CNNSupervisedTrainer_mnist_mnistClassifier_net.py 6.56 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
7
8
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
from mxnet import gluon, autograd, nd

9
class CNNSupervisedTrainer_mnist_mnistClassifier_net:
10
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
11
12
        self._data_loader = data_loader
        self._net_creator = net_constructor
13
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']


        train_iter, test_iter, data_mean, data_std = self._data_loader.load_data(batch_size)
48
49
50
51
52

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
53
54
55
56
57
58
59
60

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

61
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
62
63
64
65
66
67
68

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

69
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values()]
Nicola Gatto's avatar
Nicola Gatto committed
70

71
72
        loss_functions = {}

73
74
75
76
77
78
79
80
81
82
83
        for network in self._networks.values():
            for output_name, last_layer in network.last_layers.items():
                if last_layer == 'softmax':
                    loss_functions[output_name] = mx.gluon.loss.SoftmaxCrossEntropyLoss()
                elif last_layer == 'sigmoid':
                    loss_functions[output_name] = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
                elif last_layer == 'linear':
                    loss_functions[output_name] = mx.gluon.loss.L2Loss()
                else:
                    loss_functions[output_name] = mx.gluon.loss.L2Loss()
                    logging.warning("Invalid last layer, defaulting to L2 loss")
Nicola Gatto's avatar
Nicola Gatto committed
84
85
86
87
88
89
90

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
91
92
                image_data = batch.data[0].as_in_context(mx_context)
                predictions_label = batch.label[0].as_in_context(mx_context)
93

Nicola Gatto's avatar
Nicola Gatto committed
94
                with autograd.record():
95
                    predictions_output = self._networks[0](image_data)
96

97
98
                    loss = \
                        loss_functions['predictions'](predictions_output, predictions_label)
Nicola Gatto's avatar
Nicola Gatto committed
99
100

                loss.backward()
101
102
103

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

            train_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(train_iter):
123
124
125
126
127
128
                image_data = batch.data[0].as_in_context(mx_context)

                labels = [
                    batch.label[0].as_in_context(mx_context)
                ]

129
130
                if True: # Fix indentation
                    predictions_output = self._networks[0](image_data)
131

132
133
134
135
136
                predictions = [
                    mx.nd.argmax(predictions_output, axis=1)
                ]

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
137
138
139
140
141
            train_metric_score = metric.get()[1]

            test_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(test_iter):
142
143
144
145
146
147
                image_data = batch.data[0].as_in_context(mx_context)

                labels = [
                    batch.label[0].as_in_context(mx_context)
                ]

148
149
150
                if True: # Fix indentation
                    predictions_output = self._networks[0](image_data)

151
152
153
                predictions = [
                    mx.nd.argmax(predictions_output, axis=1)
                ]
154

155
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
156
157
158
159
160
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

            if (epoch - begin_epoch) % checkpoint_period == 0:
161
162
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
163

164
165
166
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
167

168
169
    def parameter_path(self, index):
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)