CNNTrainer_reinforcementConfig1.py 3.89 KB
Newer Older
1
2
from reinforcement_learning.agent import DqnAgent
from reinforcement_learning.util import AgentSignalHandler
Nicola Gatto's avatar
Nicola Gatto committed
3
from reinforcement_learning.cnnarch_logger import ArchLogger
4
5
6
7
8
9
import reinforcement_learning.environment
import CNNCreator_reinforcementConfig1

import os
import sys
import re
Nicola Gatto's avatar
Nicola Gatto committed
10
11
import time
import numpy as np
12
13
14
import mxnet as mx


Nicola Gatto's avatar
Nicola Gatto committed
15
def resume_session(sessions_dir):
16
17
    resume_session = False
    resume_directory = None
Nicola Gatto's avatar
Nicola Gatto committed
18
    if os.path.isdir(sessions_dir):
19
        regex = re.compile(r'\d\d\d\d-\d\d-\d\d-\d\d-\d\d')
Nicola Gatto's avatar
Nicola Gatto committed
20
        dir_content = os.listdir(sessions_dir)
21
22
23
        session_files = filter(regex.search, dir_content)
        session_files.sort(reverse=True)
        for d in session_files:
Nicola Gatto's avatar
Nicola Gatto committed
24
            interrupted_session_dir = os.path.join(sessions_dir, d, '.interrupted_session')
25
26
27
28
29
30
31
32
            if os.path.isdir(interrupted_session_dir):
                resume = raw_input('Interrupted session from {} found. Do you want to resume? (y/n) '.format(d))
                if resume == 'y':
                    resume_session = True
                    resume_directory = interrupted_session_dir
                break
    return resume_session, resume_directory

Nicola Gatto's avatar
Nicola Gatto committed
33

34
if __name__ == "__main__":
Nicola Gatto's avatar
Nicola Gatto committed
35
36
37
38
39
40
41
42
43
44
45
    agent_name = 'reinforcement_agent'
    # Prepare output directory and logger
    all_output_dir = os.path.join('model', agent_name)
    output_directory = os.path.join(
        all_output_dir,
        time.strftime('%Y-%m-%d-%H-%M-%S',
                      time.localtime(time.time())))
    ArchLogger.set_output_directory(output_directory)
    ArchLogger.set_logger_name(agent_name)
    ArchLogger.set_output_level(ArchLogger.INFO)

46
    env_params = {
Nicola Gatto's avatar
Nicola Gatto committed
47
48
49
50
        'ros_node_name': 'reinforcementConfig1TrainerNode',
        'state_topic': '/environment/state',
        'action_topic': '/environment/action',
        'reset_topic': '/environment/reset',
51
52
53
    }
    env = reinforcement_learning.environment.RosEnvironment(**env_params)

Nicola Gatto's avatar
Nicola Gatto committed
54
55
56
    context = mx.cpu()
    qnet_creator = CNNCreator_reinforcementConfig1.CNNCreator_reinforcementConfig1()
    qnet_creator.construct(context)
57

Nicola Gatto's avatar
Nicola Gatto committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
    agent_params = {
        'environment': env,
        'replay_memory_params': {
            'method': 'buffer',
            'memory_size': 1000000,
            'sample_size': 64,
            'state_dtype': 'float32',
            'action_dtype': 'float32',
            'rewards_dtype': 'float32'
        },
        'strategy_params': {
            'method':'epsgreedy',
            'epsilon': 1,
            'min_epsilon': 0.02,
            'epsilon_decay_method': 'linear',
            'epsilon_decay': 0.0001,
        },
        'agent_name': agent_name,
        'verbose': True,
        'output_directory': output_directory,
        'state_dim': (8,),
        'action_dim': (3,),
        'discount_factor': 0.99999,
        'training_episodes': 1000,
        'train_interval': 1,
        'snapshot_interval': 500,
        'max_episode_step': 10000,
        'target_score': 35000,
        'qnet':qnet_creator.net,
        'use_fix_target': True,
        'target_update_interval': 500,
        'loss_function': 'huber_loss',
        'optimizer': 'adam',
        'optimizer_params': {
            'learning_rate': 0.001        },
        'double_dqn': True,
94
95
    }

Nicola Gatto's avatar
Nicola Gatto committed
96
    resume, resume_directory = resume_session(all_output_dir)
97

Nicola Gatto's avatar
Nicola Gatto committed
98
99
100
101
102
103
    if resume:
        output_directory, _ = os.path.split(resume_directory)
        ArchLogger.set_output_directory(output_directory)
        resume_agent_params = {
            'session_dir': resume_directory,
            'environment': env,
Nicola Gatto's avatar
Nicola Gatto committed
104
            'net': qnet_creator.networks[0],
Nicola Gatto's avatar
Nicola Gatto committed
105
106
        }
        agent = DqnAgent.resume_from_session(**resume_agent_params)
107
    else:
Nicola Gatto's avatar
Nicola Gatto committed
108
        agent = DqnAgent(**agent_params)
109
110
111
112
113
114
115

    signal_handler = AgentSignalHandler()
    signal_handler.register_agent(agent)

    train_successful = agent.train()

    if train_successful:
Nicola Gatto's avatar
Nicola Gatto committed
116
        agent.save_best_network(qnet_creator._model_dir_ + qnet_creator._model_prefix_ + '_0_newest', epoch=0)