
Mindstorms EV3 Toolbox
Documentation

Release v1.0

LfB - RWTH Aachen

Aug 15, 2017

CONTENTS

1 Contents 3
1.1 EV3 . 3
1.2 Motor . 6
1.3 Sensor . 10
1.4 hidapi . 13
1.5 usbBrickIO . 17
1.6 btBrickIO . 18

MATLAB Module Index 21

Index 23

i

ii

Mindstorms EV3 Toolbox Documentation, Release v1.0

Hi there! This is the documentation for the “Lego Mindstorms EV3” MATLAB Toolbox, developed by RWTH
Aachen. For an introduction about this toolbox, installation guides and examples, take a look at our repository.

CONTENTS 1

https://git.rwth-aachen.de/mindstorms/ev3-toolbox-matlab/blob/master/readme.md

Mindstorms EV3 Toolbox Documentation, Release v1.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

High-Level documentation

1.1 EV3

class source.EV3(varargin)

List of methods:

• connect()

• disconnect()

• stopAllMotors()

• beep()

• playTone()

• stopTone()

• tonePlayed()

• setProperties()

High-level class to work with physical bricks.

This is the ‘central’ class (from user’s view) when working with this toolbox. It delivers a convenient interface
for creating a connection to the brick and sending commands to it. An EV3-object creates 4 Motor- and 4
Sensor-objects, one for each port.

Notes

•Creating multiple EV3 objects and connecting them to different physical bricks has not been thoroughly
tested yet, but seems to work on a first glance.

•When an input argument of a method is marked as optional, the argument needs to be ‘announced’
by a preceding 2nd argument, which is a string containing the name of the argument. For exam-
ple, Motor.setProperties may be given a power-parameter. The syntax would be as follows: brickOb-
ject.motorA.setProperties(‘power’, 50);

motorA
Motor – Motor-object interfacing port A. See also Motor.

motorB
Motor – Motor-object interfacing port B. See also Motor.

3

Mindstorms EV3 Toolbox Documentation, Release v1.0

motorC
Motor – Motor-object interfacing port C. See also Motor.

motorD
Motor – Motor-object interfacing port D. See also Motor.

sensor1
Sensor – Motor-object interfacing port 1. See also Sensor.

sensor2
Sensor – Motor-object interfacing port 2. See also Sensor.

sensor3
Sensor – Motor-object interfacing port 3. See also Sensor.

sensor4
Sensor – Motor-object interfacing port 4. See also Sensor.

debug
numeric in {0,1,2} – Debug mode. [WRITABLE]

•0: Debug turned off

•1: Debug turned on for EV3-object -> enables feedback in the console about what firmware-
commands have been called when using a method

•2: Low-level-Debug turned on -> each packet sent and received is printed to the console

batteryMode
string in {‘Percentage’, ‘Voltage’} – Mode for reading battery charge. See also batteryValue.
[WRITABLE]

batteryValue
numeric – Current battery charge. Depending on batteryMode, the reading is either in percentage or
voltage. See also batteryMode. [READ-ONLY]

isConnected
bool – True if virtual brick-object is connected to physical one. [READ-ONLY]

Example

% This example expects a motor at port A and a (random) sensor at port 1 b = EV3(); % b.connect(‘usb’); %
ma = b.motorA; % ma.setProperties(‘power’, 50, ‘limitValue’, 720); % ma.start(); % % fun ma.waitFor(); %
disp(b.sensor1.value); % b.beep(); % delete b; %

beep(ev3)
Plays a ‘beep’-tone on brick.

Notes

•This equals playTone(10, 1000, 100).

Example

b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % b.beep(); %

connect(ev3, varargin)
Connects EV3-object and its Motors and Sensors to physical brick.

4 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

Parameters

• connectionType (string in {’bt’, ’usb’}) – Connection type

• serPort (string in {’/dev/rfcomm1’, ’/dev/rfcomm2’, ...}) –
Path to serial port (necessary if connectionType is ‘bt’). [OPTIONAL]

• beep (bool) – If true, EV3 beeps if connection has been established. [OPTIONAL]

Example

% Setup bluetooth connection via com-port 0 b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’);
% % Setup usb connection, beep when connection has been established b = EV3(); % b.connect(‘usb’,
‘beep’, ‘on’,); %

See also ISCONNECTED / isConnected

disconnect(ev3)
Disconnects EV3-object and its Motors and Sensors from physical brick.

Notes

•Gets called automatically when EV3-object is destroyed.

Example

b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % % do stuff b.disconnect(); %

Resetting needs a working connection in order to send reset-commands to the Brick. If the connection has
been aborted (e.g. by pulling the USB-cord), the reset-methods would fail -> catch this error and for now
do nothing.

playTone(ev3, volume, frequency, duration)
Plays tone on brick.

Parameters

• volume (numeric in [0, 100]) – in percent

• frequency (numeric in [250, 10000]) – in Hertz

• duration (numeric > 0) – in milliseconds

Example

b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % b.playTone(40, 5000, 1000); % Plays tone
with 40% volume and 5000Hz for 1 second.

setProperties(ev3, varargin)
Set multiple EV3 properties at once using MATLAB’s inputParser.

Parameters

• debug (numeric in {0,1,2}) – see EV3.debug [OPTIONAL]

• batteryMode (string in {’Voltage’/’Percentage’}) – see
EV3.batteryMode [OPTIONAL]

1.1. EV3 5

Mindstorms EV3 Toolbox Documentation, Release v1.0

Example

b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % b.setProperties(‘debug’, ‘on’, ‘batteryMode’,
‘Voltage’); % % Instead of: b.debug = ‘on’; b.batteryMode = ‘Voltage’; %

See also EV3.DEBUG, EV3.BATTERYMODE / debug, batteryMode

stopTone(ev3)
Stops tone currently played.

Example

b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % b.playTone(10,100,100000000); % Acciden-
tally given wrong tone duration :) b.stopTone(); % Stops tone immediately.

tonePlayed(ev3)
Tests if tone is currently played.

Returns status – True if a tone is being played

Return type bool

Example b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % b.playTone(10, 100, 1000); %
pause(0.5); % Small pause is necessary as tone does not start instantaneously b.tonePlayed(); % -
> Outputs 1 to console.

1.2 Motor

class source.Motor(varargin)

List of methods:

• start()

• stop()

• syncedStart()

• syncedStop()

• waitFor()

• internalReset()

• resetTachoCount()

• setBrake()

• setProperties()

High-level class to work with motors.

This class is supposed to ease the use of the brick’s motors. It is possible to set all kinds of parameters, request
the current status of the motor ports and of course send commands to the brick to be executed on the respective
port.

6 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

Notes

•You don’t need to create instances of this class. The EV3-class automatically creates instances for each
motor port, and you can work with them via the EV3-object.

•The Motor-class represents motor ports, not individual motors!

•If you start a motor with power=0, the internal state will still be set to ‘isRunning’

•When an input argument of a method is marked as optional, the argument needs to be ‘announced’
by a preceding 2nd argument, which is a string containing the name of the argument. For exam-
ple, Motor.setProperties may be given a power-parameter. The syntax would be as follows: brickOb-
ject.motorA.setProperties(‘power’, 50);

power
numeric in [-100, 100] – Power level of motor in percent. [WRITABLE]

speedRegulation
bool – Speed regulation turned on or off. When turned on, motor will try to ‘hold’ its speed at given power
level, whatever the load. In this mode, the highest possible speed depends on the load and mostly goes
up to around 70-80 (at this point, the Brick internally inputs 100% power). When turned off, motor will
constantly input the same power into the motor. The resulting speed will be somewhat lower, depending
on the load. [WRITABLE]

smoothStart
numeric s. t. smoothStart+smoothStop < limitValue – Degrees/Time indicating how far/long the motor
should smoothly start. Depending on limitMode, the input is interpreted either in degrees or milliseconds.
The first {smoothStart}-milliseconds/degrees of limitValue the motor will slowly accelerate until reaching
its defined speed. See also limitValue, limitMode. [WRITABLE]

smoothStop
numeric s. t. smoothStart+smoothStop < limitValue – Degrees/Time indicating how far/long the motor
should smoothly stop. Depending on limitMode, the input is interpreted either in degrees or milliseconds.
The last [smoothStop]-milliseconds/degrees of limitValue the motor will slowly slow down until it has
stopped. See also limitValue, limitMode. [WRITABLE]

limitValue
numeric>=0 – Degrees/Time indicating how far/long the motor should run. Depending on limitMode, the
input is interpreted either in degrees or milliseconds. See also limitMode. [WRITABLE]

limitMode
‘Tacho’|’Time’ – Mode for motor limit. See also limitValue. [WRITABLE]

brakeMode
‘Brake’|’Coast’ – Action done when stopping. If ‘Coast’, the motor will (at tacholimit, if ~=0) coast to a
stop. If ‘Brake’, the motor will stop immediately (at tacholimit, if ~=0) and hold the brake. [WRITABLE]

debug
bool – Debug turned on or off. In debug mode, everytime a command is passed to the sublayer (‘commu-
nication layer’), there is feedback in the console about what command has been called. [WRITABLE]

isRunning
bool – True if motor is running. [READ-ONLY]

tachoCount
numeric – Current tacho count in degrees. [READ-ONLY]

currentSpeed
numeric – Current speed of motor. If speedRegulation=on this should equal power, otherwise it will
probably be lower than that. See also speedRegulation. [READ-ONLY]

1.2. Motor 7

Mindstorms EV3 Toolbox Documentation, Release v1.0

type
DeviceType – Type of connected device if any. [READ-ONLY]

internalReset(motor)
Resets internal tacho count. Use this if motor behaves weird (i.e. not starting at all, or not correctly running
to limitValue).

The internal tacho count is used for positioning the motor. When the motor is running with a tacho limit,
internally it uses another counter than the one read by tachoCount. This internal tacho count needs to be
reset if you physically change the motor’s position or it coasted into a stop. If the motor’s brakemode is
‘Coast’, this function is called automatically.

Notes

•A better name would probably be resetPosition...

•Gets called automatically when starting the motor and the internal tacho count is > 0

See also MOTOR.RESETTACHOCOUNT / resetTachoCount

resetTachoCount(motor)
Resets tachocount.

See also MOTOR.TACHOCOUNT / tachoCount

setBrake(motor, brake)
Apply or release brake of motor.

Parameters brake (bool) – If true, brake will be pulled

Notes

•This method does not affect Motor.brakeMode. After the next run, the motor will again be stopped as
specified in Motor.brakeMode.

See also MOTOR.BRAKEMODE / brakeMode

setProperties(motor, varargin)
Sets multiple Motor properties at once using MATLAB’s inputParser.

Parameters

• debug (bool) – [OPTIONAL]

• smoothStart (numeric in [0, limitValue]) – [OPTIONAL]

• smoothStop (numeric in [0, limitValue]) – [OPTIONAL]

• speedRegulation (bool) – [OPTIONAL]

• brakeMode (’Coast’|’Brake’) – [OPTIONAL]

• limitMode (’Time’|’Tacho’) – [OPTIONAL]

• limitValue (numeric > 0) – [OPTIONAL]

• power (numeric in [-100,100]) – [OPTIONAL]

• batteryMode (’Voltage’|’Percentage’) – [OPTIONAL]

8 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

Example

b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % b.motorA.setProperties(‘debug’, ‘on’,
‘power’, 50, ‘limitValue’, 720, ‘speedRegulation’, ‘on’); % % Instead of: b.motorA.debug = ‘on’; %
b.motorA.power = 50; % b.motorA.limitValue = 720; % b.motorA.speedRegulation = ‘on’;

start(motor)
Starts the motor.

stop(motor)
Stops the motor.

Notes

•If this motor has been started synced with another one (either as master or slave, using Mo-
tor.syncedStart), syncedStop() will be called, stopping both motors.

See also MOTOR.START, MOTOR.SYNCEDSTOP / start(), syncedStop()

syncedStart(motor, syncMotor, varargin)
Starts this motor synchronized with another.

The motor, with which this method is called, acts as a master, meaning that the synchronized control is
done with it und uses its parameters. When syncedStart is called, the master sets some of the slave’s
(syncMotor) properties to keep it consistent with the physical brick. So, for example, if the master has
another power-value than the slave, the slave’s power-value will be set to that of the master when synced-
Start() is called. The following parameters will be affected on the slave: power, brakeMode, limitValue,
speedRegulation

Parameters

• syncMotor (Motor) – The motor-object to sync with

• turnRatio (numeric in [-200,200]) – Ratio between the two master’s and the
slave’s motor speed. With values!=0 one motor will be slower than the other or even turn
into the other direction. This can be used for turning car-like robots, for example. [OP-
TIONAL] (Read in Firmware-comments in c_output.c): -> 0 is moving straight forward
-> Negative values turn to the left -> Positive values turn to the right -> Value -100 stops
the left motor -> Value +100 stops the right motor -> Values less than -100 makes the left
motor run the opposite direction of the right motor (Spin) -> Values greater than +100
makes the right motor run the opposite direction of the left motor (Spin)

Notes

•This is a pretty ‘heavy’ function, as it tests if both motors are connected AND aren’t running, wasting
four packets, keep that in mind.

Example

b = EV3(); % b.connect(‘usb’); % m = b.motorA; % slave = b.motorB; % m.power = 50; %
m.syncedStart(slave); % % Do stuff m.stop(); %

See also MOTOR.STOP, MOTOR.SYNCEDSTOP / stop(), syncedStop()

1.2. Motor 9

Mindstorms EV3 Toolbox Documentation, Release v1.0

syncedStop(motor)
Stops both motors previously started with syncedStart.

Notes

•This method is called automatically by stop(), if the motors have been started using syncedStart, and
the regular stop-method has been called afterwards.

See also MOTOR.SYNCEDSTART, MOTOR.STOP / syncedStart(), stop()

waitFor(motor)
Stops execution of program as long as motor is running.

Notes

•This one’s a bit tricky. The opCode which is supposed to be used here, OutputReady, makes the brick
stop sending responses until the motor has stopped. For security reasons, in this toolbox there is an
internal timeout for receiving messages from the brick. It raises an error if a reply takes too long,
which would happen in this case. As a workaround, there is an infinite loop that catches errors from
outputReady and continues then, until outputReady will actually finish without an error.

•Workaround: Poll isRunning until it is false (No need to check if motor is connected as speed correctly
returns 0 if it’s not)

1.3 Sensor

class source.Sensor(varargin)

List of methods:

• reset()

• setProperties()

High-level class to work with sensors.

The Sensor-class facilitates the communication with sensors. This mainly consists of reading the sensor’s type
and current value in a specified mode.

Notes

•You don’t need to create instances of this class. The EV3-class automatically creates instances for each
sensor port, and you can work with them via the EV3-object.

•The Sensor-class represents sensor ports, not individual sensors!

•When an input argument of a method is marked as optional, the argument needs to be ‘announced’
by a preceding 2nd argument, which is a string containing the name of the argument. For exam-
ple, Motor.setProperties may be given a power-parameter. The syntax would be as follows: brickOb-
ject.motorA.setProperties(‘power’, 50);

10 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

mode
DeviceMode.{Type} – Sensor mode in which the value will be read. By default, mode is set to Device-
Mode.Default.Undefined. See also type. [WRITABLE] Once a physical sensor is connected to the port
and the physical Brick is connected to the EV3-object, the allowed mode and the default mode for a
Sensor-object are the following (depending on the sensor type):

•Touch-Sensor:

– DeviceMode.Touch.Pushed [Default]

– DeviceMode.Touch.Bumps

•Ultrasonic-Sensor:

– DeviceMode.UltraSonic.DistCM [Default]

– DeviceMode.UltraSonic.DistIn

– DeviceMode.UltraSonic.Listen

•Color-Sensor:

– DeviceMode.Color.Reflect [Default]

– DeviceMode.Color.Ambient

– DeviceMode.Color.Col

•Gyro-Sensor:

– DeviceMode.Gyro.Angular [Default]

– DeviceMode.Gyro.Rate

•Infrared-Sensor:

– DeviceMode.InfraRed.Prox [Default]

– DeviceMode.InfraRed.Seek

– DeviceMode.InfraRed.Remote

•NXTColor-Sensor:

– DeviceMode.NXTColor.Reflect [Default]

– DeviceMode.NXTColor.Ambient

– DeviceMode.NXTColor.Color

– DeviceMode.NXTColor.Green

– DeviceMode.NXTColor.Blue

– DeviceMode.NXTColor.Raw

•NXTLight-Sensor:

– DeviceMode.NXTLight.Reflect [Default]

– DeviceMode.NXTLight.Ambient

•NXTSound-Sensor:

– DeviceMode.NXTSound.DB [Default]

– DeviceMode.NXTSound.DBA

•NXTTemperature-Sensor

1.3. Sensor 11

Mindstorms EV3 Toolbox Documentation, Release v1.0

– DeviceMode.NXTTemperature.C [Default]

– DeviceMode.NXTTemperature.F

•NXTTouch-Sensor:

– DeviceMode.NXTTouch.Pushed [Default]

– DeviceMode.NXTTouch.Bumps

•NXTUltraSonic-Sensor:

– DeviceMode.NXTUltraSonic.CM [Default]

– DeviceMode.NXTUltraSonic.IN

•HTAccelerometer-Sensor:

– DeviceMode.HTAccelerometer.Acceleration [Default]

– DeviceMode.HTAccelerometer.AccelerationAllAxes

•HTCompass-Sensor:

– DeviceMode.HTCompass.Degrees [Default]

•HTColor-Sensor:

– DeviceMode.HTColor.Col [Default]

– DeviceMode.HTColor.Red

– DeviceMode.HTColor.Green

– DeviceMode.HTColor.Blue

– DeviceMode.HTColor.White

– DeviceMode.HTColor.Raw

– DeviceMode.HTColor.Nr,

– DeviceMode.HTColor.All

debug
bool – Debug turned on or off. In debug mode, everytime a command is passed to the sublayer (‘commu-
nication layer’), there is feedback in the console about what command has been called. [WRITABLE]

value
numeric – Value read from hysical sensor. What the value represents depends on mode. [READ-ONLY]

type
DeviceType – Type of physical sensor connected to the port. Possible types are: [READ-ONLY]

•DeviceType.NXTTouch

•DeviceType.NXTLight

•DeviceType.NXTSound

•DeviceType.NXTColor

•DeviceType.NXTUltraSonic

•DeviceType.NXTTemperature

•DeviceType.LargeMotor

•DeviceType.MediumMotor

12 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

•DeviceType.Touch

•DeviceType.Color

•DeviceType.UltraSonic

•DeviceType.Gyro

•DeviceType.InfraRed

•DeviceType.HTColor

•DeviceType.HTCompass

•DeviceType.HTAccelerometer

•DeviceType.Unknown

•DeviceType.None

•DeviceType.Error

reset(sensor)
Resets sensor value.

Notes

•Has not been thoroughly tested but seems to work as expected

setProperties(sensor, varargin)
Sets multiple Sensor properties at once using MATLAB’s inputParser.

Parameters

• debug (bool) – [OPTIONAL]

• mode (DeviceMode.{Type}) – [OPTIONAL]

Example

b = EV3(); % b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % b.sensor1.setProperties(‘debug’, ‘on’, ‘mode’,
DeviceMode.Color.Ambient); % % Instead of: b.sensor1.debug = ‘on’; % b.sensor1.mode = Device-
Mode.Color.Ambient;

Low-Level documentation

1.4 hidapi

class source.hidapi(vendorID, productID, nReadBuffer, nWriteBuffer)

List of methods:

• open()

• close()

• read()

• read_timeout()

• write()

1.4. hidapi 13

Mindstorms EV3 Toolbox Documentation, Release v1.0

• getHIDInfoString()

• setNonBlocking()

• init()

• exit()

• error()

• enumerate()

• getManufacturersString()

• getProductString()

• getSerialNumberString()

Interface to the hidapi library

Notes

•Developed from the hidapi available at http://www.signal11.us/oss/hidapi/.

•Windows: hidapi.dll needed.

•Mac: hidapi.dylib needed. In addition, Xcode has to be installed.

•Linux: hidapi has to be compiled on host-system.

handle

vendorID
numeric – Vendor-ID of the USB device.

productID
numeric – Product-ID of the USB device.

nReadBuffer
numeric – Read-buffer size in bytes.

nWriteBuffer
numeric – Write-buffer size in bytes. Needs to be 1 Byte bigger than actual packet.

slib
string – Name of shared library file (without file extension). Defaults to ‘hidapi’.

sheader
string – Name of shared library header. Defaults to ‘hidapi.h’.

Example

hidHandle = hidapi(1684,0005,1024,1025); %|br|

close(hid)
Close the connection to a hid device.

Throws: InvalidHandle: Handle to USB-device not valid

14 Chapter 1. Contents

http://www.signal11.us/oss/hidapi/

Mindstorms EV3 Toolbox Documentation, Release v1.0

Notes

•Gets called automatically when deleting the hidapi instance.

2001.Check if pointer is (unexpectedly) already invalidated

enumerate(hid, vendorID, productID)
Enumerates the info about the hid device with the given vendorID and productID and returns a string with
the returned hid information.

Parameters

• vendorID (numeric) – Vendor-ID of the USB device in decimal.

• productID (numeric) – Product-ID of the USB device in decimal.

Notes

•Using a vendorID and productID of (0,0) will enumerate all connected hid devices.

•MATLAB does not have the hid_device_infoPtr struct so some of the returned information will need
to be resized and cast into uint8 or chars.

Enumerate the hid devices

error(hid)
Return the hid device error string if a function produced an error.

Throws: InvalidHandle: Handle to USB-device not valid

Notes

•This function must be called explicitly if you think an error was generated from the hid device.

2001.Check if pointer is (unexpectedly) already invalidated

exit(hid)
hidapi.exit Exit hidapi

hid.exit() exits the hidapi library.

Throws: CommError: Error during communication with device

Notes:: - You should not have to call this function directly.

getHIDInfoString(hid, info)
Get the corresponding hid info from the hid device.

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

Notes

•Info is the hid information string.

1.4. hidapi 15

Mindstorms EV3 Toolbox Documentation, Release v1.0

See also HIDAPI.GETMANUFACTURERSSTRING, HIDAPI.GETPRODUCTSTRING, HI-
DAPI.GETSERIALNUMBERSTRING.

Read buffer nReadBuffer length

getManufacturersString(hid)
Get manufacturers string from hid object using getHIDInfoString.

getProductString(hid)
Get product string from hid object using getProductString.

getSerialNumberString(hid)
Get serial number from hid object using getSerialNumberString.

init(hid)
Inits the hidapi library.

Throws: CommError: Error during communication with device

Notes

•This is called automatically in the library itself with the open function. You should not have to call
this function directly.

open(hid)
Open a connection with a hid device

Throws: CommError: Error during communication with device

Notes

•Gets called automatically when creating an hidapi-object.

•The pointer return value from this library call is always null so it is not possible to know if the open
was successful.

•The final parameter to the open hidapi library call has different types depending on OS. On windows
it is uint16, on linux/mac int32.

Create a null pointer for the hid_open function (depends on OS)

read(hid)
Read from a hid device and returns the read bytes.

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

Notes

•Will print an error if no data was read.

Read buffer of nReadBuffer length

read_timeout(hid, timeOut)
Read from a hid device with a timeout and return the read bytes.

16 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

Parameters timeOut (numeric >= 0) – Milliseconds after which a timeout-error occurs if
no packet could be read.

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

Read buffer of nReadBuffer length

setNonBlocking(hid, nonblock)
Set the non blocking flag on the hid device connection.

Parameters nonblock (numeric in {0,1}) – 0 disables nonblocking, 1 enables non-
blocking

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

2001.Check if pointer is (unexpectedly) already invalidated

write(hid, wmsg, reportID)
Write to a hid device.

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

Notes

•Will print an error if there is a mismatch between the buffer size and the reported number of bytes
written.

Append a 0 at the front for HID report ID

1.5 usbBrickIO

class source.usbBrickIO(varargin)

List of methods:

• open()

• close()

• read()

• write()

• setProperties()

USB interface between MATLAB and the brick

Notes

•Uses the hid library implementation in hidapi.m

•The default parameters should always work when you try to connect to an EV3 brick, so in nearly all
use-cases, the constructor does not need any parameters (besides ‘debug’ eventually).

1.5. usbBrickIO 17

Mindstorms EV3 Toolbox Documentation, Release v1.0

debug
bool – If true, each open/close/read/write-call will be noted in the console. Defaults to false.

vendorID
numeric – Vendor-ID of the USB device. Defaults to 0x694 (EV3 vendor ID).

productID
numeric – Product-ID of the USB device. Defaults to 0x0005 (EV3 product ID).

nReadBuffer
numeric – Read-buffer size in bytes. Defaults to 1024.

nWriteBuffer
numeric – Write-buffer size in bytes. Needs to be 1 Byte bigger than actual packet. Defaults to 1025 (EV3
USB maximum packet size = 1024).

timeOut
numeric >= 0 – Milliseconds after which a timeout-error occurs if no packet could be read. Defaults to
10000.

Examples

% Connecting via USB commHandle = usbBrickIO(); % % Connecting via USB with enabled debug output
commHandle = usbBrickIO(‘debug’, true); %

close(brickIO)
Closes the usb connection the brick through the hidapi interface.

open(brickIO)
Opens the usb connection to the brick through the hidapi interface.

read(brickIO)
Reads data from the brick through usb using the hidapi interface and returns the data in uint8 format.

setProperties(brickIO, varargin)
Sets multiple usbBrickIO properties at once using MATLAB’s inputParser.

The syntax is as follows: commHandle.setProperties(‘propertyName1’, propertyValue1, ‘property-
Name2’, propertyValue2, ...). Valid, optional properties are: debug, vendorID, productID, nReadBuffer,
nWriteBuffer, timeOut.

See also USBBRICKIO.DEBUG, USBBRICKIO.VENDORID, USBBRICKIO.PRODUCTID, USB-
BRICKIO.NREADBUFFER, USBBRICKIO.NWRITEBUFFER, USBBRICKIO.TIMEOUT

write(brickIO, wmsg)
Writes data to the brick through usb using the hidapi interface.

Parameters wmsg (uint8 array) – Data to be written to the brick via usb

1.6 btBrickIO

class source.btBrickIO(varargin)

List of methods:

• open()

• close()

• read()

18 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

• write()

• setProperties()

Bluetooth interface between MATLAB and the brick

Notes

•Connects to the bluetooth module on the host through a serial connection. Hence be sure that a serial
connection to the bluetooth module can be made. Also be sure that the bluetooth module has been paired
to the brick before trying to connect.

•Usage is OS-dependent:

– Windows: the deviceName- & channel-properties are needed for connection. The implementation
is based on the Instrument Control toolbox.

– Linux (and potentially Mac): serialPort-property is needed for connection. The implementation
is based on MATLAB’s serial port implementation.

•For general information, see also BrickIO.

debug
bool – If true, each open/close/read/write-call will be shown in the console. Defaults to false.

serialPort
string – Path to the serial-port object. Only needed when using MATLAB’s serial class (i.e. on linux/mac).
Defaults to ‘/dev/rfcomm0’.

deviceName
string – Name of the BT-device = the brick. Only needed when using the Instrument Control toolbox (i.e.
on windows). Defaults to ‘EV3’.

channel
numeric > 0 – BT-channel of the connected BT-device. Only needed when using the Instrument Control
toolbox (i.e. on windows). Defaults to 1.

timeOut
numeric >= 0 – seconds after which a timeout-error occurs if no packet could be read. Defaults to 10.

backend
‘serial’|’instrumentControl’ – Backend this implementation is based on. Is automatically chosen depend-
ing on the OS. Defaults to ‘serial’ on linux/mac systems, and to ‘instrumentControl’ on windows systems.

Examples

% Connecting on windows commHandle = btBrickIO(‘deviceName’, ‘MyEV3’, ‘channel’, 1); % % Con-
necting on windows using MATLABs default serial port implementation for testing commHandle = bt-
BrickIO(‘deviceName’, ‘MyEV3’, ‘channel’, 1, ‘backend’, ‘serial’); % % Connecting on mac/linux commHan-
dle = btBrickIO(‘serPort’, ‘/dev/rfcomm0’); %

close(brickIO)
Closes the bluetooth connection the brick using fclose.

open(brickIO)
Opens the bluetooth connection to the brick using fopen.

read(brickIO)
Reads data from the brick through bluetooth via fread and returns the data in uint8 format.

1.6. btBrickIO 19

Mindstorms EV3 Toolbox Documentation, Release v1.0

setProperties(brickIO, varargin)
Sets multiple btBrickIO properties at once using MATLAB’s inputParser.

The syntax is as follows: commHandle.setProperties(‘propertyName1’, propertyValue1, ‘property-
Name2’, propertyValue2, ...). Valid, optional properties are: debug, serPort, deviceName, channel, time-
out.

See also BTBRICKIO.DEBUG, BTBRICKIO.SERIALPORT, BTBRICKIO.DEVICENAME, BT-
BRICKIO.CHANNEL, BTBRICKIO.TIMEOUT

write(brickIO, wmsg)
Writes data to the brick through bluetooth via fwrite.

Parameters wmsg (uint8 array) – Data to be written to the brick via bluetooth

20 Chapter 1. Contents

MATLAB MODULE INDEX

s
source, 17

21

Mindstorms EV3 Toolbox Documentation, Release v1.0

22 MATLAB Module Index

INDEX

B
backend (source.btBrickIO attribute), 19
batteryMode (source.EV3 attribute), 4
batteryValue (source.EV3 attribute), 4
beep() (source.EV3 method), 4
brakeMode (source.Motor attribute), 7
btBrickIO (class in source), 18

C
channel (source.btBrickIO attribute), 19
close() (source.btBrickIO method), 19
close() (source.hidapi method), 14
close() (source.usbBrickIO method), 18
connect() (source.EV3 method), 4
currentSpeed (source.Motor attribute), 7

D
debug (source.btBrickIO attribute), 19
debug (source.EV3 attribute), 4
debug (source.Motor attribute), 7
debug (source.Sensor attribute), 12
debug (source.usbBrickIO attribute), 18
deviceName (source.btBrickIO attribute), 19
disconnect() (source.EV3 method), 5

E
enumerate() (source.hidapi method), 15
error() (source.hidapi method), 15
EV3 (class in source), 3
exit() (source.hidapi method), 15

G
getHIDInfoString() (source.hidapi method), 15
getManufacturersString() (source.hidapi method), 16
getProductString() (source.hidapi method), 16
getSerialNumberString() (source.hidapi method), 16

H
handle (source.hidapi attribute), 14
hidapi (class in source), 13

I
init() (source.hidapi method), 16
internalReset() (source.Motor method), 8
isConnected (source.EV3 attribute), 4
isRunning (source.Motor attribute), 7

L
limitMode (source.Motor attribute), 7
limitValue (source.Motor attribute), 7

M
mode (source.Sensor attribute), 10
Motor (class in source), 6
motorA (source.EV3 attribute), 3
motorB (source.EV3 attribute), 3
motorC (source.EV3 attribute), 3
motorD (source.EV3 attribute), 4

N
nReadBuffer (source.hidapi attribute), 14
nReadBuffer (source.usbBrickIO attribute), 18
nWriteBuffer (source.hidapi attribute), 14
nWriteBuffer (source.usbBrickIO attribute), 18

O
open() (source.btBrickIO method), 19
open() (source.hidapi method), 16
open() (source.usbBrickIO method), 18

P
playTone() (source.EV3 method), 5
power (source.Motor attribute), 7
productID (source.hidapi attribute), 14
productID (source.usbBrickIO attribute), 18

R
read() (source.btBrickIO method), 19
read() (source.hidapi method), 16
read() (source.usbBrickIO method), 18
read_timeout() (source.hidapi method), 16
reset() (source.Sensor method), 13
resetTachoCount() (source.Motor method), 8

23

Mindstorms EV3 Toolbox Documentation, Release v1.0

S
Sensor (class in source), 10
sensor1 (source.EV3 attribute), 4
sensor2 (source.EV3 attribute), 4
sensor3 (source.EV3 attribute), 4
sensor4 (source.EV3 attribute), 4
serialPort (source.btBrickIO attribute), 19
setBrake() (source.Motor method), 8
setNonBlocking() (source.hidapi method), 17
setProperties() (source.btBrickIO method), 19
setProperties() (source.EV3 method), 5
setProperties() (source.Motor method), 8
setProperties() (source.Sensor method), 13
setProperties() (source.usbBrickIO method), 18
sheader (source.hidapi attribute), 14
slib (source.hidapi attribute), 14
smoothStart (source.Motor attribute), 7
smoothStop (source.Motor attribute), 7
source (module), 3, 6, 10, 13, 17, 18
speedRegulation (source.Motor attribute), 7
start() (source.Motor method), 9
stop() (source.Motor method), 9
stopTone() (source.EV3 method), 6
syncedStart() (source.Motor method), 9
syncedStop() (source.Motor method), 9

T
tachoCount (source.Motor attribute), 7
timeOut (source.btBrickIO attribute), 19
timeOut (source.usbBrickIO attribute), 18
tonePlayed() (source.EV3 method), 6
type (source.Motor attribute), 7
type (source.Sensor attribute), 12

U
usbBrickIO (class in source), 17

V
value (source.Sensor attribute), 12
vendorID (source.hidapi attribute), 14
vendorID (source.usbBrickIO attribute), 18

W
waitFor() (source.Motor method), 10
write() (source.btBrickIO method), 20
write() (source.hidapi method), 17
write() (source.usbBrickIO method), 18

24 Index

	Contents
	EV3
	Motor
	Sensor
	hidapi
	usbBrickIO
	btBrickIO

	MATLAB Module Index
	Index

