CNNSupervisedTrainer.ftl 15.9 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1 2 3 4 5 6
import mxnet as mx
import logging
import numpy as np
import time
import os
import shutil
7
import pickle
Sebastian N.'s avatar
Sebastian N. committed
8 9
import math
import sys
Nicola Gatto's avatar
Nicola Gatto committed
10 11
from mxnet import gluon, autograd, nd

Eyüp Harputlu's avatar
Eyüp Harputlu committed
12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
class CrossEntropyLoss(gluon.loss.Loss):
    def __init__(self, axis=-1, sparse_label=True, weight=None, batch_axis=0, **kwargs):
        super(CrossEntropyLoss, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._sparse_label = sparse_label

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        pred = F.log(pred)
        if self._sparse_label:
            loss = -F.pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = gluon.loss._reshape_like(F, label, pred)
            loss = -F.sum(pred * label, axis=self._axis, keepdims=True)
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

Eyüp Harputlu's avatar
Eyüp Harputlu committed
28 29 30 31 32 33 34 35 36
class LogCoshLoss(gluon.loss.Loss):
    def __init__(self, weight=None, batch_axis=0, **kwargs):
        super(LogCoshLoss, self).__init__(weight, batch_axis, **kwargs)

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        loss = F.log(F.cosh(pred - label))
        loss = gluon.loss._apply_weighting(F, loss, self._weight, sample_weight)
        return F.mean(loss, axis=self._batch_axis, exclude=True)

37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
class SoftmaxCrossEntropyLossIgnoreIndices(gluon.loss.Loss):
    def __init__(self, axis=-1, ignore_indices=[], sparse_label=True, from_logits=False, weight=None, batch_axis=0, **kwargs):
        super(SoftmaxCrossEntropyLossIgnoreIndices, self).__init__(weight, batch_axis, **kwargs)
        self._axis = axis
        self._ignore_indices = ignore_indices
        self._sparse_label = sparse_label
        self._from_logits = from_logits

    def hybrid_forward(self, F, pred, label, sample_weight=None):
        log_softmax = F.log_softmax
        pick = F.pick
        if not self._from_logits:
            pred = log_softmax(pred, self._axis)
        if self._sparse_label:
            loss = -pick(pred, label, axis=self._axis, keepdims=True)
        else:
            label = _reshape_like(F, label, pred)
            loss = -(pred * label).sum(axis=self._axis, keepdims=True)
        #loss = _apply_weighting(F, loss, self._weight, sample_weight)
        # ignore some indices for loss, e.g. <pad> tokens in NLP applications
        for i in self._ignore_indices:
            loss = loss * mx.nd.logical_not(mx.nd.equal(mx.nd.argmax(pred, axis=1), mx.nd.ones_like(mx.nd.argmax(pred, axis=1))*i))
        return loss.mean(axis=self._batch_axis, exclude=True)

Sebastian N.'s avatar
Sebastian N. committed
61 62 63 64 65 66 67
@mx.metric.register
class BLEU(mx.metric.EvalMetric):
    N = 4

    def __init__(self, exclude=None, name='bleu', output_names=None, label_names=None):
        super(BLEU, self).__init__(name=name, output_names=output_names, label_names=label_names)

Sebastian N.'s avatar
Sebastian N. committed
68
        self._exclude = exclude or []
Sebastian N.'s avatar
Sebastian N. committed
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169

        self._match_counts = [0 for _ in range(self.N)]
        self._counts = [0 for _ in range(self.N)]

        self._size_ref = 0
        self._size_hyp = 0

    def update(self, labels, preds):
        labels, preds = mx.metric.check_label_shapes(labels, preds, True)

        new_labels = self._convert(labels)
        new_preds = self._convert(preds)

        for label, pred in zip(new_labels, new_preds):
            reference = [word for word in label if word not in self._exclude]
            hypothesis = [word for word in pred if word not in self._exclude]

            self._size_ref += len(reference)
            self._size_hyp += len(hypothesis)

            for n in range(self.N):
                reference_ngrams = self._get_ngrams(reference, n + 1)
                hypothesis_ngrams = self._get_ngrams(hypothesis, n + 1)

                match_count = 0

                for ngram in hypothesis_ngrams:
                    if ngram in reference_ngrams:
                        reference_ngrams.remove(ngram)

                        match_count += 1

                self._match_counts[n] += match_count
                self._counts[n] += len(hypothesis_ngrams)

    def get(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        bleu = self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

        return (self.name, bleu)

    def calculate(self):
        precisions = [sys.float_info.min for n in range(self.N)]

        i = 1

        for n in range(self.N):
            match_counts = self._match_counts[n]
            counts = self._counts[n]

            if counts != 0:
                if match_counts == 0:
                    i *= 2
                    match_counts = 1 / i

                precisions[n] = match_counts / counts

        return self._get_brevity_penalty() * math.exp(sum(map(math.log, precisions)) / self.N)

    def _get_brevity_penalty(self):
        if self._size_hyp >= self._size_ref:
            return 1
        else:
            return math.exp(1 - (self._size_ref / self._size_hyp))

    @staticmethod
    def _get_ngrams(sentence, n):
        ngrams = []

        if len(sentence) >= n:
            for i in range(len(sentence) - n + 1):
                ngrams.append(sentence[i:i+n])

        return ngrams

    @staticmethod
    def _convert(nd_list):
        if len(nd_list) == 0:
            return []

        new_list = [[] for _ in range(nd_list[0].shape[0])]

        for element in nd_list:
            for i in range(element.shape[0]):
                new_list[i].append(element[i].asscalar())

        return new_list
170

171 172


173
class ${tc.fileNameWithoutEnding}:
Christian Fuß's avatar
Christian Fuß committed
174
    def applyBeamSearch(input, length, width, maxLength, currProb, netIndex, bestOutput):
175
        bestProb = 0.0
Christian Fuß's avatar
Christian Fuß committed
176 177
        while length < maxLength:
            length += 1
178 179 180 181 182 183 184 185
            batchIndex = 0
            for batchEntry in input:
                top_k_indices = mx.nd.topk(batchEntry, axis=0, k=width)
                top_k_values = mx.nd.topk(batchEntry, ret_typ='value', axis=0, k=width)
                for index in range(top_k_indices.size):

                    #print mx.nd.array(top_k_indices[index])
                    #print top_k_values[index]
Christian Fuß's avatar
Christian Fuß committed
186
                    if length == 1:
187
                        #print mx.nd.array(top_k_indices[index])
Christian Fuß's avatar
Christian Fuß committed
188
                        result = applyBeamSearch(self._networks[netIndex](mx.nd.array(top_k_indices[index])), length, width, maxLength,
189 190
                            currProb * top_k_values[index], netIndex, self._networks[netIndex](mx.nd.array(top_k_indices[index])))
                    else:
Christian Fuß's avatar
Christian Fuß committed
191
                        result = applyBeamSearch(self._networks[netIndex](mx.nd.array(top_k_indices[index])), length, width, maxLength,
192 193
                            currProb * top_k_values[index], netIndex, bestOutput)

Christian Fuß's avatar
Christian Fuß committed
194
                    if length == maxLength:
195 196 197 198 199 200 201 202 203 204 205 206
                        #print currProb
                        if currProb > bestProb:
                            bestProb = currProb
                            bestOutput[batchIndex] = result[batchIndex]
                            #print "new bestOutput: ", bestOutput

                batchIndex += 1
        #print bestOutput
        #print bestProb
        return bestOutput


207
    def __init__(self, data_loader, net_constructor):
Nicola Gatto's avatar
Nicola Gatto committed
208 209
        self._data_loader = data_loader
        self._net_creator = net_constructor
210
        self._networks = {}
Nicola Gatto's avatar
Nicola Gatto committed
211 212 213 214

    def train(self, batch_size=64,
              num_epoch=10,
              eval_metric='acc',
Sebastian N.'s avatar
Sebastian N. committed
215
              eval_metric_params={},
Eyüp Harputlu's avatar
Eyüp Harputlu committed
216 217
              loss ='softmax_cross_entropy',
              loss_params={},
Nicola Gatto's avatar
Nicola Gatto committed
218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247
              optimizer='adam',
              optimizer_params=(('learning_rate', 0.001),),
              load_checkpoint=True,
              context='gpu',
              checkpoint_period=5,
              normalize=True):
        if context == 'gpu':
            mx_context = mx.gpu()
        elif context == 'cpu':
            mx_context = mx.cpu()
        else:
            logging.error("Context argument is '" + context + "'. Only 'cpu' and 'gpu are valid arguments'.")

        if 'weight_decay' in optimizer_params:
            optimizer_params['wd'] = optimizer_params['weight_decay']
            del optimizer_params['weight_decay']
        if 'learning_rate_decay' in optimizer_params:
            min_learning_rate = 1e-08
            if 'learning_rate_minimum' in optimizer_params:
                min_learning_rate = optimizer_params['learning_rate_minimum']
                del optimizer_params['learning_rate_minimum']
            optimizer_params['lr_scheduler'] = mx.lr_scheduler.FactorScheduler(
                                                   optimizer_params['step_size'],
                                                   factor=optimizer_params['learning_rate_decay'],
                                                   stop_factor_lr=min_learning_rate)
            del optimizer_params['step_size']
            del optimizer_params['learning_rate_decay']


        train_iter, test_iter, data_mean, data_std = self._data_loader.load_data(batch_size)
248 249 250 251 252

        if normalize:
            self._net_creator.construct(context=mx_context, data_mean=data_mean, data_std=data_std)
        else:
            self._net_creator.construct(context=mx_context)
Nicola Gatto's avatar
Nicola Gatto committed
253 254 255 256 257 258 259 260

        begin_epoch = 0
        if load_checkpoint:
            begin_epoch = self._net_creator.load(mx_context)
        else:
            if os.path.isdir(self._net_creator._model_dir_):
                shutil.rmtree(self._net_creator._model_dir_)

261
        self._networks = self._net_creator.networks
Nicola Gatto's avatar
Nicola Gatto committed
262 263 264 265 266 267 268

        try:
            os.makedirs(self._net_creator._model_dir_)
        except OSError:
            if not os.path.isdir(self._net_creator._model_dir_):
                raise

Sebastian N.'s avatar
Sebastian N. committed
269
        trainers = [mx.gluon.Trainer(network.collect_params(), optimizer, optimizer_params) for network in self._networks.values() if len(network.collect_params().values()) != 0]
Nicola Gatto's avatar
Nicola Gatto committed
270

Eyüp Harputlu's avatar
Eyüp Harputlu committed
271 272 273 274 275 276
        margin = loss_params['margin'] if 'margin' in loss_params else 1.0
        sparseLabel = loss_params['sparse_label'] if 'sparse_label' in loss_params else True
        if loss == 'softmax_cross_entropy':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else False
            loss_function = mx.gluon.loss.SoftmaxCrossEntropyLoss(from_logits=fromLogits, sparse_label=sparseLabel)
        elif loss == 'sigmoid_binary_cross_entropy':
Nicola Gatto's avatar
Nicola Gatto committed
277
            loss_function = mx.gluon.loss.SigmoidBinaryCrossEntropyLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
278 279 280
        elif loss == 'cross_entropy':
            loss_function = CrossEntropyLoss(sparse_label=sparseLabel)
        elif loss == 'l2':
Nicola Gatto's avatar
Nicola Gatto committed
281
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
282
        elif loss == 'l1':
Nicola Gatto's avatar
Nicola Gatto committed
283
            loss_function = mx.gluon.loss.L2Loss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
284 285 286 287 288 289 290 291 292 293 294 295 296
        elif loss == 'huber':
            rho = loss_params['rho'] if 'rho' in loss_params else 1
            loss_function = mx.gluon.loss.HuberLoss(rho=rho)
        elif loss == 'hinge':
            loss_function = mx.gluon.loss.HingeLoss(margin=margin)
        elif loss == 'squared_hinge':
            loss_function = mx.gluon.loss.SquaredHingeLoss(margin=margin)
        elif loss == 'logistic':
            labelFormat = loss_params['label_format'] if 'label_format' in loss_params else 'signed'
            loss_function = mx.gluon.loss.LogisticLoss(label_format=labelFormat)
        elif loss == 'kullback_leibler':
            fromLogits = loss_params['from_logits'] if 'from_logits' in loss_params else True
            loss_function = mx.gluon.loss.KLDivLoss(from_logits=fromLogits)
Eyüp Harputlu's avatar
Eyüp Harputlu committed
297 298
        elif loss == 'log_cosh':
            loss_function = LogCoshLoss()
Eyüp Harputlu's avatar
Eyüp Harputlu committed
299 300
        else:
            logging.error("Invalid loss parameter.")
Nicola Gatto's avatar
Nicola Gatto committed
301 302 303 304 305 306 307

        speed_period = 50
        tic = None

        for epoch in range(begin_epoch, begin_epoch + num_epoch):
            train_iter.reset()
            for batch_i, batch in enumerate(train_iter):
308
                <#list tc.architectureInputs as input_name>
309
                ${input_name} = batch.data[0].as_in_context(mx_context)
310 311
                </#list>
                <#list tc.architectureOutputs as output_name>
312
                ${output_name}label = batch.label[${output_name?index}].as_in_context(mx_context)
313 314
                </#list>

315 316
                outputs=[]

Nicola Gatto's avatar
Nicola Gatto committed
317
                with autograd.record():
318
<#include "pythonExecuteWithLoss.ftl">
319

320 321 322
                    loss = 0
                    for element in lossList:
                        loss = loss + element
323

Nicola Gatto's avatar
Nicola Gatto committed
324
                loss.backward()
325 326 327

                for trainer in trainers:
                    trainer.step(batch_size)
Nicola Gatto's avatar
Nicola Gatto committed
328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344

                if tic is None:
                    tic = time.time()
                else:
                    if batch_i % speed_period == 0:
                        try:
                            speed = speed_period * batch_size / (time.time() - tic)
                        except ZeroDivisionError:
                            speed = float("inf")

                        logging.info("Epoch[%d] Batch[%d] Speed: %.2f samples/sec" % (epoch, batch_i, speed))

                        tic = time.time()

            tic = None

            train_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
345
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
346
            for batch_i, batch in enumerate(train_iter):
347
                <#list tc.architectureInputs as input_name>
348
                ${input_name} = batch.data[0].as_in_context(mx_context)
349 350
                </#list>

351
                labels = [
352 353 354 355
<#list tc.architectureOutputs as output_name>
                    batch.label[${output_name?index}].as_in_context(mx_context)<#sep>,
</#list>

356 357
                ]

358
                outputs=[]
359

360 361
                if True: <#-- Fix indentation -->
<#include "pythonExecute.ftl">
362

363
                predictions = []
364
                for output_name in outputs:
365
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
366 367 368 369
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
370

371
                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
372 373 374
            train_metric_score = metric.get()[1]

            test_iter.reset()
Sebastian N.'s avatar
Sebastian N. committed
375
            metric = mx.metric.create(eval_metric, **eval_metric_params)
Nicola Gatto's avatar
Nicola Gatto committed
376
            for batch_i, batch in enumerate(test_iter):
377
                <#list tc.architectureInputs as input_name>
378
                ${input_name} = batch.data[0].as_in_context(mx_context)
379 380
                </#list>

381
                labels = [
382 383 384 385
<#list tc.architectureOutputs as output_name>
                    batch.label[${output_name?index}].as_in_context(mx_context)<#sep>,
</#list>

386 387
                ]

388 389
                outputs=[]

390 391
                if True: <#-- Fix indentation -->
<#include "pythonExecute.ftl">
392

393
                predictions = []
394
                for output_name in outputs:
395
                    if mx.nd.shape_array(mx.nd.squeeze(output_name)).size > 1:
396 397 398 399
                        predictions.append(mx.nd.argmax(output_name, axis=1))
                    #ArgMax already applied
                    else:
                        predictions.append(output_name)
400 401

                metric.update(preds=predictions, labels=labels)
Nicola Gatto's avatar
Nicola Gatto committed
402 403 404 405
            test_metric_score = metric.get()[1]

            logging.info("Epoch[%d] Train: %f, Test: %f" % (epoch, train_metric_score, test_metric_score))

406

Nicola Gatto's avatar
Nicola Gatto committed
407
            if (epoch - begin_epoch) % checkpoint_period == 0:
408 409
                for i, network in self._networks.items():
                    network.save_parameters(self.parameter_path(i) + '-' + str(epoch).zfill(4) + '.params')
Nicola Gatto's avatar
Nicola Gatto committed
410

411 412 413
        for i, network in self._networks.items():
            network.save_parameters(self.parameter_path(i) + '-' + str(num_epoch + begin_epoch).zfill(4) + '.params')
            network.export(self.parameter_path(i) + '_newest', epoch=0)
Nicola Gatto's avatar
Nicola Gatto committed
414

415 416
    def parameter_path(self, index):
        return self._net_creator._model_dir_ + self._net_creator._model_prefix_ + '_' + str(index)