CNNSupervisedTrainer_VGG16.py 14.6 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian Nickels's avatar
Sebastian Nickels committed
8
9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10
11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28
29
30
31
32
33
34
35
36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
146

147
class CNNSupervisedTrainer_VGG16:
Christian Fuß's avatar
Christian Fuß committed
148
    def applyBeamSearch(input, length, width, maxLength, currProb, netIndex, bestOutput):
149
        bestProb = 0.0
Christian Fuß's avatar
Christian Fuß committed
150
151
        while length < maxLength:
            length += 1
152
153
154
155
156
157
158
159
            batchIndex = 0
            for batchEntry in input:
                top_k_indices = mx.nd.topk(batchEntry, axis=0, k=width)
                top_k_values = mx.nd.topk(batchEntry, ret_typ='value', axis=0, k=width)
                for index in range(top_k_indices.size):

                    #print mx.nd.array(top_k_indices[index])
                    #print top_k_values[index]
Christian Fuß's avatar
Christian Fuß committed
160
                    if length == 1:
161
                        #print mx.nd.array(top_k_indices[index])
Christian Fuß's avatar
Christian Fuß committed
162
                        result = applyBeamSearch(self._networks[netIndex](mx.nd.array(top_k_indices[index])), length, width, maxLength,
163
164
                            currProb * top_k_values[index], netIndex, self._networks[netIndex](mx.nd.array(top_k_indices[index])))
                    else:
Christian Fuß's avatar
Christian Fuß committed
165
                        result = applyBeamSearch(self._networks[netIndex](mx.nd.array(top_k_indices[index])), length, width, maxLength,
166
167
                            currProb * top_k_values[index], netIndex, bestOutput)

Christian Fuß's avatar
Christian Fuß committed
168
                    if length == maxLength:
169
170
171
172
173
174
175
176
177
178
179
180
                        #print currProb
                        if currProb > bestProb:
                            bestProb = currProb
                            bestOutput[batchIndex] = result[batchIndex]
                            #print "new bestOutput: ", bestOutput

                batchIndex += 1
        #print bestOutput
        #print bestProb
        return bestOutput


181
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
182
183
        self._data_loader = data_loader
        self._net_creator = net_constructor
184
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
185
186
187
188

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian Nickels's avatar
Sebastian Nickels committed
189
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
190
191
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']


        train_iter, test_iter, data_mean, data_std = self._data_loader.load_data(batch_size)
222
223
224
225
226

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
227
228
229
230
231
232
233
234

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

235
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
236
237
238
239
240
241
242

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

243
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values()]
Nicola Gatto's avatar
Nicola Gatto committed
244

Eyüp Harputlu's avatar
Eyüp Harputlu committed
245
246
247
248
249
250
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
251
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
252
253
254
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
255
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
256
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
257
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
258
259
260
261
262
263
264
265
266
267
268
269
270
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
271
272
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
273
274
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
275
276
277
278
279
280
281

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
282
                data_ = batch.data[0].as_in_context(mx_context)
283
                predictions_label = batch.label[0].as_in_context(mx_context)
284

Christian Fuß's avatar
Christian Fuß committed
285
286
                outputs=[]

Nicola Gatto's avatar
Nicola Gatto committed
287
                with autograd.record():
288
                    predictions_ = mx.nd.zeros((batch_size, 1000,), ctx=mx_context)
289

290
                    lossList = []
291
                    predictions_ = self._networks[0](data_)
292
293
294
295
296
                    lossList.append(loss_function(predictions_, predictions_label))

                    loss = 0
                    for element in lossList:
                        loss = loss + element
297

Nicola Gatto's avatar
Nicola Gatto committed
298
                loss.backward()
299
300
301

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

            train_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
319
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
320
            for batch_i, batch in enumerate(train_iter):
321
                data_ = batch.data[0].as_in_context(mx_context)
322
323
324
325
326

                labels = [
                    batch.label[0].as_in_context(mx_context)
                ]

327
                outputs=[]
328

Sebastian Nickels's avatar
Sebastian Nickels committed
329
                if True:
330
                    predictions_ = mx.nd.zeros((batch_size, 1000,), ctx=mx_context)
331
332

                    predictions_ = self._networks[0](data_)
333
                    outputs.append(predictions_)
334

335
                predictions = []
336
                for output_name in outputs:
337
338
339
340
341
                    if mx.nd.shape_array(output_name).size > 1:
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
342

343
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
344
345
346
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
347
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
348
            for batch_i, batch in enumerate(test_iter):
349
                data_ = batch.data[0].as_in_context(mx_context)
350
351
352
353
354

                labels = [
                    batch.label[0].as_in_context(mx_context)
                ]

355
356
                outputs=[]

357
                if True: 
358
                    predictions_ = mx.nd.zeros((batch_size, 1000,), ctx=mx_context)
359
360

                    predictions_ = self._networks[0](data_)
361
                    outputs.append(predictions_)
362

363
                predictions = []
364
                for output_name in outputs:
365
366
367
368
369
                    if mx.nd.shape_array(output_name).size > 1:
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
370

371
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
372
373
374
375
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

376

Nicola Gatto's avatar
Nicola Gatto committed
377
            if (epoch - begin_epoch) % checkpoint_period == 0:
378
379
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
380

381
382
383
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
384

385
386
    def parameter_path(self, index):
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)