CNNSupervisedTrainer_VGG16.py 5.68 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
7
8
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
from mxnet import gluon, autograd, nd

9
class CNNSupervisedTrainer_VGG16:
Nicola Gatto's avatar
Nicola Gatto committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
    def __init__(self, data_loader, net_constructor, net=None):
        self._data_loader = data_loader
        self._net_creator = net_constructor
        self._net = net

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']


        train_iter, test_iter, data_mean, data_std = self._data_loader.load_data(batch_size)
        if self._net is None:
            if normalize:
                self._net_creator.construct(
51
                    context=mx_context, data_mean=data_mean, data_std=data_std)
Nicola Gatto's avatar
Nicola Gatto committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
            else:
                self._net_creator.construct(context=mx_context)

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

        self._net = self._net_creator.net

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

        trainer = mx.gluon.Trainer(self._net.collect_params(), optimizer, optimizer_params)

        if self._net.last_layer == 'softmax':
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss()
        elif self._net.last_layer == 'sigmoid':
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
        elif self._net.last_layer == 'linear':
            loss_function = mx.gluon.loss.L2Loss()
78
        else:
Nicola Gatto's avatar
Nicola Gatto committed
79
80
81
82
83
84
85
86
87
88
89
            loss_function = mx.gluon.loss.L2Loss()
            logging.warning("Invalid last_layer, defaulting to L2 loss")

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
                data = batch.data[0].as_in_context(mx_context)
                label = batch.label[0].as_in_context(mx_context)
90

Nicola Gatto's avatar
Nicola Gatto committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
                with autograd.record():
                    output = self._net(data)
                    loss = loss_function(output, label)

                loss.backward()
                trainer.step(batch_size)

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

            train_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(train_iter):
                data = batch.data[0].as_in_context(mx_context)
                label = batch.label[0].as_in_context(mx_context)
118

Nicola Gatto's avatar
Nicola Gatto committed
119
120
121
122
123
124
125
126
127
128
                output = self._net(data)
                predictions = mx.nd.argmax(output, axis=1)
                metric.update(preds=predictions, labels=label)
            train_metric_score = metric.get()[1]

            test_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(test_iter):
                data = batch.data[0].as_in_context(mx_context)
                label = batch.label[0].as_in_context(mx_context)
129

Nicola Gatto's avatar
Nicola Gatto committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
                output = self._net(data)
                predictions = mx.nd.argmax(output, axis=1)
                metric.update(preds=predictions, labels=label)
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

            if (epoch - begin_epoch) % checkpoint_period == 0:
                self._net.save_parameters(self.parameter_path() + '-' + str(epoch).zfill(4) + '.params')

        self._net.save_parameters(self.parameter_path() + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
        self._net.export(self.parameter_path() + '_newest', epoch=0)

    def parameter_path(self):
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_