CNNSupervisedTrainer_Alexnet.py 19.2 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1 2 3 4 5 6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian N.'s avatar
Sebastian N. committed
8 9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10 11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28 29 30 31 32 33 34 35 36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i))
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

117 118
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian N.'s avatar
Sebastian N. committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
170

Sebastian N.'s avatar
Sebastian N. committed
171 172


173
class CNNSupervisedTrainer_Alexnet:
174
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
175 176
        self._data_loader = data_loader
        self._net_creator = net_constructor
177
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
178 179 180 181

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian N.'s avatar
Sebastian N. committed
182
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
183 184
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
185 186 187 188 189
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
190
              save_attention_image=False,
191
              use_teacher_forcing=False,
Nicola Gatto's avatar
Nicola Gatto committed
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

215 216
        train_batch_size = batch_size
        test_batch_size = batch_size
Nicola Gatto's avatar
Nicola Gatto committed
217

Sebastian N.'s avatar
Merge  
Sebastian N. committed
218
        train_iter, train_test_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(train_batch_size, test_batch_size)
219 220 221 222 223

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
224 225 226 227 228 229 230 231

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

232
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
233 234 235 236 237 238 239

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
240
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
241

Eyüp Harputlu's avatar
Eyüp Harputlu committed
242 243
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
244
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
Eyüp Harputlu's avatar
Eyüp Harputlu committed
245 246
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
247
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
248
        elif loss == 'softmax_cross_entropy_ignore_indices':
249
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
250
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
251
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
252
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
253 254 255
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
256
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
257
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
258
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
259 260 261 262 263 264 265 266 267 268 269 270 271
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
272 273
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
274 275
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
276 277 278 279 280 281 282

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
283 284
                with autograd.record():
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
285

286 287 288
                    data_ = batch.data[0].as_in_context(mx_context)

                    predictions_ = mx.nd.zeros((train_batch_size, 10,), ctx=mx_context)
Christian Fuß's avatar
Christian Fuß committed
289

290

291 292
                    nd.waitall()

293
                    lossList = []
294

295
                    predictions_ = self._networks[0](data_)
296 297

                    lossList.append(loss_function(predictions_, labels[0]))
298

299 300 301
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
302 303

                loss.backward()
304 305 306

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

323
            train_test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
324
            metric = mx.metric.create(eval_metric, **eval_metric_params)
325
            for batch_i, batch in enumerate(train_test_iter):
326
                if True: 
327
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
328

329
                    data_ = batch.data[0].as_in_context(mx_context)
330

331
                    predictions_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
332

333

334 335
                    nd.waitall()

336
                    outputs = []
337
                    attentionList=[]
338
                    predictions_ = self._networks[0](data_)
339

340
                    outputs.append(predictions_)
341

342 343 344 345 346 347

                    if save_attention_image == "True":
                        import matplotlib.pyplot as plt
                        logging.getLogger('matplotlib').setLevel(logging.ERROR)

                        plt.clf()
348
                        fig = plt.figure(figsize=(15,15))
349 350 351 352 353 354
                        max_length = len(labels)-1

                        if(os.path.isfile('src/test/resources/training_data/Show_attend_tell/dict.pkl')):
                            with open('src/test/resources/training_data/Show_attend_tell/dict.pkl', 'rb') as f:
                                dict = pickle.load(f)

355 356 357
                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

358 359
                        for l in range(max_length):
                            attention = attentionList[l]
360
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1).squeeze()
361
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
362
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
363 364 365
                            if int(labels[l+1][0].asscalar()) > len(dict):
                                ax.set_title("<unk>")
                            elif dict[int(labels[l+1][0].asscalar())] == "<end>":
366 367 368 369 370 371
                                ax.set_title(".")
                                img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
                                ax.set_title(dict[int(labels[l+1][0].asscalar())])
372 373
                            img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
374 375 376 377

                        plt.tight_layout()
                        target_dir = 'target/attention_images'
                        if not os.path.exists(target_dir):
378
                            os.makedirs(target_dir)
379 380 381
                        plt.savefig(target_dir + '/attention_train.png')
                        plt.close()

382
                predictions = []
383
                for output_name in outputs:
Sebastian N.'s avatar
Sebastian N. committed
384
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
385 386 387
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    else:
                        predictions.append(output_name)
388 389

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
390 391 392
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
393
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
394
            for batch_i, batch in enumerate(test_iter):
395
                if True: 
396
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
397

398
                    data_ = batch.data[0].as_in_context(mx_context)
399

400
                    predictions_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
401

402

403 404
                    nd.waitall()

405
                    outputs = []
406
                    attentionList=[]
407
                    predictions_ = self._networks[0](data_)
408

409
                    outputs.append(predictions_)
410

411 412 413

                    if save_attention_image == "True":
                        plt.clf()
414
                        fig = plt.figure(figsize=(15,15))
415 416
                        max_length = len(labels)-1

417 418 419
                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

420 421
                        for l in range(max_length):
                            attention = attentionList[l]
422
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1).squeeze()
423
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
424
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
425 426 427
                            if int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar()) > len(dict):
                                ax.set_title("<unk>")
                            elif dict[int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar())] == "<end>":
428 429 430 431 432
                                ax.set_title(".")
                                img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
433
                                ax.set_title(dict[int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar())])
434 435
                            img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
436 437 438 439 440

                        plt.tight_layout()
                        plt.savefig(target_dir + '/attention_test.png')
                        plt.close()

441
                predictions = []
442
                for output_name in outputs:
Sebastian N.'s avatar
Sebastian N. committed
443
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
444 445 446 447
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
448

449
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
450 451 452 453
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

454

Nicola Gatto's avatar
Nicola Gatto committed
455
            if (epoch - begin_epoch) % checkpoint_period == 0:
456 457
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
458

459 460 461
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
462

463
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
464
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)