CNNCreator_Alexnet.py 13.1 KB
Newer Older
1
from caffe2.python import workspace, core, model_helper, brew, optimizer
2
3
4
from caffe2.python.predictor import mobile_exporter
from caffe2.proto import caffe2_pb2
import numpy as np
5
import logging
6
import os
7
import sys
8
import lmdb
9
10
11
class CNNCreator_Alexnet:

    module = None
12
13
14
    _current_dir_ = os.path.join('./')
    _data_dir_    = os.path.join(_current_dir_, 'data', 'Alexnet')
    _model_dir_   = os.path.join(_current_dir_, 'model', 'Alexnet')
15

16
17
    INIT_NET    = os.path.join(_model_dir_, 'init_net.pb')
    PREDICT_NET = os.path.join(_model_dir_, 'predict_net.pb')
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

    def add_input(self, model, batch_size, db, db_type, device_opts):
        with core.DeviceScope(device_opts):
            # load the data
            data_uint8, label = brew.db_input(
                model,
                blobs_out=["data_uint8", "label"],
                batch_size=batch_size,
                db=db,
                db_type=db_type,
            )
            # cast the data to float
            data = model.Cast(data_uint8, "data", to=core.DataType.FLOAT)

            # scale data from [0,255] down to [0,1]
            data = model.Scale(data, data, scale=float(1./256))

            # don't need the gradient for the backward pass
            data = model.StopGradient(data, data)
37
38
39
40

            dataset_size = int (lmdb.open(db).stat()['entries'])

            return data, label, dataset_size
41
42
43
44
45
46

    def create_model(self, model, data, device_opts):
    	with core.DeviceScope(device_opts):

    		data = data
    		# data, output shape: {[3,224,224]}
47
      		conv1_ = brew.conv(model, data, 'conv1_', dim_in=3, dim_out=96, kernel=11, stride=4)
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
    		# conv1_, output shape: {[96,55,55]}
    		lrn1_ = mx.symbol.LRN(data=conv1_,
    		    alpha=0.0001,
    		    beta=0.75,
    		    knorm=2,
    		    nsize=5,
    		    name="lrn1_")
    		pool1_ = brew.max_pool(model, lrn1_, 'pool1_', kernel=3, stride=2)
    		# pool1_, output shape: {[96,27,27]}
    		relu1_ = brew.relu(model, pool1_, pool1_)
    		split1_ = mx.symbol.split(data=relu1_,
    		    num_outputs=2,
    		    axis=1,
    		    name="split1_")
    		# split1_, output shape: {[48,27,27][48,27,27]}
    		get2_1_ = split1_[0]
      		conv2_1_ = brew.conv(model, get2_1_, 'conv2_1_', dim_in=48, dim_out=128, kernel=5, stride=1)
    		# conv2_1_, output shape: {[128,27,27]}
    		lrn2_1_ = mx.symbol.LRN(data=conv2_1_,
    		    alpha=0.0001,
    		    beta=0.75,
    		    knorm=2,
    		    nsize=5,
    		    name="lrn2_1_")
    		pool2_1_ = brew.max_pool(model, lrn2_1_, 'pool2_1_', kernel=3, stride=2)
    		# pool2_1_, output shape: {[128,13,13]}
    		relu2_1_ = brew.relu(model, pool2_1_, pool2_1_)
    		get2_2_ = split1_[1]
      		conv2_2_ = brew.conv(model, get2_2_, 'conv2_2_', dim_in=48, dim_out=128, kernel=5, stride=1)
    		# conv2_2_, output shape: {[128,27,27]}
    		lrn2_2_ = mx.symbol.LRN(data=conv2_2_,
    		    alpha=0.0001,
    		    beta=0.75,
    		    knorm=2,
    		    nsize=5,
    		    name="lrn2_2_")
    		pool2_2_ = brew.max_pool(model, lrn2_2_, 'pool2_2_', kernel=3, stride=2)
    		# pool2_2_, output shape: {[128,13,13]}
    		relu2_2_ = brew.relu(model, pool2_2_, pool2_2_)
    		concatenate3_ = mx.symbol.concat(relu2_1_, relu2_2_,
    		    dim=1,
    		    name="concatenate3_")
    		# concatenate3_, output shape: {[256,13,13]}
      		conv3_ = brew.conv(model, concatenate3_, 'conv3_', dim_in=256, dim_out=384, kernel=3, stride=1)
    		# conv3_, output shape: {[384,13,13]}
    		relu3_ = brew.relu(model, conv3_, conv3_)
    		split3_ = mx.symbol.split(data=relu3_,
    		    num_outputs=2,
    		    axis=1,
    		    name="split3_")
    		# split3_, output shape: {[192,13,13][192,13,13]}
    		get4_1_ = split3_[0]
      		conv4_1_ = brew.conv(model, get4_1_, 'conv4_1_', dim_in=192, dim_out=192, kernel=3, stride=1)
    		# conv4_1_, output shape: {[192,13,13]}
    		relu4_1_ = brew.relu(model, conv4_1_, conv4_1_)
      		conv5_1_ = brew.conv(model, relu4_1_, 'conv5_1_', dim_in=192, dim_out=128, kernel=3, stride=1)
    		# conv5_1_, output shape: {[128,13,13]}
    		pool5_1_ = brew.max_pool(model, conv5_1_, 'pool5_1_', kernel=3, stride=2)
    		# pool5_1_, output shape: {[128,6,6]}
    		relu5_1_ = brew.relu(model, pool5_1_, pool5_1_)
    		get4_2_ = split3_[1]
      		conv4_2_ = brew.conv(model, get4_2_, 'conv4_2_', dim_in=192, dim_out=192, kernel=3, stride=1)
    		# conv4_2_, output shape: {[192,13,13]}
    		relu4_2_ = brew.relu(model, conv4_2_, conv4_2_)
      		conv5_2_ = brew.conv(model, relu4_2_, 'conv5_2_', dim_in=192, dim_out=128, kernel=3, stride=1)
    		# conv5_2_, output shape: {[128,13,13]}
    		pool5_2_ = brew.max_pool(model, conv5_2_, 'pool5_2_', kernel=3, stride=2)
    		# pool5_2_, output shape: {[128,6,6]}
    		relu5_2_ = brew.relu(model, pool5_2_, pool5_2_)
    		concatenate6_ = mx.symbol.concat(relu5_1_, relu5_2_,
    		    dim=1,
    		    name="concatenate6_")
    		# concatenate6_, output shape: {[256,6,6]}
    		fc6_ = brew.fc(model, concatenate6_, 'fc6_', dim_in=256 * 6 * 6, dim_out=4096)
    		# fc6_, output shape: {[4096,1,1]}
    		relu6_ = brew.relu(model, fc6_, fc6_)
    		dropout6_ = mx.symbol.Dropout(data=relu6_,
    		    p=0.5,
    		    name="dropout6_")
    		fc7_ = brew.fc(model, dropout6_, 'fc7_', dim_in=4096, dim_out=4096)
    		# fc7_, output shape: {[4096,1,1]}
    		relu7_ = brew.relu(model, fc7_, fc7_)
    		dropout7_ = mx.symbol.Dropout(data=relu7_,
    		    p=0.5,
    		    name="dropout7_")
    		fc8_ = brew.fc(model, dropout7_, 'fc8_', dim_in=4096, dim_out=10)
    		# fc8_, output shape: {[10,1,1]}
    		predictions = brew.softmax(model, fc8_, 'predictions')

    		return predictions

    # this adds the loss and optimizer
    def add_training_operators(self, model, output, label, device_opts, opt_type, base_learning_rate, policy, stepsize, epsilon, beta1, beta2, gamma, momentum) :
    	with core.DeviceScope(device_opts):
    		xent = model.LabelCrossEntropy([output, label], 'xent')
    		loss = model.AveragedLoss(xent, "loss")

    		model.AddGradientOperators([loss])

    		if opt_type == 'adam':
    		    if policy == 'step':
    		        opt = optimizer.build_adam(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, beta1=beta1, beta2=beta2, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_adam(model, base_learning_rate=base_learning_rate, policy=policy, beta1=beta1, beta2=beta2, epsilon=epsilon)
    		    print("adam optimizer selected")
    		elif opt_type == 'sgd':
    		    if policy == 'step':
    		        opt = optimizer.build_sgd(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, gamma=gamma, momentum=momentum)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_sgd(model, base_learning_rate=base_learning_rate, policy=policy, gamma=gamma, momentum=momentum)
    		    print("sgd optimizer selected")
    		elif opt_type == 'rmsprop':
    		    if policy == 'step':
    		        opt = optimizer.build_rms_prop(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, decay=gamma, momentum=momentum, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_rms_prop(model, base_learning_rate=base_learning_rate, policy=policy, decay=gamma, momentum=momentum, epsilon=epsilon)
    		    print("rmsprop optimizer selected")
    		elif opt_type == 'adagrad':
    		    if policy == 'step':
    		        opt = optimizer.build_adagrad(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, decay=gamma, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_adagrad(model, base_learning_rate=base_learning_rate, policy=policy, decay=gamma, epsilon=epsilon)
    		    print("adagrad optimizer selected")

    def add_accuracy(self, model, output, label, device_opts, eval_metric):
        with core.DeviceScope(device_opts):
            if eval_metric == 'accuracy':
                accuracy = brew.accuracy(model, [output, label], "accuracy")
            elif eval_metric == 'top_k_accuracy':
                accuracy = brew.accuracy(model, [output, label], "accuracy", top_k=3)
            return accuracy

180
181
    def train(self, num_epoch=1000, batch_size=64, context='gpu', eval_metric='accuracy', opt_type='adam', base_learning_rate=0.001, weight_decay=0.001, policy='fixed', stepsize=1, epsilon=1E-8, beta1=0.9, beta2=0.999, gamma=0.999, momentum=0.9) :
        if context == 'cpu':
182
183
            device_opts = core.DeviceOption(caffe2_pb2.CPU, 0)
            print("CPU mode selected")
184
        elif context == 'gpu':
185
186
187
            device_opts = core.DeviceOption(caffe2_pb2.CUDA, 0)
            print("GPU mode selected")

188
    	workspace.ResetWorkspace(self._model_dir_)
189
190
191
192

    	arg_scope = {"order": "NCHW"}
    	# == Training model ==
    	train_model= model_helper.ModelHelper(name="train_net", arg_scope=arg_scope)
193
    	data, label, train_dataset_size = self.add_input(train_model, batch_size=batch_size, db=os.path.join(self._data_dir_, 'mnist-train-nchw-lmdb'), db_type='lmdb', device_opts=device_opts)
194
195
196
197
198
199
200
201
202
203
204
    	predictions = self.create_model(train_model, data, device_opts=device_opts)
    	self.add_training_operators(train_model, predictions, label, device_opts, opt_type, base_learning_rate, policy, stepsize, epsilon, beta1, beta2, gamma, momentum)
    	self.add_accuracy(train_model, predictions, label, device_opts, eval_metric)
    	with core.DeviceScope(device_opts):
    		brew.add_weight_decay(train_model, weight_decay)

    	# Initialize and create the training network
    	workspace.RunNetOnce(train_model.param_init_net)
    	workspace.CreateNet(train_model.net, overwrite=True)

    	# Main Training Loop
205
206
    	print("== Starting Training for " + str(num_epoch) + " epochs ==")
    	for i in range(num_epoch):
207
    		workspace.RunNet(train_model.net)
208
209
    		if i % 50 == 0:
    			print 'Iter ' + str(i) + ': ' + 'Loss ' + str(workspace.FetchBlob("loss")) + ' - ' + 'Accuracy ' + str(workspace.FetchBlob('accuracy'))
210
211
212
213
214
    	print("Training done")

    	print("== Running Test model ==")
    	# == Testing model. ==
    	test_model= model_helper.ModelHelper(name="test_net", arg_scope=arg_scope, init_params=False)
215
    	data, label, test_dataset_size = self.add_input(test_model, batch_size=batch_size, db=os.path.join(self._data_dir_, 'mnist-test-nchw-lmdb'), db_type='lmdb', device_opts=device_opts)
216
217
218
219
220
221
    	predictions = self.create_model(test_model, data, device_opts=device_opts)
    	self.add_accuracy(test_model, predictions, label, device_opts, eval_metric)
    	workspace.RunNetOnce(test_model.param_init_net)
    	workspace.CreateNet(test_model.net, overwrite=True)

    	# Main Testing Loop
222
223
    	test_accuracy = np.zeros(test_dataset_size/batch_size)
    	for i in range(test_dataset_size/batch_size):
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
    		# Run a forward pass of the net on the current batch
    		workspace.RunNet(test_model.net)
    		# Collect the batch accuracy from the workspace
    		test_accuracy[i] = workspace.FetchBlob('accuracy')

    	print('Test_accuracy: {:.4f}'.format(test_accuracy.mean()))

    	# == Deployment model. ==
    	# We simply need the main AddModel part.
    	deploy_model = model_helper.ModelHelper(name="deploy_net", arg_scope=arg_scope, init_params=False)
    	self.create_model(deploy_model, "data", device_opts)

    	print("Saving deploy model")
    	self.save_net(self.INIT_NET, self.PREDICT_NET, deploy_model)

    def save_net(self, init_net_path, predict_net_path, model):

    	init_net, predict_net = mobile_exporter.Export(
    		workspace,
    		model.net,
    		model.params
    	)

247
        try:
248
            os.makedirs(self._model_dir_)
249
        except OSError:
250
            if not os.path.isdir(self._model_dir_):
251
252
                raise

253
    	print("Save the model to init_net.pb and predict_net.pb")
254
    	with open(predict_net_path, 'wb') as f:
255
    		f.write(model.net._net.SerializeToString())
256
    	with open(init_net_path, 'wb') as f:
257
258
259
    		f.write(init_net.SerializeToString())

    	print("Save the model to init_net.pbtxt and predict_net.pbtxt")
260
261

    	with open(init_net_path.replace('.pb','.pbtxt'), 'w') as f:
262
    		f.write(str(init_net))
263
    	with open(predict_net_path.replace('.pb','.pbtxt'), 'w') as f:
264
265
266
267
    		f.write(str(predict_net))
    	print("== Saved init_net and predict_net ==")

    def load_net(self, init_net_path, predict_net_path, device_opts):
268
269
270
271
272
273
274
275
276
        if not os.path.isfile(init_net_path):
            logging.error("Network loading failure. File '" + os.path.abspath(init_net_path) + "' does not exist.")
            sys.exit(1)
        elif not os.path.isfile(predict_net_path):
            logging.error("Network loading failure. File '" + os.path.abspath(predict_net_path) + "' does not exist.")
            sys.exit(1)

        init_def = caffe2_pb2.NetDef()
    	with open(init_net_path, 'rb') as f:
277
278
279
280
281
    		init_def.ParseFromString(f.read())
    		init_def.device_option.CopyFrom(device_opts)
    		workspace.RunNetOnce(init_def.SerializeToString())

    	net_def = caffe2_pb2.NetDef()
282
    	with open(predict_net_path, 'rb') as f:
283
284
285
    		net_def.ParseFromString(f.read())
    		net_def.device_option.CopyFrom(device_opts)
    		workspace.CreateNet(net_def.SerializeToString(), overwrite=True)
286
    	print("== Loaded init_net and predict_net ==")