CNNSupervisedTrainer.ftl 14.1 KB
Newer Older
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
1
<#-- (c) https://github.com/MontiCore/monticore -->
Nicola Gatto's avatar
Nicola Gatto committed
2 3 4 5 6 7
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
8
import pickle
Sebastian N.'s avatar
Sebastian N. committed
9 10
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
11 12
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
29 30 31 32 33 34 35 36 37
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        #loss = _apply_weighting(F, loss, self._weight, sample_weight)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i))
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
62 63 64 65 66 67 68
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

Sebastian N.'s avatar
Sebastian N. committed
69
        self._exclude = exclude or []
Sebastian N.'s avatar
Sebastian N. committed
70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

119 120
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian N.'s avatar
Sebastian N. committed
121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
172

173 174


175
class ${tc.fileNameWithoutEnding}:
176
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
177 178
        self._data_loader = data_loader
        self._net_creator = net_constructor
179
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
180 181 182 183

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian N.'s avatar
Sebastian N. committed
184
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
185 186
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
187 188 189 190 191
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
192
              save_attention_image=False,
193
              use_teacher_forcing=False,
Nicola Gatto's avatar
Nicola Gatto committed
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

217 218
        train_batch_size = batch_size
        test_batch_size = ${tc.hasUnrollInstructions()?then('1', 'batch_size')}
Nicola Gatto's avatar
Nicola Gatto committed
219

Sebastian N.'s avatar
Merge  
Sebastian N. committed
220
        train_iter, train_test_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(train_batch_size, test_batch_size)
221 222 223 224 225

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
226 227 228 229 230 231 232 233

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

234
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
235 236 237 238 239 240 241

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
242
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
243

Eyüp Harputlu's avatar
Eyüp Harputlu committed
244 245
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
246
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
Eyüp Harputlu's avatar
Eyüp Harputlu committed
247 248
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
249 250 251
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
        if loss == 'softmax_cross_entropy_ignore_indices':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
252
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
253
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
254
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
255 256 257
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
258
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
259
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
260
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
261 262 263 264 265 266 267 268 269 270 271 272 273
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
274 275
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
276 277
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
278 279 280 281 282 283 284 285

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
                with autograd.record():
286
<#include "pythonExecuteTrain.ftl">
287

288 289 290
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
291 292

                loss.backward()
293 294 295

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

312
            train_test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
313
            metric = mx.metric.create(eval_metric, **eval_metric_params)
314
            for batch_i, batch in enumerate(train_test_iter):
315
                if True: <#-- Fix indentation -->
316
<#include "pythonExecuteTest.ftl">
317

318

319 320 321
<#include "saveAttentionImageTrain.ftl">


322
                predictions = []
323
                for output_name in outputs:
324
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
325 326 327
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    else:
                        predictions.append(output_name)
328 329

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
330 331 332
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
333
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
334
            for batch_i, batch in enumerate(test_iter):
335
                if True: <#-- Fix indentation -->
336
<#include "pythonExecuteTest.ftl">
337 338


339 340 341
<#include "saveAttentionImageTest.ftl">


342
                predictions = []
343
                for output_name in outputs:
344
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
345 346 347 348
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
349 350

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
351 352 353 354
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

355

Nicola Gatto's avatar
Nicola Gatto committed
356
            if (epoch - begin_epoch) % checkpoint_period == 0:
357 358
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
359

360 361 362
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
363

364
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
365
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)