CNNSupervisedTrainer_VGG16.py 19.1 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian Nickels's avatar
Sebastian Nickels committed
8
9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10
11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28
29
30
31
32
33
34
35
36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        #loss = _apply_weighting(F, loss, self._weight, sample_weight)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i))
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

118
119
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian Nickels's avatar
Sebastian Nickels committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
171

Sebastian Nickels's avatar
Sebastian Nickels committed
172
173


174
class CNNSupervisedTrainer_VGG16:
175
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
176
177
        self._data_loader = data_loader
        self._net_creator = net_constructor
178
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
179
180
181
182

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian Nickels's avatar
Sebastian Nickels committed
183
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
184
185
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
186
187
188
189
190
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
191
              save_attention_image=False,
192
              use_teacher_forcing=False,
Nicola Gatto's avatar
Nicola Gatto committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

216
217
        train_batch_size = batch_size
        test_batch_size = batch_size
Nicola Gatto's avatar
Nicola Gatto committed
218

Sebastian Nickels's avatar
Merge    
Sebastian Nickels committed
219
        train_iter, train_test_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(train_batch_size, test_batch_size)
220
221
222
223
224

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
225
226
227
228
229
230
231
232

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

233
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
234
235
236
237
238
239
240

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian Nickels's avatar
Sebastian Nickels committed
241
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
242

Eyüp Harputlu's avatar
Eyüp Harputlu committed
243
244
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
245
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
Eyüp Harputlu's avatar
Eyüp Harputlu committed
246
247
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
248
249
250
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
        if loss == 'softmax_cross_entropy_ignore_indices':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
251
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
252
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
253
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
254
255
256
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
257
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
258
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
259
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
260
261
262
263
264
265
266
267
268
269
270
271
272
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
273
274
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
275
276
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
277
278
279
280
281
282
283

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
284
285
                with autograd.record():
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
286

287
288
289
                    data_ = batch.data[0].as_in_context(mx_context)

                    predictions_ = mx.nd.zeros((train_batch_size, 1000,), ctx=mx_context)
Christian Fuß's avatar
Christian Fuß committed
290

291

292
293
                    nd.waitall()

294
                    lossList = []
295

296
                    predictions_ = self._networks[0](data_)
297
298

                    lossList.append(loss_function(predictions_, labels[0]))
299

300
301
302
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
303
304

                loss.backward()
305
306
307

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

324
            train_test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
325
            metric = mx.metric.create(eval_metric, **eval_metric_params)
326
            for batch_i, batch in enumerate(train_test_iter):
327
                if True:
328
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
329

330
                    data_ = batch.data[0].as_in_context(mx_context)
331

332
                    predictions_ = mx.nd.zeros((test_batch_size, 1000,), ctx=mx_context)
333

334

335
336
                    nd.waitall()

337
                    outputs = []
338
                    attentionList=[]
339
                    predictions_ = self._networks[0](data_)
340

341
                    outputs.append(predictions_)
342

343
344
345
346
347
348

                    if save_attention_image == "True":
                        import matplotlib.pyplot as plt
                        logging.getLogger('matplotlib').setLevel(logging.ERROR)

                        plt.clf()
349
                        fig = plt.figure(figsize=(15,15))
350
351
352
353
354
355
                        max_length = len(labels)-1

                        if(os.path.isfile('src/test/resources/training_data/Show_attend_tell/dict.pkl')):
                            with open('src/test/resources/training_data/Show_attend_tell/dict.pkl', 'rb') as f:
                                dict = pickle.load(f)

356
357
358
359

                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

360
361
362
363
364
                        for l in range(max_length):
                            attention = attentionList[l]
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1)
                            attention = mx.nd.squeeze(attention)
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
365
366
367
368
369
370
371
372
373
374
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
                            if dict[int(labels[l+1][0].asscalar())] == "<end>":
                                ax.set_title(".")
                                img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
                                ax.set_title(dict[int(labels[l+1][0].asscalar())])
                                img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
375
376
377
378
379
380
381
382
383


                        plt.tight_layout()
                        target_dir = 'target/attention_images'
                        if not os.path.exists(target_dir):
                                    os.makedirs(target_dir)
                        plt.savefig(target_dir + '/attention_train.png')
                        plt.close()

384
                predictions = []
385
                for output_name in outputs:
Sebastian Nickels's avatar
Sebastian Nickels committed
386
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
387
388
389
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    else:
                        predictions.append(output_name)
390
391

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
392
393
394
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
395
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
396
            for batch_i, batch in enumerate(test_iter):
397
                if True:
398
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
399

400
                    data_ = batch.data[0].as_in_context(mx_context)
401

402
                    predictions_ = mx.nd.zeros((test_batch_size, 1000,), ctx=mx_context)
403

404

405
406
                    nd.waitall()

407
                    outputs = []
408
                    attentionList=[]
409
                    predictions_ = self._networks[0](data_)
410

411
                    outputs.append(predictions_)
412

413
414
415

                    if save_attention_image == "True":
                        plt.clf()
416
                        fig = plt.figure(figsize=(15,15))
417
418
                        max_length = len(labels)-1

419
420
421
422

                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

423
424
425
426
427
                        for l in range(max_length):
                            attention = attentionList[l]
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1)
                            attention = mx.nd.squeeze(attention)
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
428
429
430
431
432
433
434
435
436
437
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
                            if dict[int(mx.nd.slice_axis(mx.nd.argmax(outputs[l+1], axis=1), axis=0, begin=0, end=1).asscalar())] == "<end>":
                                ax.set_title(".")
                                img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
                                ax.set_title(dict[int(mx.nd.slice_axis(mx.nd.argmax(outputs[l+1], axis=1), axis=0, begin=0, end=1).asscalar())])
                                img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
438
439
440
441
442
443


                        plt.tight_layout()
                        plt.savefig(target_dir + '/attention_test.png')
                        plt.close()

444
                predictions = []
445
                for output_name in outputs:
Sebastian Nickels's avatar
Sebastian Nickels committed
446
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
447
448
449
450
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
451

452
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
453
454
455
456
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

457

Nicola Gatto's avatar
Nicola Gatto committed
458
            if (epoch - begin_epoch) % checkpoint_period == 0:
459
460
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
461

462
463
464
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
465

466
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy    
Bernhard Rumpe committed
467
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)