CNNCreator_CifarClassifierNetwork.py 17.7 KB
Newer Older
1
from caffe2.python import workspace, core, model_helper, brew, optimizer
2 3 4 5
from caffe2.python.predictor import mobile_exporter
from caffe2.proto import caffe2_pb2
import numpy as np

6
#import logging
7
import os
8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
#import shutil
#import sys
#import cv2

class CNNCreator_CifarClassifierNetwork:

    module = None
    _data_dir_ = "data/CifarClassifierNetwork/"
    _model_dir_ = "model/CifarClassifierNetwork/"
    _model_prefix_ = "CifarClassifierNetwork"
    _input_names_ = ['data']
    _input_shapes_ = [(3,32,32)]
    _output_names_ = ['softmax_label']


    CURRENT_FOLDER      = os.path.join('./')
    DATA_FOLDER         = os.path.join(CURRENT_FOLDER, 'data')
    ROOT_FOLDER         = os.path.join(CURRENT_FOLDER, 'model')

    #TODO: Modify paths to make them dynamic
    #For Windows
    #INIT_NET = 'D:/Yeverino/git_projects/Caffe2_scripts/caffe2_ema_cnncreator/init_net'
    #PREDICT_NET = 'D:/Yeverino/git_projects/Caffe2_scripts/caffe2_ema_cnncreator/predict_net'

    #For Ubuntu
    INIT_NET = './model/init_net'
    PREDICT_NET = './model/predict_net'

    def add_input(self, model, batch_size, db, db_type, device_opts):
        with core.DeviceScope(device_opts):
            # load the data
            data_uint8, label = brew.db_input(
                model,
                blobs_out=["data_uint8", "label"],
                batch_size=batch_size,
                db=db,
                db_type=db_type,
            )
            # cast the data to float
            data = model.Cast(data_uint8, "data", to=core.DataType.FLOAT)

            # scale data from [0,255] down to [0,1]
            data = model.Scale(data, data, scale=float(1./256))

            # don't need the gradient for the backward pass
            data = model.StopGradient(data, data)
            return data, label

    def create_model(self, model, data, device_opts):
    	with core.DeviceScope(device_opts):

    		data = data
    		# data, output shape: {[3,32,32]}
61
  	
62 63 64 65 66 67 68 69 70 71 72
    		conv2_1_ = brew.conv(model, data, 'conv2_1_', dim_in=1, dim_out=8, kernel=3, stride=1)
    		# conv2_1_, output shape: {[8,32,32]}
    		batchnorm2_1_ = mx.symbol.BatchNorm(data=conv2_1_,
    		    fix_gamma=True,
    		    name="batchnorm2_1_")
    		relu2_1_ = brew.relu(model, batchnorm2_1_, batchnorm2_1_)
      		conv3_1_ = brew.conv(model, relu2_1_, 'conv3_1_', dim_in=8, dim_out=8, kernel=3, stride=1)
    		# conv3_1_, output shape: {[8,32,32]}
    		batchnorm3_1_ = mx.symbol.BatchNorm(data=conv3_1_,
    		    fix_gamma=True,
    		    name="batchnorm3_1_")
73
	
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280
    		conv2_2_ = brew.conv(model, data, 'conv2_2_', dim_in=1, dim_out=8, kernel=1, stride=1)
    		# conv2_2_, output shape: {[8,32,32]}
    		batchnorm2_2_ = mx.symbol.BatchNorm(data=conv2_2_,
    		    fix_gamma=True,
    		    name="batchnorm2_2_")
    		add4_ = batchnorm3_1_ + batchnorm2_2_
    		# add4_, output shape: {[8,32,32]}
    		relu4_ = brew.relu(model, add4_, add4_)
      		conv5_1_ = brew.conv(model, relu4_, 'conv5_1_', dim_in=8, dim_out=16, kernel=3, stride=2)
    		# conv5_1_, output shape: {[16,16,16]}
    		batchnorm5_1_ = mx.symbol.BatchNorm(data=conv5_1_,
    		    fix_gamma=True,
    		    name="batchnorm5_1_")
    		relu5_1_ = brew.relu(model, batchnorm5_1_, batchnorm5_1_)
      		conv6_1_ = brew.conv(model, relu5_1_, 'conv6_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv6_1_, output shape: {[16,16,16]}
    		batchnorm6_1_ = mx.symbol.BatchNorm(data=conv6_1_,
    		    fix_gamma=True,
    		    name="batchnorm6_1_")
    		conv5_2_ = brew.conv(model, relu4_, 'conv5_2_', dim_in=8, dim_out=16, kernel=1, stride=2)
    		# conv5_2_, output shape: {[16,16,16]}
    		batchnorm5_2_ = mx.symbol.BatchNorm(data=conv5_2_,
    		    fix_gamma=True,
    		    name="batchnorm5_2_")
    		add7_ = batchnorm6_1_ + batchnorm5_2_
    		# add7_, output shape: {[16,16,16]}
    		relu7_ = brew.relu(model, add7_, add7_)
      		conv8_1_ = brew.conv(model, relu7_, 'conv8_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv8_1_, output shape: {[16,16,16]}
    		batchnorm8_1_ = mx.symbol.BatchNorm(data=conv8_1_,
    		    fix_gamma=True,
    		    name="batchnorm8_1_")
    		relu8_1_ = brew.relu(model, batchnorm8_1_, batchnorm8_1_)
      		conv9_1_ = brew.conv(model, relu8_1_, 'conv9_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv9_1_, output shape: {[16,16,16]}
    		batchnorm9_1_ = mx.symbol.BatchNorm(data=conv9_1_,
    		    fix_gamma=True,
    		    name="batchnorm9_1_")
    		add10_ = batchnorm9_1_ + relu7_
    		# add10_, output shape: {[16,16,16]}
    		relu10_ = brew.relu(model, add10_, add10_)
      		conv11_1_ = brew.conv(model, relu10_, 'conv11_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv11_1_, output shape: {[16,16,16]}
    		batchnorm11_1_ = mx.symbol.BatchNorm(data=conv11_1_,
    		    fix_gamma=True,
    		    name="batchnorm11_1_")
    		relu11_1_ = brew.relu(model, batchnorm11_1_, batchnorm11_1_)
      		conv12_1_ = brew.conv(model, relu11_1_, 'conv12_1_', dim_in=16, dim_out=16, kernel=3, stride=1)
    		# conv12_1_, output shape: {[16,16,16]}
    		batchnorm12_1_ = mx.symbol.BatchNorm(data=conv12_1_,
    		    fix_gamma=True,
    		    name="batchnorm12_1_")
    		add13_ = batchnorm12_1_ + relu10_
    		# add13_, output shape: {[16,16,16]}
    		relu13_ = brew.relu(model, add13_, add13_)
      		conv14_1_ = brew.conv(model, relu13_, 'conv14_1_', dim_in=16, dim_out=32, kernel=3, stride=2)
    		# conv14_1_, output shape: {[32,8,8]}
    		batchnorm14_1_ = mx.symbol.BatchNorm(data=conv14_1_,
    		    fix_gamma=True,
    		    name="batchnorm14_1_")
    		relu14_1_ = brew.relu(model, batchnorm14_1_, batchnorm14_1_)
      		conv15_1_ = brew.conv(model, relu14_1_, 'conv15_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv15_1_, output shape: {[32,8,8]}
    		batchnorm15_1_ = mx.symbol.BatchNorm(data=conv15_1_,
    		    fix_gamma=True,
    		    name="batchnorm15_1_")
    		conv14_2_ = brew.conv(model, relu13_, 'conv14_2_', dim_in=16, dim_out=32, kernel=1, stride=2)
    		# conv14_2_, output shape: {[32,8,8]}
    		batchnorm14_2_ = mx.symbol.BatchNorm(data=conv14_2_,
    		    fix_gamma=True,
    		    name="batchnorm14_2_")
    		add16_ = batchnorm15_1_ + batchnorm14_2_
    		# add16_, output shape: {[32,8,8]}
    		relu16_ = brew.relu(model, add16_, add16_)
      		conv17_1_ = brew.conv(model, relu16_, 'conv17_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv17_1_, output shape: {[32,8,8]}
    		batchnorm17_1_ = mx.symbol.BatchNorm(data=conv17_1_,
    		    fix_gamma=True,
    		    name="batchnorm17_1_")
    		relu17_1_ = brew.relu(model, batchnorm17_1_, batchnorm17_1_)
      		conv18_1_ = brew.conv(model, relu17_1_, 'conv18_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv18_1_, output shape: {[32,8,8]}
    		batchnorm18_1_ = mx.symbol.BatchNorm(data=conv18_1_,
    		    fix_gamma=True,
    		    name="batchnorm18_1_")
    		add19_ = batchnorm18_1_ + relu16_
    		# add19_, output shape: {[32,8,8]}
    		relu19_ = brew.relu(model, add19_, add19_)
      		conv20_1_ = brew.conv(model, relu19_, 'conv20_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv20_1_, output shape: {[32,8,8]}
    		batchnorm20_1_ = mx.symbol.BatchNorm(data=conv20_1_,
    		    fix_gamma=True,
    		    name="batchnorm20_1_")
    		relu20_1_ = brew.relu(model, batchnorm20_1_, batchnorm20_1_)
      		conv21_1_ = brew.conv(model, relu20_1_, 'conv21_1_', dim_in=32, dim_out=32, kernel=3, stride=1)
    		# conv21_1_, output shape: {[32,8,8]}
    		batchnorm21_1_ = mx.symbol.BatchNorm(data=conv21_1_,
    		    fix_gamma=True,
    		    name="batchnorm21_1_")
    		add22_ = batchnorm21_1_ + relu19_
    		# add22_, output shape: {[32,8,8]}
    		relu22_ = brew.relu(model, add22_, add22_)
      		conv23_1_ = brew.conv(model, relu22_, 'conv23_1_', dim_in=32, dim_out=64, kernel=3, stride=2)
    		# conv23_1_, output shape: {[64,4,4]}
    		batchnorm23_1_ = mx.symbol.BatchNorm(data=conv23_1_,
    		    fix_gamma=True,
    		    name="batchnorm23_1_")
    		relu23_1_ = brew.relu(model, batchnorm23_1_, batchnorm23_1_)
      		conv24_1_ = brew.conv(model, relu23_1_, 'conv24_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv24_1_, output shape: {[64,4,4]}
    		batchnorm24_1_ = mx.symbol.BatchNorm(data=conv24_1_,
    		    fix_gamma=True,
    		    name="batchnorm24_1_")
    		conv23_2_ = brew.conv(model, relu22_, 'conv23_2_', dim_in=32, dim_out=64, kernel=1, stride=2)
    		# conv23_2_, output shape: {[64,4,4]}
    		batchnorm23_2_ = mx.symbol.BatchNorm(data=conv23_2_,
    		    fix_gamma=True,
    		    name="batchnorm23_2_")
    		add25_ = batchnorm24_1_ + batchnorm23_2_
    		# add25_, output shape: {[64,4,4]}
    		relu25_ = brew.relu(model, add25_, add25_)
      		conv26_1_ = brew.conv(model, relu25_, 'conv26_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv26_1_, output shape: {[64,4,4]}
    		batchnorm26_1_ = mx.symbol.BatchNorm(data=conv26_1_,
    		    fix_gamma=True,
    		    name="batchnorm26_1_")
    		relu26_1_ = brew.relu(model, batchnorm26_1_, batchnorm26_1_)
      		conv27_1_ = brew.conv(model, relu26_1_, 'conv27_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv27_1_, output shape: {[64,4,4]}
    		batchnorm27_1_ = mx.symbol.BatchNorm(data=conv27_1_,
    		    fix_gamma=True,
    		    name="batchnorm27_1_")
    		add28_ = batchnorm27_1_ + relu25_
    		# add28_, output shape: {[64,4,4]}
    		relu28_ = brew.relu(model, add28_, add28_)
      		conv29_1_ = brew.conv(model, relu28_, 'conv29_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv29_1_, output shape: {[64,4,4]}
    		batchnorm29_1_ = mx.symbol.BatchNorm(data=conv29_1_,
    		    fix_gamma=True,
    		    name="batchnorm29_1_")
    		relu29_1_ = brew.relu(model, batchnorm29_1_, batchnorm29_1_)
      		conv30_1_ = brew.conv(model, relu29_1_, 'conv30_1_', dim_in=64, dim_out=64, kernel=3, stride=1)
    		# conv30_1_, output shape: {[64,4,4]}
    		batchnorm30_1_ = mx.symbol.BatchNorm(data=conv30_1_,
    		    fix_gamma=True,
    		    name="batchnorm30_1_")
    		add31_ = batchnorm30_1_ + relu28_
    		# add31_, output shape: {[64,4,4]}
    		relu31_ = brew.relu(model, add31_, add31_)
    		globalpooling31_ = mx.symbol.Pooling(data=relu31_,
    		    global_pool=True,
    		    kernel=(1,1),
    		    pool_type="avg",
    		    name="globalpooling31_")
    		# globalpooling31_, output shape: {[64,1,1]}
    		fc31_ = brew.fc(model, globalpooling31_, 'fc31_', dim_in=64, dim_out=128)
    		# fc31_, output shape: {[128,1,1]}
    		dropout31_ = mx.symbol.Dropout(data=fc31_,
    		    p=0.5,
    		    name="dropout31_")
    		fc32_ = brew.fc(model, dropout31_, 'fc32_', dim_in=128, dim_out=10)
    		# fc32_, output shape: {[10,1,1]}
    		softmax = brew.softmax(model, fc32_, 'softmax')

    		return softmax

    # this adds the loss and optimizer
    def add_training_operators(self, model, output, label, device_opts, opt_type, base_learning_rate, policy, stepsize, epsilon, beta1, beta2, gamma, momentum) :
    	with core.DeviceScope(device_opts):
    		xent = model.LabelCrossEntropy([output, label], 'xent')
    		loss = model.AveragedLoss(xent, "loss")

    		model.AddGradientOperators([loss])

    		if opt_type == 'adam':
    		    if policy == 'step':
    		        opt = optimizer.build_adam(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, beta1=beta1, beta2=beta2, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_adam(model, base_learning_rate=base_learning_rate, policy=policy, beta1=beta1, beta2=beta2, epsilon=epsilon)
    		    print("adam optimizer selected")
    		elif opt_type == 'sgd':
    		    if policy == 'step':
    		        opt = optimizer.build_sgd(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, gamma=gamma, momentum=momentum)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_sgd(model, base_learning_rate=base_learning_rate, policy=policy, gamma=gamma, momentum=momentum)
    		    print("sgd optimizer selected")
    		elif opt_type == 'rmsprop':
    		    if policy == 'step':
    		        opt = optimizer.build_rms_prop(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, decay=gamma, momentum=momentum, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_rms_prop(model, base_learning_rate=base_learning_rate, policy=policy, decay=gamma, momentum=momentum, epsilon=epsilon)
    		    print("rmsprop optimizer selected")
    		elif opt_type == 'adagrad':
    		    if policy == 'step':
    		        opt = optimizer.build_adagrad(model, base_learning_rate=base_learning_rate, policy=policy, stepsize=stepsize, decay=gamma, epsilon=epsilon)
    		    elif policy == 'fixed' or policy == 'inv':
    		        opt = optimizer.build_adagrad(model, base_learning_rate=base_learning_rate, policy=policy, decay=gamma, epsilon=epsilon)
    		    print("adagrad optimizer selected")

    def add_accuracy(self, model, output, label, device_opts, eval_metric):
        with core.DeviceScope(device_opts):
            if eval_metric == 'accuracy':
                accuracy = brew.accuracy(model, [output, label], "accuracy")
            elif eval_metric == 'top_k_accuracy':
                accuracy = brew.accuracy(model, [output, label], "accuracy", top_k=3)
            return accuracy

281 282
    def train(self, num_epoch=1000, batch_size=64, context='gpu', eval_metric='accuracy', opt_type='adam', base_learning_rate=0.001, weight_decay=0.001, policy='fixed', stepsize=1, epsilon=1E-8, beta1=0.9, beta2=0.999, gamma=0.999, momentum=0.9) :
        if context == 'cpu':
283 284
            device_opts = core.DeviceOption(caffe2_pb2.CPU, 0)
            print("CPU mode selected")
285
        elif context == 'gpu':
286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376
            device_opts = core.DeviceOption(caffe2_pb2.CUDA, 0)
            print("GPU mode selected")

    	workspace.ResetWorkspace(self.ROOT_FOLDER)

    	arg_scope = {"order": "NCHW"}
    	# == Training model ==
    	train_model= model_helper.ModelHelper(name="train_net", arg_scope=arg_scope)
    	data, label = self.add_input(train_model, batch_size=batch_size, db=os.path.join(self.DATA_FOLDER, 'mnist-train-nchw-lmdb'), db_type='lmdb', device_opts=device_opts)
    	softmax = self.create_model(train_model, data, device_opts=device_opts)
    	self.add_training_operators(train_model, softmax, label, device_opts, opt_type, base_learning_rate, policy, stepsize, epsilon, beta1, beta2, gamma, momentum)
    	self.add_accuracy(train_model, softmax, label, device_opts, eval_metric)
    	with core.DeviceScope(device_opts):
    		brew.add_weight_decay(train_model, weight_decay)

    	# Initialize and create the training network
    	workspace.RunNetOnce(train_model.param_init_net)
    	workspace.CreateNet(train_model.net, overwrite=True)

    	# Main Training Loop
    	print("== Starting Training for " + str(num_epoch) + " num_epoch ==")
    	for j in range(0, num_epoch):
    		workspace.RunNet(train_model.net)
    		if j % 50 == 0:
    			print 'Iter: ' + str(j) + ': ' + 'Loss ' + str(workspace.FetchBlob("loss")) + ' - ' + 'Accuracy ' + str(workspace.FetchBlob('accuracy'))
    	print("Training done")

    	print("== Running Test model ==")
    	# == Testing model. ==
    	test_model= model_helper.ModelHelper(name="test_net", arg_scope=arg_scope, init_params=False)
    	data, label = self.add_input(test_model, batch_size=100, db=os.path.join(self.DATA_FOLDER, 'mnist-test-nchw-lmdb'), db_type='lmdb', device_opts=device_opts)
    	softmax = self.create_model(test_model, data, device_opts=device_opts)
    	self.add_accuracy(test_model, predictions, label, device_opts, eval_metric)
    	workspace.RunNetOnce(test_model.param_init_net)
    	workspace.CreateNet(test_model.net, overwrite=True)

    	# Main Testing Loop
    	# batch size:        100
    	# iteration:         100
    	# total test images: 10000
    	test_accuracy = np.zeros(100)
    	for i in range(100):
    		# Run a forward pass of the net on the current batch
    		workspace.RunNet(test_model.net)
    		# Collect the batch accuracy from the workspace
    		test_accuracy[i] = workspace.FetchBlob('accuracy')

    	print('Test_accuracy: {:.4f}'.format(test_accuracy.mean()))

    	# == Deployment model. ==
    	# We simply need the main AddModel part.
    	deploy_model = model_helper.ModelHelper(name="deploy_net", arg_scope=arg_scope, init_params=False)
    	self.create_model(deploy_model, "data", device_opts)

    	print("Saving deploy model")
    	self.save_net(self.INIT_NET, self.PREDICT_NET, deploy_model)

    def save_net(self, init_net_path, predict_net_path, model):

    	init_net, predict_net = mobile_exporter.Export(
    		workspace,
    		model.net,
    		model.params
    	)

    	print("Save the model to init_net.pb and predict_net.pb")
    	with open(predict_net_path + '.pb', 'wb') as f:
    		f.write(model.net._net.SerializeToString())
    	with open(init_net_path + '.pb', 'wb') as f:
    		f.write(init_net.SerializeToString())

    	print("Save the model to init_net.pbtxt and predict_net.pbtxt")
    	with open(init_net_path + '.pbtxt', 'w') as f:
    		f.write(str(init_net))
    	with open(predict_net_path + '.pbtxt', 'w') as f:
    		f.write(str(predict_net))
    	print("== Saved init_net and predict_net ==")

    def load_net(self, init_net_path, predict_net_path, device_opts):
    	init_def = caffe2_pb2.NetDef()
    	with open(init_net_path + '.pb', 'rb') as f:
    		init_def.ParseFromString(f.read())
    		init_def.device_option.CopyFrom(device_opts)
    		workspace.RunNetOnce(init_def.SerializeToString())

    	net_def = caffe2_pb2.NetDef()
    	with open(predict_net_path + '.pb', 'rb') as f:
    		net_def.ParseFromString(f.read())
    		net_def.device_option.CopyFrom(device_opts)
    		workspace.CreateNet(net_def.SerializeToString(), overwrite=True)
    	print("== Loaded init_net and predict_net ==")