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1. Incompressible Navier-Stokes Equations

Consider the incompressible Navier-Stokes equations in 3D

∇ ⋅ v = 0

𝜕𝑡v + v ⋅ ∇v = −1
𝜌∇𝑝 + 𝜈Δv + b. (1)

1. What does 𝜈 stand for? Write down the SI units for 𝜈.

2. Given that 𝜌, 𝜈, b are known, how many individual equations and unknowns (variable name
and number of component) does the system of equations in Equation 1 comprise of? Identify
the unknowns.

3. In the momentum balance equation in Equation 1 identify

1. Convective terms
2. Diffusive terms
3. Source terms

In order to derive the dimensionless formulation of Equation 1, we define the following scaled
variables:

𝑥𝑖 = 𝐿0 ̃𝑥𝑖, 𝑣𝑖 = 𝑉0 ̃𝑣𝑖, b = 𝑔b̃, 𝑡 = 𝑇0 ̃𝑡 = 𝐿0
𝑉0

̃𝑡 and 𝑝 = 𝜌𝑉0
2 ̃𝑝

4. Derive the dimensionless mass balance from Equation 1. Describe how the form differs from
the original form of the mass balance equation.

5. Derive the dimensionless momentum balance in terms of the Reynolds number 𝑅𝑒 and Froude
number 𝐹𝑟.

6. With the introduction of a new pressure scaling 𝑝 = 𝜈𝜌𝑉0
𝐿0

̂𝑝, derive the dimensionless form of
the momentum balance.

7. Based on the dimensionless forms of the momentum balance, identify which part of the
mathematical model will vanish and name the resulting process model when:

1. 𝑅𝑒 >> 1 for ̃𝑝
2. 𝑅𝑒 << 1 for ̂𝑝

Points: 15

2. Heat Equation

Let’s assume we have given a heat equation of constant advection speed

𝜕
𝜕𝑡𝑇⏟

(I)

− 𝑣 𝜕
𝜕𝑥𝑇⏟
(II)

= 𝜆 𝜕2

𝜕𝑥2 𝑇⏟
(III)

(2)

on a domain 𝑥 = [0, ∞) with boundary conditions

𝑇 |𝑥=0 = 𝑇wall, 𝑇 |𝑥→∞ = 𝑇inf = const., 𝑇wall > 𝑇inf (3)
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and initial condition 𝑇 (𝑥, 0) = 𝑇inf.

1. Explain the physical meaning of the terms (I), (II), and (III) of the heat equation.

2. What is 𝜆 called? Give its SI units.

We introduce the dimensionless variables

𝑡 ∶= 𝑡0 ̃𝑡, 𝑥 ∶= 𝑥0 ̃𝑥, 𝑣 ∶= 𝑣0 ̃𝑣, and 𝑇 ∶= (𝑇wall − 𝑇inf)⏟⏟⏟⏟⏟
𝑇0

̃𝑇 + 𝑇inf.

and arrive at the dimensionless form of the heat equation

𝑥0
2

𝜆𝑡0

𝜕
𝜕 ̃𝑡

̃𝑇 − 𝑃𝑒 ̃𝑣 𝜕
𝜕 ̃𝑥

̃𝑇 = 𝜕2

𝜕2 ̃𝑥
̃𝑇

Now consider a physical regime characterized by 𝑡0 ≫ 𝑥2
0

𝜆 .

3. How does the equation read in this physical regime?

4. What is the physical meaning of the Peclet number 𝑃𝑒?

5. Show that the temperature profile ̃𝑇 = exp(−𝑃𝑒 ̃𝑣 ̃𝑥) is a solution to the equation arising in 3.

6. Indicate through a sketch, how the temperature profile changes as the velocity increases as
the velocity increases via a qualitative plot at two times. Note, that the plot does not have
to be quantitatively correct.

7. If the velocity doubles, how does 𝜆 need to change to retain the same profile?

Points: 15

3. Shallow Water Equations

The incompressible Navier-Stokes equations in dimensionless form using a scaling in (𝜖, 𝐹𝑟) in a
rotated coordinate system inclined at angle 𝜁 are given by:

𝜕𝑥𝑢 + 𝜕𝑧𝑤 = 0
𝜖𝐹𝑟2 (𝜕𝑡𝑢 + 𝜕𝑥𝑢2 + 𝜕𝑧(𝑢𝑤)) = 𝜖𝜕𝑥𝜎𝑥𝑥 + 𝜕𝑧𝜎𝑥𝑧 + 𝑠𝑖𝑛(𝜁)
𝜖2𝐹𝑟2 (𝜕𝑡𝑤 + 𝜕𝑥(𝑢𝑤) + 𝜕𝑧(𝑤2)) = 𝜖𝜕𝑥𝜎𝑥𝑧 + 𝜕𝑧𝜎𝑧𝑧 − 𝑐𝑜𝑠(𝜁) .

(4)

We use a material model of the form:

𝜎 = (𝜎𝑥𝑥 𝜎𝑥𝑧
𝜎𝑧𝑥 𝜎𝑧𝑧

) = −𝑝𝐼 + ( 0 𝜏𝑥𝑧
𝜏𝑥𝑧 0 ) .

In the following, we denote 𝑏(𝑥) as the bottom topography, 𝑠(𝑡, 𝑥) as the free surface and ℎ(𝑡, 𝑥) =
𝑠(𝑡, 𝑥) − 𝑏(𝑥) as the water height.

Assume the shear stress 𝜏𝑥𝑧 is given by

𝜏𝑥𝑧 = −𝜖−1𝜈𝜕𝑧𝑢 − 𝜖0𝑠𝑖𝑛(𝜁)(𝑧 − 𝑏)

with a linear velocity profile
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𝑢(𝑡, 𝑥, 𝑧) = 𝑢̂(𝑡, 𝑥)𝑧 − 𝑏(𝑥)
ℎ(𝑡, 𝑥) (5)

where 𝑢̂(𝑡, 𝑥) = 𝑢(𝑡, 𝑥, 𝑧 = 𝑠(𝑡, 𝑥)) denotes the velocity at the free-surface.

1. Derive an expression for the shear stress 𝜏𝑥𝑧 using the assumption on the velocity profile
(Equation 5).

2. Derive the asymptotic expansion of Equation 4 using

𝑢 = 𝜖0𝑢(0) + 𝜖1𝑢(1) + 𝒪(𝜖2)
𝑤 = 𝜖0𝑤(0) + 𝜖1𝑤(1) + 𝒪(𝜖2)
𝑝 = 𝜖0𝑝(0) + 𝜖1𝑝(1) + 𝒪(𝜖2)

Now we neglect terms of order 𝜖2 or higher. The pressure distribution now takes the form 𝑝(𝑡, 𝑥, 𝑧)

𝑝(𝑡, 𝑥, 𝑧) = 𝐴(𝑡, 𝑥)(ℎ − (𝑧 − 𝑏))

where 𝐴(𝑡, 𝑥) is a function of time 𝑡 and dimension 𝑥.

3. Compute the pressure distribution 𝑝(𝑡, 𝑥, 𝑧) by first deriving equations for 𝑝(0) and 𝑝(1) and
assuming a stress-free free-surface boundary condition 𝑝(𝑡, 𝑥, 𝑧 = 𝑠) = 0.

4. Is the pressure hydrostatic? Explain your answer.

5. Based on the asymptotic expansion, compute the depth averaged equations of Equation 4.
Use

∫
𝑠

𝑏
𝜕𝑥𝑝(𝑡, 𝑥, 𝑧) 𝑑𝑧 =𝜕𝑥 (∫

𝑠

𝑏
𝑝(𝑡, 𝑥, 𝑧) 𝑑𝑧)

− (𝑝(𝑡, 𝑥, 𝑧)∣
𝑧=𝑠

𝜕𝑥𝑠 − 𝑝(𝑡, 𝑥, 𝑧)∣
𝑧=𝑏

𝜕𝑥𝑏)
(6)

and
∫

𝑠

𝑏
𝜕𝑡𝑢 + 𝜕𝑥(𝑢2) + 𝜕𝑧(𝑢𝑤) 𝑑𝑧 = 𝜕𝑡(ℎ𝑢̄) + 𝜕𝑥(𝛼ℎ𝑢̄2) + 𝑅 (7)

for the left hand side of the momentum balance. 𝑢̄ denotes the mean velocity and 𝑅 a residual
term.

Points: 15

4. Freezing body of water

Let’s assume we have a large box ( 𝑥 ∈ (−∞, 0] ) filled with ice water at 𝑇0 = 𝑇𝑚 = 0°C.

We control the temperature at the right wall of the box to be constant: 𝑇𝑤(𝑡) = 𝑇 (𝑡, 𝑥 = 0) =
−10°C.

1. Sketch the experimental situation and draw a corresponding temperature profile (T over x
plot) for time 𝑡0 = 0 and some time 𝑡1 > 0.

2. Process model:

1. Write down a mathematical model (PDE) to describe the temperature evolution in each
domain.
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2. Which condition is needed to close the system? Simplify the condition based on our
experimental situation.

3. State the unknowns of the resulting closed PDE system.

3. Analytical solution:

1. What is the convenient (technical, mathematical) effect of introducing the similarity
variable 𝜁 = 𝑥√

𝑡?
2. Rewrite the temperature evolution in terms of the similarity variable 𝜁.

From now on, assume the following Ansatz for the propagation of the interface:

𝑋𝑚(𝑡) = 2
√

𝛼𝑡𝜆

with 𝜆 constant and 𝛼 the thermal diffusivity.

4. Show that

𝑇 (𝑡, 𝑥) = 𝑇𝑤 − (𝑇𝑤 − 𝑇𝑚)
𝑒𝑟𝑓 ( 𝑥

2
√

𝛼𝑡)
𝑒𝑟𝑓 (𝑋𝑚(𝑡)

2
√

𝛼𝑡 )
is a solution for one domain of your system.

5. Derive a homogeneous function (𝐹(𝜆) = 0) that could be solved numerically to determine the
interface position 𝑋𝑚(𝑡) by substituting the previous solution into the closure (task 2.2) and
simplify.

Points: 15

5. Small Problems

5.1 Linear elasticity

During a deformation experiment on a sample of an unknown material, the following deformation
gradient was observed:

F = ⎡⎢
⎣

2.000 0.000 0.000
0.000 1.0 0.500
0.000 −0.500 1.0

⎤⎥
⎦

e𝑖 ⊗ e𝑗

1. Compute the displacement gradient H.

Tip

The deformation gradient F = H + I

2. Compute the small strain tensor D , which is given by the symmetric part of the displacement
gradient.

3. Given the Lame parameters, 𝜆 = 150 × 103MPa and 𝜇 = 75 × 103MPa, compute the Cauchy
stress tensor 𝜎𝜎𝜎.

Points: 4
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5.2 Velocity decomposition

We infer on an expression for the flow field given by

𝑣(𝑥) = ⎛⎜
⎝

1 − 𝑦
1 + 𝑥

0
⎞⎟
⎠

(8)

1. Decompose the given velocity field by calculating the axial vector of spin tensor W and the
strain rate tensor D

2. Superposition of which two of the following flow fields would lead to the flow field as described
in Equation 8.

A B C D

Points: 4
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5.3 Finite differences

Consider the Burgers equation in one spatial dimension

𝜕𝑢
𝜕𝑡 + 𝑢𝜕𝑢

𝜕𝑥 = 𝜈 𝜕2𝑢
𝜕2𝑥2

In order to solve this equation numerically, we use the finite difference method. Using explicit Euler
integration in time, backward differences for first order spatial derivatives and central differences
for second derivatives, we arrive at the following discretization:

1 − 𝑢𝑛
𝑖

Δ𝑡 + 𝑢𝑛
𝑖

2 − 3
Δ𝑥 = 𝜈 4 − 2𝑢𝑛

𝑖 + 𝑢𝑛
𝑖−1

(Δ𝑥)2

Associate the missing discretized values 𝑢𝑛
𝑖+1, 𝑢𝑛

𝑖−1, 𝑢𝑛
𝑖 , 𝑢𝑛+1

𝑖 to the boxes 1 , 2 , 3 , 4 .

box term

1
2
3
4

Points: 4

5.4 Deformation gradient

How can the deformation gradient F be described for the following cases? Fill in the blanks with
the correct options given below

Pure rigid body displacement:
Pure rigid body rotation:
Pure stretching in axial direction:
Pure Shear:

A. Symmetric Tensor

B. Skew-Symmetric Tensor

C. Identity Tensor

D. Diagonal Tensor

E. Rotation Tensor

Points: 4
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5.5 Stress tensor

1. The Cauchy stress 𝜎𝜎𝜎 at any point x in a continuous body can be decomposed into spherical
and deviatoric part: 𝜎𝜎𝜎 = S𝑠 + S𝑑, wherein

S𝑠 = −𝑝I describes:
S𝑑 = 𝜎𝜎𝜎 − S𝑠 describes:

Fill in the table above with the correct options from below.

A. part of stress that tends to change the volume without changing the shape

B. part of stress that tends to change the shape without changing the volume

2. Which of the following implies the symmetry of the stress tensor? __________

A. Conservation of angular momentum

B. Conservation of translational momentum

C. Conservation of energy

Points: 4

5.6 Bernoulli equation

In order to derive the Bernoulli equations

𝑝
𝜌 + 𝑣2

2 + 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡

from the general mass and momentum balance, which of the following assumptions are used? Select
all the correct options

□ medium is in a stationary regime
□ the fluid is isothermal
□ body forces are given as a gravitational potential
□ the medium is compressible
□ the flow is turbulent
□ we are given an incompressible fluid
□ the flow is rotating
□ we have a barotropic fluid
□ the medium is exposed to hydrostatic pressure

Points: 4
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5.7 Temperature field

The following plot of a temperature field is encountered during a simulation.

1. The temperature gradient ∇𝑇 at the blue dot has the direction given by ______.
2. The heat flux q at the blue dot has the direction given by ______.

Points: 4

5.8 Computational model development

A typical computational model development cycle involves both verification and validation. De-
scribe in your own words the terms verification and validation as they have been used in this
lecture.

Points: 4

5.9 Navier-Stokes-Boussinesq model

This is the Navier-Stokes-Fourier model with Boussinesq approximation:

∇ ⋅ v = 0

𝜕𝑡v + v ⋅ ∇v = − 1
𝜌0

∇ (𝑝 − 𝜌0𝑔𝑧) + 𝜈△v − g𝐵(𝑇 − 𝑇0)

𝜕𝑡 (𝜌𝑐𝑝𝑇 ) + ∇ ⋅ (𝜌𝑐𝑝𝑇 v) = ∇ ⋅ (𝜅∇𝑇 ) + S.
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1. What is the physical meaning of 𝜅?
2. What is the SI-units of 𝜅?

Points: 4

5.10 Homogenization

Given the PDE

𝑑
𝑑𝑥 ( 1

1 + 2𝑠𝑖𝑛2(𝜋 𝑥
𝜖 )

𝑑
𝑑𝑥𝑢𝜖(𝑥)) = 0 0 ≤ 𝑥 ≤ 𝐿,

a direct finite-difference discretization yields the following result

1. Indicate which line (red, blue, black) corresponds to which 𝜖:

𝜖 your answer (color)
𝜖 = 0.05
𝜖 = 0.25
𝜖 = 0.5

2. Why is the direct simulation approach from above not suited so solve the problem? (choose
one)

□ Instabilities due to oscillation
□ No convergence for 𝜖 → 0
□ A constant (unphysical) solution for 𝜖 → ∞

3. After homogenization, we obtained the following result
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for the first order system given by 𝑢 = 𝑢(0) + 𝜖𝑢(1).

Associate 𝑢, 𝑢(0), 𝑢(1) to one the following terms (and leave the rest empty):

expression your answer expression your answer
𝑥 𝑥 − 𝜖

4𝜋𝑠𝑖𝑛(2𝜋𝑦)
𝑦 𝑥 − 1

4𝜋𝑠𝑖𝑛(2𝜋𝑥)
− 1

4𝜋𝑠𝑖𝑛(2𝜋𝑥) 𝑥 − 1
4𝜋𝑠𝑖𝑛(2𝜋𝑦)

− 1
4𝜋𝑠𝑖𝑛(2𝜋𝑦) 𝑦 − 𝜖

4𝜋𝑠𝑖𝑛(2𝜋𝑥)
− 𝜖

4𝜋𝑠𝑖𝑛(2𝜋𝑥) 𝑦 − 𝜖
4𝜋𝑠𝑖𝑛(2𝜋𝑦)

− 𝜖
4𝜋𝑠𝑖𝑛(2𝜋𝑦) 𝑦 − 1

4𝜋𝑠𝑖𝑛(2𝜋𝑥)
𝑥 − 𝜖

4𝜋𝑠𝑖𝑛(2𝜋𝑥) 𝑦 − 1
4𝜋𝑠𝑖𝑛(2𝜋𝑦)

Points: 4

5.11 Darcy’s law

Darcy’s law states

q = −𝜅
𝜇 (∇𝑝 − 𝜌g) .

1. What does q, 𝜅, 𝜇, g stand for?

2. State the SI-units of q, 𝜅, 𝜇, g?

q:

𝜅:

𝜇:

g:

Points: 4
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5.12 Piezometric head

An alternative form of Darcy’s model in terms of the piezometric head ℎ(x) reads

q = −𝐾∇ℎ (9)

in which 𝐾 = 𝜌𝑔
𝜇 𝜅.

1. Give the missing definition for ℎ(x)!
2. What are the unknowns in the model?
3. Which equation do we use to close the system?

Tip

Continuity also holds for the Darcy velocity.

4. Combine Equation 9 and your chosen closure into a simpler model for piezometric head ℎ(x)
only!

Points: 4

5.13 Darcy velocity

Consider a porous medium where the background medium is static.

The local velocity v and the Darcy velocity q are connected via

𝜙v = q .

Assume we can measure the specific discharge through the porous medium (red circle), and use
this to infer on an average macroscopic velocity through the porous medium.

1. Do we measure the local velocity v or the Darcy velocity q?

2. What does 𝜙 stand for?

3. Consider the plot. Is 𝜙 > 0.5?

11/14
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□ True
□ False

4. The local velocity is always larger than the Darcy velocity?

□ True
□ False

Points: 4

5.14 Stefan problem

Consider a one-phase Stefan problem where we have ice water at 𝑇0 = 0°C with a left boundary
cooled down to 𝑇𝑊 = −10°C.

1. How does the interface position 𝑋𝑚(𝑡) propagate?

F 1. F 2.

F 3. F 4.

Your answer (select one):

F1 F2 F3 F4

By choosing the Ansatz 𝑋𝑚(𝑡) = 2𝜆
√

𝛼𝑡 for the interface position, we can derive a homogeneous
function

𝐹(𝜆) = Ste−1 − 𝜆√𝜋 exp (𝜆2) 𝑒𝑟𝑓 (𝜆) = 0 .

2. Which plot shows the correct trend?
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F 5. F 6.

F 7. F 8.

Your answer (select one):

F5 F6 F7 F8

Points: 4

5.15 Bloch equations

We focus on the exitation part of the Bloch equations. Consider a magnetic field

B(𝑡) = ⎛⎜
⎝

𝑏1 cos(𝜔0 𝑡)
−𝑏1 sin(𝜔0 𝑡)

𝑏0

⎞⎟
⎠

,

built from superposition of a static B0 and transversal magnetic field B1(𝑡). Here, 𝑏0, 𝑏1 are
constant factors.

In the following, we assume that we know the solution of the Bloch equations for relaxation times
𝑇1 → ∞, 𝑇2 → ∞,

M(𝑡) = 𝑀𝑧0
⎛⎜
⎝

sin(𝜔1 𝑡) sin(𝜔0 𝑡)
sin(𝜔1 𝑡) cos(𝜔0 𝑡)

cos(𝜔1 𝑡)
⎞⎟
⎠

,

for a given initial condition M(𝑡 = 0) = (0, 0, 𝑀𝑧0)𝑇 .

1. Write down the rotation matrix R (no long computation required) such that the solution
M′(𝑡) = R(𝑡)M(𝑡) in the rotating coordinate system reads

13/14



Exam | Continuum Mechanical Modelling for Simulation Science | 14.08.2024
Name: Matriculation No.:

M′(𝑡) = 𝑀𝑧0
⎛⎜
⎝

sin(𝜔1 𝑡)
0

cos(𝜔1 𝑡)
⎞⎟
⎠

2. How does the magnetic field B′ read, when written in the same rotating coordinate system?

3. Assuming 𝜔1 = 1, draw M′ and B′ in the plots below by adding the unit arrows at times
𝑡0 = 0 and 𝑡1 = 1

2 𝜋. Indicate which arrow belongs to which time step.

(a) M′ (a) B′

Points: 4
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