CNNCreator_CifarClassifierNetwork.py 17.8 KB
Newer Older
1
from caffe2.python import workspace, core, model_helper, brew, optimizer
2
3
4
from caffe2.python.predictor import mobile_exporter
from caffe2.proto import caffe2_pb2
import numpy as np
5
import logging
6
import os
7
import sys
8
import lmdb
9
10
11
class CNNCreator_CifarClassifierNetwork:

    module = None
12
13
14
    _current_dir_ = os.path.join('./')
    _data_dir_    = os.path.join(_current_dir_, 'data', 'CifarClassifierNetwork')
    _model_dir_   = os.path.join(_current_dir_, 'model', 'CifarClassifierNetwork')
15

16
17
    INIT_NET    = os.path.join(_model_dir_, 'init_net.pb')
    PREDICT_NET = os.path.join(_model_dir_, 'predict_net.pb')
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

    def add_input(self, model, batch_size, db, db_type, device_opts):
        with core.DeviceScope(device_opts):
            # load the data
            data_uint8, label = brew.db_input(
                model,
                blobs_out=["data_uint8", "label"],
                batch_size=batch_size,
                db=db,
                db_type=db_type,
            )
            # cast the data to float
            data = model.Cast(data_uint8, "data", to=core.DataType.FLOAT)

            # scale data from [0,255] down to [0,1]
            data = model.Scale(data, data, scale=float(1./256))

            # don't need the gradient for the backward pass
            data = model.StopGradient(data, data)
37
38
39
40

            dataset_size = int (lmdb.open(db).stat()['entries'])

            return data, label, dataset_size
41
42
43
44
45
46

    def create_model(self, model, data, device_opts):
    	with core.DeviceScope(device_opts):

    		data = data
    		# data, output shape: {[3,32,32]}
47
      		conv2_1_ = brew.conv(model, data, 'conv2_1_', dim_in=3, dim_out=8, kernel=3, stride=1)
48
49
50
51
52
53
54
55
56
57
    		# conv2_1_, output shape: {[8,32,32]}
    		batchnorm2_1_ = mx.symbol.BatchNorm(data=conv2_1_,
    		    fix_gamma=True,
    		    name="batchnorm2_1_")
    		relu2_1_ = brew.relu(model, batchnorm2_1_, batchnorm2_1_)
      		conv3_1_ = brew.conv(model, relu2_1_, 'conv3_1_', dim_in=8, dim_out=8, kernel=3, stride=1)
    		# conv3_1_, output shape: {[8,32,32]}
    		batchnorm3_1_ = mx.symbol.BatchNorm(data=conv3_1_,
    		    fix_gamma=True,
    		    name="batchnorm3_1_")
58
    		conv2_2_ = brew.conv(model, data, 'conv2_2_', dim_in=3, dim_out=8, kernel=1, stride=1)
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
    		# conv2_2_, output shape: {[8,32,32]}
    		batchnorm2_2_ = mx.symbol.BatchNorm(data=conv2_2_,
    		    fix_gamma=True,
    		    name="batchnorm2_2_")
    		add4_ = batchnorm3_1_ + batchnorm2_2_
    		# add4_, output shape: {[8,32,32]}
    		relu4_ = brew.relu(model, add4_, add4_)
      		conv5_1_ = brew.conv(model, relu4_, 'conv5_1_', dim_in=8, dim_out=16, kernel=3, stride=2)
    		# conv5_1_, output shape: {[16,16,16]}
    		batchnorm5_1_ = mx.symbol.BatchNorm(data=conv5_1_,
    		    fix_gamma=True,
    		    name="batchnorm5_1_")
    		relu5_1_ = brew.relu(model, batchnorm5_1_, batchnorm5_1_)
      		conv6_1_ = brew.conv(model, relu5_1_, 'conv6_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv6_1_, output shape: {[16,16,16]}
    		batchnorm6_1_ = mx.symbol.BatchNorm(data=conv6_1_,
    		    fix_gamma=True,
    		    name="batchnorm6_1_")
    		conv5_2_ = brew.conv(model, relu4_, 'conv5_2_', dim_in=8, dim_out=16, kernel=1, stride=2)
    		# conv5_2_, output shape: {[16,16,16]}
    		batchnorm5_2_ = mx.symbol.BatchNorm(data=conv5_2_,
    		    fix_gamma=True,
    		    name="batchnorm5_2_")
    		add7_ = batchnorm6_1_ + batchnorm5_2_
    		# add7_, output shape: {[16,16,16]}
    		relu7_ = brew.relu(model, add7_, add7_)
      		conv8_1_ = brew.conv(model, relu7_, 'conv8_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv8_1_, output shape: {[16,16,16]}
    		batchnorm8_1_ = mx.symbol.BatchNorm(data=conv8_1_,
    		    fix_gamma=True,
    		    name="batchnorm8_1_")
    		relu8_1_ = brew.relu(model, batchnorm8_1_, batchnorm8_1_)
      		conv9_1_ = brew.conv(model, relu8_1_, 'conv9_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv9_1_, output shape: {[16,16,16]}
    		batchnorm9_1_ = mx.symbol.BatchNorm(data=conv9_1_,
    		    fix_gamma=True,
    		    name="batchnorm9_1_")
    		add10_ = batchnorm9_1_ + relu7_
    		# add10_, output shape: {[16,16,16]}
    		relu10_ = brew.relu(model, add10_, add10_)
      		conv11_1_ = brew.conv(model, relu10_, 'conv11_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv11_1_, output shape: {[16,16,16]}
    		batchnorm11_1_ = mx.symbol.BatchNorm(data=conv11_1_,
    		    fix_gamma=True,
    		    name="batchnorm11_1_")
    		relu11_1_ = brew.relu(model, batchnorm11_1_, batchnorm11_1_)
      		conv12_1_ = brew.conv(model, relu11_1_, 'conv12_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv12_1_, output shape: {[16,16,16]}
    		batchnorm12_1_ = mx.symbol.BatchNorm(data=conv12_1_,
    		    fix_gamma=True,
    		    name="batchnorm12_1_")
    		add13_ = batchnorm12_1_ + relu10_
    		# add13_, output shape: {[16,16,16]}
    		relu13_ = brew.relu(model, add13_, add13_)
      		conv14_1_ = brew.conv(model, relu13_, 'conv14_1_', dim_in=16, dim_out=32, kernel=3, stride=2)
    		# conv14_1_, output shape: {[32,8,8]}
    		batchnorm14_1_ = mx.symbol.BatchNorm(data=conv14_1_,
    		    fix_gamma=True,
    		    name="batchnorm14_1_")
    		relu14_1_ = brew.relu(model, batchnorm14_1_, batchnorm14_1_)
      		conv15_1_ = brew.conv(model, relu14_1_, 'conv15_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv15_1_, output shape: {[32,8,8]}
    		batchnorm15_1_ = mx.symbol.BatchNorm(data=conv15_1_,
    		    fix_gamma=True,
    		    name="batchnorm15_1_")
    		conv14_2_ = brew.conv(model, relu13_, 'conv14_2_', dim_in=16, dim_out=32, kernel=1, stride=2)
    		# conv14_2_, output shape: {[32,8,8]}
    		batchnorm14_2_ = mx.symbol.BatchNorm(data=conv14_2_,
    		    fix_gamma=True,
    		    name="batchnorm14_2_")
    		add16_ = batchnorm15_1_ + batchnorm14_2_
    		# add16_, output shape: {[32,8,8]}
    		relu16_ = brew.relu(model, add16_, add16_)
      		conv17_1_ = brew.conv(model, relu16_, 'conv17_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv17_1_, output shape: {[32,8,8]}
    		batchnorm17_1_ = mx.symbol.BatchNorm(data=conv17_1_,
    		    fix_gamma=True,
    		    name="batchnorm17_1_")
    		relu17_1_ = brew.relu(model, batchnorm17_1_, batchnorm17_1_)
      		conv18_1_ = brew.conv(model, relu17_1_, 'conv18_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv18_1_, output shape: {[32,8,8]}
    		batchnorm18_1_ = mx.symbol.BatchNorm(data=conv18_1_,
    		    fix_gamma=True,
    		    name="batchnorm18_1_")
    		add19_ = batchnorm18_1_ + relu16_
    		# add19_, output shape: {[32,8,8]}
    		relu19_ = brew.relu(model, add19_, add19_)
      		conv20_1_ = brew.conv(model, relu19_, 'conv20_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv20_1_, output shape: {[32,8,8]}
    		batchnorm20_1_ = mx.symbol.BatchNorm(data=conv20_1_,
    		    fix_gamma=True,
    		    name="batchnorm20_1_")
    		relu20_1_ = brew.relu(model, batchnorm20_1_, batchnorm20_1_)
      		conv21_1_ = brew.conv(model, relu20_1_, 'conv21_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv21_1_, output shape: {[32,8,8]}
    		batchnorm21_1_ = mx.symbol.BatchNorm(data=conv21_1_,
    		    fix_gamma=True,
    		    name="batchnorm21_1_")
    		add22_ = batchnorm21_1_ + relu19_
    		# add22_, output shape: {[32,8,8]}
    		relu22_ = brew.relu(model, add22_, add22_)
      		conv23_1_ = brew.conv(model, relu22_, 'conv23_1_', dim_in=32, dim_out=64, kernel=3, stride=2)
    		# conv23_1_, output shape: {[64,4,4]}
    		batchnorm23_1_ = mx.symbol.BatchNorm(data=conv23_1_,
    		    fix_gamma=True,
    		    name="batchnorm23_1_")
    		relu23_1_ = brew.relu(model, batchnorm23_1_, batchnorm23_1_)
      		conv24_1_ = brew.conv(model, relu23_1_, 'conv24_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv24_1_, output shape: {[64,4,4]}
    		batchnorm24_1_ = mx.symbol.BatchNorm(data=conv24_1_,
    		    fix_gamma=True,
    		    name="batchnorm24_1_")
    		conv23_2_ = brew.conv(model, relu22_, 'conv23_2_', dim_in=32, dim_out=64, kernel=1, stride=2)
    		# conv23_2_, output shape: {[64,4,4]}
    		batchnorm23_2_ = mx.symbol.BatchNorm(data=conv23_2_,
    		    fix_gamma=True,
    		    name="batchnorm23_2_")
    		add25_ = batchnorm24_1_ + batchnorm23_2_
    		# add25_, output shape: {[64,4,4]}
    		relu25_ = brew.relu(model, add25_, add25_)
      		conv26_1_ = brew.conv(model, relu25_, 'conv26_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv26_1_, output shape: {[64,4,4]}
    		batchnorm26_1_ = mx.symbol.BatchNorm(data=conv26_1_,
    		    fix_gamma=True,
    		    name="batchnorm26_1_")
    		relu26_1_ = brew.relu(model, batchnorm26_1_, batchnorm26_1_)
      		conv27_1_ = brew.conv(model, relu26_1_, 'conv27_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv27_1_, output shape: {[64,4,4]}
    		batchnorm27_1_ = mx.symbol.BatchNorm(data=conv27_1_,
    		    fix_gamma=True,
    		    name="batchnorm27_1_")
    		add28_ = batchnorm27_1_ + relu25_
    		# add28_, output shape: {[64,4,4]}
    		relu28_ = brew.relu(model, add28_, add28_)
      		conv29_1_ = brew.conv(model, relu28_, 'conv29_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv29_1_, output shape: {[64,4,4]}
    		batchnorm29_1_ = mx.symbol.BatchNorm(data=conv29_1_,
    		    fix_gamma=True,
    		    name="batchnorm29_1_")
    		relu29_1_ = brew.relu(model, batchnorm29_1_, batchnorm29_1_)
      		conv30_1_ = brew.conv(model, relu29_1_, 'conv30_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv30_1_, output shape: {[64,4,4]}
    		batchnorm30_1_ = mx.symbol.BatchNorm(data=conv30_1_,
    		    fix_gamma=True,
    		    name="batchnorm30_1_")
    		add31_ = batchnorm30_1_ + relu28_
    		# add31_, output shape: {[64,4,4]}
    		relu31_ = brew.relu(model, add31_, add31_)
    		globalpooling31_ = mx.symbol.Pooling(data=relu31_,
    		    global_pool=True,
    		    kernel=(1,1),
    		    pool_type="avg",
    		    name="globalpooling31_")
    		# globalpooling31_, output shape: {[64,1,1]}
    		fc31_ = brew.fc(model, globalpooling31_, 'fc31_', dim_in=64, dim_out=128)
    		# fc31_, output shape: {[128,1,1]}
    		dropout31_ = mx.symbol.Dropout(data=fc31_,
    		    p=0.5,
    		    name="dropout31_")
    		fc32_ = brew.fc(model, dropout31_, 'fc32_', dim_in=128, dim_out=10)
    		# fc32_, output shape: {[10,1,1]}
    		softmax = brew.softmax(model, fc32_, 'softmax')

    		return softmax

    # this adds the loss and optimizer
    def add_training_operators(self, model, output, label, device_opts, opt_type, base_learning_rate, policy, stepsize, epsilon, beta1, beta2, gamma, momentum) :
    	with core.DeviceScope(device_opts):
    		xent = model.LabelCrossEntropy([output, label], 'xent')
    		loss = model.AveragedLoss(xent, "loss")

    		model.AddGradientOperators([loss])

    		if opt_type == 'adam':
    		    if policy == 'step':
    		        opt = optimizer.build_adam(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, beta1=beta1, beta2=beta2, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_adam(model, base_learning_rate=base_learning_rate, policy=policy, beta1=beta1, beta2=beta2, epsilon=epsilon)
    		    print("adam optimizer selected")
    		elif opt_type == 'sgd':
    		    if policy == 'step':
    		        opt = optimizer.build_sgd(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, gamma=gamma, momentum=momentum)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_sgd(model, base_learning_rate=base_learning_rate, policy=policy, gamma=gamma, momentum=momentum)
    		    print("sgd optimizer selected")
    		elif opt_type == 'rmsprop':
    		    if policy == 'step':
    		        opt = optimizer.build_rms_prop(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, decay=gamma, momentum=momentum, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_rms_prop(model, base_learning_rate=base_learning_rate, policy=policy, decay=gamma, momentum=momentum, epsilon=epsilon)
    		    print("rmsprop optimizer selected")
    		elif opt_type == 'adagrad':
    		    if policy == 'step':
    		        opt = optimizer.build_adagrad(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, decay=gamma, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_adagrad(model, base_learning_rate=base_learning_rate, policy=policy, decay=gamma, epsilon=epsilon)
    		    print("adagrad optimizer selected")

    def add_accuracy(self, model, output, label, device_opts, eval_metric):
        with core.DeviceScope(device_opts):
            if eval_metric == 'accuracy':
                accuracy = brew.accuracy(model, [output, label], "accuracy")
            elif eval_metric == 'top_k_accuracy':
                accuracy = brew.accuracy(model, [output, label], "accuracy", top_k=3)
            return accuracy

265
266
    def train(self, num_epoch=1000, batch_size=64, context='gpu', eval_metric='accuracy', opt_type='adam', base_learning_rate=0.001, weight_decay=0.001, policy='fixed', stepsize=1, epsilon=1E-8, beta1=0.9, beta2=0.999, gamma=0.999, momentum=0.9) :
        if context == 'cpu':
267
268
            device_opts = core.DeviceOption(caffe2_pb2.CPU, 0)
            print("CPU mode selected")
269
        elif context == 'gpu':
270
271
272
            device_opts = core.DeviceOption(caffe2_pb2.CUDA, 0)
            print("GPU mode selected")

273
    	workspace.ResetWorkspace(self._model_dir_)
274
275
276
277

    	arg_scope = {"order": "NCHW"}
    	# == Training model ==
    	train_model= model_helper.ModelHelper(name="train_net", arg_scope=arg_scope)
278
    	data, label, train_dataset_size = self.add_input(train_model, batch_size=batch_size, db=os.path.join(self._data_dir_, 'mnist-train-nchw-lmdb'), db_type='lmdb', device_opts=device_opts)
279
280
281
282
283
284
285
286
287
288
289
    	softmax = self.create_model(train_model, data, device_opts=device_opts)
    	self.add_training_operators(train_model, softmax, label, device_opts, opt_type, base_learning_rate, policy, stepsize, epsilon, beta1, beta2, gamma, momentum)
    	self.add_accuracy(train_model, softmax, label, device_opts, eval_metric)
    	with core.DeviceScope(device_opts):
    		brew.add_weight_decay(train_model, weight_decay)

    	# Initialize and create the training network
    	workspace.RunNetOnce(train_model.param_init_net)
    	workspace.CreateNet(train_model.net, overwrite=True)

    	# Main Training Loop
290
291
    	print("== Starting Training for " + str(num_epoch) + " epochs ==")
    	for i in range(num_epoch):
292
    		workspace.RunNet(train_model.net)
293
294
    		if i % 50 == 0:
    			print 'Iter ' + str(i) + ': ' + 'Loss ' + str(workspace.FetchBlob("loss")) + ' - ' + 'Accuracy ' + str(workspace.FetchBlob('accuracy'))
295
296
297
298
299
    	print("Training done")

    	print("== Running Test model ==")
    	# == Testing model. ==
    	test_model= model_helper.ModelHelper(name="test_net", arg_scope=arg_scope, init_params=False)
300
    	data, label, test_dataset_size = self.add_input(test_model, batch_size=batch_size, db=os.path.join(self._data_dir_, 'mnist-test-nchw-lmdb'), db_type='lmdb', device_opts=device_opts)
301
302
303
304
305
306
    	softmax = self.create_model(test_model, data, device_opts=device_opts)
    	self.add_accuracy(test_model, predictions, label, device_opts, eval_metric)
    	workspace.RunNetOnce(test_model.param_init_net)
    	workspace.CreateNet(test_model.net, overwrite=True)

    	# Main Testing Loop
307
308
    	test_accuracy = np.zeros(test_dataset_size/batch_size)
    	for i in range(test_dataset_size/batch_size):
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
    		# Run a forward pass of the net on the current batch
    		workspace.RunNet(test_model.net)
    		# Collect the batch accuracy from the workspace
    		test_accuracy[i] = workspace.FetchBlob('accuracy')

    	print('Test_accuracy: {:.4f}'.format(test_accuracy.mean()))

    	# == Deployment model. ==
    	# We simply need the main AddModel part.
    	deploy_model = model_helper.ModelHelper(name="deploy_net", arg_scope=arg_scope, init_params=False)
    	self.create_model(deploy_model, "data", device_opts)

    	print("Saving deploy model")
    	self.save_net(self.INIT_NET, self.PREDICT_NET, deploy_model)

    def save_net(self, init_net_path, predict_net_path, model):

    	init_net, predict_net = mobile_exporter.Export(
    		workspace,
    		model.net,
    		model.params
    	)

332
        try:
333
            os.makedirs(self._model_dir_)
334
        except OSError:
335
            if not os.path.isdir(self._model_dir_):
336
337
                raise

338
    	print("Save the model to init_net.pb and predict_net.pb")
339
    	with open(predict_net_path, 'wb') as f:
340
    		f.write(model.net._net.SerializeToString())
341
    	with open(init_net_path, 'wb') as f:
342
343
344
    		f.write(init_net.SerializeToString())

    	print("Save the model to init_net.pbtxt and predict_net.pbtxt")
345
346

    	with open(init_net_path.replace('.pb','.pbtxt'), 'w') as f:
347
    		f.write(str(init_net))
348
    	with open(predict_net_path.replace('.pb','.pbtxt'), 'w') as f:
349
350
351
352
    		f.write(str(predict_net))
    	print("== Saved init_net and predict_net ==")

    def load_net(self, init_net_path, predict_net_path, device_opts):
353
354
355
356
357
358
359
360
361
        if not os.path.isfile(init_net_path):
            logging.error("Network loading failure. File '" + os.path.abspath(init_net_path) + "' does not exist.")
            sys.exit(1)
        elif not os.path.isfile(predict_net_path):
            logging.error("Network loading failure. File '" + os.path.abspath(predict_net_path) + "' does not exist.")
            sys.exit(1)

        init_def = caffe2_pb2.NetDef()
    	with open(init_net_path, 'rb') as f:
362
363
364
365
366
    		init_def.ParseFromString(f.read())
    		init_def.device_option.CopyFrom(device_opts)
    		workspace.RunNetOnce(init_def.SerializeToString())

    	net_def = caffe2_pb2.NetDef()
367
    	with open(predict_net_path, 'rb') as f:
368
369
370
    		net_def.ParseFromString(f.read())
    		net_def.device_option.CopyFrom(device_opts)
    		workspace.CreateNet(net_def.SerializeToString(), overwrite=True)
371
    	print("== Loaded init_net and predict_net ==")