Programming Homework 01

! Submission Deadline: 30.04.2025 - 23:55

e Your homework solution has to be handed in as a group solution via Moodle.
e Your notebooks must run without errors in our environment on the RWTH-Cluster.
See here for more information on how to get started.

! Participant list
Please add your names and student ID (Matrikelnummer) here:

. Name, ID
. Name, ID
. Name, ID
. Name, ID

=W N =

Learning goals

e Derive a weak formulation for a scalar advective PDE.

Learn the basics about the Discontinuous Galerkin (DG) method for said PDE
e Learn how to weakly enforce boundary conditions in a DG context

e Switch between explicit and implicit time stepping in FenicX

e Visualize Streamlines and Pathlines

I Before you start

Make sure that you update the library folder in your CMM directory. Download link:
library.tar.gz

Make sure that you update your dolfinx_latest.sif container image.

You can use the following command on the RWTH cluster/Linux:

https://mbd.pages.rwth-aachen.de/courses/cmm/content/wiki/how_to_homework.html
https://mbd.pages.rwth-aachen.de/courses/cmm/content/exercises/notebooks/library.tar.gz

wget https://mbd.pages.rwth-aachen.de/courses/cmm/content/exercises/notebooks/homework(
rm -rf library
wget https://mbd.pages.rwth-aachen.de/courses/cmm/content/exercises/notebooks/library.:
tar -xvzf library.tar.gz
rm library.tar.gz

rm dolfinx_latest.sif
apptainer pull oras://registry.git.rwth-aachen.de/mbd/courses/containers/dolfinx:lates!

2 Imports

import os

from mpi4py import MPI

import numpy as np

import dolfinx

from dolfinx import fem

import basix

import taqdm

from petscdpy import PETSc
import numpy as np

import ufl

import pyvista

from dolfinx.fem import petsc
from IPython.display import Image, display

import library.plot

import library.helpers
import library.limiter

CMM_DIR = os.getcwd()
os.environ["PYTHONPATH"] = f£"{CMM_DIR}:{os.environ.get('PYTHONPATH', '')}"

output_dir = library.helpers.make_unique_dir(os.path.join(CMM_DIR, 'ex01'))

3 Problem statement

In the lecture, you learned about the general template for a generic transport equation of
the form

0,0+ V- (Tv)=V-(DVT)+S

where ¥ is our transported quantity, e.g. a density, the height of a water wave, a temperature,
momentum or energy. v is the convective transport velocity, D is the diffusion coefficient (it
can be a scalar or a matrix) and a source of production of decay S.

In the tutorial from last week ‘My first FenicsX program’, you already learned about the weak
formulation of the diffusive term for a steady state problem in conjunction with its numerical
approximation using the FEM.

In this tutorial, we will focus on unsteady convective transport which we want to solve
using the Discontinuous Galerkin (DG) method.

Unsteady advection equation:

Given the scalar PDE

Oq+V-(qv)=0 g€
Vg-n=0 ondQ |,

where ¢ € R is the unknown of the system, v(¢,z) = (2,1)7 € R? is a given transport velocity
field with the domain Q = [0, 3] x [0, 3] € R? and it’s boundary 9.

Weak formulation:

We want to approximate our unknown ¢ € V' = DG(1), where DG(1) are Legendre polynomials
of first order. Note that DG(1) and CG(1) can both be Legendre polynomials of first order.
However, in DG(1) the basis functions are not required to be continuous across cell
interfaces (facets). Hence the name of discontinuous and continuous Galerkin elements. This
has two immediate implications:

1. We need two degrees of freedom (dof) for each vertex/node in the inner part of our
domain. This increases the storage demand of DG compared to a CG-FEM formulation.

2. Accounting for these jumps (two function values at one physical location) introduces
new terms in our weak formulation

An illustration of DG(0), DG(1) and CG(1) is given below:

fig = library.plot.DG_illustration()

DG-0 (Piecewise Constant) DG-1 (Piecewise Linear) CG-1 (Continuous Linear)
T T T

P

4 A primer to the Discontinuous Galerkin method

Let’s now start with our weak formulation. In contrast to the usual weak form derivation in
FEM, where we multiply the PDE with a test function ¢ € V over the whole domain 2, we
want to start our derivation for a single element e in our mesh. This is only didactic reasons
and will result in the identical weak form as if one starts with the integration over the full
domain. We will do the derivation step by step by

1. mutiplying the PDE with a test function ¢¢ € V' = DG(1) and integrate over the domain
Q¢ the domain where the basisfunction ¢¢ is non-zero. Note that ¢¢ indicates the basis
on one element of the mesh only. We also perform integration by parts with the
goal to rewrite the advective term in divergence form.

2. we use the divergence theorem to transform the volume integral into a surface (facet)
integral.

3. introducing the concept of a numerical flux in order to resolve the ambiguity of the
value of ¢™ on the facet between two elements.

4. separating internal and boundary facets. The boundary conditions on the boundary
facets will be weakly enforced in the numerical flux.

5. Sum over all elements to recover the integral over the full domain fﬂ dr =3, fﬂc -dzx

6. Recast the formulation in a form that is close to the final formulation in FenicX.

Step 1. (integration by parts)

/ 0,qp¢dx+ | V- (qv)¢®dz =0
e Qe
qn+1 _ qn

<:>>/Qc (At) ¢edx+/gcv.(qnv¢e) df’«"—/ﬂevqﬁe-(qnv) de — 0

Note that in the second step, we used the explicit Euler time stepping scheme to approximate
the time derivative. If we replace ¢" — ¢"*! in the convective term, the formulation will result
in an implicit Euler scheme. The term V¢©-(¢"v) is a jump term which we need to account
for in our weak formulation. We will see later how this term can be interpreted.

Step 2. (divergence theorem)

n+l _ n
=3 / (thq> ¢t dx —|—/ (¢"ve® -n°)ds —/ Ve - (¢"v) de =0
Qe Qe Qe

After using the divergence theorem on the convective term, we obtain an integral over the
boundaries of our element 9€2° and the normal vector n® pointing out of the element. Now
look at the image of the 1D representation of the DG(1) element above and note that there
are two different types of facets:

« interior facets: facets between two elements
¢ boundary facets: facets between an element and the domain boundary

This is different to the CG-FEM formulation, where we only had a boundary integral over
the domain boundary. It is now important to realize that in faﬂe (¢"ve© - n°)ds the value ¢"
is not unique on the facet f. It has two values, one on the element e that we are currently
looking at and another value at its neighboring element. We will now denote ¢"| fo = g™ and

q"| pneignvor = ¢~ Similarly, we denote n® = n*.

Step 3. (numerical flux)

It is still unclear which value we should assign to ¢" on the facet. However, a solution can
be borrowed from what we have already learned in the Finite Volume Method (FVM), as this
method is build around discontinuous solutions at the facets. Without going into any details,
the idea is to replace the flux F' := ¢"v - n® in the boundary integral j;me (¢"ve® - n°)ds with
a numerical flux F™"". Typical choices for this numerical flux are the upwind and the
Lax-Friedrichs flux. We will focus on the latter which is defined as

1 1
Frm = S (qnt) vent = o (IA],,) (6 —)
where |A| ~is the maximal eigenvalue of the Jacobian of the flux function. In our case

Ay = (V- 107,

Step 4. (weakly enforced boundary conditions)

Inserting the numerical flux into our weak form, now also want to differentiate between bound-
ary facets on the domain boundary, denoted as f;me -ds and interior facets [99, , - dS. We

int
bnd

can now write the weak form as

Weak enforcement of boundary conditions means that we do not alter the PDE or linear
system in order to guarantee a certain boundary value. We rather build in the boundary
condition in our weak formulation. In our case, we can simply prescribe the value in the
q™~ in the boundary integral faﬂgn -dS. To realize the extrapolation or outflow boundary

condition V¢-n =0 on 9¢), we simply copy the value from the interior side of the facet to
the exterior side, since a constant across the interface results in a zero gradient.

Instead of simplifying our weak form for our particular boundary condition, we only replace
g™~ with ¢"¢ in the boundary integral. ¢"© denotes the ghost cell value on the exterior side
of the boundary facet and can also be used to model inflow or Dirichlet boundary conditions.

The weak form now reads

qn+1_qn . . N
/96<At)(b dm—/QCVQS-(qV)dx

+ /8Q ([; (¢ +q»)v-nt — % (AL) (a — qn,+)] ¢+> S

1 1
+ ([7 (q”V*—I—q"’G)v-nJr—f(M\)(q”’f—q”#)] ¢+> ds =0
annd 2 2 max

Step 5. (local to global integration)

Now it is finally time to assemble the complete form by integrating over all elements fQ -dx =
Ze er -dx. The important realization is here that the interior facets appear twice, since
the facet is shared by two faces. However, the boundary facets only appear once. So the
integral over all facets can be written as faQ -ds = Zeeﬂ Zfee faszf -ds where f € e denotes
the facets f in element e.

Let’s make this more explicit by looking at the following figure: The left element in z € [0, 1]
has one boundary facet at = 0 and an internal facet at = 1. The right element in = € [1, 2]
has one internal facet at x = 1 and one boundary facet at x = 2. So we have one contribution
for each boundary and two condtributions for the internal facet at =z = 1.

fig = library.plot.DG_facet_integral_illustration()

as Outward normal n* (left cell) Outward normal n~ (right cell)
. T T

1 g~ 1 g

]
n_h\
q*

2.0

154

:

qlx)
o
2

1.0

0.5

0.0 T T T
0.00 0.25 0.50 0.75

T T T T T T T T
150 175 2.00 0.00 0.25 0.50 0.75 100 125 150 175 2.00
x

=]
=
|
wi

Iy
X Ot ——————

We now want to replace the sum of all faces for each element > >~ Fee with a sum over all

faces > feq = > P therefore only looping over each facet once. This results in two contribu-
tions for each facet, as we need to add the contributions of the + and — side.

qn+1_qn .) §
S [(w5 [5o

e (M) (@7 = q”’*)] ¢>+> ds

1
S (B ey

f 8ant 2

1
B

f JOQg 2

:
=5 (N) (4™ =)] 67) as

The final step is to realize that n™ = —n~, which allows us to rearrange term with the intent
two combine the two contributions from the numerical flux into one expression.

”) _
w2 [([t vt = (W) @ 0] o) ds
f 6Q?nt - -
») _
+ Z/ (S (@ +gv)veonT =2 (IA]00) (@ = q™7) ¢‘> ds
f annt - -
»)]
&+ Z/ (Z @ +gmT)veont =5 (IAl,,00) (@ —q™™) qﬁ*) s
f annf - -
1 1
+ (@ g v (=nt =S (M) (D@ —gv)| ¢) dS
2 2
f aQ;nt -
1 1
s+ X [([Farrsavent =S () @ —av)]o7) ds
f 6Q$nt -
1 n,+ n,— + 1 n,— n,+ —
-3 [(G) vent =S (A,) @ =) o) ds
f 8Q1€nt -
1 1
o3 [[t e vt = SN, =)] [t —o)ds
f Oy jump of ¢

So the weak formulation reads

M) edr — Vot - (g™ d
z/() ocde= 3 [Vo) ds

e

1 1
Z/ [2 (qn,+ + qn,—) v-nt — 5 (|)\‘mam) <qn,— o qn,-‘r)] [(Z)Jr _ (;57] ds
7 Jons,, Tump of ¢

>,

Step 6 (domain boundary integral in FenicsX)

(5@ +aO)vnt =5 (W, @9)] 67) ds =0

e
bnd

The last step is an implementation detail of FenicX. In FenicX, the integral over the domain

J;a(ze -ds does not allow the the (¢™~,¢™") syntax, as there is no ambiguity at the outer
bnd

boundaries. In the dof, there is only one value, namely the interior value ¢"™*. Therefore
FenicX rewrites the integral with ¢ — ¢™ such that

Z/a . (B (¢ + ™) vont — % (IA]) (2 = qm*)] ¢+> ds =0

f bnd

%;/8 . (B (¢" +¢™C) v n* - % (Il (@ = qn)] ¢+> ds =0

After all this effort, our weak form read:

Final weak form

/Q()sbeda: e/que-(q"v)dx
/ 1

(@ g vent =3 (W) @ =] 60— o) ds

int jump of ¢

(¢"+¢m%) v -nt — (!Almax)("’G—qn)} ¢+) ds =0

00¢

- - -1

BQnd

which is exactly the form that we will implement in the following.

5 Implementation

We first start by creating a mesh

from dolfinx import mesh

number_elements_x = 100
number_elements_y = 100
PO = [0, O]
P1 = [3, 3]

domain = mesh.create_rectangle(
MPI.COMM_WORLD, [PO, P1], [number_elements_x, number_elements_y], cell_type=mesh.CellTyp

and we want to compare DG(0) and DG(1) function spaces.

def generate_functionspaces(domain) :
mesh_element_name = domain.topology.cell_name()
""" type of mesh basix.ufl.element, e.g. "quadrilateral" """

elem_DGO = basix.ufl.element("DG", domain.topology.cell_name(), 0)
space_DGO = fem.functionspace(domain, elem_DGO)

elem_DG1 = basix.ufl.element("DG", domain.topology.cell_name(), 1)
space_DG1= fem.functionspace(domain, elem_DG1)

elem_Vel = basix.ufl.element("DG", domain.topology.cell_name(), 1, shape=(domain.geometr;

space_Vel = fem.functionspace(domain, elem_Vel)

return space_DGO, space_DGl, space_Vel

The weak form is derived in the following. For the current explicit method, we have a stability
restriction on the time step size. This criterion is called the Courant-Friedrichs-Lewy number,
or CFL number. In our case, the CFL restriction reads

CFL =1/(2* polynomial degree + 1)/physical dimension

and

CF L characteristic length
dt =
(2[A]

mam)

with the characteristic lenth = min(dz, dy).

def weak_form_advection(functionspace, q_n, q_np, t, x):
advection velocity

a = ufl.as_vector((2.0, 1.0))

facet normals
n = ufl.FacetNormal (domain)

our integration measures over the inner boundaries, the domain boundaries and the whol
Note that we separate the domain boundaries in order to potentially apply different bo

on each side

dS = ufl.Measure("dS", domain=domain)

facet_tags = library.helpers.generate_facets_tags(domain, PO, P1)
ds = ufl.Measure("ds", domain=domain, subdomain_data=facet_tags)
dx = ufl.dx

time step size estimation

basis_function_degree = functionspace.ufl_element() .degree
N = number_elements_x * number_elements_y

dim = 2

CFL = 1/(2*basis_function_degree+1)/dim

10

max_abs_a = abs(np.array(a, dtype=float)).max()
characteristic_length = 1/max(number_elements_x, number_elements_y)
_dt = CFL xcharacteristic_length / max_abs_a / 2

dt = dolfinx.fem.Constant(domain, dolfinx.default_scalar_type(_dt))

implicit/explicit switch

Gl = e
q_extrapolation = q_n

test_q = ufl.TestFunction(functionspace)
trial_q = ufl.TrialFunction(functionspace)

numerical Lax-Friedrichs flux
propagation_speed = ufl.dot(a, n("+"))
propagation_speed_bnd = ufl.dot(a, n)

numerical_flux = lambda qp, qm, a, n , propagation_speed: (
ufl.dot(0.5 * (a*qp + a*qgm), n)
- 0.5 * propagation_speed * (qm - gp)

weak formulation

weak_form = test_q * (trial_g-q)/dt * dx

weak_form += - ufl.dot(ufl.nabla_grad(test_q), (a * q)) * dx

weak_form += ufl.dot((test_q("+") - test_q("-")), numerical_flux(q("+"), q("-"), a, n("+
weak_form += ufl.dot((test_q), numerical_flux(q, q_extrapolation, a, n, propagation_spee

fem.form(ufl.lhs(weak_form))
fem.form(ufl.rhs (weak form))

weak_form_lhs
weak_form_rhs

return weak_form_lhs, weak_form_rhs, dt

We now initialize the solver

def prepare_solver(weak_form_lhs, weak_form_rhs):

A = petsc.create_matrix(weak_form_lhs)
b = petsc.create_vector(weak_form_rhs)

solver = PETSc.KSP().create(domain.comm)
solver.setOperators(A)
solver.setType (PETSc.KSP.Type.BCGS)

11

preconditioner = solver.getPC()
preconditioner.setType (PETSc.PC.Type.JACOBI)
return solver, A, b

And run our time loop where we solve the solution for each time step.

Note that the limiter removes spurious osscillations for advective problems when solved with
higher order methods. For DG(0), no limiter is necessary. The details of limiters are beyond
the scope of this class. However, we need to be aware that any polynomial degree > 0 might
lead to problems when not addressed properly.

def solve_time_loop(name: str, weak_form_function, functionspace, initial_condition, end_tim

t
X

fem.Constant (domain, dolfinx.default_scalar_type(0.0))
ufl.SpatialCoordinate(domain)

g_n = fem.Function(functionspace, name=r'$q n$')
g_npl = fem.Function(functionspace, name=r'$q {n+1}$"')
weak_form_lhs, weak_form_rhs, dt = weak_form_function(functionspace, q_n, q_npl, t, x)

solver, A, b = prepare_solver(weak_form_lhs, weak_form_rhs)
A = petsc.create_matrix(weak_form_lhs)

b = petsc.create_vector(weak_form_rhs)

solver = PETSc.KSP().create(domain.comm)
solver.setOperators(A)

solver.setType (PETSc.KSP.Type.BCGS)

preconditioner = solver.getPC()

preconditioner.setType (PETSc.PC.Type.JACOBI)

Initial conditions
g_n.interpolate(initial_condition)
gq_npl.interpolate(initial_condition)

num_timesteps = int(end_time/dt.value)

VIK writer
os.makedirs (output_path, exist_ok=True)
vtk_file_abs_path_name = os.path.join(output_path, f"{namel}.pvd")
vtk_writer = dolfinx.io.VTKFile(
domain.comm, vtk_file_abs_path_name, "w+"

12

We only need the following for plotting of the velocity as a vector field
velocity_field = fem.Function(space_plot_vel, name=r'vel')
velocity_field.interpolate(expr_vel(float(t.value)))

vtk_writer.write_function([q_npl, velocity_field], t=0.0)
n_snapshots = 30
timeline_snapshots = np.linspace(0, num_timesteps, n_snapshots, dtype=int)

progress = tqdm.tqdm(desc="Setup " + name + ", solving PDE", total=num_timesteps)
if limiter:
limiter = library.limiter.VertexBasedLimiter (functionspace, alpha=0.0)

for i in range(num_timesteps):
progress.update (1)
g_n.interpolate(q_np1)

A.zeroEntries()
petsc.assemble_matrix(A,weak_form_lhs)
A.assemble()
with b.localForm() as loc:

loc.set(0)
petsc.assemble_vector(b,weak_form_rhs)

b.ghostUpdate (addv=PETSc.InsertMode.ADD_VALUES, mode=PETSc.ScatterMode.REVERSE)
solver.solve(b, q_npl.x.petsc_vec)
if limiter:

limiter.apply(q_npl)

g_npl.x.scatter_forward()
t.value += dt.value

if i in timeline_snapshots:

velocity_field.interpolate(expr_vel(float(t.value)))
vtk_writer.write_function([q_npl, velocity_field], t=t.value)

13

progress.close()
return g_npl

6 A DG(0)/DG(1) minimal example

def ic_q(x):

R =0.15
np.sqrt((x[0] - 0.7)**%2 + (x[1] - 0.7)*%2)
return np.where(r <= R, 2., 1.)

r

space_DGO, space_DG1, space_Vel = generate_functionspaces(domain)

expr_vel = lambda t: lambda x: np.stack((2.0 * np.ones(x.shape[1]), 1.0 * np.ones(x.shape[1]
q_DGO solve_time_loop(name="advection DG(0)", weak_form_function=weak_form_advection, func
q_DG1 solve_time_loop(name="advection DG(1)", weak_form_function=weak_form_advection, func

Setup advection DG(0), solving PDE: 100%|
Setup advection DG(1), solving PDE: 100%|

q_0 = fem.Function(space_DGO, name=r'$q n$')
q_0.interpolate(ic_q)
library.plot.scalar_fields(
functions=[q_0, q_DGO],
titles=["t=0", "t=1"],
figurepath=output_dir,
figurename='test_DGO',
show_edges=False,

q_0 = fem.Function(space_DG1, name=r'$q n$')
q_0.interpolate(ic_q)
library.plot.scalar_fields(
functions=[q_0, q_DG1],
titles=["t=0", "t=1"],
figurepath=output_dir,
figurename='test_DG1',
show_edges=False,

14

2025-04-23 16:35:14.287 (29.517s) [14FC86D6C740] vtkXOpenGLRenderWindow. : 1416

image saved in /home/is086873/CMM/ex01/test_DGO.png
image saved in /home/is086873/CMM/ex01/test_DG1.png

library.plot.display_image (image_path=os.path.join(output_dir, 'test_DGO.png'))

<IPython.core.display.HTML object>

library.plot.display_image (image_path=os.path.join(output_dir, 'test_DGl.png'))

<IPython.core.display.HTML object>

7 A passive tracer in a transient velocity field

We now want to compute a slightly more complex case by replacing the static velocity field
v(t,x) = (2,1)T with a transient and space dependent velocity field

—2(y — 1.
(y —1.5) <05
2(x — 1.5)
Ve —2(y —1.5)
— y—= t>0.5
2(x —1.5)

def weak_form_advection_transient(functionspace, q_n, q_npl, t, x):

advection velocity
sign = -(t-0.5)/abs(t-0.5)
a = ufl.as_vector((-sign*2*(x[1]1-1.5), sign*2x(x[0]-1.5)))

facet normals
n = ufl.FacetNormal (domain)

WARN| ba

our integration measures over the inner boundaries, the domain boundaries and the whol

Note that we separate the domain boundaries in order to potentially apply different bo

on each side
dS = ufl.Measure("dS", domain=domain)
facet_tags = library.helpers.generate_facets_tags(domain, PO, P1)

15

ds = ufl.Measure("ds", domain=domain, subdomain_data=facet_tags)
dx ufl.dx

time step size estimation

basis_function_degree = functionspace.ufl_element() .degree
N = number_elements_x * number_elements_y

dim = 2

CFL = 1/(2*basis_function_degree+1)/dim

a_x = fem.Function(functionspace)

a_x.interpolate(fem.Expression(a[0], functionspace.element.interpolation_points()))
a_y = fem.Function(functionspace)

a_y.interpolate(fem.Expression(a[l], functionspace.element.interpolation_points()))
max_abs_a = max(abs(a_x.x.array).max(), abs(a_y.x.array) .max())

characteristic_length = 1/max(number_elements_x, number_elements_y)
_dt = CFL xcharacteristic_length / max_abs_a / 2
dt = dolfinx.fem.Constant(domain, dolfinx.default_scalar_type(_dt))

implicit/explicit switch

qQ=49qn
q_extrapolation = q_n

test_q = ufl.TestFunction(functionspace)
trial_q = ufl.TrialFunction(functionspace)

numerical Lax-Friedrichs flux
propagation_speed = abs(ufl.dot(a, n("+")))
propagation_speed_bnd = abs(ufl.dot(a, n))

numerical_flux = lambda gp, gm, a, n , propagation_speed: (
ufl.dot(0.5 * (a*qgp + a*qm), n)
- 0.5 * propagation_speed * (qm - gp)

weak formulation

weak_form = test_q * (trial_g-q)/dt * dx

weak_form += - ufl.dot(ufl.nabla_grad(test_q), (a * q)) * dx

weak_form += ufl.dot((test_q("+") - test_q("-")), numerical_flux(q("+"), q("-"), a, n("+
weak_form += ufl.dot((test_q), numerical_ flux(q, q_extrapolation, a, n, propagation_spee

16

fem.form(ufl.lhs(weak form))
fem.form(ufl.rhs(weak_form))

weak form_1lhs
weak_form_rhs

return weak_form_lhs, weak_form_rhs, dt

space_DGO, space_DG1l, space_Vel = generate_functionspaces(domain)

expr_vel = lambda t: lambda x: np.stack(((t-0.5)/abs(t-0.5)*2*(x[1]-1.5), -(t-0.5)/abs(t-0.5
q_DGO = solve_time_loop(name="advection DG(0)", weak_form_function=weak_form_advection_trans
q_DG1 = solve_time_loop(name="advection DG(1)", weak_form_function=weak_form_advection_trans

Setup advection DG(0), solving PDE: 100%|
Setup advection DG(1), solving PDE: 100%|

q_0 = fem.Function(space_DGO, name=r'$q n$')
q_0.interpolate(ic_q)
library.plot.scalar_fields(
functions=[q_0, q_DGO],
titles=["t=0", "t=1"],
figurepath=output_dir,
figurename='passivetracer_DGO',
show_edges=False,

q_0 = fem.Function(space_DG1, name=r'$q n$')
q_0.interpolate(ic_q)
library.plot.scalar_fields(
functions=[q_0, q_DG1],
titles=["t=0", "t=1"],
figurepath=output_dir,
figurename='passivetracer_DG1',
show_edges=False,

image saved in /home/is086873/CMM/ex01/passivetracer_DGO.png
image saved in /home/is086873/CMM/ex01/passivetracer_DG1l.png

library.plot.display_image (image_path=os.path.join(output_dir, 'passivetracer_DGO.png'))

<IPython.core.display.HTML object>

17

library.plot.display_image (image_path=os.path.join(output_dir, 'passivetracer_DG1.png'))

<IPython.core.display.HTML object>

Comparing the two plots, we can draw two important conclusions:

1. The DG(0) implementation is highly diffusive. This is due to the stabilizatoin in the local
Lax-Friedrich/Rusanov numerical flux implementation. Upwinding would yield superior
results

2. The DG(1) implementation violates the bounds of our initial condition, ¢ € [1,2]. As
we have a pure advection equation without source (production) term, this behavior is
unphysical! Usually, one would now implement so called limiters to control this prob-
lem. However, this is content of other courses focusing on the numerical details of such
numerical methods.

8 Verification

Based on the notebook ‘My first FenicsX program’, you should now verify the error of the
DG(0) and DG(1) method by compting the L2-error. Feel free to borrow as much code as
possible from the previous notebook.

For the given velocity field and the particular initial condition, the analytical solution is given
by qanalytical<t — 17 CC) — q(t — 07 :L“)

STUDENT TODO
Implement the verification

Implement your code here

def test_L2_error_implementation(error_L2_ DGO, error_L2_DG1):
if abs(error_L2_DG0-0.21908372090991204) < 10**(-3):
print("DG(0) L2 error test passed")
else:
print ("DG(0) L2 error test failed")
assert False
if abs(error_L2 DG1-0.05223104872875855) < 10**(-3):
print ("DG(1) L2 error test passed")
else:
print("DG(1) L2 error test failed")
assert False
test_L2_error_implementation(error_L2_DGO, error_L2_DG1)

18

9 Streamlines and Pathlines

STUDENT TODO
Visualize the streamlines and pathlines in Paraview and insert an image for each
into this notebook

#streamline plot
library.plot.display_image (image_path=None)

No image path provided.

#pathline plot
library.plot.display_image (image_path=None)

No image path provided.

10 Prepare for your presentation
During the presentation, be prepared to answer the following questions/tasks. We will ask 1-2
questions per person.

1. What was this homework about?
2. State the general transport equations and explain the role of each term

3. Derive a particular part from the weak formulation of the unsteady advection equation
for DG(1). E.g.

1. Compute the weak form for a single element

2. What is ambiguous at the facets and gives rise to the usage of a numerical flux
function?

3. What is the weak enforcement of boundary conditions? Where does this happen in
the implementation of our weak form? Can we use it for Dirichlet and Neumann
boundary conditions?

4. Which terms of the weak formulation drops out if we restrict ourselves to DG(0) / CG(1)?

5. How do you need to change the weak formulation if we want to introduce an inflow
boundary condition with g[sgier = ¢;;, = 2 on the left side of the domain.

19

6. Create a streamline plot in paraview and explain what streamlines are

7. Create a pathline plot in Paraview and explain what pathlines are

20

	Learning goals
	Imports
	Problem statement
	A primer to the Discontinuous Galerkin method
	Implementation
	A DG(0)/DG(1) minimal example
	A passive tracer in a transient velocity field
	Verification
	Streamlines and Pathlines
	Prepare for your presentation

