Die Migration der Bereiche "Docker Registry" und "Artifiacts" ist fast abgeschlossen. Die letzten Daten werden im Laufe des heutigen Abend (05.08.2021) noch vollständig hochgeladen. Das Anlegen neuer Images und Artifacts funktioniert bereits wieder.

Commit d6eb626f authored by Julian Treiber's avatar Julian Treiber
Browse files

added batch_loss to CNNSupervisedTrainer template and tests

parent 418a354b
......@@ -255,16 +255,17 @@ class ${tc.fileNameWithoutEnding}:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -254,16 +254,17 @@ class CNNSupervisedTrainer_Alexnet:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -254,16 +254,17 @@ class CNNSupervisedTrainer_CifarClassifierNetwork:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -247,16 +247,17 @@ class CNNSupervisedTrainer_Invariant:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -247,16 +247,17 @@ class CNNSupervisedTrainer_MultipleStreams:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -247,16 +247,17 @@ class CNNSupervisedTrainer_RNNencdec:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -247,16 +247,17 @@ class CNNSupervisedTrainer_RNNsearch:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -247,16 +247,17 @@ class CNNSupervisedTrainer_RNNtest:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -247,16 +247,17 @@ class CNNSupervisedTrainer_ResNeXt50:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -247,16 +247,17 @@ class CNNSupervisedTrainer_Show_attend_tell:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -247,16 +247,17 @@ class CNNSupervisedTrainer_ThreeInputCNN_M14:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
......@@ -254,16 +254,17 @@ class CNNSupervisedTrainer_VGG16:
sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
if loss == 'softmax_cross_entropy':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'softmax_cross_entropy_ignore_indices':
fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'sigmoid_binary_cross_entropy':
loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
elif loss == 'cross_entropy':
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
elif loss == 'l2':
loss_function = mx.gluon.loss.L2Loss()
elif loss == 'l1':
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment