CNNSupervisedTrainer_CifarClassifierNetwork.py 22.3 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1 2 3 4 5 6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian N.'s avatar
Sebastian N. committed
8 9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10 11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28 29 30 31 32 33 34 35 36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
57
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i) * mx.nd.equal(mx.nd.argmax(pred, axis=1), label))
Sebastian N.'s avatar
Sebastian N. committed
58 59
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

117 118
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian N.'s avatar
Sebastian N. committed
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
170

Sebastian N.'s avatar
Sebastian N. committed
171 172


173
class CNNSupervisedTrainer_CifarClassifierNetwork:
174
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
175 176
        self._data_loader = data_loader
        self._net_creator = net_constructor
177
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
178 179 180 181

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian N.'s avatar
Sebastian N. committed
182
              eval_metric_params={},
183
              eval_train=False,
Eyüp Harputlu's avatar
Eyüp Harputlu committed
184 185
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
186 187 188 189
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              checkpoint_period=5,
190 191
              log_period=50,
              context='gpu',
192
              save_attention_image=False,
193
              use_teacher_forcing=False,
194
              normalize=True,
195 196
              shuffle_data=False,
              clip_global_grad_norm=None,
197
              preprocessing = False):
Nicola Gatto's avatar
Nicola Gatto committed
198 199 200 201 202 203 204
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

205 206
        if preprocessing:
            preproc_lib = "CNNPreprocessor_CifarClassifierNetwork_executor"
207
            train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_preprocessed_data(batch_size, preproc_lib, shuffle_data)
208
        else:
209
            train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(batch_size, shuffle_data)
210

Nicola Gatto's avatar
Nicola Gatto committed
211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

226 227 228 229
        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
230 231 232 233 234 235 236 237

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

238
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
239 240 241 242 243 244 245

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
246
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
247

Eyüp Harputlu's avatar
Eyüp Harputlu committed
248 249
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
250
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
Eyüp Harputlu's avatar
Eyüp Harputlu committed
251 252
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
253
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
254
        elif loss == 'softmax_cross_entropy_ignore_indices':
255
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
256
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
257
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
258
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
259 260 261
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
262
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
263
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
264
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
265 266 267 268 269 270 271 272 273 274 275 276 277
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
278 279
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
280 281
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
282 283 284 285

        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
286 287 288 289 290 291 292 293 294
            if shuffle_data:
                if preprocessing:
                    preproc_lib = "CNNPreprocessor_CifarClassifierNetwork_executor"
                    train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_preprocessed_data(batch_size, preproc_lib, shuffle_data)
                else:
                    train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(batch_size, shuffle_data)

            global_loss_train = 0.0
            train_batches = 0
295 296

            loss_total = 0
Nicola Gatto's avatar
Nicola Gatto committed
297 298
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
299 300
                with autograd.record():
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
301

302 303
                    data_ = batch.data[0].as_in_context(mx_context)

304
                    softmax_ = mx.nd.zeros((batch_size, 10,), ctx=mx_context)
Christian Fuß's avatar
Christian Fuß committed
305

306

307 308
                    nd.waitall()

309
                    lossList = []
310

311
                    softmax_ = self._networks[0](data_)
312 313

                    lossList.append(loss_function(softmax_, labels[0]))
314

315 316 317
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
318 319

                loss.backward()
320

321 322
                loss_total += loss.sum().asscalar()

323 324 325
                global_loss_train += float(loss.mean().asscalar())
                train_batches += 1

326 327 328 329 330 331 332 333
                if clip_global_grad_norm:
                    grads = []

                    for network in self._networks.values():
                        grads.extend([param.grad(mx_context) for param in network.collect_params().values()])

                    gluon.utils.clip_global_norm(grads, clip_global_grad_norm)

334 335
                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
336 337 338 339

                if tic is None:
                    tic = time.time()
                else:
340
                    if batch_i % log_period == 0:
Nicola Gatto's avatar
Nicola Gatto committed
341
                        try:
342
                            speed = log_period * batch_size / (time.time() - tic)
Nicola Gatto's avatar
Nicola Gatto committed
343 344 345
                        except ZeroDivisionError:
                            speed = float("inf")

346 347 348 349
                        loss_avg = loss_total / (batch_size * log_period)
                        loss_total = 0

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec Loss: %.5f" % (epoch, batch_i, speed, loss_avg))
Nicola Gatto's avatar
Nicola Gatto committed
350 351 352

                        tic = time.time()

353 354 355
            if train_batches > 0:
                global_loss_train /= train_batches

Nicola Gatto's avatar
Nicola Gatto committed
356 357
            tic = None

358 359 360 361 362

            if eval_train:
                train_iter.reset()
                metric = mx.metric.create(eval_metric, **eval_metric_params)
                for batch_i, batch in enumerate(train_iter):
363
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
364

365
                    data_ = batch.data[0].as_in_context(mx_context)
366

367
                    softmax_ = mx.nd.zeros((batch_size, 10,), ctx=mx_context)
368

369

370 371
                    nd.waitall()

372
                    outputs = []
373 374
                    lossList = []
                    attentionList = []
375
                    softmax_ = self._networks[0](data_)
376

377
                    outputs.append(softmax_)
378
                    lossList.append(loss_function(softmax_, labels[0]))
379

380 381

                    if save_attention_image == "True":
382 383
                        import matplotlib
                        matplotlib.use('Agg')
384 385 386 387 388 389 390
                        import matplotlib.pyplot as plt
                        logging.getLogger('matplotlib').setLevel(logging.ERROR)

                        if(os.path.isfile('src/test/resources/training_data/Show_attend_tell/dict.pkl')):
                            with open('src/test/resources/training_data/Show_attend_tell/dict.pkl', 'rb') as f:
                                dict = pickle.load(f)

391 392 393 394
                        plt.clf()
                        fig = plt.figure(figsize=(15,15))
                        max_length = len(labels)-1

395
                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
396
                        ax.imshow(train_images[0+batch_size*(batch_i)].transpose(1,2,0))
397

398 399
                        for l in range(max_length):
                            attention = attentionList[l]
400
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1).squeeze()
401
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
402
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
403 404 405
                            if int(labels[l+1][0].asscalar()) > len(dict):
                                ax.set_title("<unk>")
                            elif dict[int(labels[l+1][0].asscalar())] == "<end>":
406
                                ax.set_title(".")
407
                                img = ax.imshow(train_images[0+batch_size*(batch_i)].transpose(1,2,0))
408 409 410 411
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
                                ax.set_title(dict[int(labels[l+1][0].asscalar())])
412
                            img = ax.imshow(train_images[0+batch_size*(batch_i)].transpose(1,2,0))
413
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
414 415 416 417

                        plt.tight_layout()
                        target_dir = 'target/attention_images'
                        if not os.path.exists(target_dir):
418
                            os.makedirs(target_dir)
419 420 421
                        plt.savefig(target_dir + '/attention_train.png')
                        plt.close()

422 423 424 425 426 427
                    predictions = []
                    for output_name in outputs:
                        if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
                            predictions.append(mx.nd.argmax(output_name, axis=1))
                        else:
                            predictions.append(output_name)
428

429 430 431 432
                    metric.update(preds=predictions, labels=labels)
                train_metric_score = metric.get()[1]
            else:
                train_metric_score = 0
Nicola Gatto's avatar
Nicola Gatto committed
433

434 435 436
            global_loss_test = 0.0
            test_batches = 0

Nicola Gatto's avatar
Nicola Gatto committed
437
            test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
438
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
439
            for batch_i, batch in enumerate(test_iter):
440
                if True:
441
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
442

443
                    data_ = batch.data[0].as_in_context(mx_context)
444

445
                    softmax_ = mx.nd.zeros((batch_size, 10,), ctx=mx_context)
446

447

448 449
                    nd.waitall()

450
                    outputs = []
451 452
                    lossList = []
                    attentionList = []
453
                    softmax_ = self._networks[0](data_)
454

455
                    outputs.append(softmax_)
456
                    lossList.append(loss_function(softmax_, labels[0]))
457

458 459

                    if save_attention_image == "True":
460 461 462 463 464 465 466 467 468 469
                        if not eval_train:
                            import matplotlib
                            matplotlib.use('Agg')
                            import matplotlib.pyplot as plt
                            logging.getLogger('matplotlib').setLevel(logging.ERROR)

                            if(os.path.isfile('src/test/resources/training_data/Show_attend_tell/dict.pkl')):
                                with open('src/test/resources/training_data/Show_attend_tell/dict.pkl', 'rb') as f:
                                    dict = pickle.load(f)

470
                        plt.clf()
471
                        fig = plt.figure(figsize=(15,15))
472 473
                        max_length = len(labels)-1

474
                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
475
                        ax.imshow(test_images[0+batch_size*(batch_i)].transpose(1,2,0))
476

477 478
                        for l in range(max_length):
                            attention = attentionList[l]
479
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1).squeeze()
480
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
481
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
482 483 484
                            if int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar()) > len(dict):
                                ax.set_title("<unk>")
                            elif dict[int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar())] == "<end>":
485
                                ax.set_title(".")
486
                                img = ax.imshow(test_images[0+batch_size*(batch_i)].transpose(1,2,0))
487 488 489
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
490
                                ax.set_title(dict[int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar())])
491
                            img = ax.imshow(test_images[0+batch_size*(batch_i)].transpose(1,2,0))
492
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
493 494

                        plt.tight_layout()
495 496 497
                        target_dir = 'target/attention_images'
                        if not os.path.exists(target_dir):
                            os.makedirs(target_dir)
498 499
                        plt.savefig(target_dir + '/attention_test.png')
                        plt.close()
500 501 502 503 504 505
                loss = 0
                for element in lossList:
                    loss = loss + element

                global_loss_test += float(loss.mean().asscalar())
                test_batches += 1
506

507
                predictions = []
508
                for output_name in outputs:
Sebastian N.'s avatar
Sebastian N. committed
509
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
510 511 512 513
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
514

515
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
516 517
            test_metric_score = metric.get()[1]

518 519
            if test_batches > 0:
                global_loss_test /= test_batches
Nicola Gatto's avatar
Nicola Gatto committed
520

521
            logging.info("Epoch[%d] Train: %f, Test: %f, Train Loss: %f, Test Loss: %f" % (epoch, train_metric_score, test_metric_score, global_loss_train, global_loss_test))
522

Nicola Gatto's avatar
Nicola Gatto committed
523
            if (epoch - begin_epoch) % checkpoint_period == 0:
524 525
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
526

527 528 529
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
530

531
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
532
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)