CNNSupervisedTrainer_CifarClassifierNetwork.py 17.8 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian Nickels's avatar
Sebastian Nickels committed
8
9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10
11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28
29
30
31
32
33
34
35
36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        #loss = _apply_weighting(F, loss, self._weight, sample_weight)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i))
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

118
119
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian Nickels's avatar
Sebastian Nickels committed
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
171

Sebastian Nickels's avatar
Sebastian Nickels committed
172
173


174
class CNNSupervisedTrainer_CifarClassifierNetwork:
175
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
176
177
        self._data_loader = data_loader
        self._net_creator = net_constructor
178
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
179
180
181
182

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian Nickels's avatar
Sebastian Nickels committed
183
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
184
185
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
186
187
188
189
190
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
191
              save_attention_image=False,
192
              use_teacher_forcing=False,
Nicola Gatto's avatar
Nicola Gatto committed
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

216
217
        train_batch_size = batch_size
        test_batch_size = batch_size
Nicola Gatto's avatar
Nicola Gatto committed
218

Sebastian Nickels's avatar
Merge    
Sebastian Nickels committed
219
        train_iter, train_test_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(train_batch_size, test_batch_size)
220
221
222
223
224

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
225
226
227
228
229
230
231
232

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

233
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
234
235
236
237
238
239
240

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian Nickels's avatar
Sebastian Nickels committed
241
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
242

Eyüp Harputlu's avatar
Eyüp Harputlu committed
243
244
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
245
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
Eyüp Harputlu's avatar
Eyüp Harputlu committed
246
247
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
248
249
250
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
        if loss == 'softmax_cross_entropy_ignore_indices':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
251
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
252
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
253
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
254
255
256
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
257
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
258
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
259
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
260
261
262
263
264
265
266
267
268
269
270
271
272
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
273
274
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
275
276
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
277
278
279
280
281
282
283

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
284
285
                with autograd.record():
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
286

287
288
289
                    data_ = batch.data[0].as_in_context(mx_context)

                    softmax_ = mx.nd.zeros((train_batch_size, 10,), ctx=mx_context)
Christian Fuß's avatar
Christian Fuß committed
290

291

292
                    lossList = []
293

294
                    softmax_ = self._networks[0](data_)
295
296

                    lossList.append(loss_function(softmax_, labels[0]))
297

298
299
300
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
301
302

                loss.backward()
303
304
305

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

322
            train_test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
323
            metric = mx.metric.create(eval_metric, **eval_metric_params)
324
            for batch_i, batch in enumerate(train_test_iter):
325
                if True: 
326
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
327

328
                    data_ = batch.data[0].as_in_context(mx_context)
329

330
                    softmax_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
331

332

333
                    outputs = []
334
                    attentionList=[]
335
                    softmax_ = self._networks[0](data_)
336

337
                    outputs.append(softmax_)
338

339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358

                    if save_attention_image == "True":
                        import matplotlib.pyplot as plt
                        logging.getLogger('matplotlib').setLevel(logging.ERROR)

                        plt.clf()
                        fig = plt.figure(figsize=(10,10))
                        max_length = len(labels)-1

                        if(os.path.isfile('src/test/resources/training_data/Show_attend_tell/dict.pkl')):
                            with open('src/test/resources/training_data/Show_attend_tell/dict.pkl', 'rb') as f:
                                dict = pickle.load(f)

                        for l in range(max_length):
                            attention = attentionList[l]
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1)
                            attention = mx.nd.squeeze(attention)
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
                            ax = fig.add_subplot(max_length//3, max_length//4, l+1)
                            ax.set_title(dict[int(labels[l+1][0].asscalar())])
359
                            img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
360
361
362
363
364
365
366
367
368
369
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())


                        plt.tight_layout()
                        target_dir = 'target/attention_images'
                        if not os.path.exists(target_dir):
                                    os.makedirs(target_dir)
                        plt.savefig(target_dir + '/attention_train.png')
                        plt.close()

370
                predictions = []
371
                for output_name in outputs:
Sebastian Nickels's avatar
Sebastian Nickels committed
372
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
373
374
375
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    else:
                        predictions.append(output_name)
376
377

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
378
379
380
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
381
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
382
            for batch_i, batch in enumerate(test_iter):
383
                if True: 
384
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
385

386
                    data_ = batch.data[0].as_in_context(mx_context)
387

388
                    softmax_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
389

390

391
                    outputs = []
392
                    attentionList=[]
393
                    softmax_ = self._networks[0](data_)
394

395
                    outputs.append(softmax_)
396

397
398
399
400
401
402
403
404
405
406
407
408
409
410

                    if save_attention_image == "True":
                        plt.clf()
                        fig = plt.figure(figsize=(10,10))
                        max_length = len(labels)-1

                        for l in range(max_length):
                            attention = attentionList[l]
                            attention = mx.nd.slice_axis(attention, axis=2, begin=0, end=1)
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1)
                            attention = mx.nd.squeeze(attention)
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
                            ax = fig.add_subplot(max_length//3, max_length//4, l+1)
                            ax.set_title(dict[int(mx.nd.slice_axis(mx.nd.argmax(outputs[l+1], axis=1), axis=0, begin=0, end=1).asscalar())])
411
                            img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
412
413
414
415
416
417
418
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())


                        plt.tight_layout()
                        plt.savefig(target_dir + '/attention_test.png')
                        plt.close()

419
                predictions = []
420
                for output_name in outputs:
Sebastian Nickels's avatar
Sebastian Nickels committed
421
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
422
423
424
425
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
426

427
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
428
429
430
431
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

432

Nicola Gatto's avatar
Nicola Gatto committed
433
            if (epoch - begin_epoch) % checkpoint_period == 0:
434
435
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
436

437
438
439
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
440

441
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy    
Bernhard Rumpe committed
442
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)