
Mindstorms EV3 Toolbox
Documentation

Release v1.0

LfB - RWTH Aachen

Jan 27, 2020

CONTENTS

1 Contents 3
1.1 EV3 . 3
1.2 Motor . 6
1.3 Sensor . 10
1.4 hidapi . 13
1.5 usbBrickIO . 17
1.6 btBrickIO . 18

MATLAB Module Index 21

Index 23

i

ii

Mindstorms EV3 Toolbox Documentation, Release v1.0

Hi there! This is the documentation for the “Lego Mindstorms EV3” MATLAB Toolbox, developed by RWTH
Aachen. For an introduction about this toolbox, installation guides and examples, take a look at our repository.

CONTENTS 1

https://git.rwth-aachen.de/mindstorms/ev3-toolbox-matlab/blob/master/readme.md

Mindstorms EV3 Toolbox Documentation, Release v1.0

2 CONTENTS

CHAPTER

ONE

CONTENTS

High-Level documentation

1.1 EV3

class source.EV3(varargin)

List of methods:

• connect()

• disconnect()

• stopAllMotors()

• beep()

• playTone()

• stopTone()

• tonePlayed()

• setProperties()

High-level class to work with physical bricks.

This is the ‘central’ class (from user’s view) when working with this toolbox. It delivers a convenient interface
for creating a connection to the brick and sending commands to it. An EV3-object creates 4 Motor- and 4
Sensor-objects, one for each port.

Notes

• Creating multiple EV3 objects and connecting them to different physical bricks has not been thoroughly
tested yet, but seems to work on a first glance.

• When an input argument of a method is marked as optional, the argument needs to be ‘announced’
by a preceding 2nd argument, which is a string containing the name of the argument. For exam-
ple, Motor.setProperties may be given a power-parameter. The syntax would be as follows: brickOb-
ject.motorA.setProperties(‘power’, 50);

motorA
Motor-object interfacing port A. See also Motor.

Type Motor

3

Mindstorms EV3 Toolbox Documentation, Release v1.0

motorB
Motor-object interfacing port B. See also Motor.

Type Motor

motorC
Motor-object interfacing port C. See also Motor.

Type Motor

motorD
Motor-object interfacing port D. See also Motor.

Type Motor

sensor1
Motor-object interfacing port 1. See also Sensor.

Type Sensor

sensor2
Motor-object interfacing port 2. See also Sensor.

Type Sensor

sensor3
Motor-object interfacing port 3. See also Sensor.

Type Sensor

sensor4
Motor-object interfacing port 4. See also Sensor.

Type Sensor

debug
Debug mode. [WRITABLE]

• 0: Debug turned off

• 1: Debug turned on for EV3-object -> enables feedback in the console about what firmware-
commands have been called when using a method

• 2: Low-level-Debug turned on -> each packet sent and received is printed to the console

Type numeric in {0,1,2}

batteryMode
Mode for reading battery charge. See also batteryValue. [WRITABLE]

Type string in {‘Percentage’, ‘Voltage’}

batteryValue
Current battery charge. Depending on batteryMode, the reading is either in percentage or voltage. See also
batteryMode. [READ-ONLY]

Type numeric

isConnected
True if virtual brick-object is connected to physical one. [READ-ONLY]

Type bool

4 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

Example:
This example expects a motor at port A and a (random) sensor at port 1
brick = EV3();
brick.connect('usb');
motorA = brick.motorA;
motorA.setProperties('power', 50, 'limitValue', 720);
motorA.start();
motorA.waitFor();
disp(brick.sensor1.value);
brick.beep();
delete brick;

beep(ev3)
Plays a ‘beep’-tone on brick.

Notes

• This equals playTone(10, 1000, 100).

Example:
brick = EV3();
brick.connect('bt', 'serPort', '/dev/rfcomm0');
brick.beep();

connect(ev3, varargin)
Connects EV3-object and its Motors and Sensors to physical brick.

Parameters

• connectionType (string in {'bt', 'usb'}) – Connection type

• serPort (string in {'/dev/rfcomm1', '/dev/rfcomm2', ...}) –
Path to serial port (necessary if connectionType is ‘bt’). [OPTIONAL]

• beep (bool) – If true, EV3 beeps if connection has been established. [OPTIONAL]

Example:
% Setup bluetooth connection via com-port 0
brick = EV3();
brick.connect('bt', 'serPort', '/dev/rfcomm0');
% Setup usb connection, beep when connection has been established
brick = EV3();
brick.connect('usb', 'beep', 'on',);

See also ISCONNECTED / isConnected

disconnect(ev3)
Disconnects EV3-object and its Motors and Sensors from physical brick.

Notes

• Gets called automatically when EV3-object is destroyed.

1.1. EV3 5

Mindstorms EV3 Toolbox Documentation, Release v1.0

Example:
brick = EV3();
brick.connect('bt', 'serPort', '/dev/rfcomm0');
% do stuff
brick.disconnect();

playTone(ev3, volume, frequency, duration)
Plays tone on brick.

Parameters

• volume (numeric in [0, 100]) – in percent

• frequency (numeric in [250, 10000]) – in Hertz

• duration (numeric > 0) – in milliseconds

Example:
brick = EV3();
brick.connect('bt', 'serPort', '/dev/rfcomm0');
brick.playTone(40, 5000, 1000); % Plays tone with 40% volume and 5000Hz

→˓for 1 second.

setProperties(ev3, varargin)
Set multiple EV3 properties at once using MATLAB’s inputParser.

Parameters

• debug (numeric in {0,1,2}) – see EV3.debug [OPTIONAL]

• batteryMode (string in {'Voltage'/'Percentage'}) – see
EV3.batteryMode [OPTIONAL]

Example:
brick = EV3();
brick.connect('bt', 'serPort', '/dev/rfcomm0');
brick.setProperties('debug', 'on', 'batteryMode', 'Voltage');
% Instead of: b.debug = 'on'; b.batteryMode = 'Voltage';

See also EV3.DEBUG, EV3.BATTERYMODE / debug, batteryMode

stopTone(ev3)
Stops tone currently played.

Example:
brick = EV3();
brick.connect('bt', 'serPort', '/dev/rfcomm0');
brick.playTone(10,100,100000000);
brick.stopTone(); % Stops tone immediately.

tonePlayed(ev3)
Tests if tone is currently played.

Returns True if a tone is being played

Return type status (bool)

Example:
brick = EV3();
brick.connect('bt', 'serPort', '/dev/rfcomm0');

(continues on next page)

6 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

(continued from previous page)

brick.playTone(10, 100, 1000);
pause(0.5);
% Small pause necessary since tone not startong immediately
brick.tonePlayed(); % -> Outputs 1 to console.

1.2 Motor

class source.Motor(varargin)

List of methods:

• start()

• stop()

• syncedStart()

• syncedStop()

• waitFor()

• internalReset()

• resetTachoCount()

• setBrake()

• setProperties()

High-level class to work with motors.

This class is supposed to ease the use of the brick’s motors. It is possible to set all kinds of parameters, request
the current status of the motor ports and of course send commands to the brick to be executed on the respective
port.

Notes

• You don’t need to create instances of this class. The EV3-class automatically creates instances for each
motor port, and you can work with them via the EV3-object.

• The Motor-class represents motor ports, not individual motors!

• If you start a motor with power=0, the internal state will still be set to ‘isRunning’

• When an input argument of a method is marked as optional, the argument needs to be ‘announced’
by a preceding 2nd argument, which is a string containing the name of the argument. For exam-
ple, Motor.setProperties may be given a power-parameter. The syntax would be as follows: brickOb-
ject.motorA.setProperties(‘power’, 50);

power
Power level of motor in percent. [WRITABLE]

Type numeric in [-100, 100]

speedRegulation
Speed regulation turned on or off. When turned on, motor will try to ‘hold’ its speed at given power
level, whatever the load. In this mode, the highest possible speed depends on the load and mostly goes
up to around 70-80 (at this point, the Brick internally inputs 100% power). When turned off, motor will

1.2. Motor 7

Mindstorms EV3 Toolbox Documentation, Release v1.0

constantly input the same power into the motor. The resulting speed will be somewhat lower, depending
on the load. [WRITABLE]

Type bool

smoothStart
Degrees/Time indicating how far/long the motor should smoothly start. Depending on limitMode, the input
is interpreted either in degrees or milliseconds. The first {smoothStart}-milliseconds/degrees of limitValue
the motor will slowly accelerate until reaching its defined speed. See also limitValue, limitMode.
[WRITABLE]

Type numeric s. t. smoothStart+smoothStop < limitValue

smoothStop
Degrees/Time indicating how far/long the motor should smoothly stop. Depending on limitMode, the input
is interpreted either in degrees or milliseconds. The last [smoothStop]-milliseconds/degrees of limitValue
the motor will slowly slow down until it has stopped. See also limitValue, limitMode. [WRITABLE]

Type numeric s. t. smoothStart+smoothStop < limitValue

limitValue
Degrees/Time indicating how far/long the motor should run. Depending on limitMode, the input is inter-
preted either in degrees or milliseconds. See also limitMode. [WRITABLE]

Type numeric>=0

limitMode
Mode for motor limit. See also limitValue. [WRITABLE]

Type ‘Tacho’|’Time’

brakeMode
Action done when stopping. If ‘Coast’, the motor will (at tacholimit, if ~=0) coast to a stop. If ‘Brake’,
the motor will stop immediately (at tacholimit, if ~=0) and hold the brake. [WRITABLE]

Type ‘Brake’|’Coast’

debug
Debug turned on or off. In debug mode, everytime a command is passed to the sublayer (‘communication
layer’), there is feedback in the console about what command has been called. [WRITABLE]

Type bool

isRunning
True if motor is running. [READ-ONLY]

Type bool

tachoCount
Current tacho count in degrees. [READ-ONLY]

Type numeric

currentSpeed
Current speed of motor. If speedRegulation=on this should equal power, otherwise it will probably be
lower than that. See also speedRegulation. [READ-ONLY]

Type numeric

type
Type of connected device if any. [READ-ONLY]

Type DeviceType

8 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

internalReset(motor)
Resets internal tacho count. Use this if motor behaves weird (i.e. not starting at all, or not correctly running
to limitValue).

The internal tacho count is used for positioning the motor. When the motor is running with a tacho limit,
internally it uses another counter than the one read by tachoCount. This internal tacho count needs to be
reset if you physically change the motor’s position or it coasted into a stop. If the motor’s brakemode is
‘Coast’, this function is called automatically.

Notes

• A better name would probably be resetPosition. . .

• Gets called automatically when starting the motor and the internal tacho count is > 0

See also MOTOR.RESETTACHOCOUNT / resetTachoCount

resetTachoCount(motor)
Resets tachocount.

See also MOTOR.TACHOCOUNT / tachoCount

setBrake(motor, brake)
Apply or release brake of motor.

Parameters brake (bool) – If true, brake will be pulled

Notes

• This method does not affect Motor.brakeMode. After the next run, the motor will again be stopped as
specified in Motor.brakeMode.

See also MOTOR.BRAKEMODE / brakeMode

setProperties(motor, varargin)
Sets multiple Motor properties at once using MATLAB’s inputParser.

Parameters

• debug (bool) – [OPTIONAL]

• smoothStart (numeric in [0, limitValue]) – [OPTIONAL]

• smoothStop (numeric in [0, limitValue]) – [OPTIONAL]

• speedRegulation (bool) – [OPTIONAL]

• brakeMode ('Coast'|'Brake') – [OPTIONAL]

• limitMode ('Time'|'Tacho') – [OPTIONAL]

• limitValue (numeric > 0) – [OPTIONAL]

• power (numeric in [-100,100]) – [OPTIONAL]

• batteryMode ('Voltage'|'Percentage') – [OPTIONAL]

Example:
brick = EV3();
brick.connect('bt', 'serPort', '/dev/rfcomm0');
brick.motorA.setProperties('debug', 'on', 'power', 50, 'limitValue', 720,

→˓'speedRegulation', 'on'); (continues on next page)

1.2. Motor 9

Mindstorms EV3 Toolbox Documentation, Release v1.0

(continued from previous page)

% Instead of: brick.motorA.debug = 'on';
% brick.motorA.power = 50;
% brick.motorA.limitValue = 720;
% brick.motorA.speedRegulation = 'on';

start(motor)
Starts the motor.

stop(motor)
Stops the motor.

Notes

• If this motor has been started synced with another one (either as master or slave, using Mo-
tor.syncedStart), syncedStop() will be called, stopping both motors.

See also MOTOR.START, MOTOR.SYNCEDSTOP / start(), syncedStop()

syncedStart(motor, syncMotor, varargin)
Starts this motor synchronized with another.

The motor, with which this method is called, acts as a master, meaning that the synchronized
control is done with it und uses its parameters. When syncedStart is called, the master sets
some of the slave’s (syncMotor) properties to keep it consistent with the physical brick. So, for
example, if the master has another power-value than the slave, the slave’s power-value will be set
to that of the master when syncedStart() is called. The following parameters will be affected on
the slave: power, brakeMode, limitValue, speedRegulation

Arguments: syncMotor (Motor): The motor-object to sync with turnRatio (numeric in [-
200,200]): Ratio between the two master’s and the

slave’s motor speed. With values!=0 one motor will be slower than the other or even
turn into the other direction. This can be used for turning car-like robots, for example.
[OPTIONAL] (Read in Firmware-comments in c_output.c): -> 0 is moving straight
forward -> Negative values turn to the left -> Positive values turn to the right -> Value
-100 stops the left motor -> Value +100 stops the right motor -> Values less than -100
makes the left motor run the opposite direction of the right motor (Spin) -> Values
greater than +100 makes the right motor run the opposite direction of the left motor
(Spin)

Notes:

• This is a pretty ‘heavy’ function, as it tests if both motors are connected AND aren’t
running, wasting four packets, keep that in mind.

Example:
brick = EV3();
brick.connect('usb');
motor = brick.motorA;
slave = brick.motorB;
motor.power = 50;
motor.syncedStart(slave);
% Do stuff
motor.stop();

See also MOTOR.STOP, MOTOR.SYNCEDSTOP / :meth:`stop`, :meth:`syncedStop`

10 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

syncedStop(motor)
Stops both motors previously started with syncedStart.

Notes

• This method is called automatically by stop(), if the motors have been started using syncedStart, and
the regular stop-method has been called afterwards.

See also MOTOR.SYNCEDSTART, MOTOR.STOP / syncedStart(), stop()

waitFor(motor)
Stops execution of program as long as motor is running.

Notes

• This one’s a bit tricky. The opCode which is supposed to be used here, OutputReady, makes the brick
stop sending responses until the motor has stopped. For security reasons, in this toolbox there is an
internal timeout for receiving messages from the brick. It raises an error if a reply takes too long,
which would happen in this case. As a workaround, there is an infinite loop that catches errors from
outputReady and continues then, until outputReady will actually finish without an error.

• Workaround: Poll isRunning until it is false (No need to check if motor is connected as speed correctly
returns 0 if it’s not)

1.3 Sensor

class source.Sensor(varargin)

List of methods:

• reset()

• setProperties()

Information given in this section can be used to configure a sensor’s measurements. For example the Touch-
Sensor is capable of either detecting whether it is being pushed, or count the number of pushes. In order to
change it’s mode and hence it’s return values, an EV3 object has to be created and connected beforehand.
Assuming the physical sensor has been connected to sensor port 1 of the physical brick, the mode change is
done as follows:

Example:
//initialization:
brick = EV3()
brick.connect('usb')

//changing mode of sensor:
brick.sensor1.mode = DeviceMode.Touch.Bumps

The available modes to a given sensor are described in the Attributes section.

Notes

• You don’t need to create instances of this class. The EV3-class automatically creates instances for each
sensor port, and you can work with them via the EV3-object.

1.3. Sensor 11

Mindstorms EV3 Toolbox Documentation, Release v1.0

• The Sensor-class represents sensor ports, not individual sensors!

• When an input argument of a method is marked as optional, the argument needs to be ‘announced’
by a preceding 2nd argument, which is a string containing the name of the argument. For exam-
ple, Motor.setProperties may be given a power-parameter. The syntax would be as follows: brickOb-
ject.motorA.setProperties(‘power’, 50);

mode
Sensor mode in which the value will be read. By default, mode is set to DeviceMode.Default.Undefined.
See also type. [WRITABLE] Once a physical sensor is connected to the port and the physical Brick is
connected to the EV3-object, the allowed mode and the default mode for a Sensor-object are the following
(depending on the sensor type):

• Touch-Sensor:

– DeviceMode.Touch.Pushed [Default]

* Output: 0: not pushed, 1: pushed

– DeviceMode.Touch.Bumps

* Output: n: number of times being pushed

• Ultrasonic-Sensor:

– DeviceMode.UltraSonic.DistCM [Default]

* Output: distance in cm

* Note: actively creates ultrasonic sound

– DeviceMode.UltraSonic.DistIn

* Output: distance in inches

* Note: actively creates ultrasonic sound

– DeviceMode.UltraSonic.Listen

* Output: distance in cm

* Note: ONLY listens to other sources (sensors) of ultrasonic sound

• Color-Sensor:

– DeviceMode.Color.Reflect [Default]

* Output: value in range 0% to 100% brightness

– DeviceMode.Color.Ambient

* Output: value in range 0% to 100% brightness

– DeviceMode.Color.Col

* Output: none, black, blue, green. yellow, red, white, brown

• Gyro-Sensor:

– DeviceMode.Gyro.Angular [Default]

* Note: value appears to be rising indefinitely, even in resting position

– DeviceMode.Gyro.Rate

* Output: rotational speed [degree/s]. Expect small offset in resting position

• Infrared-Sensor:

12 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

– DeviceMode.InfraRed.Prox [Default]

* Note: currently not recognized

– DeviceMode.InfraRed.Seek

– DeviceMode.InfraRed.Remote

• NXTColor-Sensor:

– DeviceMode.NXTColor.Reflect [Default]

* Output: value in range 0% to 100% brightness

– DeviceMode.NXTColor.Ambient

* Output: value in range 0% to 100% brightness

– DeviceMode.NXTColor.Color

* Output: value representing color: 1-black, 2-blue, 3-green, 4-yellow, 5-red, 6-white,
7-brown

– DeviceMode.NXTColor.Green

* Output: value in range 0% to 100% of green reflectivity

– DeviceMode.NXTColor.Blue

* Output: value in range 0% to 100% of blue reflectivity

– DeviceMode.NXTColor.Raw

* Note: obsolete, functionality available in other modes. Also not working properly.
Returning 1 value instead of 3

• NXTLight-Sensor:

– DeviceMode.NXTLight.Reflect [Default]

* Output: value in range 0% to 100% brightness

– DeviceMode.NXTLight.Ambient

* Output: value in range 0% to 100% brightness

• NXTSound-Sensor:

– DeviceMode.NXTSound.DB [Default]

* Output: value in decibel

– DeviceMode.NXTSound.DBA

* Output: value in dba weighted according to human hearing

• NXTTemperature-Sensor

– DeviceMode.NXTTemperature.C [Default]

* Output: value in Celsius

– DeviceMode.NXTTemperature.F

* Output: value in Fahrenheit

• NXTTouch-Sensor:

– DeviceMode.NXTTouch.Pushed [Default]

* Output: 0: not pushed, 1: pushed

1.3. Sensor 13

Mindstorms EV3 Toolbox Documentation, Release v1.0

– DeviceMode.NXTTouch.Bumps

* Output: n: number of times pressed and released

• NXTUltraSonic-Sensor:

– DeviceMode.NXTUltraSonic.CM [Default]

* Output: distance in cm

– DeviceMode.NXTUltraSonic.IN

* Output: distance in inches

• HTAccelerometer-Sensor:

– DeviceMode.HTAccelerometer.Acceleration [Default]

– DeviceMode.HTAccelerometer.AccelerationAllAxes

* Note: Not working properly. Returning 1 value instead of 6

• HTCompass-Sensor:

– DeviceMode.HTCompass.Degrees [Default]

* Note: ‘Error’ mode assigned, value still appears to be correct.

* Output: 0 to 180 degree. 45° being north, 90° east etc

• HTColor-Sensor:

– DeviceMode.HTColor.Col [Default]

* Output: value representing color: 0-black, 1-purple, 2-blue, 3-cyan, 4-green, 5-green/
yellow, 6-yellow, 7-orange, 8-red, 9-magenta, 10-pink, 11-low saturation blue, 12-low
saturation green, 13-low saturation yellow, 14-low saturation orange, 15-low saturation
red, 16-low saturation pink, 17-white

– DeviceMode.HTColor.Red

* Output: value in range 0 to 255 of red reflectivity

– DeviceMode.HTColor.Green

* Output: value in range 0 to 255 of green reflectivity

– DeviceMode.HTColor.Blue

* Output: value in range 0 to 255 of blue reflectivity

– DeviceMode.HTColor.White

* Output: value in range 0 to 255 of white reflectivity

– DeviceMode.HTColor.Raw

* Note: obsolete, color values available in other modes. Also not working properly. Re-
turning 1 value instead of 3

– DeviceMode.HTColor.Nrm,

* Note: obsolete, normalized values available in other modes. Also not working properly.
Returning 1 value instead of 4

– DeviceMode.HTColor.All

* Note: obsolete, all values available in other modes. Also not working properly. Return-
ing 1 value instead of 4

14 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

Type DeviceMode.{Type}

debug
Debug turned on or off. In debug mode, everytime a command is passed to the sublayer (‘communication
layer’), there is feedback in the console about what command has been called. [WRITABLE]

Type bool

value
Value read from hysical sensor. What the value represents depends on mode. [READ-ONLY]

Type numeric

type
Type of physical sensor connected to the port. Possible types are: [READ-ONLY]

• DeviceType.NXTTouch

• DeviceType.NXTLight

• DeviceType.NXTSound

• DeviceType.NXTColor

• DeviceType.NXTUltraSonic

• DeviceType.NXTTemperature

• DeviceType.LargeMotor

• DeviceType.MediumMotor

• DeviceType.Touch

• DeviceType.Color

• DeviceType.UltraSonic

• DeviceType.Gyro

• DeviceType.InfraRed

• DeviceType.HTColor

• DeviceType.HTCompass

• DeviceType.HTAccelerometer

• DeviceType.Unknown

• DeviceType.None

• DeviceType.Error

Type DeviceType

reset(sensor)
Resets sensor value.

Notes

• Has not been thoroughly tested but seems to work as expected

setProperties(sensor, varargin)
Sets multiple Sensor properties at once using MATLAB’s inputParser.

1.3. Sensor 15

Mindstorms EV3 Toolbox Documentation, Release v1.0

Parameters

• debug (bool) – [OPTIONAL]

• mode (DeviceMode.{Type}) – [OPTIONAL]

Example:
brick = EV3()
brick.connect('bt', 'serPort', '/dev/rfcomm0');

% use the following line:
brick.sensor1.setProperties('debug', 'on', 'mode', DeviceMode.Color.

→˓Ambient);

% Instead of:
brick.sensor1.debug = 'on';
brick.sensor1.mode = DeviceMode.Color.Ambient;

Low-Level documentation

1.4 hidapi

class source.hidapi(vendorID, productID, nReadBuffer, nWriteBuffer)

List of methods:

• open()

• close()

• read()

• read_timeout()

• write()

• getHIDInfoString()

• setNonBlocking()

• init()

• exit()

• error()

• enumerate()

• getManufacturersString()

• getProductString()

• getSerialNumberString()

Interface to the hidapi library

Notes

• Developed from the hidapi available at http://www.signal11.us/oss/hidapi/.

• Windows: hidapi.dll needed.

• Mac: hidapi.dylib needed. In addition, Xcode has to be installed.

16 Chapter 1. Contents

http://www.signal11.us/oss/hidapi/

Mindstorms EV3 Toolbox Documentation, Release v1.0

• Linux: hidapi has to be compiled on host-system.

handle

vendorID
Vendor-ID of the USB device.

Type numeric

productID
Product-ID of the USB device.

Type numeric

nReadBuffer
Read-buffer size in bytes.

Type numeric

nWriteBuffer
Write-buffer size in bytes. Needs to be 1 Byte bigger than actual packet.

Type numeric

slib
Name of shared library file (without file extension). Defaults to ‘hidapi’.

Type string

sheader
Name of shared library header. Defaults to ‘hidapi.h’.

Type string

Example

hidHandle = hidapi(1684,0005,1024,1025); %|br|

close(hid)
Close the connection to a hid device.

Throws: InvalidHandle: Handle to USB-device not valid

Notes

• Gets called automatically when deleting the hidapi instance.

enumerate(hid, vendorID, productID)
Enumerates the info about the hid device with the given vendorID and productID and returns a string with
the returned hid information.

Parameters

• vendorID (numeric) – Vendor-ID of the USB device in decimal.

• productID (numeric) – Product-ID of the USB device in decimal.

1.4. hidapi 17

Mindstorms EV3 Toolbox Documentation, Release v1.0

Notes

• Using a vendorID and productID of (0,0) will enumerate all connected hid devices.

• MATLAB does not have the hid_device_infoPtr struct so some of the returned information will need
to be resized and cast into uint8 or chars.

error(hid)
Return the hid device error string if a function produced an error.

Throws: InvalidHandle: Handle to USB-device not valid

Notes

• This function must be called explicitly if you think an error was generated from the hid device.

exit(hid)
hidapi.exit Exit hidapi

hid.exit() exits the hidapi library.

Throws: CommError: Error during communication with device

Notes:: - You should not have to call this function directly.

getHIDInfoString(hid, info)
Get the corresponding hid info from the hid device.

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

Notes

• Info is the hid information string.

See also HIDAPI.GETMANUFACTURERSSTRING, HIDAPI.GETPRODUCTSTRING, HI-
DAPI.GETSERIALNUMBERSTRING.

getManufacturersString(hid)
Get manufacturers string from hid object using getHIDInfoString.

getProductString(hid)
Get product string from hid object using getProductString.

getSerialNumberString(hid)
Get serial number from hid object using getSerialNumberString.

init(hid)
Inits the hidapi library.

Throws: CommError: Error during communication with device

Notes

• This is called automatically in the library itself with the open function. You should not have to call
this function directly.

18 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

open(hid)
Open a connection with a hid device

Throws: CommError: Error during communication with device

Notes

• Gets called automatically when creating an hidapi-object.

• The pointer return value from this library call is always null so it is not possible to know if the open
was successful.

• The final parameter to the open hidapi library call has different types depending on OS. On windows
it is uint16, on linux/mac int32.

read(hid)
Read from a hid device and returns the read bytes.

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

Notes

• Will print an error if no data was read.

read_timeout(hid, timeOut)
Read from a hid device with a timeout and return the read bytes.

Parameters timeOut (numeric >= 0) – Milliseconds after which a timeout-error occurs
if no packet could be read.

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

setNonBlocking(hid, nonblock)
Set the non blocking flag on the hid device connection.

Parameters nonblock (numeric in {0,1}) – 0 disables nonblocking, 1 enables non-
blocking

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

write(hid, wmsg, reportID)
Write to a hid device.

Throws: CommError: Error during communication with device InvalidHandle: Handle to USB-device
not valid

Notes

• Will print an error if there is a mismatch between the buffer size and the reported number of bytes
written.

1.4. hidapi 19

Mindstorms EV3 Toolbox Documentation, Release v1.0

1.5 usbBrickIO

class source.usbBrickIO(varargin)

List of methods:

• open()

• close()

• read()

• write()

• setProperties()

USB interface between MATLAB and the brick

Notes

• Uses the hid library implementation in hidapi.m

• The default parameters should always work when you try to connect to an EV3 brick, so in nearly all
use-cases, the constructor does not need any parameters (besides ‘debug’ eventually).

debug
If true, each open/close/read/write-call will be noted in the console. Defaults to false.

Type bool

vendorID
Vendor-ID of the USB device. Defaults to 0x694 (EV3 vendor ID).

Type numeric

productID
Product-ID of the USB device. Defaults to 0x0005 (EV3 product ID).

Type numeric

nReadBuffer
Read-buffer size in bytes. Defaults to 1024.

Type numeric

nWriteBuffer
Write-buffer size in bytes. Needs to be 1 Byte bigger than actual packet. Defaults to 1025 (EV3 USB
maximum packet size = 1024).

Type numeric

timeOut
Milliseconds after which a timeout-error occurs if no packet could be read. Defaults to 10000.

Type numeric >= 0

Examples:
% Connecting via USB
commHandle = usbBrickIO();
% Connecting via USB with enabled debug output
commHandle = usbBrickIO('debug', true);

20 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

close(brickIO)
Closes the usb connection the brick through the hidapi interface.

open(brickIO)
Opens the usb connection to the brick through the hidapi interface.

read(brickIO)
Reads data from the brick through usb using the hidapi interface and returns the data in uint8 format.

setProperties(brickIO, varargin)
Sets multiple usbBrickIO properties at once using MATLAB’s inputParser.

The syntax is as follows: commHandle.setProperties(‘propertyName1’, propertyValue1, ‘property-
Name2’, propertyValue2, . . .). Valid, optional properties are: debug, vendorID, productID, nReadBuffer,
nWriteBuffer, timeOut.

See also USBBRICKIO.DEBUG, USBBRICKIO.VENDORID, USBBRICKIO.PRODUCTID, USB-
BRICKIO.NREADBUFFER, USBBRICKIO.NWRITEBUFFER, USBBRICKIO.TIMEOUT

write(brickIO, wmsg)
Writes data to the brick through usb using the hidapi interface.

Parameters wmsg (uint8 array) – Data to be written to the brick via usb

1.6 btBrickIO

class source.btBrickIO(varargin)

List of methods:

• open()

• close()

• read()

• write()

• setProperties()

Bluetooth interface between MATLAB and the brick

Notes

• Connects to the bluetooth module on the host through a serial connection. Hence be sure that a serial
connection to the bluetooth module can be made. Also be sure that the bluetooth module has been paired
to the brick before trying to connect.

• Usage is OS-dependent:

– Windows: the deviceName- & channel-properties are needed for connection. The implementa-
tion is based on the Instrument Control toolbox.

– Linux (and potentially Mac): serialPort-property is needed for connection. The implementation
is based on MATLAB’s serial port implementation.

• For general information, see also BrickIO.

debug
If true, each open/close/read/write-call will be shown in the console. Defaults to false.

1.6. btBrickIO 21

Mindstorms EV3 Toolbox Documentation, Release v1.0

Type bool

serialPort
Path to the serial-port object. Only needed when using MATLAB’s serial class (i.e. on linux/mac).
Defaults to ‘/dev/rfcomm0’.

Type string

deviceName
Name of the BT-device = the brick. Only needed when using the Instrument Control toolbox (i.e. on
windows). Defaults to ‘EV3’.

Type string

channel
BT-channel of the connected BT-device. Only needed when using the Instrument Control toolbox (i.e. on
windows). Defaults to 1.

Type numeric > 0

timeOut
seconds after which a timeout-error occurs if no packet could be read. Defaults to 10.

Type numeric >= 0

backend
Backend this implementation is based on. Is automatically chosen depending on the OS. Defaults to
‘serial’ on linux/mac systems, and to ‘instrumentControl’ on windows systems.

Type ‘serial’|’instrumentControl’

Examples:
% Connecting on windows
commHandle = btBrickIO('deviceName', 'MyEV3', 'channel', 1);
% Connecting on windows using MATLABs default serial port implementation for

→˓testing
commHandle = btBrickIO('deviceName', 'MyEV3', 'channel', 1, 'backend', 'serial

→˓');
% Connecting on mac/linux
commHandle = btBrickIO('serPort', '/dev/rfcomm0');

close(brickIO)
Closes the bluetooth connection the brick using fclose.

open(brickIO)
Opens the bluetooth connection to the brick using fopen.

read(brickIO)
Reads data from the brick through bluetooth via fread and returns the data in uint8 format.

setProperties(brickIO, varargin)
Sets multiple btBrickIO properties at once using MATLAB’s inputParser.

The syntax is as follows: commHandle.setProperties(‘propertyName1’, propertyValue1, ‘property-
Name2’, propertyValue2, . . .). Valid, optional properties are: debug, serPort, deviceName, channel,
timeout.

See also BTBRICKIO.DEBUG, BTBRICKIO.SERIALPORT, BTBRICKIO.DEVICENAME, BT-
BRICKIO.CHANNEL, BTBRICKIO.TIMEOUT

write(brickIO, wmsg)
Writes data to the brick through bluetooth via fwrite.

22 Chapter 1. Contents

Mindstorms EV3 Toolbox Documentation, Release v1.0

Parameters wmsg (uint8 array) – Data to be written to the brick via bluetooth

1.6. btBrickIO 23

Mindstorms EV3 Toolbox Documentation, Release v1.0

24 Chapter 1. Contents

MATLAB MODULE INDEX

s
source, 17

25

Mindstorms EV3 Toolbox Documentation, Release v1.0

26 MATLAB Module Index

INDEX

B
backend (source.btBrickIO attribute), 19
batteryMode (source.EV3 attribute), 4
batteryValue (source.EV3 attribute), 4
beep() (source.EV3 method), 4
brakeMode (source.Motor attribute), 7
btBrickIO (class in source), 18

C
channel (source.btBrickIO attribute), 19
close() (source.btBrickIO method), 19
close() (source.hidapi method), 14
close() (source.usbBrickIO method), 18
connect() (source.EV3 method), 4
currentSpeed (source.Motor attribute), 7

D
debug (source.btBrickIO attribute), 19
debug (source.EV3 attribute), 4
debug (source.Motor attribute), 7
debug (source.Sensor attribute), 12
debug (source.usbBrickIO attribute), 18
deviceName (source.btBrickIO attribute), 19
disconnect() (source.EV3 method), 5

E
enumerate() (source.hidapi method), 15
error() (source.hidapi method), 15
EV3 (class in source), 3
exit() (source.hidapi method), 15

G
getHIDInfoString() (source.hidapi method), 15
getManufacturersString() (source.hidapi method), 16
getProductString() (source.hidapi method), 16
getSerialNumberString() (source.hidapi method), 16

H
handle (source.hidapi attribute), 14
hidapi (class in source), 13

I
init() (source.hidapi method), 16
internalReset() (source.Motor method), 8
isConnected (source.EV3 attribute), 4
isRunning (source.Motor attribute), 7

L
limitMode (source.Motor attribute), 7
limitValue (source.Motor attribute), 7

M
mode (source.Sensor attribute), 10
Motor (class in source), 6
motorA (source.EV3 attribute), 3
motorB (source.EV3 attribute), 3
motorC (source.EV3 attribute), 3
motorD (source.EV3 attribute), 4

N
nReadBuffer (source.hidapi attribute), 14
nReadBuffer (source.usbBrickIO attribute), 18
nWriteBuffer (source.hidapi attribute), 14
nWriteBuffer (source.usbBrickIO attribute), 18

O
open() (source.btBrickIO method), 19
open() (source.hidapi method), 16
open() (source.usbBrickIO method), 18

P
playTone() (source.EV3 method), 5
power (source.Motor attribute), 7
productID (source.hidapi attribute), 14
productID (source.usbBrickIO attribute), 18

R
read() (source.btBrickIO method), 19
read() (source.hidapi method), 16
read() (source.usbBrickIO method), 18
read_timeout() (source.hidapi method), 16
reset() (source.Sensor method), 13

27

Mindstorms EV3 Toolbox Documentation, Release v1.0

resetTachoCount() (source.Motor method), 8

S
Sensor (class in source), 10
sensor1 (source.EV3 attribute), 4
sensor2 (source.EV3 attribute), 4
sensor3 (source.EV3 attribute), 4
sensor4 (source.EV3 attribute), 4
serialPort (source.btBrickIO attribute), 19
setBrake() (source.Motor method), 8
setNonBlocking() (source.hidapi method), 17
setProperties() (source.btBrickIO method), 19
setProperties() (source.EV3 method), 5
setProperties() (source.Motor method), 8
setProperties() (source.Sensor method), 13
setProperties() (source.usbBrickIO method), 18
sheader (source.hidapi attribute), 14
slib (source.hidapi attribute), 14
smoothStart (source.Motor attribute), 7
smoothStop (source.Motor attribute), 7
source (module), 3, 6, 10, 13, 17, 18
speedRegulation (source.Motor attribute), 7
start() (source.Motor method), 9
stop() (source.Motor method), 9
stopTone() (source.EV3 method), 6
syncedStart() (source.Motor method), 9
syncedStop() (source.Motor method), 9

T
tachoCount (source.Motor attribute), 7
timeOut (source.btBrickIO attribute), 19
timeOut (source.usbBrickIO attribute), 18
tonePlayed() (source.EV3 method), 6
type (source.Motor attribute), 7
type (source.Sensor attribute), 12

U
usbBrickIO (class in source), 17

V
value (source.Sensor attribute), 12
vendorID (source.hidapi attribute), 14
vendorID (source.usbBrickIO attribute), 18

W
waitFor() (source.Motor method), 10
write() (source.btBrickIO method), 20
write() (source.hidapi method), 17
write() (source.usbBrickIO method), 18

28 Index

	Contents
	EV3
	Motor
	Sensor
	hidapi
	usbBrickIO
	btBrickIO

	MATLAB Module Index
	Index

