CNNSupervisedTrainer.ftl 16.5 KB
Newer Older
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
1
<#-- (c) https://github.com/MontiCore/monticore -->
Nicola Gatto's avatar
Nicola Gatto committed
2 3 4 5 6 7
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
8
import pickle
Sebastian N.'s avatar
Sebastian N. committed
9 10
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
11 12
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
29 30 31 32 33 34 35 36 37
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
58
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i) * mx.nd.equal(mx.nd.argmax(pred, axis=1), label))
59 60
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
61 62 63 64 65 66 67
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

Sebastian N.'s avatar
Sebastian N. committed
68
        self._exclude = exclude or []
Sebastian N.'s avatar
Sebastian N. committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

118 119
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian N.'s avatar
Sebastian N. committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
147 148 149 150 151 152
            if self._size_hyp > 0:
                size_hyp = self._size_hyp
            else:
                size_hyp = 1

            return math.exp(1 - (self._size_ref / size_hyp))
Sebastian N.'s avatar
Sebastian N. committed
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
176

177 178


179
class ${tc.fileNameWithoutEnding}:
180
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
181 182
        self._data_loader = data_loader
        self._net_creator = net_constructor
183
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
184 185 186 187

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian N.'s avatar
Sebastian N. committed
188
              eval_metric_params={},
189
              eval_train=False,
Eyüp Harputlu's avatar
Eyüp Harputlu committed
190 191
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
192 193 194 195
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              checkpoint_period=5,
196 197
              log_period=50,
              context='gpu',
198
              save_attention_image=False,
199
              use_teacher_forcing=False,
200
              normalize=True,
201 202
              shuffle_data=False,
              clip_global_grad_norm=None,
203
              preprocessing = False):
Nicola Gatto's avatar
Nicola Gatto committed
204 205 206 207 208 209 210
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

211 212
        if preprocessing:
            preproc_lib = "CNNPreprocessor_${tc.fileNameWithoutEnding?keep_after("CNNSupervisedTrainer_")}_executor"
213
            train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_preprocessed_data(batch_size, preproc_lib, shuffle_data)
214
        else:
215
            train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(batch_size, shuffle_data)
216

Nicola Gatto's avatar
Nicola Gatto committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

232 233 234 235
        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
236 237 238

        begin_epoch = 0
        if load_checkpoint:
Sebastian N.'s avatar
Sebastian N. committed
239
            begin_epoch = self._net_creator.load(mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
240 241 242 243
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

244
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
245 246 247 248 249 250 251

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
252
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
253

Eyüp Harputlu's avatar
Eyüp Harputlu committed
254 255
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
256
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
257
        loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
258
        batch_axis = loss_params['batch_axis'] if 'batch_axis' in loss_params else 0
Eyüp Harputlu's avatar
Eyüp Harputlu committed
259 260
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
261
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
262
        elif loss == 'softmax_cross_entropy_ignore_indices':
263
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
264
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel, batch_axis=batch_axis)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
265
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
266
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
267
        elif loss == 'cross_entropy':
268
            loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel, batch_axis=batch_axis)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
269
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
270
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
271
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
272
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
273 274 275 276 277 278 279 280 281 282 283 284 285
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
286 287
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
288 289
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
290 291 292 293

        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
294 295 296 297 298 299
            if shuffle_data:
                if preprocessing:
                    preproc_lib = "CNNPreprocessor_${tc.fileNameWithoutEnding?keep_after("CNNSupervisedTrainer_")}_executor"
                    train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_preprocessed_data(batch_size, preproc_lib, shuffle_data)
                else:
                    train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(batch_size, shuffle_data)
300

301 302 303
            global_loss_train = 0.0
            train_batches = 0

304
            loss_total = 0
Nicola Gatto's avatar
Nicola Gatto committed
305 306 307
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
                with autograd.record():
308
<#include "pythonExecuteTrain.ftl">
309

310 311 312
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
313 314

                loss.backward()
315

316 317
                loss_total += loss.sum().asscalar()

Sebastian N.'s avatar
Sebastian N. committed
318
                global_loss_train += loss.sum().asscalar()
319 320
                train_batches += 1

321 322 323 324 325 326 327 328
                if clip_global_grad_norm:
                    grads = []

                    for network in self._networks.values():
                        grads.extend([param.grad(mx_context) for param in network.collect_params().values()])

                    gluon.utils.clip_global_norm(grads, clip_global_grad_norm)

329 330
                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
331 332 333 334

                if tic is None:
                    tic = time.time()
                else:
335
                    if batch_i % log_period == 0:
Nicola Gatto's avatar
Nicola Gatto committed
336
                        try:
337
                            speed = log_period * batch_size / (time.time() - tic)
Nicola Gatto's avatar
Nicola Gatto committed
338 339 340
                        except ZeroDivisionError:
                            speed = float("inf")

341 342 343 344
                        loss_avg = loss_total / (batch_size * log_period)
                        loss_total = 0

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec Loss: %.5f" % (epoch, batch_i, speed, loss_avg))
Nicola Gatto's avatar
Nicola Gatto committed
345 346 347

                        tic = time.time()

Sebastian N.'s avatar
Sebastian N. committed
348
            global_loss_train /= (train_batches * batch_size)
349

Nicola Gatto's avatar
Nicola Gatto committed
350 351
            tic = None

352

353 354 355 356
            if eval_train:
                train_iter.reset()
                metric = mx.metric.create(eval_metric, **eval_metric_params)
                for batch_i, batch in enumerate(train_iter):
357
<#include "pythonExecuteTest.ftl">
358

359

360 361 362
<#include "saveAttentionImageTrain.ftl">


363 364 365 366 367 368
                    predictions = []
                    for output_name in outputs:
                        if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
                            predictions.append(mx.nd.argmax(output_name, axis=1))
                        else:
                            predictions.append(output_name)
369

370 371 372 373
                    metric.update(preds=predictions, labels=labels)
                train_metric_score = metric.get()[1]
            else:
                train_metric_score = 0
Nicola Gatto's avatar
Nicola Gatto committed
374

375 376 377
            global_loss_test = 0.0
            test_batches = 0

Nicola Gatto's avatar
Nicola Gatto committed
378
            test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
379
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
380
            for batch_i, batch in enumerate(test_iter):
381
                if True: <#-- Fix indentation -->
382
<#include "pythonExecuteTest.ftl">
383 384


385 386
<#include "saveAttentionImageTest.ftl">

387 388 389 390
                loss = 0
                for element in lossList:
                    loss = loss + element

Sebastian N.'s avatar
Sebastian N. committed
391
                global_loss_test += loss.sum().asscalar()
392
                test_batches += 1
393

394
                predictions = []
395
                for output_name in outputs:
396
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
397 398 399 400
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
401 402

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
403 404
            test_metric_score = metric.get()[1]

Sebastian N.'s avatar
Sebastian N. committed
405
            global_loss_test /= (test_batches * batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
406

Sebastian N.'s avatar
Sebastian N. committed
407
            logging.info("Epoch[%d] Train metric: %f, Test metric: %f, Train loss: %f, Test loss: %f" % (epoch, train_metric_score, test_metric_score, global_loss_train, global_loss_test))
408

Nicola Gatto's avatar
Nicola Gatto committed
409
            if (epoch - begin_epoch) % checkpoint_period == 0:
410 411
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
412

413
        for i, network in self._networks.items():
Sebastian N.'s avatar
Sebastian N. committed
414
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch + 1).zfill(4) + '.params')
415
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
416

417
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
418
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)