CNNNet_mnist_mnistClassifier_net.py 3.97 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import mxnet as mx
import numpy as np
from mxnet import gluon

class Softmax(gluon.HybridBlock):
    def __init__(self, **kwargs):
        super(Softmax, self).__init__(**kwargs)

    def hybrid_forward(self, F, x):
        return F.softmax(x)


class Split(gluon.HybridBlock):
    def __init__(self, num_outputs, axis=1, **kwargs):
        super(Split, self).__init__(**kwargs)
        with self.name_scope():
            self.axis = axis
            self.num_outputs = num_outputs

    def hybrid_forward(self, F, x):
        return F.split(data=x, axis=self.axis, num_outputs=self.num_outputs)


class Concatenate(gluon.HybridBlock):
    def __init__(self, dim=1, **kwargs):
        super(Concatenate, self).__init__(**kwargs)
        with self.name_scope():
            self.dim = dim

    def hybrid_forward(self, F, *x):
        return F.concat(*x, dim=self.dim)


class ZScoreNormalization(gluon.HybridBlock):
    def __init__(self, data_mean, data_std, **kwargs):
        super(ZScoreNormalization, self).__init__(**kwargs)
        with self.name_scope():
            self.data_mean = self.params.get('data_mean', shape=data_mean.shape,
                init=mx.init.Constant(data_mean.asnumpy().tolist()), differentiable=False)
            self.data_std = self.params.get('data_std', shape=data_mean.shape,
                init=mx.init.Constant(data_std.asnumpy().tolist()), differentiable=False)

    def hybrid_forward(self, F, x, data_mean, data_std):
        x = F.broadcast_sub(x, data_mean)
        x = F.broadcast_div(x, data_std)
        return x


class Padding(gluon.HybridBlock):
    def __init__(self, padding, **kwargs):
        super(Padding, self).__init__(**kwargs)
        with self.name_scope():
            self.pad_width = padding

    def hybrid_forward(self, F, x):
        x = F.pad(data=x,
            mode='constant',
            pad_width=self.pad_width,
            constant_value=0)
        return x


class NoNormalization(gluon.HybridBlock):
    def __init__(self, **kwargs):
        super(NoNormalization, self).__init__(**kwargs)

    def hybrid_forward(self, F, x):
        return x


class Net(gluon.HybridBlock):
    def __init__(self, data_mean=None, data_std=None, **kwargs):
        super(Net, self).__init__(**kwargs)
        with self.name_scope():
            if not data_mean is None:
                assert(not data_std is None)
                self.input_normalization = ZScoreNormalization(data_mean=data_mean, data_std=data_std)
            else:
                self.input_normalization = NoNormalization()

            self.conv1_ = gluon.nn.Conv2D(channels=20,
                kernel_size=(5,5),
                strides=(1,1),
                use_bias=True)
            # conv1_, output shape: {[20,24,24]}

            self.pool1_ = gluon.nn.MaxPool2D(
                pool_size=(2,2),
                strides=(2,2))
            # pool1_, output shape: {[20,12,12]}

            self.conv2_ = gluon.nn.Conv2D(channels=50,
                kernel_size=(5,5),
                strides=(1,1),
                use_bias=True)
            # conv2_, output shape: {[50,8,8]}

            self.pool2_ = gluon.nn.MaxPool2D(
                pool_size=(2,2),
                strides=(2,2))
            # pool2_, output shape: {[50,4,4]}

            self.fc2_flatten = gluon.nn.Flatten()
            self.fc2_ = gluon.nn.Dense(units=500, use_bias=True)
            # fc2_, output shape: {[500,1,1]}

            self.relu2_ = gluon.nn.Activation(activation='relu')
            self.fc3_ = gluon.nn.Dense(units=10, use_bias=True)
            # fc3_, output shape: {[10,1,1]}


        self.last_layer = 'softmax'


    def hybrid_forward(self, F, x):
        image = self.input_normalization(x)
        conv1_ = self.conv1_(image)
        pool1_ = self.pool1_(conv1_)
        conv2_ = self.conv2_(pool1_)
        pool2_ = self.pool2_(conv2_)
        fc2_flatten_ = self.fc2_flatten(pool2_)
        fc2_ = self.fc2_(fc2_flatten_)
        relu2_ = self.relu2_(fc2_)
        fc3_ = self.fc3_(relu2_)
        return fc3_