CNNCreator_VGG16.py 25.1 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
import mxnet as mx
import logging
import os
import errno
import shutil
import h5py
import sys
import numpy as np

@mx.init.register
class MyConstant(mx.init.Initializer):
    def __init__(self, value):
        super(MyConstant, self).__init__(value=value)
        self.value = value
    def _init_weight(self, _, arr):
        arr[:] = mx.nd.array(self.value)

class CNNCreator_VGG16:

    module = None
    _data_dir_ = "data/VGG16/"
    _model_dir_ = "model/VGG16/"
nilsfreyer's avatar
nilsfreyer committed
23
    _model_prefix_ = "model"
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54
    _input_names_ = ['data']
    _input_shapes_ = [(3,224,224)]
    _output_names_ = ['predictions_label']


    def load(self, context):
        lastEpoch = 0
        param_file = None

        try:
            os.remove(self._model_dir_ + self._model_prefix_ + "_newest-0000.params")
        except OSError:
            pass
        try:
            os.remove(self._model_dir_ + self._model_prefix_ + "_newest-symbol.json")
        except OSError:
            pass

        if os.path.isdir(self._model_dir_):
            for file in os.listdir(self._model_dir_):
                if ".params" in file and self._model_prefix_ in file:
                    epochStr = file.replace(".params","").replace(self._model_prefix_ + "-","")
                    epoch = int(epochStr)
                    if epoch > lastEpoch:
                        lastEpoch = epoch
                        param_file = file
        if param_file is None:
            return 0
        else:
            logging.info("Loading checkpoint: " + param_file)
            self.module.load(prefix=self._model_dir_ + self._model_prefix_,
eyuhar's avatar
eyuhar committed
55 56 57 58
                             epoch=lastEpoch,
                             data_names=self._input_names_,
                             label_names=self._output_names_,
                             context=context)
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106
            return lastEpoch


    def load_data(self, batch_size):
        train_h5, test_h5 = self.load_h5_files()

        data_mean = train_h5[self._input_names_[0]][:].mean(axis=0)
        data_std = train_h5[self._input_names_[0]][:].std(axis=0) + 1e-5

        train_iter = mx.io.NDArrayIter(train_h5[self._input_names_[0]],
                                       train_h5[self._output_names_[0]],
                                       batch_size=batch_size,
                                       data_name=self._input_names_[0],
                                       label_name=self._output_names_[0])
        test_iter = None
        if test_h5 != None:
            test_iter = mx.io.NDArrayIter(test_h5[self._input_names_[0]],
                                          test_h5[self._output_names_[0]],
                                          batch_size=batch_size,
                                          data_name=self._input_names_[0],
                                          label_name=self._output_names_[0])
        return train_iter, test_iter, data_mean, data_std

    def load_h5_files(self):
        train_h5 = None
        test_h5 = None
        train_path = self._data_dir_ + "train.h5"
        test_path = self._data_dir_ + "test.h5"
        if os.path.isfile(train_path):
            train_h5 = h5py.File(train_path, 'r')
            if not (self._input_names_[0] in train_h5 and self._output_names_[0] in train_h5):
                logging.error("The HDF5 file '" + os.path.abspath(train_path) + "' has to contain the datasets: "
                              + "'" + self._input_names_[0] + "', '" + self._output_names_[0] + "'")
                sys.exit(1)
            test_iter = None
            if os.path.isfile(test_path):
                test_h5 = h5py.File(test_path, 'r')
                if not (self._input_names_[0] in test_h5 and self._output_names_[0] in test_h5):
                    logging.error("The HDF5 file '" + os.path.abspath(test_path) + "' has to contain the datasets: "
                                  + "'" + self._input_names_[0] + "', '" + self._output_names_[0] + "'")
                    sys.exit(1)
            else:
                logging.warning("Couldn't load test set. File '" + os.path.abspath(test_path) + "' does not exist.")
            return train_h5, test_h5
        else:
            logging.error("Data loading failure. File '" + os.path.abspath(train_path) + "' does not exist.")
            sys.exit(1)

eyuhar's avatar
eyuhar committed
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170
    def loss_function(self, loss, params):
        label = mx.symbol.var(name=self._output_names_[0], )
        prediction = self.module.symbol.get_children()[0]

        margin = params['margin'] if 'margin' in params else 1.0
        sparseLabel = params['sparse_label'] if 'sparse_label' in params else True

        if loss == 'softmax_cross_entropy':
            fromLogits = params['from_logits'] if 'from_logits' in params else False
            if not fromLogits:
                prediction = mx.symbol.log_softmax(data=prediction, axis=1)
            if sparseLabel:
                loss_func = mx.symbol.mean(-mx.symbol.pick(prediction, label, axis=-1, keepdims=True), axis=0, exclude=True)
            else:
                label = mx.symbol.reshape_like(label, prediction)
                loss_func = mx.symbol.mean(-mx.symbol.sum(prediction * label, axis=-1, keepdims=True), axis=0, exclude=True)
            loss_func = mx.symbol.MakeLoss(loss_func, name="softmax_cross_entropy")
        elif loss == 'cross_entropy':
            prediction = mx.symbol.log(prediction)
            if sparseLabel:
                loss_func = mx.symbol.mean(-mx.symbol.pick(prediction, label, axis=-1, keepdims=True), axis=0, exclude=True)
            else:
                label = mx.symbol.reshape_like(label, prediction)
                loss_func = mx.symbol.mean(-mx.symbol.sum(prediction * label, axis=-1, keepdims=True), axis=0, exclude=True)
            loss_func = mx.symbol.MakeLoss(loss_func, name="cross_entropy")
        elif loss == 'sigmoid_binary_cross_entropy':
            loss_func = mx.symbol.LogisticRegressionOutput(data=prediction, name=self.module.symbol.name)
        elif loss == 'l1':
            loss_func = mx.symbol.MAERegressionOutput(data=prediction, name=self.module.symbol.name)
        elif loss == 'l2':
            label = mx.symbol.reshape_like(label, prediction)
            loss_func = mx.symbol.mean(mx.symbol.square((label - prediction) / 2), axis=0, exclude=True)
            loss_func = mx.symbol.MakeLoss(loss_func, name="L2")
        elif loss == 'huber':
            rho = params['rho'] if 'rho' in params else 1
            label = mx.symbol.reshape_like(label, prediction)
            loss_func = mx.symbol.abs(label - prediction)
            loss_func = mx.symbol.where(loss_func > rho, loss_func - 0.5 * rho, (0.5 / rho) * mx.symbol.square(loss_func))
            loss_func = mx.symbol.mean(loss_func, axis=0, exclude=True)
            loss_func = mx.symbol.MakeLoss(loss_func, name="huber")
        elif loss == 'hinge':
            label = mx.symbol.reshape_like(label, prediction)
            loss_func = mx.symbol.mean(mx.symbol.relu(margin - prediction * label), axis=0, exclude=True)
            loss_func = mx.symbol.MakeLoss(loss_func, name="hinge")
        elif loss == 'squared_hinge':
            label = mx.symbol.reshape_like(label, prediction)
            loss_func = mx.symbol.mean(mx.symbol.square(mx.symbol.relu(margin - prediction * label)), axis=0, exclude=True)
            loss_func = mx.symbol.MakeLoss(loss_func, name="squared_hinge")
        elif loss == 'logistic':
            labelFormat = params['label_format'] if 'label_format' in params else 'signed'
            if labelFormat not in ["binary", "signed"]:
                logging.error("label_format can only be signed or binary")
            label = mx.symbol.reshape_like(label, prediction)
            if labelFormat == 'signed':
                label = (label + 1.0)/2.0
            loss_func = mx.symbol.relu(prediction) - prediction * label
            loss_func = loss_func + mx.symbol.Activation(-mx.symbol.abs(prediction), act_type="softrelu")
            loss_func = mx.symbol.MakeLoss(mx.symbol.mean(loss_func, 0, exclude=True), name="logistic")
        elif loss == 'kullback_leibler':
            fromLogits = params['from_logits'] if 'from_logits' in params else True
            if not fromLogits:
                prediction = mx.symbol.log_softmax(prediction, axis=1)
            loss_func = mx.symbol.mean(label * (mx.symbol.log(label) - prediction), axis=0, exclude=True)
            loss_func = mx.symbol.MakeLoss(loss_func, name="kullback_leibler")
Eyüp Harputlu's avatar
Eyüp Harputlu committed
171 172 173
        elif loss == 'log_cosh':
            loss_func = mx.symbol.mean(mx.symbol.log(mx.symbol.cosh(prediction - label)), axis=0, exclude=True)
            loss_func = mx.symbol.MakeLoss(loss_func, name="log_cosh")
eyuhar's avatar
eyuhar committed
174 175 176 177
        else:
            logging.error("Invalid loss parameter.")

        return loss_func
178

179
    def train(self, batch_size=64,
180
              num_epoch=10,
Svetlana Pavlitskaya's avatar
Svetlana Pavlitskaya committed
181
              eval_metric='acc',
eyuhar's avatar
eyuhar committed
182 183
              loss ='softmax_cross_entropy',
              loss_params={},
184 185 186
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
187
              context='gpu',
188 189
              checkpoint_period=5,
              normalize=True):
190 191 192 193 194 195
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")
196 197 198 199 200 201 202 203 204 205

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
eyuhar's avatar
eyuhar committed
206 207 208
                optimizer_params['step_size'],
                factor=optimizer_params['learning_rate_decay'],
                stop_factor_lr=min_learning_rate)
209 210 211 212 213 214
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

        train_iter, test_iter, data_mean, data_std = self.load_data(batch_size)
        if self.module == None:
            if normalize:
215
                self.construct(mx_context, data_mean, data_std)
216
            else:
217
                self.construct(mx_context)
218

eyuhar's avatar
eyuhar committed
219 220 221 222 223 224 225 226
        loss_func = self.loss_function(loss=loss, params=loss_params)

        self.module = mx.mod.Module(
            symbol=mx.symbol.Group([loss_func, mx.symbol.BlockGrad(self.module.symbol.get_children()[0], name="pred")]),
            data_names=self._input_names_,
            label_names=self._output_names_,
            context=mx_context)

227 228
        begin_epoch = 0
        if load_checkpoint:
229
            begin_epoch = self.load(mx_context)
230 231 232 233 234 235 236 237 238 239
        else:
            if os.path.isdir(self._model_dir_):
                shutil.rmtree(self._model_dir_)

        try:
            os.makedirs(self._model_dir_)
        except OSError:
            if not os.path.isdir(self._model_dir_):
                raise

eyuhar's avatar
eyuhar committed
240 241
        metric = mx.metric.create(eval_metric, output_names=['pred_output'])

242 243
        self.module.fit(
            train_data=train_iter,
eyuhar's avatar
eyuhar committed
244
            eval_metric=metric,
245 246 247 248 249 250 251 252 253 254 255 256 257
            eval_data=test_iter,
            optimizer=optimizer,
            optimizer_params=optimizer_params,
            batch_end_callback=mx.callback.Speedometer(batch_size),
            epoch_end_callback=mx.callback.do_checkpoint(prefix=self._model_dir_ + self._model_prefix_, period=checkpoint_period),
            begin_epoch=begin_epoch,
            num_epoch=num_epoch + begin_epoch)
        self.module.save_checkpoint(self._model_dir_ + self._model_prefix_, num_epoch + begin_epoch)
        self.module.save_checkpoint(self._model_dir_ + self._model_prefix_ + '_newest', 0)


    def construct(self, context, data_mean=None, data_std=None):
        data = mx.sym.var("data",
eyuhar's avatar
eyuhar committed
258
                          shape=(0,3,224,224))
259 260 261 262 263 264 265 266 267 268 269
        # data, output shape: {[3,224,224]}

        if not data_mean is None:
            assert(not data_std is None)
            _data_mean_ = mx.sym.Variable("_data_mean_", shape=(3,224,224), init=MyConstant(value=data_mean.tolist()))
            _data_mean_ = mx.sym.BlockGrad(_data_mean_)
            _data_std_ = mx.sym.Variable("_data_std_", shape=(3,224,224), init=MyConstant(value=data_mean.tolist()))
            _data_std_ = mx.sym.BlockGrad(_data_std_)
            data = mx.symbol.broadcast_sub(data, _data_mean_)
            data = mx.symbol.broadcast_div(data, _data_std_)
        conv1_ = mx.symbol.pad(data=data,
eyuhar's avatar
eyuhar committed
270 271 272
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
273
        conv1_ = mx.symbol.Convolution(data=conv1_,
eyuhar's avatar
eyuhar committed
274 275 276 277 278
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=64,
                                       no_bias=False,
                                       name="conv1_")
279 280 281
        # conv1_, output shape: {[64,224,224]}

        relu1_ = mx.symbol.Activation(data=conv1_,
eyuhar's avatar
eyuhar committed
282 283
                                      act_type='relu',
                                      name="relu1_")
284 285

        conv2_ = mx.symbol.pad(data=relu1_,
eyuhar's avatar
eyuhar committed
286 287 288
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
289
        conv2_ = mx.symbol.Convolution(data=conv2_,
eyuhar's avatar
eyuhar committed
290 291 292 293 294
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=64,
                                       no_bias=False,
                                       name="conv2_")
295 296 297
        # conv2_, output shape: {[64,224,224]}

        relu2_ = mx.symbol.Activation(data=conv2_,
eyuhar's avatar
eyuhar committed
298 299
                                      act_type='relu',
                                      name="relu2_")
300 301

        pool2_ = mx.symbol.Pooling(data=relu2_,
eyuhar's avatar
eyuhar committed
302 303 304 305
                                   kernel=(2,2),
                                   pool_type="max",
                                   stride=(2,2),
                                   name="pool2_")
306 307 308
        # pool2_, output shape: {[64,112,112]}

        conv3_ = mx.symbol.pad(data=pool2_,
eyuhar's avatar
eyuhar committed
309 310 311
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
312
        conv3_ = mx.symbol.Convolution(data=conv3_,
eyuhar's avatar
eyuhar committed
313 314 315 316 317
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=128,
                                       no_bias=False,
                                       name="conv3_")
318 319 320
        # conv3_, output shape: {[128,112,112]}

        relu3_ = mx.symbol.Activation(data=conv3_,
eyuhar's avatar
eyuhar committed
321 322
                                      act_type='relu',
                                      name="relu3_")
323 324

        conv4_ = mx.symbol.pad(data=relu3_,
eyuhar's avatar
eyuhar committed
325 326 327
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
328
        conv4_ = mx.symbol.Convolution(data=conv4_,
eyuhar's avatar
eyuhar committed
329 330 331 332 333
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=128,
                                       no_bias=False,
                                       name="conv4_")
334 335 336
        # conv4_, output shape: {[128,112,112]}

        relu4_ = mx.symbol.Activation(data=conv4_,
eyuhar's avatar
eyuhar committed
337 338
                                      act_type='relu',
                                      name="relu4_")
339 340

        pool4_ = mx.symbol.Pooling(data=relu4_,
eyuhar's avatar
eyuhar committed
341 342 343 344
                                   kernel=(2,2),
                                   pool_type="max",
                                   stride=(2,2),
                                   name="pool4_")
345 346 347
        # pool4_, output shape: {[128,56,56]}

        conv5_ = mx.symbol.pad(data=pool4_,
eyuhar's avatar
eyuhar committed
348 349 350
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
351
        conv5_ = mx.symbol.Convolution(data=conv5_,
eyuhar's avatar
eyuhar committed
352 353 354 355 356
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=256,
                                       no_bias=False,
                                       name="conv5_")
357 358 359
        # conv5_, output shape: {[256,56,56]}

        relu5_ = mx.symbol.Activation(data=conv5_,
eyuhar's avatar
eyuhar committed
360 361
                                      act_type='relu',
                                      name="relu5_")
362 363

        conv6_ = mx.symbol.pad(data=relu5_,
eyuhar's avatar
eyuhar committed
364 365 366
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
367
        conv6_ = mx.symbol.Convolution(data=conv6_,
eyuhar's avatar
eyuhar committed
368 369 370 371 372
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=256,
                                       no_bias=False,
                                       name="conv6_")
373 374 375
        # conv6_, output shape: {[256,56,56]}

        relu6_ = mx.symbol.Activation(data=conv6_,
eyuhar's avatar
eyuhar committed
376 377
                                      act_type='relu',
                                      name="relu6_")
378 379

        conv7_ = mx.symbol.pad(data=relu6_,
eyuhar's avatar
eyuhar committed
380 381 382
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
383
        conv7_ = mx.symbol.Convolution(data=conv7_,
eyuhar's avatar
eyuhar committed
384 385 386 387 388
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=256,
                                       no_bias=False,
                                       name="conv7_")
389 390 391
        # conv7_, output shape: {[256,56,56]}

        relu7_ = mx.symbol.Activation(data=conv7_,
eyuhar's avatar
eyuhar committed
392 393
                                      act_type='relu',
                                      name="relu7_")
394 395

        pool7_ = mx.symbol.Pooling(data=relu7_,
eyuhar's avatar
eyuhar committed
396 397 398 399
                                   kernel=(2,2),
                                   pool_type="max",
                                   stride=(2,2),
                                   name="pool7_")
400 401 402
        # pool7_, output shape: {[256,28,28]}

        conv8_ = mx.symbol.pad(data=pool7_,
eyuhar's avatar
eyuhar committed
403 404 405
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
406
        conv8_ = mx.symbol.Convolution(data=conv8_,
eyuhar's avatar
eyuhar committed
407 408 409 410 411
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=512,
                                       no_bias=False,
                                       name="conv8_")
412 413 414
        # conv8_, output shape: {[512,28,28]}

        relu8_ = mx.symbol.Activation(data=conv8_,
eyuhar's avatar
eyuhar committed
415 416
                                      act_type='relu',
                                      name="relu8_")
417 418

        conv9_ = mx.symbol.pad(data=relu8_,
eyuhar's avatar
eyuhar committed
419 420 421
                               mode='constant',
                               pad_width=(0,0,0,0,1,1,1,1),
                               constant_value=0)
422
        conv9_ = mx.symbol.Convolution(data=conv9_,
eyuhar's avatar
eyuhar committed
423 424 425 426 427
                                       kernel=(3,3),
                                       stride=(1,1),
                                       num_filter=512,
                                       no_bias=False,
                                       name="conv9_")
428 429 430
        # conv9_, output shape: {[512,28,28]}

        relu9_ = mx.symbol.Activation(data=conv9_,
eyuhar's avatar
eyuhar committed
431 432
                                      act_type='relu',
                                      name="relu9_")
433 434

        conv10_ = mx.symbol.pad(data=relu9_,
eyuhar's avatar
eyuhar committed
435 436 437
                                mode='constant',
                                pad_width=(0,0,0,0,1,1,1,1),
                                constant_value=0)
438
        conv10_ = mx.symbol.Convolution(data=conv10_,
eyuhar's avatar
eyuhar committed
439 440 441 442 443
                                        kernel=(3,3),
                                        stride=(1,1),
                                        num_filter=512,
                                        no_bias=False,
                                        name="conv10_")
444 445 446
        # conv10_, output shape: {[512,28,28]}

        relu10_ = mx.symbol.Activation(data=conv10_,
eyuhar's avatar
eyuhar committed
447 448
                                       act_type='relu',
                                       name="relu10_")
449 450

        pool10_ = mx.symbol.Pooling(data=relu10_,
eyuhar's avatar
eyuhar committed
451 452 453 454
                                    kernel=(2,2),
                                    pool_type="max",
                                    stride=(2,2),
                                    name="pool10_")
455 456 457
        # pool10_, output shape: {[512,14,14]}

        conv11_ = mx.symbol.pad(data=pool10_,
eyuhar's avatar
eyuhar committed
458 459 460
                                mode='constant',
                                pad_width=(0,0,0,0,1,1,1,1),
                                constant_value=0)
461
        conv11_ = mx.symbol.Convolution(data=conv11_,
eyuhar's avatar
eyuhar committed
462 463 464 465 466
                                        kernel=(3,3),
                                        stride=(1,1),
                                        num_filter=512,
                                        no_bias=False,
                                        name="conv11_")
467 468 469
        # conv11_, output shape: {[512,14,14]}

        relu11_ = mx.symbol.Activation(data=conv11_,
eyuhar's avatar
eyuhar committed
470 471
                                       act_type='relu',
                                       name="relu11_")
472 473

        conv12_ = mx.symbol.pad(data=relu11_,
eyuhar's avatar
eyuhar committed
474 475 476
                                mode='constant',
                                pad_width=(0,0,0,0,1,1,1,1),
                                constant_value=0)
477
        conv12_ = mx.symbol.Convolution(data=conv12_,
eyuhar's avatar
eyuhar committed
478 479 480 481 482
                                        kernel=(3,3),
                                        stride=(1,1),
                                        num_filter=512,
                                        no_bias=False,
                                        name="conv12_")
483 484 485
        # conv12_, output shape: {[512,14,14]}

        relu12_ = mx.symbol.Activation(data=conv12_,
eyuhar's avatar
eyuhar committed
486 487
                                       act_type='relu',
                                       name="relu12_")
488 489

        conv13_ = mx.symbol.pad(data=relu12_,
eyuhar's avatar
eyuhar committed
490 491 492
                                mode='constant',
                                pad_width=(0,0,0,0,1,1,1,1),
                                constant_value=0)
493
        conv13_ = mx.symbol.Convolution(data=conv13_,
eyuhar's avatar
eyuhar committed
494 495 496 497 498
                                        kernel=(3,3),
                                        stride=(1,1),
                                        num_filter=512,
                                        no_bias=False,
                                        name="conv13_")
499 500 501
        # conv13_, output shape: {[512,14,14]}

        relu13_ = mx.symbol.Activation(data=conv13_,
eyuhar's avatar
eyuhar committed
502 503
                                       act_type='relu',
                                       name="relu13_")
504 505

        pool13_ = mx.symbol.Pooling(data=relu13_,
eyuhar's avatar
eyuhar committed
506 507 508 509
                                    kernel=(2,2),
                                    pool_type="max",
                                    stride=(2,2),
                                    name="pool13_")
510 511 512 513
        # pool13_, output shape: {[512,7,7]}

        fc13_ = mx.symbol.flatten(data=pool13_)
        fc13_ = mx.symbol.FullyConnected(data=fc13_,
eyuhar's avatar
eyuhar committed
514 515 516
                                         num_hidden=4096,
                                         no_bias=False,
                                         name="fc13_")
517
        relu14_ = mx.symbol.Activation(data=fc13_,
eyuhar's avatar
eyuhar committed
518 519
                                       act_type='relu',
                                       name="relu14_")
520 521

        dropout14_ = mx.symbol.Dropout(data=relu14_,
eyuhar's avatar
eyuhar committed
522 523
                                       p=0.5,
                                       name="dropout14_")
524
        fc14_ = mx.symbol.FullyConnected(data=dropout14_,
eyuhar's avatar
eyuhar committed
525 526 527
                                         num_hidden=4096,
                                         no_bias=False,
                                         name="fc14_")
528
        relu15_ = mx.symbol.Activation(data=fc14_,
eyuhar's avatar
eyuhar committed
529 530
                                       act_type='relu',
                                       name="relu15_")
531 532

        dropout15_ = mx.symbol.Dropout(data=relu15_,
eyuhar's avatar
eyuhar committed
533 534
                                       p=0.5,
                                       name="dropout15_")
535
        fc15_ = mx.symbol.FullyConnected(data=dropout15_,
eyuhar's avatar
eyuhar committed
536 537 538 539 540 541 542 543
                                         num_hidden=1000,
                                         no_bias=False,
                                         name="fc15_")
        softmax15_ = mx.symbol.softmax(data=fc15_,
                                       axis=1,
                                       name="softmax15_")
        predictions = mx.symbol.SoftmaxOutput(data=softmax15_,
                                              name="predictions")
544 545

        self.module = mx.mod.Module(symbol=mx.symbol.Group([predictions]),
eyuhar's avatar
eyuhar committed
546 547 548
                                    data_names=self._input_names_,
                                    label_names=self._output_names_,
                                    context=context)