CNNSupervisedTrainer_Alexnet.py 19.1 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1 2 3 4 5 6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian N.'s avatar
Sebastian N. committed
8 9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10 11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28 29 30 31 32 33 34 35 36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        #loss = _apply_weighting(F, loss, self._weight, sample_weight)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i))
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

118 119
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian N.'s avatar
Sebastian N. committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
171

Sebastian N.'s avatar
Sebastian N. committed
172 173


174
class CNNSupervisedTrainer_Alexnet:
175
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
176 177
        self._data_loader = data_loader
        self._net_creator = net_constructor
178
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
179 180 181 182

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian N.'s avatar
Sebastian N. committed
183
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
184 185
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
186 187 188 189 190
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
191
              save_attention_image=False,
192
              use_teacher_forcing=False,
Nicola Gatto's avatar
Nicola Gatto committed
193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

216 217
        train_batch_size = batch_size
        test_batch_size = batch_size
Nicola Gatto's avatar
Nicola Gatto committed
218

Sebastian N.'s avatar
Merge  
Sebastian N. committed
219
        train_iter, train_test_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(train_batch_size, test_batch_size)
220 221 222 223 224

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
225 226 227 228 229 230 231 232

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

233
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
234 235 236 237 238 239 240

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
241
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
242

Eyüp Harputlu's avatar
Eyüp Harputlu committed
243 244
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
245
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
Eyüp Harputlu's avatar
Eyüp Harputlu committed
246 247
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
248 249 250
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
        if loss == 'softmax_cross_entropy_ignore_indices':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
251
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
252
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
253
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
254 255 256
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
257
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
258
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
259
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
260 261 262 263 264 265 266 267 268 269 270 271 272
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
273 274
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
275 276
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
277 278 279 280 281 282 283

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
284 285
                with autograd.record():
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
286

287 288 289
                    data_ = batch.data[0].as_in_context(mx_context)

                    predictions_ = mx.nd.zeros((train_batch_size, 10,), ctx=mx_context)
Christian Fuß's avatar
Christian Fuß committed
290

291

292 293
                    nd.waitall()

294
                    lossList = []
295

296
                    predictions_ = self._networks[0](data_)
297 298

                    lossList.append(loss_function(predictions_, labels[0]))
299

300 301 302
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
303 304

                loss.backward()
305 306 307

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

324
            train_test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
325
            metric = mx.metric.create(eval_metric, **eval_metric_params)
326
            for batch_i, batch in enumerate(train_test_iter):
327
                if True:
328
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
329

330
                    data_ = batch.data[0].as_in_context(mx_context)
331

332
                    predictions_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
333

334

335 336
                    nd.waitall()

337
                    outputs = []
338
                    attentionList=[]
339
                    predictions_ = self._networks[0](data_)
340

341
                    outputs.append(predictions_)
342

343 344 345 346 347 348

                    if save_attention_image == "True":
                        import matplotlib.pyplot as plt
                        logging.getLogger('matplotlib').setLevel(logging.ERROR)

                        plt.clf()
349
                        fig = plt.figure(figsize=(15,15))
350 351 352 353 354 355
                        max_length = len(labels)-1

                        if(os.path.isfile('src/test/resources/training_data/Show_attend_tell/dict.pkl')):
                            with open('src/test/resources/training_data/Show_attend_tell/dict.pkl', 'rb') as f:
                                dict = pickle.load(f)

356 357 358 359

                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

360 361 362 363 364
                        for l in range(max_length):
                            attention = attentionList[l]
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1)
                            attention = mx.nd.squeeze(attention)
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
365 366 367 368 369 370 371 372 373 374
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
                            if dict[int(labels[l+1][0].asscalar())] == "<end>":
                                ax.set_title(".")
                                img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
                                ax.set_title(dict[int(labels[l+1][0].asscalar())])
                                img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
375 376 377 378 379 380 381 382 383


                        plt.tight_layout()
                        target_dir = 'target/attention_images'
                        if not os.path.exists(target_dir):
                                    os.makedirs(target_dir)
                        plt.savefig(target_dir + '/attention_train.png')
                        plt.close()

384
                predictions = []
385
                for output_name in outputs:
Sebastian N.'s avatar
Sebastian N. committed
386
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
387 388 389
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    else:
                        predictions.append(output_name)
390 391

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
392 393 394
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
395
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
396
            for batch_i, batch in enumerate(test_iter):
397
                if True:
398
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
399

400
                    data_ = batch.data[0].as_in_context(mx_context)
401

402
                    predictions_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
403

404

405 406
                    nd.waitall()

407
                    outputs = []
408
                    attentionList=[]
409
                    predictions_ = self._networks[0](data_)
410

411
                    outputs.append(predictions_)
412

413 414 415

                    if save_attention_image == "True":
                        plt.clf()
416
                        fig = plt.figure(figsize=(15,15))
417 418
                        max_length = len(labels)-1

419 420 421 422

                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

423 424 425 426 427
                        for l in range(max_length):
                            attention = attentionList[l]
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1)
                            attention = mx.nd.squeeze(attention)
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
428 429 430 431 432 433 434 435 436 437
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
                            if dict[int(mx.nd.slice_axis(mx.nd.argmax(outputs[l+1], axis=1), axis=0, begin=0, end=1).asscalar())] == "<end>":
                                ax.set_title(".")
                                img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
                                ax.set_title(dict[int(mx.nd.slice_axis(mx.nd.argmax(outputs[l+1], axis=1), axis=0, begin=0, end=1).asscalar())])
                                img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
438 439 440 441 442 443


                        plt.tight_layout()
                        plt.savefig(target_dir + '/attention_test.png')
                        plt.close()

444
                predictions = []
445
                for output_name in outputs:
Sebastian N.'s avatar
Sebastian N. committed
446
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
447 448 449 450
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
451

452
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
453 454 455 456
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

457

Nicola Gatto's avatar
Nicola Gatto committed
458
            if (epoch - begin_epoch) % checkpoint_period == 0:
459 460
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
461

462 463 464
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
465

466
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
467
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)