Aufgrund einer Störung des s3 Storage, könnten in nächster Zeit folgende GitLab Funktionen nicht zur Verfügung stehen: LFS, Container Registry, Job Artifacs, Uploads (Wiki, Bilder, Projekt-Exporte). Wir bitten um Verständnis. Es wird mit Hochdruck an der Behebung des Problems gearbeitet. Weitere Informationen zur Störung des Object Storage finden Sie hier: https://maintenance.itc.rwth-aachen.de/ticket/status/messages/59-object-storage-pilot

Commit 5cbaf0df authored by Carlos Alfredo Yeverino Rodriguez's avatar Carlos Alfredo Yeverino Rodriguez
Browse files

Corrected tests according to bugfix

parent 3660bd63
Pipeline #74299 passed with stages
in 3 minutes and 44 seconds
......@@ -65,7 +65,7 @@ def create_model(model, data, device_opts):
data = data
# data, output shape: {[3,224,224]}
conv1_ = brew.conv(model, 'data', 'conv1_', dim_in=1, dim_out=96, kernel=11, stride=4)
conv1_ = brew.conv(model, data, 'conv1_', dim_in=1, dim_out=96, kernel=11, stride=4)
# conv1_, output shape: {[96,55,55]}
lrn1_ = mx.symbol.LRN(data=conv1_,
alpha=0.0001,
......
......@@ -65,7 +65,7 @@ def create_model(model, data, device_opts):
data = data
# data, output shape: {[3,32,32]}
conv2_1_ = brew.conv(model, 'data', 'conv2_1_', dim_in=1, dim_out=8, kernel=3, stride=1)
conv2_1_ = brew.conv(model, data, 'conv2_1_', dim_in=1, dim_out=8, kernel=3, stride=1)
# conv2_1_, output shape: {[8,32,32]}
batchnorm2_1_ = mx.symbol.BatchNorm(data=conv2_1_,
fix_gamma=True,
......@@ -77,7 +77,7 @@ def create_model(model, data, device_opts):
fix_gamma=True,
name="batchnorm3_1_")
conv2_2_ = brew.conv(model, 'data', 'conv2_2_', dim_in=1, dim_out=8, kernel=1, stride=1)
conv2_2_ = brew.conv(model, data, 'conv2_2_', dim_in=1, dim_out=8, kernel=1, stride=1)
# conv2_2_, output shape: {[8,32,32]}
batchnorm2_2_ = mx.symbol.BatchNorm(data=conv2_2_,
fix_gamma=True,
......
......@@ -65,7 +65,7 @@ def create_model(model, data, device_opts):
data = data
# data, output shape: {[3,224,224]}
conv1_ = brew.conv(model, 'data', 'conv1_', dim_in=1, dim_out=64, kernel=3, stride=1)
conv1_ = brew.conv(model, data, 'conv1_', dim_in=1, dim_out=64, kernel=3, stride=1)
# conv1_, output shape: {[64,224,224]}
relu1_ = brew.relu(model, conv1_, conv1_)
conv2_ = brew.conv(model, relu1_, 'conv2_', dim_in=64, dim_out=64, kernel=3, stride=1)
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment