Die Migration der Bereiche "Docker Registry" und "Artifiacts" ist fast abgeschlossen. Die letzten Daten werden im Laufe des heutigen Abend (05.08.2021) noch vollständig hochgeladen. Das Anlegen neuer Images und Artifacts funktioniert bereits wieder.

Commit 4892b4be authored by Carlos Alfredo Yeverino Rodriguez's avatar Carlos Alfredo Yeverino Rodriguez
Browse files

Added indented block in all layer templates due to changes made in...

Added indented block in all layer templates due to changes made in CNNCreator.ftl in order to avoid a python error
parent adbb63d2
Pipeline #75529 failed with stages
in 59 seconds
${element.name} = ${tc.join(element.inputs, " + ")}
${element.name} = ${tc.join(element.inputs, " + ")}
<#include "OutputShape.ftl">
\ No newline at end of file
${element.name} = mx.symbol.BatchNorm(data=${element.inputs[0]},
fix_gamma=${element.fixGamma?string("True","False")},
name="${element.name}")
${element.name} = mx.symbol.BatchNorm(data=${element.inputs[0]},
fix_gamma=${element.fixGamma?string("True","False")},
name="${element.name}")
${element.name} = mx.symbol.concat(${tc.join(element.inputs, ", ")},
dim=1,
name="${element.name}")
${element.name} = mx.symbol.concat(${tc.join(element.inputs, ", ")},
dim=1,
name="${element.name}")
<#include "OutputShape.ftl">
\ No newline at end of file
......@@ -4,7 +4,7 @@
<#assign kernelHeight = element.kernel[0]>
<#assign kernelWidth = element.kernel[1]>
<#if element.padding??> <#-- Check wheather padding null is. -->
<#-- TODO: check how to adapt CNNArchLang argument pad_width=${element.padding[0]} -->
<#-- TODO: check how to adapt CNNArchLang argument pad_width=${element.padding[0]} -->
</#if>
<#if strideHeight == strideWidth>
<#assign strideParameter = "stride=${strideHeight}">
......@@ -17,9 +17,9 @@
<#assign kernelParameter = "kernel=[${kernelHeight},${kernelWidth}]">
</#if>
<#if input = tc.architectureInputs[0]> <#-- TODO: CHECK COMPARISON -->
${element.name} = brew.conv(model, ${input}, '${element.name}', dim_in=1, dim_out=${element.channels?c}, ${kernelParameter}, ${strideParameter})
${element.name} = brew.conv(model, ${input}, '${element.name}', dim_in=1, dim_out=${element.channels?c}, ${kernelParameter}, ${strideParameter})
<#else>
${element.name} = brew.conv(model, ${input}, '${element.name}', dim_in=${element.element.inputTypes[0].channels?c}, dim_out=${element.channels?c}, ${kernelParameter}, ${strideParameter})
${element.name} = brew.conv(model, ${input}, '${element.name}', dim_in=${element.element.inputTypes[0].channels?c}, dim_out=${element.channels?c}, ${kernelParameter}, ${strideParameter})
</#if>
<#-- TODO: check how to adapt CNNArchLang argument no_bias=${element.noBias?string("True","False")} -->
<#-- TODO: check how to adapt CNNArchLang argument no_bias=${element.noBias?string("True","False")} -->
<#include "OutputShape.ftl">
\ No newline at end of file
${element.name} = mx.symbol.Dropout(data=${element.inputs[0]},
p=${element.p?c},
name="${element.name}")
${element.name} = mx.symbol.Dropout(data=${element.inputs[0]},
p=${element.p?c},
name="${element.name}")
${element.name} = mx.symbol.Flatten(data=${element.inputs[0]},
name="${element.name}")
\ No newline at end of file
${element.name} = mx.symbol.Flatten(data=${element.inputs[0]},
name="${element.name}")
\ No newline at end of file
......@@ -5,12 +5,12 @@
<#assign inputHeight = element.element.inputTypes[0].height>
<#assign inputWidth = element.element.inputTypes[0].width>
<#if flatten>
<#-- TODO: check how to adapt CNNArchLang flatten #${element.name} = mx.symbol.flatten(data=${input}) -->
<#-- TODO: check how to adapt CNNArchLang flatten #${element.name} = mx.symbol.flatten(data=${input}) -->
</#if>
<#if inputLayerType?matches("FullyConnected") || (inputHeight == 1 && inputWidth == 1)>
${element.name} = brew.fc(model, ${input}, '${element.name}', dim_in=${inputChannels}, dim_out=${element.units?c})
${element.name} = brew.fc(model, ${input}, '${element.name}', dim_in=${inputChannels}, dim_out=${element.units?c})
<#else>
${element.name} = brew.fc(model, ${input}, '${element.name}', dim_in=${inputChannels} * ${inputHeight} * ${inputWidth}, dim_out=${element.units?c})
${element.name} = brew.fc(model, ${input}, '${element.name}', dim_in=${inputChannels} * ${inputHeight} * ${inputWidth}, dim_out=${element.units?c})
</#if>
<#-- TODO: check how to adapt CNNArchLang argument no_bias=${element.noBias?string("True","False")} -->
<#-- TODO: check how to adapt CNNArchLang argument no_bias=${element.noBias?string("True","False")} -->
<#include "OutputShape.ftl">
\ No newline at end of file
${element.name} = ${element.inputs[element.index]}
${element.name} = ${element.inputs[element.index]}
${element.name} = mx.symbol.Pooling(data=${element.inputs[0]},
global_pool=True,
kernel=(1,1),
pool_type="${element.poolType}",
name="${element.name}")
${element.name} = mx.symbol.Pooling(data=${element.inputs[0]},
global_pool=True,
kernel=(1,1),
pool_type="${element.poolType}",
name="${element.name}")
<#include "OutputShape.ftl">
\ No newline at end of file
......@@ -6,14 +6,14 @@
<#if heightIndex != 0><#assign indexList = indexList + [heightIndex]></#if>
<#if widthIndex != 0><#assign indexList = indexList + [widthIndex]></#if>
<#assign dimensions = element.element.outputTypes[0].dimensions>
${element.name} = data
${element.name} = data
<#include "OutputShape.ftl">
<#if heightIndex != channelIndex + 1 || widthIndex != heightIndex + 1>
${element.name} = mx.symbol.transpose(data=${element.name},mx.sym.var <#-- TODO: check how to adapt CNNArchLang transpose case -->
axes=(0,${tc.join(indexList, ",")}))
${element.name} = mx.symbol.transpose(data=${element.name},mx.sym.var <#-- TODO: check how to adapt CNNArchLang transpose case -->
axes=(0,${tc.join(indexList, ",")}))
</#if>
<#if indexList?size != 3>
${element.name} = mx.symbol.reshape(data=${element.name}, <#-- TODO: check how to adapt CNNArchLang transpose case -->
shape=(0,${element.element.outputTypes[0].channels?c},${element.element.outputTypes[0].height?c},${element.element.outputTypes[0].width?c}))
${element.name} = mx.symbol.reshape(data=${element.name}, <#-- TODO: check how to adapt CNNArchLang transpose case -->
shape=(0,${element.element.outputTypes[0].channels?c},${element.element.outputTypes[0].height?c},${element.element.outputTypes[0].width?c}))
</#if>
${element.name} = mx.symbol.LRN(data=${element.inputs[0]},
alpha=${element.alpha?c},
beta=${element.beta?c},
knorm=${element.knorm?c},
nsize=${element.nsize?c},
name="${element.name}")
${element.name} = mx.symbol.LRN(data=${element.inputs[0]},
alpha=${element.alpha?c},
beta=${element.beta?c},
knorm=${element.knorm?c},
nsize=${element.nsize?c},
name="${element.name}")
<#assign input = element.inputs[0]>
<#if element.softmaxOutput>
${element.name} = brew.softmax(model, ${input}, '${element.name}')
${element.name} = brew.softmax(model, ${input}, '${element.name}')
<#elseif element.logisticRegressionOutput>
${element.name} = mx.symbol.LogisticRegressionOutput(data=${element.inputs[0]}, <#-- TODO: check how to adapt LogisticRegressionOutput -->
name="${element.name}")
${element.name} = mx.symbol.LogisticRegressionOutput(data=${element.inputs[0]}, <#-- TODO: check how to adapt LogisticRegressionOutput -->
name="${element.name}")
<#elseif element.linearRegressionOutput>
${element.name} = mx.symbol.LinearRegressionOutput(data=${element.inputs[0]}, <#-- TODO: check how to adapt linearRegressionOutput -->
name="${element.name}")
${element.name} = mx.symbol.LinearRegressionOutput(data=${element.inputs[0]}, <#-- TODO: check how to adapt linearRegressionOutput -->
name="${element.name}")
</#if>
return ${element.name}
\ No newline at end of file
return ${element.name}
\ No newline at end of file
# ${element.name}, output shape: {<#list element.element.outputTypes as type>[${tc.join(type.dimensions, ",")}]</#list>}
# ${element.name}, output shape: {<#list element.element.outputTypes as type>[${tc.join(type.dimensions, ",")}]</#list>}
......@@ -4,7 +4,7 @@
<#assign kernelHeight = element.kernel[0]>
<#assign kernelWidth = element.kernel[1]>
<#if element.padding??>
<#-- TODO: check how to adapt CNNArchLang argument pad_width=${element.padding[0]} -->
<#-- TODO: check how to adapt CNNArchLang argument pad_width=${element.padding[0]} -->
</#if>
<#if strideHeight == strideWidth>
<#assign strideParameter = "stride=${strideHeight}">
......@@ -17,8 +17,8 @@
<#assign kernelParameter = "kernel_h=${kernelHeight}, kernel_w=${kernelWidth}">
</#if>
<#if element.poolType == "max">
${element.name} = brew.max_pool(model, ${input}, '${element.name}', ${kernelParameter}, ${strideParameter})
${element.name} = brew.max_pool(model, ${input}, '${element.name}', ${kernelParameter}, ${strideParameter})
<#elseif element.poolType == "avg">
${element.name} = brew.average_pool(model, ${input}, '${element.name}', ${kernelParameter}, ${strideParameter})
${element.name} = brew.average_pool(model, ${input}, '${element.name}', ${kernelParameter}, ${strideParameter})
</#if>
<#include "OutputShape.ftl">
\ No newline at end of file
<#assign input = element.inputs[0]>
${element.name} = brew.relu(model, ${input}, ${input})
${element.name} = brew.relu(model, ${input}, ${input})
<#assign input = element.inputs[0]>
${element.name} = model.net.Sigmoid(${input}, '${element.name}')
${element.name} = model.net.Sigmoid(${input}, '${element.name}')
<#-- This template is not used if the followiing architecture element is an output. See Output.ftl -->
${element.name} = mx.symbol.softmax(data=${element.inputs[0]},
axis=1,
name="${element.name}")
${element.name} = mx.symbol.softmax(data=${element.inputs[0]},
axis=1,
name="${element.name}")
${element.name} = mx.symbol.split(data=${element.inputs[0]},
num_outputs=${element.numOutputs?c},
axis=1,
name="${element.name}")
${element.name} = mx.symbol.split(data=${element.inputs[0]},
num_outputs=${element.numOutputs?c},
axis=1,
name="${element.name}")
<#include "OutputShape.ftl">
\ No newline at end of file
<#assign input = element.inputs[0]>
${element.name} = brew.tanh(model, ${input}, ${input})
${element.name} = brew.tanh(model, ${input}, ${input})
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment