Agent.ftl 20.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
import mxnet as mx
import numpy as np
import time
import os
import logging
import sys
import util
import matplotlib.pyplot as plt
from replay_memory import ReplayMemoryBuilder
from action_policy import ActionPolicyBuilder
from util import copy_net, get_loss_function
from mxnet import nd, gluon, autograd

class DqnAgent(object):
    def __init__(self,
        network,
        environment,
        replay_memory_params,
        policy_params,
        state_dim,
        ctx=None,
        discount_factor=.9,
        loss_function='euclidean',
        optimizer='rmsprop',
        optimizer_params = {'learning_rate':0.09},
        training_episodes=50,
        train_interval=1,
        use_fix_target=False,
        double_dqn = False,
        target_update_interval=10,
        snapshot_interval=200,
        agent_name='Dqn_agent',
        max_episode_step=99999,
        output_directory='model_parameters',
        verbose=True,
        live_plot = True,
        make_logfile=True,
        target_score=None):
        assert 0 < discount_factor <= 1
        assert train_interval > 0
        assert target_update_interval > 0
        assert snapshot_interval > 0
        assert max_episode_step > 0
        assert training_episodes > 0
        assert replay_memory_params is not None
        assert type(state_dim) is tuple

        self.__ctx = mx.gpu() if ctx == 'gpu' else mx.cpu()
        self.__qnet = network

        self.__environment = environment
        self.__discount_factor = discount_factor
        self.__training_episodes = training_episodes
        self.__train_interval = train_interval
        self.__verbose = verbose
        self.__state_dim = state_dim
        self.__action_dim = self.__qnet(nd.random_normal(shape=((1,) + self.__state_dim), ctx=self.__ctx)).shape[1:]

        replay_memory_params['state_dim'] = state_dim
        self.__replay_memory_params = replay_memory_params
        rm_builder = ReplayMemoryBuilder()
        self.__memory = rm_builder.build_by_params(**replay_memory_params)
        self.__minibatch_size = self.__memory.sample_size

        policy_params['action_dim'] = self.__action_dim
        self.__policy_params = policy_params
        p_builder = ActionPolicyBuilder()
        self.__policy = p_builder.build_by_params(**policy_params)

        self.__target_update_interval = target_update_interval
        self.__target_qnet = copy_net(self.__qnet, self.__state_dim, ctx=self.__ctx)
        self.__loss_function_str = loss_function
        self.__loss_function = get_loss_function(loss_function)
        self.__agent_name = agent_name
        self.__snapshot_interval = snapshot_interval
        self.__creation_time = time.time()
        self.__max_episode_step = max_episode_step
        self.__optimizer = optimizer
        self.__optimizer_params = optimizer_params
        self.__make_logfile = make_logfile
        self.__double_dqn = double_dqn
        self.__use_fix_target = use_fix_target
        self.__live_plot = live_plot
        self.__user_given_directory = output_directory
        self.__target_score = target_score

        self.__interrupt_flag = False

        # Training Context
        self.__current_episode = 0
        self.__total_steps = 0

        # Initialize best network
        self.__best_net = copy_net(self.__qnet, self.__state_dim, self.__ctx)
        self.__best_avg_score = None

        # Gluon Trainer definition
        self.__training_stats = None

        # Prepare output directory and logger
        self.__output_directory = output_directory\
            + '/' + self.__agent_name\
            + '/' + time.strftime('%Y-%m-%d-%H-%M-%S', time.localtime(self.__creation_time))
        self.__logger = self.__setup_logging()
        self.__logger.info('Agent created with following parameters: {}'.format(self.__make_config_dict()))

    @classmethod
    def from_config_file(cls, network, environment, config_file_path, ctx=None):
        import json
        # Load config
        with open(config_file_path, 'r') as config_file:
            config_dict = json.load(config_file)
        return cls(network, environment, ctx=ctx, **config_dict)

    @classmethod
    def resume_from_session(cls, session_dir, net, environment):
        import pickle
        if not os.path.exists(session_dir):
            raise ValueError('Session directory does not exist')

        files = dict()
        files['agent'] = os.path.join(session_dir, 'agent.p')
        files['best_net_params'] = os.path.join(session_dir, 'best_net.params')
        files['q_net_params'] = os.path.join(session_dir, 'qnet.params')
        files['target_net_params'] = os.path.join(session_dir, 'target_net.params')

        for file in files.values():
            if not os.path.exists(file):
                raise ValueError('Session directory is not complete: {} is missing'.format(file))

        with open(files['agent'], 'rb') as f:
            agent = pickle.load(f)

        agent.__environment = environment
        agent.__qnet = net
        agent.__qnet.load_parameters(files['q_net_params'], agent.__ctx)
        agent.__qnet.hybridize()
        agent.__qnet(nd.random_normal(shape=((1,) + agent.__state_dim), ctx=agent.__ctx))
        agent.__best_net = copy_net(agent.__qnet, agent.__state_dim, agent.__ctx)
        agent.__best_net.load_parameters(files['best_net_params'], agent.__ctx)
        agent.__target_qnet = copy_net(agent.__qnet, agent.__state_dim, agent.__ctx)
        agent.__target_qnet.load_parameters(files['target_net_params'], agent.__ctx)

        agent.__logger = agent.__setup_logging(append=True)
        agent.__training_stats.logger = agent.__logger
        agent.__logger.info('Agent was retrieved; Training can be continued')

        return agent

    def __interrupt_training(self):
        import pickle
        self.__logger.info('Training interrupted; Store state for resuming')
        session_dir = os.path.join(self.__output_directory, '.interrupted_session')
        if not os.path.exists(session_dir):
            os.mkdir(session_dir)

        del self.__training_stats.logger
        logger = self.__logger
        self.__logger = None
        self.__environment.close()
        self.__environment = None

        self.__save_net(self.__qnet, 'qnet', session_dir)
        self.__qnet = None
        self.__save_net(self.__best_net, 'best_net', session_dir)
        self.__best_net = None
        self.__save_net(self.__target_qnet, 'target_net', session_dir)
        self.__target_qnet = None

        agent_session_file = os.path.join(session_dir, 'agent.p')

        with open(agent_session_file, 'wb') as f:
            pickle.dump(self, f)
        self.__logger = logger
        logger.info('State successfully stored')

    @property
    def current_episode(self):
        return self.__current_episode

    @property
    def environment(self):
        return self.__environment

    def __adjust_optimizer_params(self, optimizer_params):
        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-8
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr.scheduler.FactorScheduler(
                optimizer_params['step_size'],
                factor=optimizer_params['learning_rate_decay'],
                stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

        return optimizer_params

    def set_interrupt_flag(self, interrupt):
        self.__interrupt_flag = interrupt


    def __make_output_directory_if_not_exist(self):
        assert self.__output_directory
        if not os.path.exists(self.__output_directory):
            os.makedirs(self.__output_directory)

    def __setup_logging(self, append=False):
        assert self.__output_directory
        assert self.__agent_name

        output_level = logging.DEBUG if self.__verbose else logging.WARNING
        filemode = 'a' if append else 'w'

        logformat = '%(asctime)s - %(name)s - %(levelname)s - %(message)s'
        dateformat = '%d-%b-%y %H:%M:%S'
        formatter = logging.Formatter(fmt=logformat, datefmt=dateformat)

        logger = logging.getLogger('DQNAgent')
        logger.setLevel(output_level)

        stream_handler = logging.StreamHandler(sys.stdout)
        stream_handler.setLevel(output_level)
        stream_handler.setFormatter(formatter)
        logger.addHandler(stream_handler)

        if self.__make_logfile:
            self.__make_output_directory_if_not_exist()
            log_file = os.path.join(self.__output_directory, self.__agent_name + '.log')
            file_handler = logging.FileHandler(log_file, mode=filemode)
            file_handler.setLevel(output_level)
            file_handler.setFormatter(formatter)
            logger.addHandler(file_handler)

        return logger

    def __is_target_reached(self, avg_reward):
        return self.__target_score is not None\
            and avg_reward > self.__target_score


    def get_q_values(self, state, with_best=False):
        return self.get_batch_q_values(nd.array([state], ctx=self.__ctx), with_best=with_best)[0]

    def get_batch_q_values(self, state_batch, with_best=False):
        return self.__best_net(state_batch) if with_best else self.__qnet(state_batch)

    def get_next_action(self, state, with_best=False):
        q_values = self.get_q_values(state, with_best=with_best)
        action = q_values.asnumpy().argmax()
        return q_values.asnumpy().argmax()

    def __sample_from_memory(self):
        states, actions, rewards, next_states, terminals\
            = self.__memory.sample(batch_size=self.__minibatch_size)
        states = nd.array(states, ctx=self.__ctx)
        actions = nd.array(actions, ctx=self.__ctx)
        rewards = nd.array(rewards, ctx=self.__ctx)
        next_states = nd.array(next_states, ctx=self.__ctx)
        terminals = nd.array(terminals, ctx=self.__ctx)
        return states, actions, rewards, next_states, terminals

    def __determine_target_q_values(self, states, actions, rewards, next_states, terminals):
        if self.__use_fix_target:
            q_max_val = self.__target_qnet(next_states)
        else:
            q_max_val = self.__qnet(next_states)

        if self.__double_dqn:
            q_values_next_states = self.__qnet(next_states)
            target_rewards = rewards + nd.choose_element_0index(q_max_val, nd.argmax_channel(q_values_next_states))\
                * (1.0 - terminals) * self.__discount_factor
        else:
            target_rewards = rewards + nd.choose_element_0index(q_max_val, nd.argmax_channel(q_max_val))\
                * (1.0 - terminals) * self.__discount_factor

        target_qval = self.__qnet(states)
        for t in range(target_rewards.shape[0]):
            target_qval[t][actions[t]] = target_rewards[t]

        return target_qval

    def __train_q_net_step(self, trainer):
        states, actions, rewards, next_states, terminals = self.__sample_from_memory()
        target_qval = self.__determine_target_q_values(states, actions, rewards, next_states, terminals)
        with autograd.record():
            q_values = self.__qnet(states)
            loss = self.__loss_function(q_values, target_qval)
        loss.backward()
        trainer.step(self.__minibatch_size)
        return loss

    def __do_snapshot_if_in_interval(self, episode):
        do_snapshot = (episode != 0 and (episode % self.__snapshot_interval == 0))
        if do_snapshot:
            self.save_parameters(episode=episode)
            self.__evaluate()

    def __do_target_update_if_in_interval(self, total_steps):
        do_target_update = (self.__use_fix_target and total_steps % self.__target_update_interval == 0)
        if do_target_update:
            self.__logger.info('Target network is updated after {} steps'.format(total_steps))
            self.__target_qnet = copy_net(self.__qnet, self.__state_dim, self.__ctx)

    def train(self, episodes=None):
        self.__logger.info("--- Start training ---")
        trainer = gluon.Trainer(self.__qnet.collect_params(), self.__optimizer, self.__adjust_optimizer_params(self.__optimizer_params))
        episodes = episodes if episodes != None else self.__training_episodes

        resume = (self.__current_episode > 0)
        if resume:
            self.__logger.info("Training session resumed")
            self.__logger.info("Starting from episode {}".format(self.__current_episode))
        else:
            self.__training_stats = util.TrainingStats(self.__logger, episodes, self.__live_plot)

        # Implementation Deep Q Learning described by Mnih et. al. in Playing Atari with Deep Reinforcement Learning
        while self.__current_episode < episodes:
            # Check interrupt flag
            if self.__interrupt_flag:
                self.__interrupt_flag = False
                self.__interrupt_training()
                return False

            step = 0
            episode_reward = 0
            start = time.time()
            state = self.__environment.reset()
            episode_loss = 0
            training_steps = 0
            while step < self.__max_episode_step:
                #1. Choose an action based on current game state and policy
                q_values = self.__qnet(nd.array([state], ctx=self.__ctx))
                action = self.__policy.select_action(q_values[0])

                #2. Play the game for a single step
                next_state, reward, terminal, _ = self.__environment.step(action)

                #3. Store transition in replay memory
                self.__memory.append(state, action, reward, next_state, terminal)

                #4. Train the network if in interval
                do_training = (self.__total_steps % self.__train_interval == 0\
                    and self.__memory.is_sample_possible(self.__minibatch_size))
                if do_training:
                    loss = self.__train_q_net_step(trainer)
                    loss_sum = sum(loss).asnumpy()[0]
                    episode_loss += float(loss_sum)/float(self.__minibatch_size)
                    training_steps += 1

                # Update target network if in interval
                self.__do_target_update_if_in_interval(self.__total_steps)

                step += 1
                self.__total_steps += 1
                episode_reward += reward
                state = next_state

                if terminal:
                    episode_loss = episode_loss if training_steps > 0 else None
                    _, _, avg_reward = self.__training_stats.log_episode(self.__current_episode, start, training_steps,
                        episode_loss, self.__policy.cur_eps, episode_reward)
                    break

            self.__do_snapshot_if_in_interval(self.__current_episode)
            self.__policy.decay()

            if self.__is_target_reached(avg_reward):
                self.__logger.info('Target score is reached in average; Training is stopped')
                break

            self.__current_episode += 1

        self.__evaluate()
        training_stats_file = os.path.join(self.__output_directory, 'training_stats.pdf')
        self.__training_stats.save_stats(training_stats_file)
        self.__logger.info('--------- Training finished ---------')
        return True

    def __save_net(self, net, filename, filedir=None):
        filedir = self.__output_directory if filedir is None else filedir
        filename = os.path.join(filedir, filename + '.params')
        net.save_parameters(filename)


    def save_parameters(self, episode=None, filename='dqn-agent-params'):
        assert self.__output_directory
        self.__make_output_directory_if_not_exist()

        if(episode != None):
            self.__logger.info('Saving model parameters after episode %d' % episode)
            filename = filename + '-ep{}'.format(episode)
        else:
            self.__logger.info('Saving model parameters')
        self.__save_net(self.__qnet, filename)

    def evaluate(self, target=None, sample_games=100, verbose=True):
        target = self.__target_score if target is None else target
        if target:
            target_achieved = 0
        total_reward = 0

        for g in range(sample_games):
            state = self.__environment.reset()
            step = 0
            game_reward = 0
            while step < self.__max_episode_step:
                action = self.get_next_action(state)
                state, reward, terminal, _ = self.__environment.step(action)
                game_reward += reward

                if terminal:
                    if verbose:
                        info = 'Game %d: Reward %f' % (g,game_reward)
                        self.__logger.debug(info)
                    if target:
                        if game_reward >= target:
                            target_achieved += 1
                    total_reward += game_reward
                    break

                step += 1

        avg_reward = float(total_reward)/float(sample_games)
        info = 'Avg. Reward: %f' % avg_reward
        if target:
            target_achieved_ratio = int((float(target_achieved)/float(sample_games))*100)
            info += '; Target Achieved in %d%% of games' % (target_achieved_ratio)

        if verbose:
            self.__logger.info(info)
        return avg_reward

    def __evaluate(self, verbose=True):
        sample_games = 100
        avg_reward = self.evaluate(sample_games=sample_games, verbose=False)
        info = 'Evaluation -> Average Reward in {} games: {}'.format(sample_games, avg_reward)

        if self.__best_avg_score is None or self.__best_avg_score <= avg_reward:
            self.__best_net = copy_net(self.__qnet, self.__state_dim, self.__ctx)
            self.__best_avg_score = avg_reward
            info += ' (NEW BEST)'

        if verbose:
            self.__logger.info(info)



    def play(self, update_frame=1, with_best=False):
        step = 0
        state = self.__environment.reset()
        total_reward = 0
        while step < self.__max_episode_step:
            action = self.get_next_action(state, with_best=with_best)
            state, reward, terminal, _ = self.__environment.step(action)
            total_reward += reward
            do_update_frame = (step % update_frame == 0)
            if do_update_frame:
                self.__environment.render()
                time.sleep(.100)

            if terminal:
                break

            step += 1
        return total_reward

    def save_best_network(self, path, epoch=0):
        self.__logger.info('Saving best network with average reward of {}'.format(self.__best_avg_score))
        self.__best_net.export(path, epoch=epoch)

    def __make_config_dict(self):
        config = dict()
        config['discount_factor'] = self.__discount_factor
        config['optimizer'] = self.__optimizer
        config['optimizer_params'] = self.__optimizer_params
        config['policy_params'] = self.__policy_params
        config['replay_memory_params'] = self.__replay_memory_params
        config['loss_function'] = self.__loss_function_str
        config['optimizer'] = self.__optimizer
        config['training_episodes'] = self.__training_episodes
        config['train_interval'] = self.__train_interval
        config['use_fix_target'] = self.__use_fix_target
        config['double_dqn'] = self.__double_dqn
        config['target_update_interval'] = self.__target_update_interval
        config['snapshot_interval']= self.__snapshot_interval
        config['agent_name'] = self.__agent_name
        config['max_episode_step'] = self.__max_episode_step
        config['output_directory'] = self.__user_given_directory
        config['verbose'] = self.__verbose
        config['live_plot'] = self.__live_plot
        config['make_logfile'] = self.__make_logfile
        config['target_score'] = self.__target_score
        return config

    def save_config_file(self):
        import json
        self.__make_output_directory_if_not_exist()
        filename = os.path.join(self.__output_directory, 'config.json')
        config = self.__make_config_dict()
        with open(filename, mode='w') as fp:
            json.dump(config, fp, indent=4)