import mxnet as mx import logging import os import shutil import warnings import inspect from CNNNet_Alexnet import Net_0 class CNNCreator_Alexnet: _model_dir_ = "model/Alexnet/" _model_prefix_ = "model" def __init__(self): self.weight_initializer = mx.init.Normal() self.networks = {} self._weights_dir_ = None def load(self, context): earliestLastEpoch = None for i, network in self.networks.items(): lastEpoch = 0 param_file = None if hasattr(network, 'episodic_sub_nets'): num_episodic_sub_nets = len(network.episodic_sub_nets) lastMemEpoch = [0]*num_episodic_sub_nets mem_files = [None]*num_episodic_sub_nets try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + "_newest-0000.params") except OSError: pass try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + "_newest-symbol.json") except OSError: pass if hasattr(network, 'episodic_sub_nets'): try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + '_newest_episodic_sub_net_' + str(0) + "-0000.params") except OSError: pass try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + '_newest_episodic_sub_net_' + str(0) + "-symbol.json") except OSError: pass for j in range(len(network.episodic_sub_nets)): try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + '_newest_episodic_sub_net_' + str(j+1) + "-0000.params") except OSError: pass try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + '_newest_episodic_sub_net_' + str(j+1) + "-symbol.json") except OSError: pass try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + '_newest_episodic_query_net_' + str(j+1) + "-0000.params") except OSError: pass try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + '_newest_episodic_query_net_' + str(j+1) + "-symbol.json") except OSError: pass try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + '_newest_loss' + "-0000.params") except OSError: pass try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + '_newest_loss' + "-symbol.json") except OSError: pass try: os.remove(self._model_dir_ + self._model_prefix_ + "_" + str(i) + "_newest_episodic_memory_sub_net_" + str(j + 1) + "-0000") except OSError: pass if os.path.isdir(self._model_dir_): for file in os.listdir(self._model_dir_): if ".params" in file and self._model_prefix_ + "_" + str(i) in file and not "loss" in file: epochStr = file.replace(".params", "").replace(self._model_prefix_ + "_" + str(i) + "-", "") epoch = int(epochStr) if epoch >= lastEpoch: lastEpoch = epoch param_file = file elif hasattr(network, 'episodic_sub_nets') and self._model_prefix_ + "_" + str(i) + "_episodic_memory_sub_net_" in file: relMemPathInfo = file.replace(self._model_prefix_ + "_" + str(i) + "_episodic_memory_sub_net_", "").split("-") memSubNet = int(relMemPathInfo[0]) memEpochStr = relMemPathInfo[1] memEpoch = int(memEpochStr) if memEpoch >= lastMemEpoch[memSubNet-1]: lastMemEpoch[memSubNet-1] = memEpoch mem_files[memSubNet-1] = file if param_file is None: earliestLastEpoch = 0 else: logging.info("Loading checkpoint: " + param_file) network.load_parameters(self._model_dir_ + param_file) if hasattr(network, 'episodic_sub_nets'): for j, sub_net in enumerate(network.episodic_sub_nets): if mem_files[j] != None: logging.info("Loading Replay Memory: " + mem_files[j]) mem_layer = [param for param in inspect.getmembers(sub_net, lambda x: not(inspect.isroutine(x))) if param[0].startswith("memory")][0][1] mem_layer.load_memory(self._model_dir_ + mem_files[j]) if earliestLastEpoch == None or lastEpoch + 1 < earliestLastEpoch: earliestLastEpoch = lastEpoch + 1 return earliestLastEpoch def load_pretrained_weights(self, context): if os.path.isdir(self._model_dir_): shutil.rmtree(self._model_dir_) if self._weights_dir_ is not None: for i, network in self.networks.items(): # param_file = self._model_prefix_ + "_" + str(i) + "_newest-0000.params" param_file = None if hasattr(network, 'episodic_sub_nets'): num_episodic_sub_nets = len(network.episodic_sub_nets) lastMemEpoch = [0] * num_episodic_sub_nets mem_files = [None] * num_episodic_sub_nets if os.path.isdir(self._weights_dir_): lastEpoch = 0 for file in os.listdir(self._weights_dir_): if ".params" in file and self._model_prefix_ + "_" + str(i) in file and not "loss" in file: epochStr = file.replace(".params","").replace(self._model_prefix_ + "_" + str(i) + "-","") epoch = int(epochStr) if epoch >= lastEpoch: lastEpoch = epoch param_file = file elif hasattr(network, 'episodic_sub_nets') and self._model_prefix_ + "_" + str(i) + "_episodic_memory_sub_net_" in file: relMemPathInfo = file.replace(self._model_prefix_ + "_" + str(i) + "_episodic_memory_sub_net_").split("-") memSubNet = int(relMemPathInfo[0]) memEpochStr = relMemPathInfo[1] memEpoch = int(memEpochStr) if memEpoch >= lastMemEpoch[memSubNet-1]: lastMemEpoch[memSubNet-1] = memEpoch mem_files[memSubNet-1] = file logging.info("Loading pretrained weights: " + self._weights_dir_ + param_file) network.load_parameters(self._weights_dir_ + param_file, allow_missing=True, ignore_extra=True) if hasattr(network, 'episodic_sub_nets'): assert lastEpoch == lastMemEpoch for j, sub_net in enumerate(network.episodic_sub_nets): if mem_files[j] != None: logging.info("Loading pretrained Replay Memory: " + mem_files[j]) mem_layer = \ [param for param in inspect.getmembers(sub_net, lambda x: not (inspect.isroutine(x))) if param[0].startswith("memory")][0][1] mem_layer.load_memory(self._model_dir_ + mem_files[j]) else: logging.info("No pretrained weights available at: " + self._weights_dir_ + param_file) def construct(self, context, data_mean=None, data_std=None): self.networks[0] = Net_0(data_mean=data_mean, data_std=data_std, mx_context=context, prefix="") with warnings.catch_warnings(): warnings.simplefilter("ignore") self.networks[0].collect_params().initialize(self.weight_initializer, force_reinit=False, ctx=context) self.networks[0].hybridize() self.networks[0](mx.nd.zeros((1, 3,224,224,), ctx=context[0])) if not os.path.exists(self._model_dir_): os.makedirs(self._model_dir_) for i, network in self.networks.items(): network.export(self._model_dir_ + self._model_prefix_ + "_" + str(i), epoch=0) def getInputs(self): inputs = {} input_dimensions = (3,224,224,) input_domains = (int,0.0,255.0,) inputs["data_"] = input_domains + (input_dimensions,) return inputs def getOutputs(self): outputs = {} output_dimensions = (10,1,1,) output_domains = (float,0.0,1.0,) outputs["predictions_"] = output_domains + (output_dimensions,) return outputs