CNNSupervisedTrainer.ftl 11.9 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
7
8
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
25
26
27
28
29
30
31
32
33
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

34
class ${tc.fileNameWithoutEnding}:
35
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
36
37
        self._data_loader = data_loader
        self._net_creator = net_constructor
38
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
39
40
41
42

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Eyüp Harputlu's avatar
Eyüp Harputlu committed
43
44
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']


        train_iter, test_iter, data_mean, data_std = self._data_loader.load_data(batch_size)
75
76
77
78
79

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
80
81
82
83
84
85
86
87

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

88
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
89
90
91
92
93
94
95

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

96
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values()]
Nicola Gatto's avatar
Nicola Gatto committed
97

Eyüp Harputlu's avatar
Eyüp Harputlu committed
98
99
100
101
102
103
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
104
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
105
106
107
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
108
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
109
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
110
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
111
112
113
114
115
116
117
118
119
120
121
122
123
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
124
125
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
126
127
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
128
129
130
131
132
133
134

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
135
                <#list tc.architectureInputs as input_name>
Christian Fuß's avatar
Christian Fuß committed
136
                ${input_name} = batch.data[${input_name?index}].as_in_context(mx_context)
137
138
                </#list>
                <#list tc.architectureOutputs as output_name>
139
                ${output_name}label = batch.label[${output_name?index}].as_in_context(mx_context)
140
141
                </#list>

Nicola Gatto's avatar
Nicola Gatto committed
142
                with autograd.record():
143
<#include "pythonExecuteArgmax.ftl">
144

145
146
147
                    loss = 0
                    for element in lossList:
                        loss = loss + element
148

Nicola Gatto's avatar
Nicola Gatto committed
149
150

                loss.backward()
151

152

153
154
                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

            train_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(train_iter):
174
                <#list tc.architectureInputs as input_name>
Christian Fuß's avatar
Christian Fuß committed
175
                ${input_name} = batch.data[${input_name?index}].as_in_context(mx_context)
176
177
                </#list>

178
                labels = [
179
180
181
182
<#list tc.architectureOutputs as output_name>
                    batch.label[${output_name?index}].as_in_context(mx_context)<#sep>,
</#list>

183
184
                ]

185
186

                def applyBeamSearch(input, depth, width, maxDepth, currProb, netIndex, bestOutput):
187
                    bestProb = 0.0
188
                    while depth < maxDepth:
189
                        depth += 1
190
191
192
193
194
195
196
197
                        batchIndex = 0
                        for batchEntry in input:
                            top_k_indices = mx.nd.topk(batchEntry, axis=0, k=width)
                            top_k_values = mx.nd.topk(batchEntry, ret_typ='value', axis=0, k=width)
                            for index in range(top_k_indices.size):

                                #print mx.nd.array(top_k_indices[index])
                                #print top_k_values[index]
198
                                if depth == 1:
199
200
201
                                    #print mx.nd.array(top_k_indices[index])
                                    result = applyBeamSearch(self._networks[netIndex](mx.nd.array(top_k_indices[index])), depth, width, maxDepth,
                                        currProb * top_k_values[index], netIndex, self._networks[netIndex](mx.nd.array(top_k_indices[index])))
202
                                else:
203
204
                                    result = applyBeamSearch(self._networks[netIndex](mx.nd.array(top_k_indices[index])), depth, width, maxDepth,
                                        currProb * top_k_values[index], netIndex, bestOutput)
205

206
                                if depth == maxDepth:
207
208
209
                                    #print currProb
                                    if currProb > bestProb:
                                        bestProb = currProb
210
211
212
213
                                        bestOutput[batchIndex] = result[batchIndex]
                                        #print "new bestOutput: ", bestOutput

                            batchIndex += 1
214
215
216
217
                    #print bestOutput
                    #print bestProb
                    return bestOutput

218

219
220
                if True: <#-- Fix indentation -->
<#include "pythonExecute.ftl">
221

222
223
224
225
226
227
228
229
230
231
232
                out_names=[]
                <#list tc.architectureOutputs as output_name>
                out_names.append(${output_name})
                </#list>
                predictions = []
                for output_name in out_names:
                    if mx.nd.shape_array(output_name).size > 1:
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
233

234
235

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
236
237
238
239
240
            train_metric_score = metric.get()[1]

            test_iter.reset()
            metric = mx.metric.create(eval_metric)
            for batch_i, batch in enumerate(test_iter):
241
                <#list tc.architectureInputs as input_name>
Christian Fuß's avatar
Christian Fuß committed
242
                ${input_name} = batch.data[${input_name?index}].as_in_context(mx_context)
243
244
                </#list>

245
                labels = [
246
247
248
249
<#list tc.architectureOutputs as output_name>
                    batch.label[${output_name?index}].as_in_context(mx_context)<#sep>,
</#list>

250
251
                ]

252
253
                if True: <#-- Fix indentation -->
<#include "pythonExecute.ftl">
254

255
256
257
258
259
260
261
262
263
264
265
                out_names=[]
                <#list tc.architectureOutputs as output_name>
                out_names.append(${output_name})
                </#list>
                predictions = []
                for output_name in out_names:
                    if mx.nd.shape_array(output_name).size > 1:
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
266
267

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
268
269
270
271
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

272

Nicola Gatto's avatar
Nicola Gatto committed
273
            if (epoch - begin_epoch) % checkpoint_period == 0:
274
275
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
276

277
278
279
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
280

281
282
    def parameter_path(self, index):
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)