diff --git a/README.md b/README.md
index ef18badc95e5bf5c2cffd9b2983216d6adc68c9b..7c3e96118d94483969d5be33ed5767e22cf7e90b 100644
--- a/README.md
+++ b/README.md
@@ -3,27 +3,27 @@
 SorpLib - Adsorption Energy Systems Library
 =====================================
 
-**SorpLib - Adsorption Energy Systems Library** (short **SorpLib**) is a Modelica model library for simulating adsorption energy systems, such as adsorption chillers, adsorption heat pumps, adsorption thermal sorage systems, or desiccant systems. The library is being developed at RWTH Aachen University, Chair of Technical Thermodynamics, Sorption Systems Engineering group in Aachen, Germany.
+**SorpLib - Adsorption Energy Systems Library** (short **SorpLib**) is a Modelica model library for simulating adsorption energy systems, such as adsorption chillers, adsorption heat pumps, adsorption thermal storage systems, or desiccant systems. The library is being developed at RWTH Aachen University, Institute of Technical Thermodynamics, Sorption Systems Engineering group in Aachen, Germany.
 
 This repository is used to further develop the library and make it available under the BSD 3-Clause License. 
 
-We would like to build up an active **SorpLib** comunity. Therefore, we would appreciate a short notice to sorplib@ltt.rwth-aachen.de, when you download and use the **SorpLib**.
+We would like to build up an active **SorpLib** community. Therefore, we would appreciate a short notice to sorplib@ltt.rwth-aachen.de, when you download and use the **SorpLib**.
 
 ### License
 
-The model library **SorpLib** is released by RWTH Aachen University, Chair of Technical Thermodynamics under the [BSD 3-Clause License](https://git.rwth-aachen.de/ltt_group/LTT_SorptionEnergySystems_library/blob/develop/LICENSE.md).
+The model library **SorpLib** is released by RWTH Aachen University, Institute of Technical Thermodynamics under the [BSD 3-Clause License](https://git.rwth-aachen.de/ltt_public/SorpLib/Sysblob/develop/LICENSE.md).
 
 ### Overview
 
 The library provides basic models necessary to model adsorption energy systems. Based on these models, all types of adsorption energy systems can be modeled. In the applications package, a few examples demonstrate possible adsorption-based systems.
 
-### Dependancies
+### Dependencies
 
 Regarding non-adsorption specific models, the library partly depends on the [TIL Suite](https://www.tlk-thermo.com/index.php/de/softwareprodukte/til-suite) and the [TIL Media Suite](https://www.tlk-thermo.com/index.php/de/softwareprodukte/tilmedia-suite):
 
 *TIL Suite is suitable for the stationary and transient simulation of freely configurable thermodynamic systems. Thanks to the substance property library, TILMedia – a component of the TIL Suite – system simulations can be performed extremely quickly and accurately.*
 
-TIL Suite and TILMedia Suite are commercial libraries provided by [TLK-Thermo GmbH](https://www.tlk-thermo.com/index.php/en/). At the moment, it is necessary to have these library to use the **SorpLib**. For the future, a light version of TIL and TIL-Media may be freely available.
+TIL and TILMedia are commercial libraries provided by [TLK-Thermo GmbH](https://www.tlk-thermo.com/index.php/en/). At the moment, it is necessary to have these libraries to use the **SorpLib**. For the future, a light version of TIL and TIL-Media may be freely available.
 
 ### Version
 
@@ -41,9 +41,9 @@ Please cite **SorpLib** as follows:
 ### How to contribute to the Development of SorpLib
 
 You are invited to activly contribute to the development of **SorpLib**.  
-Issues can be reported using this site's [Issues section](https://git.rwth-aachen.de/ltt_group/LTT_SorptionEnergySystems_library/issues).  
-Furthermore, you are welcome to contribute via [Merge Requests](https://git.rwth-aachen.de/ltt_group/LTT_SorptionEnergySystems_library/merge_requests).  
-The workflow for changes is described in our [Wiki](https://git.rwth-aachen.de/ltt_group/LTT_SorptionEnergySystems_library/wikis/home).  
+Issues can be reported using this site's [Issues section](https://git.rwth-aachen.de/ltt_public/SorpLib/issues).  
+Furthermore, you are welcome to contribute via [Merge Requests](https://git.rwth-aachen.de/ltt_public/SorpLib/merge_requests).  
+The workflow for changes is described in our [Wiki](https://git.rwth-aachen.de/ltt_public/SorpLib/wikis/home).  
 
 ### Contact
 
diff --git a/SorpLib/Applications/DesiccantSystem/DesiccantSystem.mo b/SorpLib/Applications/DesiccantSystem/DesiccantSystem.mo
index 100d624771c99b08b575a93dd2f1b442a46a765d..639c3d937cb303ad0d04ca2307f3946be18f4b63 100644
--- a/SorpLib/Applications/DesiccantSystem/DesiccantSystem.mo
+++ b/SorpLib/Applications/DesiccantSystem/DesiccantSystem.mo
@@ -24,7 +24,6 @@ model DesiccantSystem
         Components.OpenAdsorber.HeatAndMassTransfer.TransportPhenomena.HeatTransfer.PackedBedGas_Kast1988,
     redeclare model MassTransfer_diffusion_dp =
         Components.OpenAdsorber.HeatAndMassTransfer.TransportPhenomena.MassTransfer.PackedBedGas_Kast1988,
-
     generateEventsAtFlowReversal=false,
     TInitialGas=303.15,
     pInitial=100000,
diff --git a/SorpLib/Components/Cells/Gas/PressureDropCorrelations/ConstantResistanceCoefficient.mo b/SorpLib/Components/Cells/Gas/PressureDropCorrelations/ConstantResistanceCoefficient.mo
index bd8971990363c66904dfb1ac8404e59485a0c3d3..89d5dbfe6cc6692a3f5235e7e9f10f8dde6b111b 100644
--- a/SorpLib/Components/Cells/Gas/PressureDropCorrelations/ConstantResistanceCoefficient.mo
+++ b/SorpLib/Components/Cells/Gas/PressureDropCorrelations/ConstantResistanceCoefficient.mo
@@ -1,4 +1,4 @@
-within SorpLib.Components.Cells.Gas.PressureDropCorrelations;
+within SorpLib.Components.Cells.Gas.PressureDropCorrelations;
 model ConstantResistanceCoefficient
   "Pressure drop correlation with constant resistance coefficient"
   extends Partial.PartialPressureDrop(
@@ -17,7 +17,7 @@ equation
   pressureDrop=(cellGeometry.length/cellGeometry.hydraulicDiameter)/(2*properties.d*cellGeometry.flowCrossSection^2)*f*TIL.Utilities.Numerics.squareFunction(mdotHydraulic);
   annotation (Documentation(info="<html>
 <p>
-  This model calculates the pressure drop with a constant resistance coefficient according to the VDI W�rmeatlas (2013). The sign of the pressure drop is automatically determined by the sign of the hydraulic mass flow rate. The hydraulic mass flow rate is defined as outer variable and thus taken from the overlying model level. The fluid properties record is also defined as outer object and taken from the overlying model level. 
+  This model calculates the pressure drop with a constant resistance coefficient according to the VDI Wärmeatlas (2013). The sign of the pressure drop is automatically determined by the sign of the hydraulic mass flow rate. The hydraulic mass flow rate is defined as outer variable and thus taken from the overlying model level. The fluid properties record is also defined as outer object and taken from the overlying model level. 
 </p>
 <h4>Main equations</h4>
 <p>
@@ -27,7 +27,7 @@ equation
 
 <h4>References</h4>
 <ul>
-<li>VDI e.V., VDI W�rmeatlas 11., bearbeitete und erweiterte Auflage, Chapter L1, Darmstadt: Springer Berlin Heidelberg, 2011. </li>
+<li>VDI e.V., VDI Wärmeatlas 11., bearbeitete und erweiterte Auflage, Chapter L1, Darmstadt: Springer Berlin Heidelberg, 2011. </li>
 </ul>
 
 <h4>Author Information</h4>
diff --git a/SorpLib/Components/Cells/VLEPhaseSeparator/VLEPhaseSeparator.mo b/SorpLib/Components/Cells/VLEPhaseSeparator/VLEPhaseSeparator.mo
index 5236baf1ca4aa5cc2878f78efe73b1be386d2139..d9ed5a953b474ba53a21e22c6961e9d0be5859d8 100644
--- a/SorpLib/Components/Cells/VLEPhaseSeparator/VLEPhaseSeparator.mo
+++ b/SorpLib/Components/Cells/VLEPhaseSeparator/VLEPhaseSeparator.mo
@@ -1,4 +1,4 @@
-within SorpLib.Components.Cells.VLEPhaseSeparator;
+within SorpLib.Components.Cells.VLEPhaseSeparator;
 model VLEPhaseSeparator
 
   /*********************** SIM ***********************************/
@@ -116,7 +116,7 @@ public
           rotation=0)));
 
 equation
-  //assert(T > 273.15, "Evaporator temperature must be above 0 �C"); Assert operator may be added for simulations with water
+  //assert(T > 273.15, "Evaporator temperature must be above 0 °C"); Assert operator may be added for simulations with water
 
   // simport setup
   connect(sim.fluidPort[vleFluidType.ID], simPort.vleFluidPort);
@@ -198,7 +198,7 @@ equation
     <p>The partial derivative <i>du/d<code>&rho;</code></i> can be expressed as:</p>
     <p align=\"center\"><i>du/d<code>&rho;</code></i> = 1/<i><code>&rho;</code></i><sup>2</sup> <i>( -p + T dpdT )</i> </p>
     <p>where <i>dpdT</i> can be substituted with the equation of Clausius-Clayperon: <i>dpdT = (h<sup>v</sup> - h<sup>l</sup>) / (T (v<sup>v</sup> - v<sup>l</sup>)</i>. <br>
-    For more information see Gr�ber (2011) and Tummescheit (2002). <br></p>
+    For more information see Gräber (2011) and Tummescheit (2002). <br></p>
     The VLE phase seperator has two VLE ports, a liquid and a vapour VLE port. At the liquid VLE port, the specific enthalpy of the leaving fluid is slightly subccoled, at the vapour VLE port, the specific enthalpy of the leaving fluid is slightly superheated.
   </p>
   <h4>Assumptions and limitations</h4>
@@ -221,7 +221,7 @@ equation
   <p>
     <ul>
       <li>Tummescheit, H. Design and Implementation of Object-Oriented Model Libraries using Modelica. PhD Thesis. Lund, 2002.</li>
-      <li>Gr�ber, M.; Kirches, C.; Bock, H.G.; Schl�der, J.P.; Tegethoff, W.; K�hler, J. Determining the optimum cyclic operation of adsorption chillers by a direct method for periodic optimal control. Int. J. Refrig., 2011, 34(4), 902-913.</li>
+      <li>Gräber, M.; Kirches, C.; Bock, H.G.; Schlöder, J.P.; Tegethoff, W.; Köhler, J. Determining the optimum cyclic operation of adsorption chillers by a direct method for periodic optimal control. Int. J. Refrig., 2011, 34(4), 902-913.</li>
     </ul>
   </p>
   <h4>Author Information</h4>
diff --git a/SorpLib/Components/ClosedAdsorber/Testers/TestAdsorber1.mo b/SorpLib/Components/ClosedAdsorber/Testers/TestAdsorber1.mo
index ffe166d4174c08eeb5fd3e5228d72e6866080790..2cd05499adf0e4472949588150a4d44597e90659 100644
--- a/SorpLib/Components/ClosedAdsorber/Testers/TestAdsorber1.mo
+++ b/SorpLib/Components/ClosedAdsorber/Testers/TestAdsorber1.mo
@@ -27,7 +27,6 @@ model TestAdsorber1
     redeclare record TubeGeometry = Geometry.Adsorber_Finned_Tubes_Alu,
     redeclare model HeatTransferModel_HX =
         RecordsTransportCoefficients.HeatTransfer.HeatTransferSilicaGel_Lanzerath2015,
-
     TInitial=303.15,
     hx_TInitialCell1=293.15,
     hx_TInitialCelln=293.15,
diff --git a/SorpLib/Components/ClosedAdsorber/Testers/TestAdsorber2.mo b/SorpLib/Components/ClosedAdsorber/Testers/TestAdsorber2.mo
index f69b3044cfa89ead7ebfe194c9a779c8140d9ead..819d8dace6c44c459e6dd8eea86a9279f2f30417 100644
--- a/SorpLib/Components/ClosedAdsorber/Testers/TestAdsorber2.mo
+++ b/SorpLib/Components/ClosedAdsorber/Testers/TestAdsorber2.mo
@@ -29,7 +29,6 @@ model TestAdsorber2
         HeatTransfer.HeatTransferPhenomena.ConstantAlphaA (constantAlphaA=50),
     redeclare model HeatTransferModel_HX =
         SorpLib.Components.ClosedAdsorber.RecordsTransportCoefficients.HeatTransfer.HeatTransferSilicaGel_Lanzerath2015,
-
     TInitial=576.3,
     hx_TInitialCell1=566.3,
     hx_TInitialCelln=566.3,
diff --git a/SorpLib/Components/EvpCond/Geometry/CondLanzerath2014.mo b/SorpLib/Components/EvpCond/Geometry/CondLanzerath2014.mo
index 9b4b0f5b07268a28422f07335c4aa8784a0b54d7..f33e0ebb8157ba2f38318b88305910d6b4b878e0 100644
--- a/SorpLib/Components/EvpCond/Geometry/CondLanzerath2014.mo
+++ b/SorpLib/Components/EvpCond/Geometry/CondLanzerath2014.mo
@@ -1,4 +1,4 @@
-within SorpLib.Components.EvpCond.Geometry;
+within SorpLib.Components.EvpCond.Geometry;
 record CondLanzerath2014
   "Condenser used in dissertation of Lanzerath (2014 & 2015)"
   extends TubeGeometry(
@@ -18,7 +18,7 @@ record CondLanzerath2014
   <h4>References</h4>
   <p>
     <ul>
-      <li>Lanzerath, F. Modellgest�tzte Entwicklung von Adsorptionsw�rmepumpen (in German). Aachen: Mainz, 2014. Aachener Beitr�ge zur Technischen Thermodynamik. 3. ISBN 9783861304722.</li>
+      <li>Lanzerath, F. Modellgestützte Entwicklung von Adsorptionswärmepumpen (in German). Aachen: Mainz, 2014. Aachener Beiträge zur Technischen Thermodynamik. 3. ISBN 9783861304722.</li>
       <li>Lanzerath, F.; Bau, U.; Seiler, J.; Bardow, A. Optimal design of adsorption chillers based on a validated dynamic object-oriented model. Science and Technology for the Built Environment, 2015, 21(3), 248-257.</li>
     </ul>
   </p>
diff --git a/SorpLib/Components/EvpCond/Geometry/EvpLanzerath2014.mo b/SorpLib/Components/EvpCond/Geometry/EvpLanzerath2014.mo
index 1f3156c4e9377ace9dc89a91e1f50d882f2656e2..31eeee434720326f0e6787f38f5e19d92a7144d6 100644
--- a/SorpLib/Components/EvpCond/Geometry/EvpLanzerath2014.mo
+++ b/SorpLib/Components/EvpCond/Geometry/EvpLanzerath2014.mo
@@ -1,4 +1,4 @@
-within SorpLib.Components.EvpCond.Geometry;
+within SorpLib.Components.EvpCond.Geometry;
 record EvpLanzerath2014
   "Evaporator used in dissertation of Lanzerath (2014 & 2015)"
   extends TubeGeometry(
@@ -18,7 +18,7 @@ record EvpLanzerath2014
   <h4>References</h4>
   <p>
     <ul>
-      <li>Lanzerath, F. Modellgest�tzte Entwicklung von Adsorptionsw�rmepumpen (in German). Aachen: Mainz, 2014. Aachener Beitr�ge zur Technischen Thermodynamik. 3. ISBN 9783861304722.</li>
+      <li>Lanzerath, F. Modellgestützte Entwicklung von Adsorptionswärmepumpen (in German). Aachen: Mainz, 2014. Aachener Beiträge zur Technischen Thermodynamik. 3. ISBN 9783861304722.</li>
       <li>Lanzerath, F.; Bau, U.; Seiler, J.; Bardow, A. Optimal design of adsorption chillers based on a validated dynamic object-oriented model. Science and Technology for the Built Environment, 2015, 21(3), 248-257.</li>
     </ul>
   </p>
diff --git a/SorpLib/Components/HeatExchanger/HXAirAirParallelflow/PressureDropCorrelations/VDIWaermeatlasN6.mo b/SorpLib/Components/HeatExchanger/HXAirAirParallelflow/PressureDropCorrelations/VDIWaermeatlasN6.mo
index ffb841830e41c90103941680cd0e89569ccbe85f..fdf7853cc6186d7915094602e2bce49d4c57876c 100644
--- a/SorpLib/Components/HeatExchanger/HXAirAirParallelflow/PressureDropCorrelations/VDIWaermeatlasN6.mo
+++ b/SorpLib/Components/HeatExchanger/HXAirAirParallelflow/PressureDropCorrelations/VDIWaermeatlasN6.mo
@@ -1,6 +1,6 @@
-within SorpLib.Components.HeatExchanger.HXAirAirParallelflow.PressureDropCorrelations;
+within SorpLib.Components.HeatExchanger.HXAirAirParallelflow.PressureDropCorrelations;
 model VDIWaermeatlasN6
-  "Pressure drop correlation for plate heat exchangers (phi = 0) according to VDI W�rmeatlas (N6)"
+  "Pressure drop correlation for plate heat exchangers (phi = 0) according to VDI Wärmeatlas (N6)"
   extends
     SorpLib.Components.Cells.Gas.PressureDropCorrelations.Partial.PartialPressureDrop(
       final computeTransportProperties=true);
@@ -44,7 +44,7 @@ equation
   pressureDrop=(cellGeometry.length/cellGeometry.hydraulicDiameter)/(2*properties.d*cellGeometry.flowCrossSection^2)*zeta*TIL.Utilities.Numerics.squareFunction(mdotHydraulic);
   annotation (Documentation(info="<html>
 <p>
-  This model calculates the pressure drop according to the VDI W�rmeatlas N6 (2011): pressure drop in plate heat exchangers. The model describes the special case for plates which have no angle (<code>&phi;</code>=0).<br>
+  This model calculates the pressure drop according to the VDI Wärmeatlas N6 (2011): pressure drop in plate heat exchangers. The model describes the special case for plates which have no angle (<code>&phi;</code>=0).<br>
   The hydraulic mass flow rate, the fluid properties record, and the geometry are defined as outer objects and thus taken from the overlying model level.  
 </p>
 <h4>Main equations</h4>
@@ -60,7 +60,7 @@ for Reynolds numbers Re <code>&gt;</code> 2300.
 </p>
 <h4>References</h4>
 <ul>
-<li>VDI e.V., VDI W�rmeatlas 11., bearbeitete und erweiterte Auflage, Chapter N6, Darmstadt: Springer Berlin Heidelberg, 2011. </li>
+<li>VDI e.V., VDI Wärmeatlas 11., bearbeitete und erweiterte Auflage, Chapter N6, Darmstadt: Springer Berlin Heidelberg, 2011. </li>
 </ul>
 <h4>Author Information</h4>
 <p>
diff --git a/SorpLib/Components/MassTransfer/MassTransferDiffusion.mo b/SorpLib/Components/MassTransfer/MassTransferDiffusion.mo
index 2cb73e86857747e27e98bfe542b3c24f9b19bff1..ae54ccba38b1b1ad785d4b07468bc32fc7d3d85a 100644
--- a/SorpLib/Components/MassTransfer/MassTransferDiffusion.mo
+++ b/SorpLib/Components/MassTransfer/MassTransferDiffusion.mo
@@ -1,4 +1,4 @@
-within SorpLib.Components.MassTransfer;
+within SorpLib.Components.MassTransfer;
 model MassTransferDiffusion
   extends Partial.PartialMassTransfer(final computeTransportProperties=massTransfer_diffusion_dp.computeTransportProperties or massTransfer_diffusion_dx.computeTransportProperties);
 
@@ -53,10 +53,10 @@ model MassTransferDiffusion
             choice(redeclare model MassTransfer_diffusion_dx =
             SorpLib.Components.MassTransfer.MassTransferPhenomena.ConstantSpecificCoefficient_dx),
             choice(redeclare model MassTransfer_diffusion_dx =
-            SorpLib.Components.MassTransfer.MassTransferPhenomena.Glueckauf_dx "Gl�ckauf-approach dx"),
+            SorpLib.Components.MassTransfer.MassTransferPhenomena.Glueckauf_dx "Glückauf-approach dx"),
             choice(redeclare model MassTransfer_diffusion_dx =
             SorpLib.Components.MassTransfer.MassTransferPhenomena.GlueckaufArrhenius_dx
-                                                                                        "Gl�ckauf-approach with temperature dependance dx"),
+                                                                                        "Glückauf-approach with temperature dependance dx"),
             choice(redeclare model MassTransfer_diffusion_dx =
             SorpLib.Components.MassTransfer.Record.DiffusionCoefficients.Lanzerath2015_Zeolite13X_des
                                                                                                       "Diffusion coefficient and particle diameter for Zeolith 13X desorption (Lanzerath 2015)"),
diff --git a/SorpLib/Components/MassTransfer/MassTransferDiffusionFlow.mo b/SorpLib/Components/MassTransfer/MassTransferDiffusionFlow.mo
index c877fed0c0544ead7faf3bea08e4cc0cc5f2eb6f..a306038186587ab72eba2b305d3190c1040a47a7 100644
--- a/SorpLib/Components/MassTransfer/MassTransferDiffusionFlow.mo
+++ b/SorpLib/Components/MassTransfer/MassTransferDiffusionFlow.mo
@@ -1,4 +1,4 @@
-within SorpLib.Components.MassTransfer;
+within SorpLib.Components.MassTransfer;
 model MassTransferDiffusionFlow
   extends Partial.PartialMassTransfer(final computeTransportProperties=
         massTransfer_diffusion_dp.computeTransportProperties or
@@ -87,10 +87,10 @@ model MassTransferDiffusionFlow
             SorpLib.Components.MassTransfer.MassTransferPhenomena.ConstantSpecificCoefficient_dx),
       choice(redeclare model MassTransfer_diffusion_dx =
             SorpLib.Components.MassTransfer.MassTransferPhenomena.Glueckauf_dx
-          "Gl�ckauf-approach dx"),
+          "Glückauf-approach dx"),
       choice(redeclare model MassTransfer_diffusion_dx =
             SorpLib.Components.MassTransfer.MassTransferPhenomena.GlueckaufArrhenius_dx
-          "Gl�ckauf-approach with temperature dependance dx"),
+          "Glückauf-approach with temperature dependance dx"),
       choice(redeclare model MassTransfer_diffusion_dx =
             SorpLib.Components.MassTransfer.Record.DiffusionCoefficients.Lanzerath2015_Zeolite13X_des
           "Diffusion coefficient and particle diameter for Zeolith 13X desorption (Lanzerath 2015)"),
diff --git a/SorpLib/Components/MassTransfer/MassTransferPhenomena/GlueckaufArrhenius_dx.mo b/SorpLib/Components/MassTransfer/MassTransferPhenomena/GlueckaufArrhenius_dx.mo
index 96d0ba3a0b9ee7263a2976a642dab9e6fa6301ef..98901b238fa52b102ccf4944bf1c1a7bec5a8923 100644
--- a/SorpLib/Components/MassTransfer/MassTransferPhenomena/GlueckaufArrhenius_dx.mo
+++ b/SorpLib/Components/MassTransfer/MassTransferPhenomena/GlueckaufArrhenius_dx.mo
@@ -1,5 +1,5 @@
-within SorpLib.Components.MassTransfer.MassTransferPhenomena;
-model GlueckaufArrhenius_dx "Gl�ckauf-approach with temperature dependance dx"
+within SorpLib.Components.MassTransfer.MassTransferPhenomena;
+model GlueckaufArrhenius_dx "Glückauf-approach with temperature dependance dx"
   extends
     SorpLib.Components.MassTransfer.MassTransferPhenomena.Partial.PartialMassTransfer_dx(
       final computeTransportProperties=false);
diff --git a/SorpLib/Components/MassTransfer/MassTransferPhenomena/Glueckauf_dx.mo b/SorpLib/Components/MassTransfer/MassTransferPhenomena/Glueckauf_dx.mo
index efb96b89215be28619dda4a4e929517c1bad121b..2849c7d5312731c6a95f346aacf80126f284cde2 100644
--- a/SorpLib/Components/MassTransfer/MassTransferPhenomena/Glueckauf_dx.mo
+++ b/SorpLib/Components/MassTransfer/MassTransferPhenomena/Glueckauf_dx.mo
@@ -1,5 +1,5 @@
-within SorpLib.Components.MassTransfer.MassTransferPhenomena;
-model Glueckauf_dx "Gl�ckauf-approach dx"
+within SorpLib.Components.MassTransfer.MassTransferPhenomena;
+model Glueckauf_dx "Glückauf-approach dx"
   extends
     SorpLib.Components.MassTransfer.MassTransferPhenomena.Partial.PartialMassTransfer_dx(
       final computeTransportProperties=false);
diff --git a/SorpLib/Components/MassTransfer/MassTransferPhenomena/Laminar_dp.mo b/SorpLib/Components/MassTransfer/MassTransferPhenomena/Laminar_dp.mo
index f01ecda27d58e786efde240b7064a3d2fa5a7612..b9c79572f032fe14cc6ab6961a942767115244c0 100644
--- a/SorpLib/Components/MassTransfer/MassTransferPhenomena/Laminar_dp.mo
+++ b/SorpLib/Components/MassTransfer/MassTransferPhenomena/Laminar_dp.mo
@@ -1,4 +1,4 @@
-within SorpLib.Components.MassTransfer.MassTransferPhenomena;
+within SorpLib.Components.MassTransfer.MassTransferPhenomena;
 model Laminar_dp
   extends
     SorpLib.Components.MassTransfer.MassTransferPhenomena.Partial.PartialMassTransfer_dp(
@@ -18,7 +18,7 @@ equation
     *1/zeta_lam;
   annotation (Documentation(info="<html>
 <p>
-  This laminar transfer model calculates the mass flow based on the pressure differnce according to the VDI W�rmeatlas (2013).
+  This laminar transfer model calculates the mass flow based on the pressure differnce according to the VDI Wärmeatlas (2013).
 </p>
 <h4>Main equations</h4>
 <p>
@@ -34,7 +34,7 @@ equation
   </p>
 <h4>References</h4>
 <ul>
-  <li>VDI e.V., VDI W�rmeatlas 11., bearbeitete und erweiterte Auflage, Chapter L1, Darmstadt: Springer Berlin Heidelberg, 2011. </li>
+  <li>VDI e.V., VDI Wärmeatlas 11., bearbeitete und erweiterte Auflage, Chapter L1, Darmstadt: Springer Berlin Heidelberg, 2011. </li>
   <li>Lanzerath, F.; Bau, U.; Seiler, J.; Bardow, A. Optimal design of adsorption chillers based on a validated dynamic object-oriented model. Science and Technology for the Built Environment, 2015, 21(3), 248-257. </li>
 </ul>
 <h4>Author Information</h4>
diff --git a/SorpLib/Internals/AdditionalTransferPhenomena/HeatTransfer_insideTube/Schmidt.mo b/SorpLib/Internals/AdditionalTransferPhenomena/HeatTransfer_insideTube/Schmidt.mo
index 46b72f5faa4fffc207f2055d5bc02fbfb7b48812..9acbc65c85ee26665e3c2505379910528966996e 100644
--- a/SorpLib/Internals/AdditionalTransferPhenomena/HeatTransfer_insideTube/Schmidt.mo
+++ b/SorpLib/Internals/AdditionalTransferPhenomena/HeatTransfer_insideTube/Schmidt.mo
@@ -1,4 +1,4 @@
-within SorpLib.Internals.AdditionalTransferPhenomena.HeatTransfer_insideTube;
+within SorpLib.Internals.AdditionalTransferPhenomena.HeatTransfer_insideTube;
 model Schmidt "Schmidt-Korrelation"
   extends
     TIL.LiquidComponents.Tubes.TransportPhenomena.HeatTransfer.PartialHeatTransfer(
@@ -38,7 +38,7 @@ equation
 </p>
 <h4>References</h4>
 <ul>
-  <li>Schmidt E. F. W�rme�bergang und Druckverlust in Rohrschlangen. Chemie Ingenieur Technik, 1967.</li>
+  <li>Schmidt E. F. Wärmeübergang und Druckverlust in Rohrschlangen. Chemie Ingenieur Technik, 1967.</li>
 </ul>
 <h4>Author Information</h4>
 <p>
diff --git a/SorpLib/Media/Functions/CharCurve2Polynomial.mo b/SorpLib/Media/Functions/CharCurve2Polynomial.mo
index 114f3e0c3d75571991c3c0c2a22ab247ae3b52c7..7227ce2a596a2128bc2af64a0ab3661d913ce2e6 100644
--- a/SorpLib/Media/Functions/CharCurve2Polynomial.mo
+++ b/SorpLib/Media/Functions/CharCurve2Polynomial.mo
@@ -1,4 +1,4 @@
-within SorpLib.Media.Functions;
+within SorpLib.Media.Functions;
 function CharCurve2Polynomial
   input Modelica.SIunits.SpecificEnergy A "Adsorption Potential";
   input Real c_u[:] "Coefficients for nominator (see Info)";
@@ -43,7 +43,7 @@ algorithm
 <h4>References</h4>
 <p>This type of characteristic curve is used in the following publications: </p>
 <ul>
-<li>N��ez, T. Charakterisierung und Bewertung von Adsorbentien f�r W�rmetransformationsanwendungen. PhD Thesis. Freiburg, 2001. </li>
+<li>Núñez, T. Charakterisierung und Bewertung von Adsorbentien für Wärmetransformationsanwendungen. PhD Thesis. Freiburg, 2001. </li>
 </ul>
 <h4>Author Information</h4>
 <ul>
diff --git a/SorpLib/Media/Functions/CharCurve2Polynomial_dWdA.mo b/SorpLib/Media/Functions/CharCurve2Polynomial_dWdA.mo
index c51bf18e92982202359cd7c7ffeb0826da2c8555..1ae933da4de387202215935fbc171bc9b2ed39ca 100644
--- a/SorpLib/Media/Functions/CharCurve2Polynomial_dWdA.mo
+++ b/SorpLib/Media/Functions/CharCurve2Polynomial_dWdA.mo
@@ -1,4 +1,4 @@
-within SorpLib.Media.Functions;
+within SorpLib.Media.Functions;
 function CharCurve2Polynomial_dWdA
   input Modelica.SIunits.SpecificEnergy A "Adsorption Potential";
   input Real c_u[:] "Coefficients for nominator (see Info)";
@@ -61,7 +61,7 @@ algorithm
 <h4>References</h4>
 <p>This type of characteristic curve is used in the following publications: </p>
 <ul>
-<li>N��ez, T. Charakterisierung und Bewertung von Adsorbentien f�r W�rmetransformationsanwendungen. PhD Thesis. Freiburg, 2001. </li>
+<li>Núñez, T. Charakterisierung und Bewertung von Adsorbentien für Wärmetransformationsanwendungen. PhD Thesis. Freiburg, 2001. </li>
 </ul>
 <h4>Author Information</h4>
 <ul>
diff --git a/SorpLib/UsersGuide/package.mo b/SorpLib/UsersGuide/package.mo
index c9e2f260fb56735a58ca66dad673cca17570d564..5a40f4ea2a5721dee3f2bed122fbd364cafb1292 100644
--- a/SorpLib/UsersGuide/package.mo
+++ b/SorpLib/UsersGuide/package.mo
@@ -4,16 +4,18 @@ extends Modelica.Icons.Information;
 
 annotation (DocumentationClass=true, Documentation(info="<html>
   <p>
-    <b>SorpLib - Adsorption Energy Systems Library</b> (short <b>SorpLib</b>) is a Modelica model library for simulating adsorption energy systems, such as adsorption chillers, adsorption heat pumps, adsorption thermal sorage systems, or desiccant systems. The library is being developed at RWTH Aachen University, Chair of Technical Thermodynamics, Sorption Systems Engineering group in Aachen, Germany.
+    <b>SorpLib - Adsorption Energy Systems Library</b> (short <b>SorpLib</b>) is a Modelica model library for simulating adsorption energy systems, such as adsorption chillers, adsorption heat pumps, adsorption thermal sorage systems, or desiccant systems. The library is being developed at RWTH Aachen University, Institute of Technical Thermodynamics, Sorption Systems Engineering group in Aachen, Germany.
   </p>
   <h3>Dependencies</h3>
   Regarding non-adsorption specific models, the library partly depends on the libraries TIL and TILMedia:
   <ul>
-  <li>TIL: Model library for thermal components and systems</li>
-  <li>TILMedia: Model library providing thermophysical properties</li>
+  <li>TIL: Component library for thermal systems</li>
+  <li>TILMedia: Thermophysical media properties</li>
+
   </ul>
-  <p>TIL and TILMedia are commercial libraries provided by TLK-Thermo GmbH. 
-  
-  To use all functions of SorpLib, either the commercial versions of TIL and TILMedia or free versions of both libraries (TIL Excerpt S and Clara) can be used.</p>
+   <p> TIL and TILMedia are commercial libraries provided by <a href='https://www.tlk-thermo.com/index.php/en/'> TLK-Thermo GmbH</a>. 
+  At the moment, it is necessary to have these libraries to use the **SorpLib**. For the future, a light version of TIL and TIL-Media may be freely available.
+  </p>
+
 </html>"));
 end UsersGuide;