Commit 0473dcd0 authored by Maximilian Vitz's avatar Maximilian Vitz
Browse files

Week1 Lecture added.

parent 3c650424
%% Cell type:markdown id: tags:
<div>
<img src="IIIPIB_RWTH.png" style="float: right;height: 6.5em;">
</div>
## Statistics and Data Analysis (WS 2021)
**Jörg Pretz**
%% Cell type:code id: tags:
``` python
import numpy as np
import matplotlib.pyplot as plt
```
%% Cell type:markdown id: tags:
## Mean and Standard deviation
%% Cell type:code id: tags:
``` python
x=[177,186,181,198,165,156,176]
mean=np.mean(x)
std=np.std(x)
print(mean,std)
```
%%%% Output: stream
177.0 12.671678206592393
%% Cell type:markdown id: tags:
### Calculate standard deviation by hand
%% Cell type:code id: tags:
``` python
x=np.array(x) # convert from list to array in order manipulate x
x2= np.mean(x**2)
std1 = np.sqrt(x2- mean**2)
std1
```
%%%% Output: execute_result
12.67167820659235
%% Cell type:markdown id: tags:
## Correlations
%% Cell type:code id: tags:
``` python
x=[1,2,3,4]
y=[1.1,1.9,3.2,3.9]
plt.scatter(x,y)
```
%%%% Output: execute_result
<matplotlib.collections.PathCollection at 0x7fb0c1a16c70>
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
cov=np.cov(x,y)
print(cov)
```
%%%% Output: stream
[[1.66666667 1.61666667]
[1.61666667 1.58916667]]
%% Cell type:markdown id: tags:
## Correlation coefficient
%% Cell type:code id: tags:
``` python
rho = cov[0][1]/np.sqrt(cov[0][0]*cov[1][1])
print(rho)
```
%%%% Output: stream
0.9933707902922091
%% Cell type:code id: tags:
``` python
y1=-np.array(y)
cov=np.cov(x,y1)
rho = cov[0][1]/np.sqrt(cov[0][0]*cov[1][1])
rho
```
%%%% Output: execute_result
-0.9933707902922091
%% Cell type:code id: tags:
``` python
plt.scatter(x,y1)
```
%%%% Output: execute_result
<matplotlib.collections.PathCollection at 0x7fb0c198ffa0>
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
```
%% Cell type:markdown id: tags:
<div>
<img src="IIIPIB_RWTH.png" style="float: right;height: 6.5em;">
</div>
## Statistics and Data Analysis (WS 2021)
**Jörg Pretz**
%% Cell type:code id: tags:
``` python
```
%% Cell type:code id: tags:
``` python
```
......
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment