CNNNet_CifarClassifierNetwork.py 18.8 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1 2 3 4
import mxnet as mx
import numpy as np
from mxnet import gluon

Christian Fuß's avatar
Christian Fuß committed
5 6 7 8 9 10 11 12 13 14
class OneHot(gluon.HybridBlock):
    def __init__(self, size, **kwargs):
        super(OneHot, self).__init__(**kwargs)
        with self.name_scope():
            self.size = size

    def hybrid_forward(self, F, x):
        return F.one_hot(indices=F.argmax(data=x, axis=1), depth=self.size)


Nicola Gatto's avatar
Nicola Gatto committed
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48
class Softmax(gluon.HybridBlock):
    def __init__(self, **kwargs):
        super(Softmax, self).__init__(**kwargs)

    def hybrid_forward(self, F, x):
        return F.softmax(x)


class Split(gluon.HybridBlock):
    def __init__(self, num_outputs, axis=1, **kwargs):
        super(Split, self).__init__(**kwargs)
        with self.name_scope():
            self.axis = axis
            self.num_outputs = num_outputs

    def hybrid_forward(self, F, x):
        return F.split(data=x, axis=self.axis, num_outputs=self.num_outputs)


class Concatenate(gluon.HybridBlock):
    def __init__(self, dim=1, **kwargs):
        super(Concatenate, self).__init__(**kwargs)
        with self.name_scope():
            self.dim = dim

    def hybrid_forward(self, F, *x):
        return F.concat(*x, dim=self.dim)


class ZScoreNormalization(gluon.HybridBlock):
    def __init__(self, data_mean, data_std, **kwargs):
        super(ZScoreNormalization, self).__init__(**kwargs)
        with self.name_scope():
            self.data_mean = self.params.get('data_mean', shape=data_mean.shape,
49
                init=mx.init.Constant(data_mean.asnumpy().tolist()), differentiable=False)
Nicola Gatto's avatar
Nicola Gatto committed
50
            self.data_std = self.params.get('data_std', shape=data_mean.shape,
51
                init=mx.init.Constant(data_std.asnumpy().tolist()), differentiable=False)
Nicola Gatto's avatar
Nicola Gatto committed
52 53 54 55 56 57 58 59 60 61 62 63 64 65 66

    def hybrid_forward(self, F, x, data_mean, data_std):
        x = F.broadcast_sub(x, data_mean)
        x = F.broadcast_div(x, data_std)
        return x


class Padding(gluon.HybridBlock):
    def __init__(self, padding, **kwargs):
        super(Padding, self).__init__(**kwargs)
        with self.name_scope():
            self.pad_width = padding

    def hybrid_forward(self, F, x):
        x = F.pad(data=x,
67 68 69
            mode='constant',
            pad_width=self.pad_width,
            constant_value=0)
Nicola Gatto's avatar
Nicola Gatto committed
70 71 72 73 74 75 76 77 78 79 80
        return x


class NoNormalization(gluon.HybridBlock):
    def __init__(self, **kwargs):
        super(NoNormalization, self).__init__(**kwargs)

    def hybrid_forward(self, F, x):
        return x


81
class Net_0(gluon.HybridBlock):
Nicola Gatto's avatar
Nicola Gatto committed
82
    def __init__(self, data_mean=None, data_std=None, **kwargs):
83
        super(Net_0, self).__init__(**kwargs)
84
        self.last_layers = {}
Nicola Gatto's avatar
Nicola Gatto committed
85
        with self.name_scope():
86 87
            if data_mean:
                assert(data_std)
88 89
                self.input_normalization_data_ = ZScoreNormalization(data_mean=data_mean['data_'],
                                                                               data_std=data_std['data_'])
Nicola Gatto's avatar
Nicola Gatto committed
90
            else:
91
                self.input_normalization_data_ = NoNormalization()
Nicola Gatto's avatar
Nicola Gatto committed
92 93 94

            self.conv2_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv2_1_ = gluon.nn.Conv2D(channels=8,
95 96 97
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
98 99 100 101 102 103 104 105
            # conv2_1_, output shape: {[8,32,32]}

            self.batchnorm2_1_ = gluon.nn.BatchNorm()
            # batchnorm2_1_, output shape: {[8,32,32]}

            self.relu2_1_ = gluon.nn.Activation(activation='relu')
            self.conv3_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv3_1_ = gluon.nn.Conv2D(channels=8,
106 107 108
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
109 110 111 112 113 114
            # conv3_1_, output shape: {[8,32,32]}

            self.batchnorm3_1_ = gluon.nn.BatchNorm()
            # batchnorm3_1_, output shape: {[8,32,32]}

            self.conv2_2_ = gluon.nn.Conv2D(channels=8,
115 116 117
                kernel_size=(1,1),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
118 119 120 121 122 123 124 125
            # conv2_2_, output shape: {[8,32,32]}

            self.batchnorm2_2_ = gluon.nn.BatchNorm()
            # batchnorm2_2_, output shape: {[8,32,32]}

            self.relu4_ = gluon.nn.Activation(activation='relu')
            self.conv5_1_padding = Padding(padding=(0,0,0,0,1,0,1,0))
            self.conv5_1_ = gluon.nn.Conv2D(channels=16,
126 127 128
                kernel_size=(3,3),
                strides=(2,2),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
129 130 131 132 133 134 135 136
            # conv5_1_, output shape: {[16,16,16]}

            self.batchnorm5_1_ = gluon.nn.BatchNorm()
            # batchnorm5_1_, output shape: {[16,16,16]}

            self.relu5_1_ = gluon.nn.Activation(activation='relu')
            self.conv6_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv6_1_ = gluon.nn.Conv2D(channels=16,
137 138 139
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
140 141 142 143 144 145
            # conv6_1_, output shape: {[16,16,16]}

            self.batchnorm6_1_ = gluon.nn.BatchNorm()
            # batchnorm6_1_, output shape: {[16,16,16]}

            self.conv5_2_ = gluon.nn.Conv2D(channels=16,
146 147 148
                kernel_size=(1,1),
                strides=(2,2),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
149 150 151 152 153 154 155 156
            # conv5_2_, output shape: {[16,16,16]}

            self.batchnorm5_2_ = gluon.nn.BatchNorm()
            # batchnorm5_2_, output shape: {[16,16,16]}

            self.relu7_ = gluon.nn.Activation(activation='relu')
            self.conv8_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv8_1_ = gluon.nn.Conv2D(channels=16,
157 158 159
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
160 161 162 163 164 165 166 167
            # conv8_1_, output shape: {[16,16,16]}

            self.batchnorm8_1_ = gluon.nn.BatchNorm()
            # batchnorm8_1_, output shape: {[16,16,16]}

            self.relu8_1_ = gluon.nn.Activation(activation='relu')
            self.conv9_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv9_1_ = gluon.nn.Conv2D(channels=16,
168 169 170
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
171 172 173 174 175 176 177 178
            # conv9_1_, output shape: {[16,16,16]}

            self.batchnorm9_1_ = gluon.nn.BatchNorm()
            # batchnorm9_1_, output shape: {[16,16,16]}

            self.relu10_ = gluon.nn.Activation(activation='relu')
            self.conv11_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv11_1_ = gluon.nn.Conv2D(channels=16,
179 180 181
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
182 183 184 185 186 187 188 189
            # conv11_1_, output shape: {[16,16,16]}

            self.batchnorm11_1_ = gluon.nn.BatchNorm()
            # batchnorm11_1_, output shape: {[16,16,16]}

            self.relu11_1_ = gluon.nn.Activation(activation='relu')
            self.conv12_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv12_1_ = gluon.nn.Conv2D(channels=16,
190 191 192
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
193 194 195 196 197 198 199 200
            # conv12_1_, output shape: {[16,16,16]}

            self.batchnorm12_1_ = gluon.nn.BatchNorm()
            # batchnorm12_1_, output shape: {[16,16,16]}

            self.relu13_ = gluon.nn.Activation(activation='relu')
            self.conv14_1_padding = Padding(padding=(0,0,0,0,1,0,1,0))
            self.conv14_1_ = gluon.nn.Conv2D(channels=32,
201 202 203
                kernel_size=(3,3),
                strides=(2,2),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
204 205 206 207 208 209 210 211
            # conv14_1_, output shape: {[32,8,8]}

            self.batchnorm14_1_ = gluon.nn.BatchNorm()
            # batchnorm14_1_, output shape: {[32,8,8]}

            self.relu14_1_ = gluon.nn.Activation(activation='relu')
            self.conv15_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv15_1_ = gluon.nn.Conv2D(channels=32,
212 213 214
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
215 216 217 218 219 220
            # conv15_1_, output shape: {[32,8,8]}

            self.batchnorm15_1_ = gluon.nn.BatchNorm()
            # batchnorm15_1_, output shape: {[32,8,8]}

            self.conv14_2_ = gluon.nn.Conv2D(channels=32,
221 222 223
                kernel_size=(1,1),
                strides=(2,2),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
224 225 226 227 228 229 230 231
            # conv14_2_, output shape: {[32,8,8]}

            self.batchnorm14_2_ = gluon.nn.BatchNorm()
            # batchnorm14_2_, output shape: {[32,8,8]}

            self.relu16_ = gluon.nn.Activation(activation='relu')
            self.conv17_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv17_1_ = gluon.nn.Conv2D(channels=32,
232 233 234
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
235 236 237 238 239 240 241 242
            # conv17_1_, output shape: {[32,8,8]}

            self.batchnorm17_1_ = gluon.nn.BatchNorm()
            # batchnorm17_1_, output shape: {[32,8,8]}

            self.relu17_1_ = gluon.nn.Activation(activation='relu')
            self.conv18_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv18_1_ = gluon.nn.Conv2D(channels=32,
243 244 245
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
246 247 248 249 250 251 252 253
            # conv18_1_, output shape: {[32,8,8]}

            self.batchnorm18_1_ = gluon.nn.BatchNorm()
            # batchnorm18_1_, output shape: {[32,8,8]}

            self.relu19_ = gluon.nn.Activation(activation='relu')
            self.conv20_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv20_1_ = gluon.nn.Conv2D(channels=32,
254 255 256
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
257 258 259 260 261 262 263 264
            # conv20_1_, output shape: {[32,8,8]}

            self.batchnorm20_1_ = gluon.nn.BatchNorm()
            # batchnorm20_1_, output shape: {[32,8,8]}

            self.relu20_1_ = gluon.nn.Activation(activation='relu')
            self.conv21_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv21_1_ = gluon.nn.Conv2D(channels=32,
265 266 267
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
268 269 270 271 272 273 274 275
            # conv21_1_, output shape: {[32,8,8]}

            self.batchnorm21_1_ = gluon.nn.BatchNorm()
            # batchnorm21_1_, output shape: {[32,8,8]}

            self.relu22_ = gluon.nn.Activation(activation='relu')
            self.conv23_1_padding = Padding(padding=(0,0,0,0,1,0,1,0))
            self.conv23_1_ = gluon.nn.Conv2D(channels=64,
276 277 278
                kernel_size=(3,3),
                strides=(2,2),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
279 280 281 282 283 284 285 286
            # conv23_1_, output shape: {[64,4,4]}

            self.batchnorm23_1_ = gluon.nn.BatchNorm()
            # batchnorm23_1_, output shape: {[64,4,4]}

            self.relu23_1_ = gluon.nn.Activation(activation='relu')
            self.conv24_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv24_1_ = gluon.nn.Conv2D(channels=64,
287 288 289
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
290 291 292 293 294 295
            # conv24_1_, output shape: {[64,4,4]}

            self.batchnorm24_1_ = gluon.nn.BatchNorm()
            # batchnorm24_1_, output shape: {[64,4,4]}

            self.conv23_2_ = gluon.nn.Conv2D(channels=64,
296 297 298
                kernel_size=(1,1),
                strides=(2,2),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
299 300 301 302 303 304 305 306
            # conv23_2_, output shape: {[64,4,4]}

            self.batchnorm23_2_ = gluon.nn.BatchNorm()
            # batchnorm23_2_, output shape: {[64,4,4]}

            self.relu25_ = gluon.nn.Activation(activation='relu')
            self.conv26_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv26_1_ = gluon.nn.Conv2D(channels=64,
307 308 309
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
310 311 312 313 314 315 316 317
            # conv26_1_, output shape: {[64,4,4]}

            self.batchnorm26_1_ = gluon.nn.BatchNorm()
            # batchnorm26_1_, output shape: {[64,4,4]}

            self.relu26_1_ = gluon.nn.Activation(activation='relu')
            self.conv27_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv27_1_ = gluon.nn.Conv2D(channels=64,
318 319 320
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
321 322 323 324 325 326 327 328
            # conv27_1_, output shape: {[64,4,4]}

            self.batchnorm27_1_ = gluon.nn.BatchNorm()
            # batchnorm27_1_, output shape: {[64,4,4]}

            self.relu28_ = gluon.nn.Activation(activation='relu')
            self.conv29_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv29_1_ = gluon.nn.Conv2D(channels=64,
329 330 331
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
332 333 334 335 336 337 338 339
            # conv29_1_, output shape: {[64,4,4]}

            self.batchnorm29_1_ = gluon.nn.BatchNorm()
            # batchnorm29_1_, output shape: {[64,4,4]}

            self.relu29_1_ = gluon.nn.Activation(activation='relu')
            self.conv30_1_padding = Padding(padding=(0,0,0,0,1,1,1,1))
            self.conv30_1_ = gluon.nn.Conv2D(channels=64,
340 341 342
                kernel_size=(3,3),
                strides=(1,1),
                use_bias=True)
Nicola Gatto's avatar
Nicola Gatto committed
343 344 345 346 347 348 349 350 351
            # conv30_1_, output shape: {[64,4,4]}

            self.batchnorm30_1_ = gluon.nn.BatchNorm()
            # batchnorm30_1_, output shape: {[64,4,4]}

            self.relu31_ = gluon.nn.Activation(activation='relu')
            self.globalpooling31_ = gluon.nn.GlobalAvgPool2D()
            # globalpooling31_, output shape: {[64,1,1]}

352
            self.fc31_ = gluon.nn.Dense(units=128, use_bias=True, flatten=True)
Nicola Gatto's avatar
Nicola Gatto committed
353 354 355
            # fc31_, output shape: {[128,1,1]}

            self.dropout31_ = gluon.nn.Dropout(rate=0.5)
356
            self.fc32_ = gluon.nn.Dense(units=10, use_bias=True, flatten=True)
Nicola Gatto's avatar
Nicola Gatto committed
357 358
            # fc32_, output shape: {[10,1,1]}

Eyüp Harputlu's avatar
Eyüp Harputlu committed
359
            self.softmax32_ = Softmax()
Nicola Gatto's avatar
Nicola Gatto committed
360 361


362 363 364
    def hybrid_forward(self, F, data_):
        data_ = self.input_normalization_data_(data_)
        conv2_1_padding = self.conv2_1_padding(data_)
Nicola Gatto's avatar
Nicola Gatto committed
365 366 367 368 369 370
        conv2_1_ = self.conv2_1_(conv2_1_padding)
        batchnorm2_1_ = self.batchnorm2_1_(conv2_1_)
        relu2_1_ = self.relu2_1_(batchnorm2_1_)
        conv3_1_padding = self.conv3_1_padding(relu2_1_)
        conv3_1_ = self.conv3_1_(conv3_1_padding)
        batchnorm3_1_ = self.batchnorm3_1_(conv3_1_)
371
        conv2_2_ = self.conv2_2_(data_)
Nicola Gatto's avatar
Nicola Gatto committed
372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
        batchnorm2_2_ = self.batchnorm2_2_(conv2_2_)
        add4_ = batchnorm3_1_ + batchnorm2_2_
        relu4_ = self.relu4_(add4_)
        conv5_1_padding = self.conv5_1_padding(relu4_)
        conv5_1_ = self.conv5_1_(conv5_1_padding)
        batchnorm5_1_ = self.batchnorm5_1_(conv5_1_)
        relu5_1_ = self.relu5_1_(batchnorm5_1_)
        conv6_1_padding = self.conv6_1_padding(relu5_1_)
        conv6_1_ = self.conv6_1_(conv6_1_padding)
        batchnorm6_1_ = self.batchnorm6_1_(conv6_1_)
        conv5_2_ = self.conv5_2_(relu4_)
        batchnorm5_2_ = self.batchnorm5_2_(conv5_2_)
        add7_ = batchnorm6_1_ + batchnorm5_2_
        relu7_ = self.relu7_(add7_)
        conv8_1_padding = self.conv8_1_padding(relu7_)
        conv8_1_ = self.conv8_1_(conv8_1_padding)
        batchnorm8_1_ = self.batchnorm8_1_(conv8_1_)
        relu8_1_ = self.relu8_1_(batchnorm8_1_)
        conv9_1_padding = self.conv9_1_padding(relu8_1_)
        conv9_1_ = self.conv9_1_(conv9_1_padding)
        batchnorm9_1_ = self.batchnorm9_1_(conv9_1_)
        add10_ = batchnorm9_1_ + relu7_
        relu10_ = self.relu10_(add10_)
        conv11_1_padding = self.conv11_1_padding(relu10_)
        conv11_1_ = self.conv11_1_(conv11_1_padding)
        batchnorm11_1_ = self.batchnorm11_1_(conv11_1_)
        relu11_1_ = self.relu11_1_(batchnorm11_1_)
        conv12_1_padding = self.conv12_1_padding(relu11_1_)
        conv12_1_ = self.conv12_1_(conv12_1_padding)
        batchnorm12_1_ = self.batchnorm12_1_(conv12_1_)
        add13_ = batchnorm12_1_ + relu10_
        relu13_ = self.relu13_(add13_)
        conv14_1_padding = self.conv14_1_padding(relu13_)
        conv14_1_ = self.conv14_1_(conv14_1_padding)
        batchnorm14_1_ = self.batchnorm14_1_(conv14_1_)
        relu14_1_ = self.relu14_1_(batchnorm14_1_)
        conv15_1_padding = self.conv15_1_padding(relu14_1_)
        conv15_1_ = self.conv15_1_(conv15_1_padding)
        batchnorm15_1_ = self.batchnorm15_1_(conv15_1_)
        conv14_2_ = self.conv14_2_(relu13_)
        batchnorm14_2_ = self.batchnorm14_2_(conv14_2_)
        add16_ = batchnorm15_1_ + batchnorm14_2_
        relu16_ = self.relu16_(add16_)
        conv17_1_padding = self.conv17_1_padding(relu16_)
        conv17_1_ = self.conv17_1_(conv17_1_padding)
        batchnorm17_1_ = self.batchnorm17_1_(conv17_1_)
        relu17_1_ = self.relu17_1_(batchnorm17_1_)
        conv18_1_padding = self.conv18_1_padding(relu17_1_)
        conv18_1_ = self.conv18_1_(conv18_1_padding)
        batchnorm18_1_ = self.batchnorm18_1_(conv18_1_)
        add19_ = batchnorm18_1_ + relu16_
        relu19_ = self.relu19_(add19_)
        conv20_1_padding = self.conv20_1_padding(relu19_)
        conv20_1_ = self.conv20_1_(conv20_1_padding)
        batchnorm20_1_ = self.batchnorm20_1_(conv20_1_)
        relu20_1_ = self.relu20_1_(batchnorm20_1_)
        conv21_1_padding = self.conv21_1_padding(relu20_1_)
        conv21_1_ = self.conv21_1_(conv21_1_padding)
        batchnorm21_1_ = self.batchnorm21_1_(conv21_1_)
        add22_ = batchnorm21_1_ + relu19_
        relu22_ = self.relu22_(add22_)
        conv23_1_padding = self.conv23_1_padding(relu22_)
        conv23_1_ = self.conv23_1_(conv23_1_padding)
        batchnorm23_1_ = self.batchnorm23_1_(conv23_1_)
        relu23_1_ = self.relu23_1_(batchnorm23_1_)
        conv24_1_padding = self.conv24_1_padding(relu23_1_)
        conv24_1_ = self.conv24_1_(conv24_1_padding)
        batchnorm24_1_ = self.batchnorm24_1_(conv24_1_)
        conv23_2_ = self.conv23_2_(relu22_)
        batchnorm23_2_ = self.batchnorm23_2_(conv23_2_)
        add25_ = batchnorm24_1_ + batchnorm23_2_
        relu25_ = self.relu25_(add25_)
        conv26_1_padding = self.conv26_1_padding(relu25_)
        conv26_1_ = self.conv26_1_(conv26_1_padding)
        batchnorm26_1_ = self.batchnorm26_1_(conv26_1_)
        relu26_1_ = self.relu26_1_(batchnorm26_1_)
        conv27_1_padding = self.conv27_1_padding(relu26_1_)
        conv27_1_ = self.conv27_1_(conv27_1_padding)
        batchnorm27_1_ = self.batchnorm27_1_(conv27_1_)
        add28_ = batchnorm27_1_ + relu25_
        relu28_ = self.relu28_(add28_)
        conv29_1_padding = self.conv29_1_padding(relu28_)
        conv29_1_ = self.conv29_1_(conv29_1_padding)
        batchnorm29_1_ = self.batchnorm29_1_(conv29_1_)
        relu29_1_ = self.relu29_1_(batchnorm29_1_)
        conv30_1_padding = self.conv30_1_padding(relu29_1_)
        conv30_1_ = self.conv30_1_(conv30_1_padding)
        batchnorm30_1_ = self.batchnorm30_1_(conv30_1_)
        add31_ = batchnorm30_1_ + relu28_
        relu31_ = self.relu31_(add31_)
        globalpooling31_ = self.globalpooling31_(relu31_)
        fc31_ = self.fc31_(globalpooling31_)
        dropout31_ = self.dropout31_(fc31_)
        fc32_ = self.fc32_(dropout31_)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
466
        softmax32_ = self.softmax32_(fc32_)
467 468 469
        softmax_ = softmax32_

        return softmax_
470