CNNSupervisedTrainer_mnist_mnistClassifier_net.py 6.56 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1 2 3 4 5 6 7 8
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
from mxnet import gluon, autograd, nd

9
class CNNSupervisedTrainer_mnist_mnistClassifier_net:
Sebastian N.'s avatar
Sebastian N. committed
10
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
11 12
        self._data_loader = data_loader
        self._net_creator = net_constructor
Sebastian N.'s avatar
Sebastian N. committed
13
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']


        train_iter, test_iter, data_mean, data_std = self._data_loader.load_data(batch_size)
Sebastian N.'s avatar
Sebastian N. committed
48 49 50 51 52

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
53 54 55 56 57 58 59 60

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

Sebastian N.'s avatar
Sebastian N. committed
61
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
62 63 64 65 66 67 68

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
69
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values()]
Nicola Gatto's avatar
Nicola Gatto committed
70

71 72
        loss_functions = {}

Sebastian N.'s avatar
Sebastian N. committed
73 74 75 76 77 78 79 80 81 82 83
        for network in self._networks.values():
            for output_name, last_layer in network.last_layers.items():
                if last_layer == 'softmax':
                    loss_functions[output_name] = mx.gluon.loss.SoftmaxCrossEntropyLoss()
                elif last_layer == 'sigmoid':
                    loss_functions[output_name] = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
                elif last_layer == 'linear':
                    loss_functions[output_name] = mx.gluon.loss.L2Loss()
                else:
                    loss_functions[output_name] = mx.gluon.loss.L2Loss()
                    logging.warning("Invalid last layer, defaulting to L2 loss")
Nicola Gatto's avatar
Nicola Gatto committed
84 85 86 87 88 89 90

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
91 92
                image_data = batch.data[0].as_in_context(mx_context)
                predictions_label = batch.label[0].as_in_context(mx_context)
93

Nicola Gatto's avatar
Nicola Gatto committed
94
                with autograd.record():
Sebastian N.'s avatar
Sebastian N. committed
95
                    predictions_output = self._networks[0](image_data)
96

97 98
                    loss = \
                        loss_functions['predictions'](predictions_output, predictions_label)
Nicola Gatto's avatar
Nicola Gatto committed
99 100

                loss.backward()
Sebastian N.'s avatar
Sebastian N. committed
101 102 103

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

            train_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(train_iter):
123 124 125 126 127 128
                image_data = batch.data[0].as_in_context(mx_context)

                labels = [
                    batch.label[0].as_in_context(mx_context)
                ]

129 130
                if True: # Fix indentation
                    predictions_output = self._networks[0](image_data)
131

132 133 134 135 136
                predictions = [
                    mx.nd.argmax(predictions_output, axis=1)
                ]

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
137 138 139 140 141
            train_metric_score = metric.get()[1]

            test_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(test_iter):
142 143 144 145 146 147
                image_data = batch.data[0].as_in_context(mx_context)

                labels = [
                    batch.label[0].as_in_context(mx_context)
                ]

148 149 150
                if True: # Fix indentation
                    predictions_output = self._networks[0](image_data)

151 152 153
                predictions = [
                    mx.nd.argmax(predictions_output, axis=1)
                ]
154

155
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
156 157 158 159 160
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

            if (epoch - begin_epoch) % checkpoint_period == 0:
Sebastian N.'s avatar
Sebastian N. committed
161 162
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
163

Sebastian N.'s avatar
Sebastian N. committed
164 165 166
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
167

Sebastian N.'s avatar
Sebastian N. committed
168 169
    def parameter_path(self, index):
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)