
My first FenicsX program

This notebook gives a small introduction to FenicsX, an open-source FEM library. We use the
Python API of FenicsX to solve an example PDE problem.

Learning goals

• Understand the basic structure of a FenicsX program
• Learn the basic building blocks of modern FEM software: mesh, function space,

boundary conditions, weak form, and solvers

Poisson model

In this example, we solve the classical Poisson equation for a scalar 𝑢,

−Δ𝑢 = 𝑓 in Ω = [0, 1] × [0, 1] , 𝑢 = 𝑔 on 𝜕Ω ,

where Ω is the domain of interest, 𝑓 is a given scalar source term, and 𝑔 is a Dirichlet boundary
condition.

Structure

Below, we learn how to

1. create a mesh for a simple domain
2. pick discrete FEM function spaces (which functions do we use to approximate the PDE

solution?)
3. define the weak form of the PDE
4. apply boundary conditions
5. assemble and solve the linear system resulting from the discretization
6. visualize the solution

Let’s go!

First, we import some of the necessary python libraries

1

Make sure to download and unpack the library.tar.gz file in the same directory as
this notebook.

from mpi4py import MPI
import numpy as np
import os

CMM_DIR = os.getcwd()
os.environ["PYTHONPATH"] = f"{CMM_DIR}:{os.environ.get('PYTHONPATH', '')}"

import library.plot
import library.helpers
output_dir = library.helpers.make_unique_dir(os.path.join(CMM_DIR, 'ex01'))

Mesh and computational domain

The basis for our discretization is a discrete approximation Ωℎ of the computational domain.

Here, he have the choice between different discretization types, e.g. quadrilateral, triangular
etc.

from dolfinx import mesh

number_elements_x = 5
number_elements_y = 1
domain = mesh.create_unit_square(

MPI.COMM_WORLD, number_elements_x, number_elements_y, cell_type=mesh.CellType.quadrilateral
)

The variational problem

A key step in building finite element methods is the weak form of the PDE, upon which the
discrete variational problem is based.

In all cases, the weak form is obtained by multiplying the PDE with a test function 𝑣 and
integrating over the domain Ω.

Further operations on the resulting integral equations, such as integration by parts, can then be
applied. This is often done improve the properties of the method, for example to - reduce the
required regularity (we need less derivatives of the solution to exist) and hence allow for lower-
order (=cheaper) finite element spaces - introduce symmetry to the (bi-)linear forms, which is
favored by many linear solvers - introduce certain natural boundary conditions, e.g. the terms
that appear as boundary integrals in the weak form

A first key realization is that the weak form for a given PDE is not unique.

2

https://mbd.pages.rwth-aachen.de/courses/cmm/content/exercises/notebooks/library.tar.gz

A weak form for the Poisson equation

A typical variational problem for the Poisson equation is given by

Find 𝑢 ∈ 𝑉 such that

∫
Ω

∇𝑢ℎ ⋅ ∇𝑣ℎ 𝑑𝑥 −
��������∫

𝜕Ω
�𝑢ℎ ⋅ n 𝑣ℎ 𝑑𝑠 = ∫

Ω
𝑓𝑣ℎ 𝑑𝑥

for all 𝑣 ∈ 𝑉0. Here n is the outward normal vector on the boundary 𝜕Ω and 𝑉0 is the space
of functions that vanish on the boundary, hence the boundary integral vanishes.

The discrete variational problem is obtained by replacing the continous domain Ω with its
discrete approximation Ωℎ (our mesh) and the continuous trial and test spaces 𝑉 and 𝑉0 with
the discrete finite element spaces 𝑉ℎ and 𝑉ℎ,0, respectively.

Technical note: By default, FenicsX test functions are zero on parts of the boundary where
Dirichlet conditions are applied. Since we only use Dirichlet condiitons in this example, we
don’t have to worry about the boundary integral term and we omit the 𝑉ℎ,0 notation.

Our first finite element

The term “finite element” refers to the basis functions defined on our mesh. The idea of the
finite element method is to find the best approximation of the solution 𝑢 in a finite-dimensional
function space 𝑉ℎ.

We thus have to pick a finite element function space 𝑉ℎ on our mesh.

Typically, the choice of the function space is crucial for the accuracy and convergence of the
method (lego block analogy)

Let’s start with a simple linear polynomial function space on the quadrilateral mesh that we
created (check out what it looks like here)

used for plotting
from dolfinx.fem import functionspace, Function, Constant, form
from basix.ufl import element

mesh_element_name = domain.topology.cell_name()
""" type of mesh element, e.g. "quadrilateral" """
basis_functions_degree = 1
""" degree of the finite basis functions """

finite_element = element(
family="CG", cell=domain.topology.cell_name(), degree=basis_functions_degree

3

https://defelement.org/elements/examples/quadrilateral-lagrange-equispaced-1.html

)
discrete_fem_space = functionspace(mesh=domain, element=finite_element)

Lets have a look at our beautiful mesh:

library.plot.mesh(functionspace=discrete_fem_space, title="Mesh", figurepath=output_dir, figurename='mesh', show_edges=True)

image saved in /home/is086873/CMM/ex01/mesh.png

2025-04-23 16:49:19.813 (0.802s) [14E0A30E5740]vtkXOpenGLRenderWindow.:1416 WARN| bad X server connection. DISPLAY=

library.plot.display_image(image_path=os.path.join(output_dir, 'mesh.png'))

<IPython.core.display.HTML object>

From Math to Code: the weak form and UFL

The main advantage of software like FenicsX is that it provides a way to work in a syntax that
is very close to the mathematical notation of the weak form. The underlying syntax is called
UFL (Unified Form Language) and is a domain-specific language for finite element variational
forms.

Let’s see how we can write the weak form in UFL.

from ufl import TestFunction, TrialFunction, dot, ds, dx, grad

V_h = discrete_fem_space
""" Discrete finite element space """

u_h = TrialFunction(V_h)
""" discrete trial function """
v_h = TestFunction(V_h)
""" discrete test function """

f = Constant(domain, 0.0)
""" right-hand side source term """

Define the weak form lhs == rhs
weak_form_lhs = dot(grad(u_h), grad(v_h)) * dx
weak_form_rhs = f * v_h * dx

4

Boundary conditions

There are a couple of ways to apply boundary conditions in FenicsX. We cover the simplest
way to set Dirichlet boundary conditions.

The basic idea is to tell FenicsX where we want to apply the Dirichlet boundary condition in
terms of the mesh and then let the software figure out which nodes and facets of the mesh
coincide with that geometrical location.

We therefore start by defining functions to tell FenicsX what we consider to be the left and
right boundary of the domain (𝑥 = 0 and 𝑥 = 1).

return 1 on the left boundary of the unit square, e.g when x = (x,y)[0] close to 0
def left_boundary_marker(x):

return np.isclose(x[0], 0.0)

return 1 on the right boundary of the unit square, e.g when x = (x,y)[0] close to 1
def right_boundary_marker(x):

return np.isclose(x[0], 1.0)

We now create two boundary conditions for a constant value of 𝑔 = 1 on the left boundary
and 𝑔 = 0 on the right boundary.

from dolfinx.fem import dirichletbc, locate_dofs_topological
from dolfinx.mesh import locate_entities_boundary

mesh_topology_dim = domain.topology.dim
facet_geometrical_dimension = mesh_topology_dim - 1

facets_on_left_boundary = locate_entities_boundary(
domain, facet_geometrical_dimension, left_boundary_marker

)
dofs_on_left_boundary = locate_dofs_topological(

V_h, facet_geometrical_dimension, facets_on_left_boundary
)

value_left = Constant(domain, 1.0)
""" value on the left boundary """
bc_left = dirichletbc(value_left, dofs_on_left_boundary, V_h)

facets_on_right_boundary = locate_entities_boundary(
domain, facet_geometrical_dimension, right_boundary_marker

)

5

dofs_on_right_boundary = locate_dofs_topological(
V_h, facet_geometrical_dimension, facets_on_right_boundary

)
value_right = Constant(domain, 0.0)
""" value on the right boundary """
bc_right = dirichletbc(value_right, dofs_on_right_boundary, V_h)

dirichlet_boundary_conditions = [bc_left, bc_right]
""" list of Dirichlet boundary conditions """

' list of Dirichlet boundary conditions '

Assemble and solve the linear system

We start by creating a discrete function to store our solution vector. The function lives in the
same approximation space as our trial function 𝑢ℎ and is initialized to zero:

discrete_solution = Function(V_h)
""" discrete solution, a function in the finite element space. Our solution vector will be stored here """

' discrete solution, a function in the finite element space. Our solution vector will be stored here '

Then, we create a writer for the VTK file to store our results on disk.

from dolfinx.io import VTKFile
from library.helpers import make_unique_dir

vtk_file_abs_path_name = os.path.join(output_dir, "simulation.pvd")
vtk_writer = VTKFile(

domain.comm, vtk_file_abs_path_name, "w+"
)
vtk_writer.write_function(discrete_solution, t=0.0)

print("Writing solution to file " + vtk_file_abs_path_name)

Writing solution to file /home/is086873/CMM/ex01/simulation.pvd

6

This is where the magic happens

We now reap the true benefit of modern FEM backends: we can assemble the linear system
and solve it in a single line of code.

from dolfinx.fem.petsc import LinearProblem

linear_solver_options = {"ksp_type": "preonly", "pc_type": "lu"}

problem = LinearProblem(
weak_form_lhs,
weak_form_rhs,
bcs=dirichlet_boundary_conditions,
petsc_options= linear_solver_options,

)

discrete_solution = problem.solve()

Write the solution to disk
vtk_writer.write_function(discrete_solution, t=0.5)

vtk_writer.write_function(discrete_solution, t=1.0)
vtk_writer.close()

Ok… something happened … I guess? Let’s see if we can visualize the solution.

Visualization

There are different ways to visualize the solution. For a check of the solution from within our
python script, we can visualize the solution using pyvista.

The result is not super pretty but we can check that the solution indeed “looks” like a linear
connection between the boundary conditions

library.plot.scalar_field(
function=discrete_solution,
title="Solution",
figurepath=output_dir,
figurename='solution',
show_edges=True,

)

image saved in /home/is086873/CMM/ex01/solution.png

7

library.plot.display_image(image_path=os.path.join(output_dir, 'solution.png'))

<IPython.core.display.HTML object>

Post-processing with Paraview

We can also visualize the solution using Paraview. To do that, we open the files written to the
following location

print(vtk_file_abs_path_name)

/home/is086873/CMM/ex01/simulation.pvd

Verification: Comparing with the exact solution

For the simple 1D Poisson equation, we can easily compare with the analytical solution, which
is just a linear connection of the boundary values, e.g.

𝑢exact(𝑥, 𝑦) = 1 − 𝑥 for 𝑥 ∈ [0, 1], 𝑦 ∈ [0, 1]

from dolfinx.fem import assemble_scalar, form
from petsc4py import PETSc

def u_exact(x):
values = np.zeros((1 , x.shape[1]), dtype=PETSc.ScalarType)
values[0] = 1.0 - x[0]
return values

u_ex = Function(V_h)
u_ex.interpolate(u_exact)

L2_error = form(dot(discrete_solution - u_ex, discrete_solution - u_ex) * dx)

error_L2 = np.sqrt(domain.comm.allreduce(assemble_scalar(L2_error), op=MPI.SUM))
error_max = domain.comm.allreduce(

np.max(discrete_solution.x.petsc_vec.array - u_ex.x.petsc_vec.array), op=MPI.MAX
)

print("L2 error with respect to the analytical solution: " + str(error_L2))
print("Maximum error at the degrees of freedom: " + str(error_max))

8

L2 error with respect to the analytical solution: 1.4256072914824157e-16
Maximum error at the degrees of freedom: 4.440892098500626e-16

9

