CNNSupervisedTrainer.ftl 16.3 KB
Newer Older
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
1
<#-- (c) https://github.com/MontiCore/monticore -->
Nicola Gatto's avatar
Nicola Gatto committed
2 3 4 5 6 7
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
8
import pickle
Sebastian N.'s avatar
Sebastian N. committed
9 10
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
11 12
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
29 30 31 32 33 34 35 36 37
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
58
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i) * mx.nd.equal(mx.nd.argmax(pred, axis=1), label))
59 60
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
61 62 63 64 65 66 67
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

Sebastian N.'s avatar
Sebastian N. committed
68
        self._exclude = exclude or []
Sebastian N.'s avatar
Sebastian N. committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

118 119
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian N.'s avatar
Sebastian N. committed
120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
147 148 149 150 151 152
            if self._size_hyp > 0:
                size_hyp = self._size_hyp
            else:
                size_hyp = 1

            return math.exp(1 - (self._size_ref / size_hyp))
Sebastian N.'s avatar
Sebastian N. committed
153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
176

177 178


179
class ${tc.fileNameWithoutEnding}:
180
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
181 182
        self._data_loader = data_loader
        self._net_creator = net_constructor
183
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
184 185 186 187

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian N.'s avatar
Sebastian N. committed
188
              eval_metric_params={},
189
              eval_train=False,
Eyüp Harputlu's avatar
Eyüp Harputlu committed
190 191
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
192 193 194 195
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              checkpoint_period=5,
196 197
              log_period=50,
              context='gpu',
198
              save_attention_image=False,
199
              use_teacher_forcing=False,
200
              normalize=True,
201 202
              shuffle_data=False,
              clip_global_grad_norm=None,
203
              preprocessing = False):
Nicola Gatto's avatar
Nicola Gatto committed
204 205 206 207 208 209 210
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

211 212
        if preprocessing:
            preproc_lib = "CNNPreprocessor_${tc.fileNameWithoutEnding?keep_after("CNNSupervisedTrainer_")}_executor"
213
            train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_preprocessed_data(batch_size, preproc_lib, shuffle_data)
214
        else:
215
            train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(batch_size, shuffle_data)
216

Nicola Gatto's avatar
Nicola Gatto committed
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231
        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

232 233 234 235
        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
236 237 238

        begin_epoch = 0
        if load_checkpoint:
Sebastian N.'s avatar
Sebastian N. committed
239
            begin_epoch = self._net_creator.load(mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
240 241 242 243
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

244
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
245 246 247 248 249 250 251

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
252
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
253

Eyüp Harputlu's avatar
Eyüp Harputlu committed
254 255
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
256
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
257
        loss_axis = loss_params['loss_axis'] if 'loss_axis' in loss_params else -1
Eyüp Harputlu's avatar
Eyüp Harputlu committed
258 259
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
260
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(axis=loss_axis, from_logits=fromLogits, sparse_label=sparseLabel)
261
        elif loss == 'softmax_cross_entropy_ignore_indices':
262
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
263
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
264
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
265
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
266
        elif loss == 'cross_entropy':
267
            loss_function = CrossEntropyLoss(axis=loss_axis, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
268
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
269
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
270
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
271
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
272 273 274 275 276 277 278 279 280 281 282 283 284
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
285 286
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
287 288
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
289 290 291 292

        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
293 294 295 296 297 298
            if shuffle_data:
                if preprocessing:
                    preproc_lib = "CNNPreprocessor_${tc.fileNameWithoutEnding?keep_after("CNNSupervisedTrainer_")}_executor"
                    train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_preprocessed_data(batch_size, preproc_lib, shuffle_data)
                else:
                    train_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(batch_size, shuffle_data)
299

300 301 302
            global_loss_train = 0.0
            train_batches = 0

303
            loss_total = 0
Nicola Gatto's avatar
Nicola Gatto committed
304 305 306
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
                with autograd.record():
307
<#include "pythonExecuteTrain.ftl">
308

309 310 311
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
312 313

                loss.backward()
314

315 316
                loss_total += loss.sum().asscalar()

Sebastian N.'s avatar
Sebastian N. committed
317
                global_loss_train += loss.sum().asscalar()
318 319
                train_batches += 1

320 321 322 323 324 325 326 327
                if clip_global_grad_norm:
                    grads = []

                    for network in self._networks.values():
                        grads.extend([param.grad(mx_context) for param in network.collect_params().values()])

                    gluon.utils.clip_global_norm(grads, clip_global_grad_norm)

328 329
                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
330 331 332 333

                if tic is None:
                    tic = time.time()
                else:
334
                    if batch_i % log_period == 0:
Nicola Gatto's avatar
Nicola Gatto committed
335
                        try:
336
                            speed = log_period * batch_size / (time.time() - tic)
Nicola Gatto's avatar
Nicola Gatto committed
337 338 339
                        except ZeroDivisionError:
                            speed = float("inf")

340 341 342 343
                        loss_avg = loss_total / (batch_size * log_period)
                        loss_total = 0

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec Loss: %.5f" % (epoch, batch_i, speed, loss_avg))
Nicola Gatto's avatar
Nicola Gatto committed
344 345 346

                        tic = time.time()

Sebastian N.'s avatar
Sebastian N. committed
347
            global_loss_train /= (train_batches * batch_size)
348

Nicola Gatto's avatar
Nicola Gatto committed
349 350
            tic = None

351

352 353 354 355
            if eval_train:
                train_iter.reset()
                metric = mx.metric.create(eval_metric, **eval_metric_params)
                for batch_i, batch in enumerate(train_iter):
356
<#include "pythonExecuteTest.ftl">
357

358

359 360 361
<#include "saveAttentionImageTrain.ftl">


362 363 364 365 366 367
                    predictions = []
                    for output_name in outputs:
                        if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
                            predictions.append(mx.nd.argmax(output_name, axis=1))
                        else:
                            predictions.append(output_name)
368

369 370 371 372
                    metric.update(preds=predictions, labels=labels)
                train_metric_score = metric.get()[1]
            else:
                train_metric_score = 0
Nicola Gatto's avatar
Nicola Gatto committed
373

374 375 376
            global_loss_test = 0.0
            test_batches = 0

Nicola Gatto's avatar
Nicola Gatto committed
377
            test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
378
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
379
            for batch_i, batch in enumerate(test_iter):
380
                if True: <#-- Fix indentation -->
381
<#include "pythonExecuteTest.ftl">
382 383


384 385
<#include "saveAttentionImageTest.ftl">

386 387 388 389
                loss = 0
                for element in lossList:
                    loss = loss + element

Sebastian N.'s avatar
Sebastian N. committed
390
                global_loss_test += loss.sum().asscalar()
391
                test_batches += 1
392

393
                predictions = []
394
                for output_name in outputs:
395
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
396 397 398 399
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
400 401

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
402 403
            test_metric_score = metric.get()[1]

Sebastian N.'s avatar
Sebastian N. committed
404
            global_loss_test /= (test_batches * batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
405

Sebastian N.'s avatar
Sebastian N. committed
406
            logging.info("Epoch[%d] Train metric: %f, Test metric: %f, Train loss: %f, Test loss: %f" % (epoch, train_metric_score, test_metric_score, global_loss_train, global_loss_test))
407

Nicola Gatto's avatar
Nicola Gatto committed
408
            if (epoch - begin_epoch) % checkpoint_period == 0:
409 410
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
411

412
        for i, network in self._networks.items():
Sebastian N.'s avatar
Sebastian N. committed
413
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch + 1).zfill(4) + '.params')
414
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
415

416
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy  
Bernhard Rumpe committed
417
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)