CNNSupervisedTrainer_VGG16.py 6.42 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
7
8
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
from mxnet import gluon, autograd, nd

9
class CNNSupervisedTrainer_VGG16:
10
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
11
12
        self._data_loader = data_loader
        self._net_creator = net_constructor
13
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']


        train_iter, test_iter, data_mean, data_std = self._data_loader.load_data(batch_size)
48
49
50
51
52

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
53
54
55
56
57
58
59
60

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

61
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
62
63
64
65
66
67
68

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

69
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values()]
Nicola Gatto's avatar
Nicola Gatto committed
70

71
72
        loss_functions = {}

73
74
75
76
77
78
79
80
81
82
83
        for network in self._networks.values():
            for output_name, last_layer in network.last_layers.items():
                if last_layer == 'softmax':
                    loss_functions[output_name] = mx.gluon.loss.SoftmaxCrossEntropyLoss()
                elif last_layer == 'sigmoid':
                    loss_functions[output_name] = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
                elif last_layer == 'linear':
                    loss_functions[output_name] = mx.gluon.loss.L2Loss()
                else:
                    loss_functions[output_name] = mx.gluon.loss.L2Loss()
                    logging.warning("Invalid last layer, defaulting to L2 loss")
Nicola Gatto's avatar
Nicola Gatto committed
84
85
86
87
88
89
90

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
91
92
                data_data = batch.data[0].as_in_context(mx_context)
                predictions_label = batch.label[0].as_in_context(mx_context)
93

Nicola Gatto's avatar
Nicola Gatto committed
94
                with autograd.record():
95
                    predictions_output = self._networks[0](data_data)
96
97

                    loss = loss_functions['predictions'](predictions_output, predictions_label)
Nicola Gatto's avatar
Nicola Gatto committed
98
99

                loss.backward()
100
101
102

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

            train_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(train_iter):
122
123
124
125
126
127
                data_data = batch.data[0].as_in_context(mx_context)

                labels = [
                    batch.label[0].as_in_context(mx_context)
                ]

128
                predictions_output = self._networks[0](data_data)
129

130
131
132
133
134
                predictions = [
                    mx.nd.argmax(predictions_output, axis=1)
                ]

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
135
136
137
138
139
            train_metric_score = metric.get()[1]

            test_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(test_iter):
140
141
142
143
144
145
                data_data = batch.data[0].as_in_context(mx_context)

                labels = [
                    batch.label[0].as_in_context(mx_context)
                ]

146
                predictions_output = self._networks[0](data_data)
147
148
149
                predictions = [
                    mx.nd.argmax(predictions_output, axis=1)
                ]
150

151
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
152
153
154
155
156
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

            if (epoch - begin_epoch) % checkpoint_period == 0:
157
158
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
159

160
161
162
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
163

164
165
    def parameter_path(self, index):
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)