CNNCreator_LeNet.py 11.1 KB
Newer Older
1 2 3 4 5 6 7 8 9
from caffe2.python import workspace, core, model_helper, brew, optimizer
from caffe2.python.predictor import mobile_exporter
from caffe2.proto import caffe2_pb2
import numpy as np
import math
import logging
import os
import sys
import lmdb
10

11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61
class CNNCreator_LeNet:

    module = None
    _current_dir_ = os.path.join('./')
    _data_dir_    = os.path.join(_current_dir_, 'data', 'LeNet')
    _model_dir_   = os.path.join(_current_dir_, 'model', 'LeNet')

    _init_net_    = os.path.join(_model_dir_, 'init_net.pb')
    _predict_net_ = os.path.join(_model_dir_, 'predict_net.pb')

    def get_total_num_iter(self, num_epoch, batch_size, dataset_size):
        #Force floating point calculation
        batch_size_float = float(batch_size)
        dataset_size_float = float(dataset_size)

        iterations_float = math.ceil(num_epoch*(dataset_size_float/batch_size_float))
        iterations_int = int(iterations_float)

        return iterations_int


    def add_input(self, model, batch_size, db, db_type, device_opts):
        with core.DeviceScope(device_opts):
            if not os.path.isdir(db):
                logging.error("Data loading failure. Directory '" + os.path.abspath(db) + "' does not exist.")
                sys.exit(1)
            elif not (os.path.isfile(os.path.join(db, 'data.mdb')) and os.path.isfile(os.path.join(db, 'lock.mdb'))):
                logging.error("Data loading failure. Directory '" + os.path.abspath(db) + "' does not contain lmdb files.")
                sys.exit(1)

            # load the data
            data_uint8, label = brew.db_input(
                model,
                blobs_out=["data_uint8", "label"],
                batch_size=batch_size,
                db=db,
                db_type=db_type,
            )
            # cast the data to float
            data = model.Cast(data_uint8, "data", to=core.DataType.FLOAT)

            # scale data from [0,255] down to [0,1]
            data = model.Scale(data, data, scale=float(1./256))

            # don't need the gradient for the backward pass
            data = model.StopGradient(data, data)

            dataset_size = int (lmdb.open(db).stat()['entries'])

            return data, label, dataset_size

62
    def create_model(self, model, data, device_opts, is_test):
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
    	with core.DeviceScope(device_opts):

    		image = data
    		# image, output shape: {[1,28,28]}
    		conv1_ = brew.conv(model, image, 'conv1_', dim_in=1, dim_out=20, kernel=5, stride=1)
    		# conv1_, output shape: {[20,24,24]}
    		pool1_ = brew.max_pool(model, conv1_, 'pool1_', kernel=2, stride=2)
    		# pool1_, output shape: {[20,12,12]}
    		conv2_ = brew.conv(model, pool1_, 'conv2_', dim_in=20, dim_out=50, kernel=5, stride=1)
    		# conv2_, output shape: {[50,8,8]}
    		pool2_ = brew.max_pool(model, conv2_, 'pool2_', kernel=2, stride=2)
    		# pool2_, output shape: {[50,4,4]}
    		fc2_ = brew.fc(model, pool2_, 'fc2_', dim_in=50 * 4 * 4, dim_out=500)
    		# fc2_, output shape: {[500,1,1]}
    		relu2_ = brew.relu(model, fc2_, fc2_)
    		fc3_ = brew.fc(model, relu2_, 'fc3_', dim_in=500, dim_out=10)
    		# fc3_, output shape: {[10,1,1]}
    		predictions = brew.softmax(model, fc3_, 'predictions')

    		return predictions

    # this adds the loss and optimizer
85
    def add_training_operators(self, model, output, label, device_opts, loss, opt_type, base_learning_rate, policy, stepsize, epsilon, beta1, beta2, gamma, momentum) :
86
    	with core.DeviceScope(device_opts):
87 88 89 90 91 92
    		if loss == 'cross_entropy':
    		    xent = model.LabelCrossEntropy([output, label], 'xent')
    		    loss = model.AveragedLoss(xent, "loss")
    		elif loss == 'euclidean':
    		    dist = model.net.SquaredL2Distance([label, output], 'dist')
    		    loss = dist.AveragedLoss([], ['loss'])
93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128

    		model.AddGradientOperators([loss])

    		if opt_type == 'adam':
    		    if policy == 'step':
    		        opt = optimizer.build_adam(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, beta1=beta1, beta2=beta2, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_adam(model, base_learning_rate=base_learning_rate, policy=policy, beta1=beta1, beta2=beta2, epsilon=epsilon)
    		    print("adam optimizer selected")
    		elif opt_type == 'sgd':
    		    if policy == 'step':
    		        opt = optimizer.build_sgd(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, gamma=gamma, momentum=momentum)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_sgd(model, base_learning_rate=base_learning_rate, policy=policy, gamma=gamma, momentum=momentum)
    		    print("sgd optimizer selected")
    		elif opt_type == 'rmsprop':
    		    if policy == 'step':
    		        opt = optimizer.build_rms_prop(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, decay=gamma, momentum=momentum, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_rms_prop(model, base_learning_rate=base_learning_rate, policy=policy, decay=gamma, momentum=momentum, epsilon=epsilon)
    		    print("rmsprop optimizer selected")
    		elif opt_type == 'adagrad':
    		    if policy == 'step':
    		        opt = optimizer.build_adagrad(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, decay=gamma, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_adagrad(model, base_learning_rate=base_learning_rate, policy=policy, decay=gamma, epsilon=epsilon)
    		    print("adagrad optimizer selected")

    def add_accuracy(self, model, output, label, device_opts, eval_metric):
        with core.DeviceScope(device_opts):
            if eval_metric == 'accuracy':
                accuracy = brew.accuracy(model, [output, label], "accuracy")
            elif eval_metric == 'top_k_accuracy':
                accuracy = brew.accuracy(model, [output, label], "accuracy", top_k=3)
            return accuracy

129
    def train(self, num_epoch=1000, batch_size=64, context='gpu', eval_metric='accuracy', loss='cross_entropy', opt_type='adam', base_learning_rate=0.001, weight_decay=0.001, policy='fixed', stepsize=1, epsilon=1E-8, beta1=0.9, beta2=0.999, gamma=0.999, momentum=0.9) :
130 131 132 133 134 135 136 137 138 139 140 141 142
        if context == 'cpu':
            device_opts = core.DeviceOption(caffe2_pb2.CPU, 0)
            print("CPU mode selected")
        elif context == 'gpu':
            device_opts = core.DeviceOption(caffe2_pb2.CUDA, 0)
            print("GPU mode selected")

    	workspace.ResetWorkspace(self._model_dir_)

    	arg_scope = {"order": "NCHW"}
    	# == Training model ==
    	train_model= model_helper.ModelHelper(name="train_net", arg_scope=arg_scope)
    	data, label, train_dataset_size = self.add_input(train_model, batch_size=batch_size, db=os.path.join(self._data_dir_, 'train_lmdb'), db_type='lmdb', device_opts=device_opts)
143
    	predictions = self.create_model(train_model, data, device_opts=device_opts, is_test=False)
144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165
    	self.add_training_operators(train_model, predictions, label, device_opts, opt_type, base_learning_rate, policy, stepsize, epsilon, beta1, beta2, gamma, momentum)
    	self.add_accuracy(train_model, predictions, label, device_opts, eval_metric)
    	with core.DeviceScope(device_opts):
    		brew.add_weight_decay(train_model, weight_decay)

    	# Initialize and create the training network
    	workspace.RunNetOnce(train_model.param_init_net)
    	workspace.CreateNet(train_model.net, overwrite=True)

    	# Main Training Loop
    	iterations = self.get_total_num_iter(num_epoch, batch_size, train_dataset_size)
        print("** Starting Training for " + str(num_epoch) + " epochs = " + str(iterations) + " iterations **")
    	for i in range(iterations):
    		workspace.RunNet(train_model.net)
    		if i % 50 == 0:
    			print 'Iter ' + str(i) + ': ' + 'Loss ' + str(workspace.FetchBlob("loss")) + ' - ' + 'Accuracy ' + str(workspace.FetchBlob('accuracy'))
    	print("Training done")

    	print("== Running Test model ==")
    	# == Testing model. ==
    	test_model= model_helper.ModelHelper(name="test_net", arg_scope=arg_scope, init_params=False)
    	data, label, test_dataset_size = self.add_input(test_model, batch_size=batch_size, db=os.path.join(self._data_dir_, 'test_lmdb'), db_type='lmdb', device_opts=device_opts)
166
    	predictions = self.create_model(test_model, data, device_opts=device_opts, is_test=True)
167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183
    	self.add_accuracy(test_model, predictions, label, device_opts, eval_metric)
    	workspace.RunNetOnce(test_model.param_init_net)
    	workspace.CreateNet(test_model.net, overwrite=True)

    	# Main Testing Loop
    	test_accuracy = np.zeros(test_dataset_size/batch_size)
    	for i in range(test_dataset_size/batch_size):
    		# Run a forward pass of the net on the current batch
    		workspace.RunNet(test_model.net)
    		# Collect the batch accuracy from the workspace
    		test_accuracy[i] = workspace.FetchBlob('accuracy')

    	print('Test_accuracy: {:.4f}'.format(test_accuracy.mean()))

    	# == Deployment model. ==
    	# We simply need the main AddModel part.
    	deploy_model = model_helper.ModelHelper(name="deploy_net", arg_scope=arg_scope, init_params=False)
184
    	self.create_model(deploy_model, "data", device_opts, is_test=True)
185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236

    	print("Saving deploy model")
    	self.save_net(self._init_net_, self._predict_net_, deploy_model)

    def save_net(self, init_net_path, predict_net_path, model):

    	init_net, predict_net = mobile_exporter.Export(
    		workspace,
    		model.net,
    		model.params
    	)

        try:
            os.makedirs(self._model_dir_)
        except OSError:
            if not os.path.isdir(self._model_dir_):
                raise

    	print("Save the model to init_net.pb and predict_net.pb")
    	with open(predict_net_path, 'wb') as f:
    		f.write(model.net._net.SerializeToString())
    	with open(init_net_path, 'wb') as f:
    		f.write(init_net.SerializeToString())

    	print("Save the model to init_net.pbtxt and predict_net.pbtxt")

    	with open(init_net_path.replace('.pb','.pbtxt'), 'w') as f:
    		f.write(str(init_net))
    	with open(predict_net_path.replace('.pb','.pbtxt'), 'w') as f:
    		f.write(str(predict_net))
    	print("== Saved init_net and predict_net ==")

    def load_net(self, init_net_path, predict_net_path, device_opts):
        if not os.path.isfile(init_net_path):
            logging.error("Network loading failure. File '" + os.path.abspath(init_net_path) + "' does not exist.")
            sys.exit(1)
        elif not os.path.isfile(predict_net_path):
            logging.error("Network loading failure. File '" + os.path.abspath(predict_net_path) + "' does not exist.")
            sys.exit(1)

        init_def = caffe2_pb2.NetDef()
    	with open(init_net_path, 'rb') as f:
    		init_def.ParseFromString(f.read())
    		init_def.device_option.CopyFrom(device_opts)
    		workspace.RunNetOnce(init_def.SerializeToString())

    	net_def = caffe2_pb2.NetDef()
    	with open(predict_net_path, 'rb') as f:
    		net_def.ParseFromString(f.read())
    		net_def.device_option.CopyFrom(device_opts)
    		workspace.CreateNet(net_def.SerializeToString(), overwrite=True)
    	print("== Loaded init_net and predict_net ==")