainer(
            self._qnet.collect_params(),
            self._optimizer,
            self._adjust_optimizer_params(self._optimizer_params))
        episodes = episodes if episodes is not None\
            else self._training_episodes

        resume = (self._current_episode > 0)
810
        if resume:
Nicola Gatto's avatar
Nicola Gatto committed
811 812 813
            self._logger.info("Training session resumed")
            self._logger.info("Starting from episode {}".format(
                self._current_episode))
814
        else:
Nicola Gatto's avatar
Nicola Gatto committed
815
            self._training_stats = DqnTrainingStats(episodes)
816

Nicola Gatto's avatar
Nicola Gatto committed
817 818 819 820
        # Implementation Deep Q Learning described by
        # Mnih et. al. in Playing Atari with Deep Reinforcement Learning
        while self._current_episode < episodes:
            if self._check_interrupt_routine():
821 822 823 824 825
                return False

            step = 0
            episode_reward = 0
            start = time.time()
Nicola Gatto's avatar
Nicola Gatto committed
826
            state = self._environment.reset()
827 828
            episode_loss = 0
            training_steps = 0
Nicola Gatto's avatar
Nicola Gatto committed
829 830 831 832
            while step < self._max_episode_step:
                # 1. Choose an action based on current game state and policy
                q_values = self._qnet(nd.array([state], ctx=self._ctx))
                action = self._strategy.select_action(q_values[0])
833

Nicola Gatto's avatar
Nicola Gatto committed
834 835 836
                # 2. Play the game for a single step
                next_state, reward, terminal, _ =\
                    self._environment.step(action)
837

Nicola Gatto's avatar
Nicola Gatto committed
838 839 840
                # 3. Store transition in replay memory
                self._memory.append(
                    state, action, reward, next_state, terminal)
841

Nicola Gatto's avatar
Nicola Gatto committed
842 843
                # 4. Train the network if in interval
                if self._do_training():
844 845
                    loss = self.__train_q_net_step(trainer)
                    training_steps += 1
Nicola Gatto's avatar
Nicola Gatto committed
846 847
                    episode_loss +=\
                        np.sum(loss.asnumpy()) / self._minibatch_size
848 849

                # Update target network if in interval
Nicola Gatto's avatar
Nicola Gatto committed
850
                self.__do_target_update_if_in_interval(self._total_steps)
851 852

                step += 1
Nicola Gatto's avatar
Nicola Gatto committed
853
                self._total_steps += 1
854 855 856 857
                episode_reward += reward
                state = next_state

                if terminal:
Nicola Gatto's avatar
Nicola Gatto committed
858
                    self._strategy.reset()
859 860
                    break

Nicola Gatto's avatar
Nicola Gatto committed
861
            self._do_snapshot_if_in_interval(self._current_episode)
862

Nicola Gatto's avatar
Nicola Gatto committed
863 864 865 866 867
            episode_loss = (episode_loss / training_steps)\
                if training_steps > 0 else 0
            avg_reward = self._training_stats.log_episode(
                self._current_episode, start, training_steps,
                episode_loss, self._strategy.cur_eps, episode_reward)
868

Nicola Gatto's avatar
Nicola Gatto committed
869
            self._strategy.decay(self._current_episode)
870

Nicola Gatto's avatar
Nicola Gatto committed
871 872 873
            if self._is_target_reached(avg_reward):
                self._logger.info(
                    'Target score is reached in average; Training is stopped')
874 875
                break

Nicola Gatto's avatar
Nicola Gatto committed
876
            self._current_episode += 1
877

Nicola Gatto's avatar
Nicola Gatto committed
878 879 880 881 882 883
        self._evaluate()
        self.save_parameters(episode=self._current_episode)
        self.save_best_network(os.path.join(self._output_directory, 'best'))
        self._training_stats.save_stats(self._output_directory)
        self._logger.info('--------- Training finished ---------')
        return True
884

Nicola Gatto's avatar
Nicola Gatto committed
885 886 887 888 889 890 891 892
    def _make_config_dict(self):
        config = super(DqnAgent, self)._make_config_dict()
        config['optimizer'] = self._optimizer
        config['optimizer_params'] = self._optimizer_params
        config['loss_function'] = self._loss_function_str
        config['use_fix_target'] = self._use_fix_target
        config['double_dqn'] = self._double_dqn
        config['target_update_interval'] = self._target_update_interval
893 894
        return config

Nicola Gatto's avatar
Nicola Gatto committed
895 896 897 898 899 900
    def save_parameters(self, episode):
        self._save_parameters(self._qnet, episode=episode)

    def _save_current_as_best_net(self):
        self._best_net = copy_net(
            self._qnet, (1,) + self._state_dim, ctx=self._ctx)