CNNSupervisedTrainer_CifarClassifierNetwork.py 19.1 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
Christian Fuß's avatar
Christian Fuß committed
7
import pickle
Sebastian Nickels's avatar
Sebastian Nickels committed
8
9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10
11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28
29
30
31
32
33
34
35
36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i))
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian Nickels's avatar
Sebastian Nickels committed
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

        self._exclude = exclude or []

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

117
118
                if (match_counts / counts) > 0:
                    precisions[n] = match_counts / counts
Sebastian Nickels's avatar
Sebastian Nickels committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
Christian Fuß's avatar
Christian Fuß committed
170

Sebastian Nickels's avatar
Sebastian Nickels committed
171
172


173
class CNNSupervisedTrainer_CifarClassifierNetwork:
174
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
175
176
        self._data_loader = data_loader
        self._net_creator = net_constructor
177
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
178
179
180
181

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian Nickels's avatar
Sebastian Nickels committed
182
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
183
184
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
185
186
187
188
189
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
190
              save_attention_image=False,
191
              use_teacher_forcing=False,
Nicola Gatto's avatar
Nicola Gatto committed
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']

215
216
        train_batch_size = batch_size
        test_batch_size = batch_size
Nicola Gatto's avatar
Nicola Gatto committed
217

Sebastian Nickels's avatar
Merge    
Sebastian Nickels committed
218
        train_iter, train_test_iter, test_iter, data_mean, data_std, train_images, test_images = self._data_loader.load_data(train_batch_size, test_batch_size)
219
220
221
222
223

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
224
225
226
227
228
229
230
231

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

232
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
233
234
235
236
237
238
239

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian Nickels's avatar
Sebastian Nickels committed
240
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
241

Eyüp Harputlu's avatar
Eyüp Harputlu committed
242
243
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
244
        ignore_indices = [loss_params['ignore_indices']] if 'ignore_indices' in loss_params else []
Eyüp Harputlu's avatar
Eyüp Harputlu committed
245
246
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
247
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
248
        elif loss == 'softmax_cross_entropy_ignore_indices':
249
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
250
            loss_function = SoftmaxCrossEntropyLossIgnoreIndices(ignore_indices=ignore_indices, from_logits=fromLogits, sparse_label=sparseLabel)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
251
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
252
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
253
254
255
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
256
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
257
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
258
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
259
260
261
262
263
264
265
266
267
268
269
270
271
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
272
273
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
274
275
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
276
277
278
279
280
281
282

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
283
284
                with autograd.record():
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
285

286
287
288
                    data_ = batch.data[0].as_in_context(mx_context)

                    softmax_ = mx.nd.zeros((train_batch_size, 10,), ctx=mx_context)
Christian Fuß's avatar
Christian Fuß committed
289

290

291
292
                    nd.waitall()

293
                    lossList = []
294

295
                    softmax_ = self._networks[0](data_)
296
297

                    lossList.append(loss_function(softmax_, labels[0]))
298

299
300
301
                    loss = 0
                    for element in lossList:
                        loss = loss + element
Nicola Gatto's avatar
Nicola Gatto committed
302
303

                loss.backward()
304
305
306

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

323
            train_test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
324
            metric = mx.metric.create(eval_metric, **eval_metric_params)
325
            for batch_i, batch in enumerate(train_test_iter):
326
                if True: 
327
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
328

329
                    data_ = batch.data[0].as_in_context(mx_context)
330

331
                    softmax_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
332

333

334
335
                    nd.waitall()

336
                    outputs = []
337
                    attentionList=[]
338
                    softmax_ = self._networks[0](data_)
339

340
                    outputs.append(softmax_)
341

342
343
344
345
346
347

                    if save_attention_image == "True":
                        import matplotlib.pyplot as plt
                        logging.getLogger('matplotlib').setLevel(logging.ERROR)

                        plt.clf()
348
                        fig = plt.figure(figsize=(15,15))
349
350
351
352
353
354
                        max_length = len(labels)-1

                        if(os.path.isfile('src/test/resources/training_data/Show_attend_tell/dict.pkl')):
                            with open('src/test/resources/training_data/Show_attend_tell/dict.pkl', 'rb') as f:
                                dict = pickle.load(f)

355
356
357
                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

358
359
                        for l in range(max_length):
                            attention = attentionList[l]
360
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1).squeeze()
361
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
362
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
363
364
365
                            if int(labels[l+1][0].asscalar()) > len(dict):
                                ax.set_title("<unk>")
                            elif dict[int(labels[l+1][0].asscalar())] == "<end>":
366
367
368
369
370
371
                                ax.set_title(".")
                                img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
                                ax.set_title(dict[int(labels[l+1][0].asscalar())])
372
373
                            img = ax.imshow(train_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
374
375
376
377

                        plt.tight_layout()
                        target_dir = 'target/attention_images'
                        if not os.path.exists(target_dir):
378
                            os.makedirs(target_dir)
379
380
381
                        plt.savefig(target_dir + '/attention_train.png')
                        plt.close()

382
                predictions = []
383
                for output_name in outputs:
Sebastian Nickels's avatar
Sebastian Nickels committed
384
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
385
386
387
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    else:
                        predictions.append(output_name)
388
389

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
390
391
392
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian Nickels's avatar
Sebastian Nickels committed
393
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
394
            for batch_i, batch in enumerate(test_iter):
395
                if True: 
396
                    labels = [batch.label[i].as_in_context(mx_context) for i in range(1)]
397

398
                    data_ = batch.data[0].as_in_context(mx_context)
399

400
                    softmax_ = mx.nd.zeros((test_batch_size, 10,), ctx=mx_context)
401

402

403
404
                    nd.waitall()

405
                    outputs = []
406
                    attentionList=[]
407
                    softmax_ = self._networks[0](data_)
408

409
                    outputs.append(softmax_)
410

411
412
413

                    if save_attention_image == "True":
                        plt.clf()
414
                        fig = plt.figure(figsize=(15,15))
415
416
                        max_length = len(labels)-1

417
418
419
                        ax = fig.add_subplot(max_length//3, max_length//4, 1)
                        ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))

420
421
                        for l in range(max_length):
                            attention = attentionList[l]
422
                            attention = mx.nd.slice_axis(attention, axis=0, begin=0, end=1).squeeze()
423
                            attention_resized = np.resize(attention.asnumpy(), (8, 8))
424
                            ax = fig.add_subplot(max_length//3, max_length//4, l+2)
425
426
427
                            if int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar()) > len(dict):
                                ax.set_title("<unk>")
                            elif dict[int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar())] == "<end>":
428
429
430
431
432
                                ax.set_title(".")
                                img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                                ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
                                break
                            else:
433
                                ax.set_title(dict[int(mx.nd.slice_axis(outputs[l+1], axis=0, begin=0, end=1).squeeze().asscalar())])
434
435
                            img = ax.imshow(test_images[0+test_batch_size*(batch_i)].transpose(1,2,0))
                            ax.imshow(attention_resized, cmap='gray', alpha=0.6, extent=img.get_extent())
436
437
438
439
440

                        plt.tight_layout()
                        plt.savefig(target_dir + '/attention_test.png')
                        plt.close()

441
                predictions = []
442
                for output_name in outputs:
Sebastian Nickels's avatar
Sebastian Nickels committed
443
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
444
445
446
447
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
448

449
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
450
451
452
453
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

454

Nicola Gatto's avatar
Nicola Gatto committed
455
            if (epoch - begin_epoch) % checkpoint_period == 0:
456
457
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
458

459
460
461
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
462

463
    def parameter_path(self, index):
Bernhard Rumpe's avatar
BR-sy    
Bernhard Rumpe committed
464
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)