CNNTrainer_rosActorNetwork.py 4.91 KB
Newer Older
Nicola Gatto's avatar
Nicola Gatto committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
from reinforcement_learning.agent import DdpgAgent
from reinforcement_learning.util import AgentSignalHandler
from reinforcement_learning.cnnarch_logger import ArchLogger
from reinforcement_learning.CNNCreator_RosCriticNetwork import CNNCreator_RosCriticNetwork
import reinforcement_learning.environment
import CNNCreator_rosActorNetwork

import os
import sys
import re
import time
import numpy as np
import mxnet as mx


def resume_session(sessions_dir):
    resume_session = False
    resume_directory = None
    if os.path.isdir(sessions_dir):
        regex = re.compile(r'\d\d\d\d-\d\d-\d\d-\d\d-\d\d')
        dir_content = os.listdir(sessions_dir)
        session_files = filter(regex.search, dir_content)
        session_files.sort(reverse=True)
        for d in session_files:
            interrupted_session_dir = os.path.join(sessions_dir, d, '.interrupted_session')
            if os.path.isdir(interrupted_session_dir):
                resume = raw_input('Interrupted session from {} found. Do you want to resume? (y/n) '.format(d))
                if resume == 'y':
                    resume_session = True
                    resume_directory = interrupted_session_dir
                break
    return resume_session, resume_directory


if __name__ == "__main__":
    agent_name = 'ddpg-agent'
    # Prepare output directory and logger
    all_output_dir = os.path.join('model', agent_name)
    output_directory = os.path.join(
        all_output_dir,
        time.strftime('%Y-%m-%d-%H-%M-%S',
                      time.localtime(time.time())))
    ArchLogger.set_output_directory(output_directory)
    ArchLogger.set_logger_name(agent_name)
    ArchLogger.set_output_level(ArchLogger.INFO)

    env_params = {
        'ros_node_name': 'rosActorNetworkTrainerNode',
        'state_topic': '/environment/state',
        'action_topic': '/environment/action',
        'reset_topic': '/environment/reset',
52
        'reward_topic': '/environment/reward',
Nicola Gatto's avatar
Nicola Gatto committed
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
    }
    env = reinforcement_learning.environment.RosEnvironment(**env_params)

    context = mx.cpu()
    actor_creator = CNNCreator_rosActorNetwork.CNNCreator_rosActorNetwork()
    actor_creator.construct(context)
    critic_creator = CNNCreator_RosCriticNetwork()
    critic_creator.construct(context)

    agent_params = {
        'environment': env,
        'replay_memory_params': {
            'method': 'buffer',
            'memory_size': 1500000,
            'sample_size': 128,
            'state_dtype': 'float32',
            'action_dtype': 'float32',
            'rewards_dtype': 'float32'
        },
        'strategy_params': {
            'method':'ornstein_uhlenbeck',
            'epsilon': 1,
            'min_epsilon': 0.001,
            'epsilon_decay_method': 'linear',
            'epsilon_decay': 0.0001,
            'epsilon_decay_start': 50,
            'action_low': -1,
            'action_high': 1,
            'mu': [0, 0.1, 0.3],
            'theta': [0.5, 0, 0.8],
            'sigma': [0.3, 0.6, -0.9],
        },
        'agent_name': agent_name,
        'verbose': True,
        'output_directory': output_directory,
        'state_dim': (8,),
        'action_dim': (3,),
        'discount_factor': 0.9998,
        'training_episodes': 2500,
        'train_interval': 1,
        'start_training': 50,
        'snapshot_interval': 500,
        'max_episode_step': 2000,
        'evaluation_samples': 1000,
97
98
        'actor': actor_creator.networks[0],
        'critic': critic_creator.networks[0],
Nicola Gatto's avatar
Nicola Gatto committed
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
        'soft_target_update_rate': 0.001,
        'actor_optimizer': 'adam',
        'actor_optimizer_params': {
            'learning_rate_minimum': 1.0E-5,
            'learning_rate': 0.001},
        'critic_optimizer': 'rmsprop',
        'critic_optimizer_params': {
            'weight_decay': 0.01,
            'centered': True,
            'gamma2': 0.9,
            'gamma1': 0.9,
            'clip_weights': 10.0,
            'learning_rate_decay': 0.9,
            'epsilon': 1.0E-6,
            'rescale_grad': 1.1,
            'clip_gradient': 10.0,
            'learning_rate_minimum': 1.0E-5,
            'learning_rate_policy': 'step',
            'learning_rate': 0.001,
            'step_size': 1000},
    }

    resume, resume_directory = resume_session(all_output_dir)

    if resume:
        output_directory, _ = os.path.split(resume_directory)
        ArchLogger.set_output_directory(output_directory)
        resume_agent_params = {
            'session_dir': resume_directory,
            'environment': env,
Nicola Gatto's avatar
Nicola Gatto committed
129
130
            'actor': actor_creator.networks[0],
            'critic': critic_creator.networks[0]
Nicola Gatto's avatar
Nicola Gatto committed
131
132
133
134
135
136
137
138
139
140
141
        }
        agent = DdpgAgent.resume_from_session(**resume_agent_params)
    else:
        agent = DdpgAgent(**agent_params)

    signal_handler = AgentSignalHandler()
    signal_handler.register_agent(agent)

    train_successful = agent.train()

    if train_successful:
142
        agent.export_best_network(path=actor_creator._model_dir_ + actor_creator._model_prefix_ + '_0_newest', epoch=0)