CNNSupervisedTrainer_CifarClassifierNetwork.py 19.3 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian Nickels's avatar
Sebastian Nickels committed
8
9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10
11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28
29
30
31
32
33
34
35
36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
57
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i) * mx.nd.equal(mx.nd.argmax(pred, axis=1), label))
Sebastian Nickels's avatar
Sebastian Nickels committed
58
59
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

117
118
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian Nickels's avatar
Sebastian Nickels committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
170

Sebastian Nickels's avatar
Sebastian Nickels committed
171
172


173
class CNNSupervisedTrainer_CifarClassifierNetwork:
174
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
175
176
        self._data_loader = data_loader
        self._net_creator = net_constructor
177
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
178
179
180
181

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian Nickels's avatar
Sebastian Nickels committed
182
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
183
184
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
185
186
187
188
189
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
190
              save_attention_image=False,
191
              use_teacher_forcing=False,
Nicola Gatto's avatar
Nicola Gatto committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

215
216
        train_batch_size = batch_size
        test_batch_size = batch_size
Nicola Gatto's avatar
Nicola Gatto committed
217

Sebastian Nickels's avatar
Merge    
Sebastian Nickels committed
218
        train_iter, train_test_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(train_batch_size, test_batch_size)
219
220
221
222
223

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
224
225
226
227
228
229
230
231

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

232
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
233
234
235
236
237
238
239

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian Nickels's avatar
Sebastian Nickels committed
240
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
241

Eyüp Harputlu's avatar
Eyüp Harputlu committed
242
243
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
244
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
Eyüp Harputlu's avatar
Eyüp Harputlu committed
245
246
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
247
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
248
        elif loss == 'softmax_cross_entropy_ignore_indices':
249
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
250
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
251
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
252
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
253
254
255
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
256
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
257
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
258
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
259
260
261
262
263
264
265
266
267
268
269
270
271
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
272
273
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
274
275
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
276
277
278
279
280
281
282

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
283
284
                with autograd.record():
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
285

286
287
288
                    data_ = batch.data[0].as_in_context(mx_context)

                    softmax_ = mx.nd.zeros((train_batch_size, 10,), ctx=mx_context)
Christian Fuß's avatar
Christian Fuß committed
289

290

291
292
                    nd.waitall()

293
                    lossList = []
294

295
                    softmax_ = self._networks[0](data_)
296
297

                    lossList.append(loss_function(softmax_, labels[0]))
298

299
300
301
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
302
303

                loss.backward()
304
305
306

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

323
            train_test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
324
            metric = mx.metric.create(eval_metric, **eval_metric_params)
325
            for batch_i, batch in enumerate(train_test_iter):
326
                if True: 
327
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
328

329
                    data_ = batch.data[0].as_in_context(mx_context)
330

331
                    softmax_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
332

333

334
335
                    nd.waitall()

336
                    outputs = []
337
                    attentionList=[]
338
                    softmax_ = self._networks[0](data_)
339

340
                    outputs.append(softmax_)
341

342
343

                    if save_attention_image == "True":
344
345
                        import matplotlib
                        matplotlib.use('Agg')
346
347
348
349
                        import matplotlib.pyplot as plt
                        logging.getLogger('matplotlib').setLevel(logging.ERROR)

                        plt.clf()
350
                        fig = plt.figure(figsize=(15,15))
351
352
353
354
355
356
                        max_length = len(labels)-1

                        if(os.path.isfile('src/test/resources/training_data/Show_attend_tell/dict.pkl')):
                            with open('src/test/resources/training_data/Show_attend_tell/dict.pkl', 'rb') as f:
                                dict = pickle.load(f)

357
358
359
                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

360
361
                        for l in range(max_length):
                            attention = attentionList[l]
362
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1).squeeze()
363
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
364
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
365
366
367
                            if int(labels[l+1][0].asscalar()) > len(dict):
                                ax.set_title("<unk>")
                            elif dict[int(labels[l+1][0].asscalar())] == "<end>":
368
369
370
371
372
373
                                ax.set_title(".")
                                img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
                                ax.set_title(dict[int(labels[l+1][0].asscalar())])
374
375
                            img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
376
377
378
379

                        plt.tight_layout()
                        target_dir = 'target/attention_images'
                        if not os.path.exists(target_dir):
380
                            os.makedirs(target_dir)
381
382
383
                        plt.savefig(target_dir + '/attention_train.png')
                        plt.close()

384
                predictions = []
385
                for output_name in outputs:
Sebastian Nickels's avatar
Sebastian Nickels committed
386
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
387
388
389
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    else:
                        predictions.append(output_name)
390
391

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
392
393
394
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
395
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
396
            for batch_i, batch in enumerate(test_iter):
397
                if True: 
398
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
399

400
                    data_ = batch.data[0].as_in_context(mx_context)
401

402
                    softmax_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
403

404

405
406
                    nd.waitall()

407
                    outputs = []
408
                    attentionList=[]
409
                    softmax_ = self._networks[0](data_)
410

411
                    outputs.append(softmax_)
412

413
414
415

                    if save_attention_image == "True":
                        plt.clf()
416
                        fig = plt.figure(figsize=(15,15))
417
418
                        max_length = len(labels)-1

419
420
421
                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

422
423
                        for l in range(max_length):
                            attention = attentionList[l]
424
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1).squeeze()
425
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
426
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
427
428
429
                            if int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar()) > len(dict):
                                ax.set_title("<unk>")
                            elif dict[int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar())] == "<end>":
430
431
432
433
434
                                ax.set_title(".")
                                img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
435
                                ax.set_title(dict[int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar())])
436
437
                            img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
438
439
440
441
442

                        plt.tight_layout()
                        plt.savefig(target_dir + '/attention_test.png')
                        plt.close()

443
                predictions = []
444
                for output_name in outputs:
Sebastian Nickels's avatar
Sebastian Nickels committed
445
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
446
447
448
449
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
450

451
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
452
453
454
455
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

456

Nicola Gatto's avatar
Nicola Gatto committed
457
            if (epoch - begin_epoch) % checkpoint_period == 0:
458
459
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
460

461
462
463
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
464

465
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy    
Bernhard Rumpe committed
466
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)