CNNSupervisedTrainer_Alexnet.py 14.4 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1 2 3 4 5 6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian N.'s avatar
Sebastian N. committed
8 9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10 11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28 29 30 31 32 33 34 35 36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        #loss = _apply_weighting(F, loss, self._weight, sample_weight)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i))
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
170

Sebastian N.'s avatar
Sebastian N. committed
171 172


173
class CNNSupervisedTrainer_Alexnet:
174
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
175 176
        self._data_loader = data_loader
        self._net_creator = net_constructor
177
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
178 179 180 181

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian N.'s avatar
Sebastian N. committed
182
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
183 184
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

213 214
        train_batch_size = batch_size
        test_batch_size = batch_size
Nicola Gatto's avatar
Nicola Gatto committed
215

216
        train_iter, train_test_iter, test_iter, data_mean, data_std = self._data_loader.load_data(train_batch_size, test_batch_size)
217 218 219 220 221

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
222 223 224 225 226 227 228 229

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

230
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
231 232 233 234 235 236 237

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
238
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
239

Eyüp Harputlu's avatar
Eyüp Harputlu committed
240 241 242 243 244 245
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
246
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
247 248 249
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
250
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
251
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
252
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
253 254 255 256 257 258 259 260 261 262 263 264 265
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
266 267
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
268 269
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
270 271 272 273 274 275 276

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
277 278
                with autograd.record():
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
279

280 281 282
                    data_ = batch.data[0].as_in_context(mx_context)

                    predictions_ = mx.nd.zeros((train_batch_size, 10,), ctx=mx_context)
Christian Fuß's avatar
Christian Fuß committed
283

284

285
                    lossList = []
286

287
                    predictions_ = self._networks[0](data_)
288 289

                    lossList.append(loss_function(predictions_, labels[0]))
290 291 292 293

                    loss = 0
                    for element in lossList:
                        loss = loss + element
294

Nicola Gatto's avatar
Nicola Gatto committed
295
                loss.backward()
296 297 298

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

315
            train_test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
316
            metric = mx.metric.create(eval_metric, **eval_metric_params)
317 318 319
            for batch_i, batch in enumerate(train_test_iter):
                if True:
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
320

321
                    data_ = batch.data[0].as_in_context(mx_context)
322

323
                    predictions_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
324

325 326

                    outputs = []
327 328

                    predictions_ = self._networks[0](data_)
329

330
                    outputs.append(predictions_)
331

332
                predictions = []
333
                for output_name in outputs:
Sebastian N.'s avatar
Sebastian N. committed
334
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
335 336 337
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    else:
                        predictions.append(output_name)
338

339
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
340 341 342
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
343
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
344
            for batch_i, batch in enumerate(test_iter):
345 346
                if True:
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
347

348
                    data_ = batch.data[0].as_in_context(mx_context)
349

350
                    predictions_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
351

352 353

                    outputs = []
354 355

                    predictions_ = self._networks[0](data_)
356

357
                    outputs.append(predictions_)
358

359
                predictions = []
360
                for output_name in outputs:
Sebastian N.'s avatar
Sebastian N. committed
361
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
362 363 364 365
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
366

367
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
368 369 370 371
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

372

Nicola Gatto's avatar
Nicola Gatto committed
373
            if (epoch - begin_epoch) % checkpoint_period == 0:
374 375
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
376

377 378 379
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
380

381 382
    def parameter_path(self, index):
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)