
Mindstorms EV3 Toolbox
Documentation

Release v0.4-rc.10

LfB - RWTH Aachen

Dec 13, 2016





CONTENTS

1 EV3 3

2 Motor 7

3 Sensor 11

4 Indices and tables 15

MATLAB Module Index 17

Index 19

i



ii



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

Contents:

CONTENTS 1



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

2 CONTENTS



CHAPTER

ONE

EV3

class source.EV3(varargin)
High-level class to work with physical bricks.

This is the ‘central’ class (from user’s view) when working with this toolbox. It delivers a convenient interface
for creating a connection to the brick and sending commands to it. An EV3-object creates 4 Motor- and 4
Sensor-objects, one for each port.

Notes

•Creating multiple EV3 objects and connecting them to different physical bricks has not been thoroughly
tested yet, but seems to work on a first glance.

motorA
Motor – Motor-object interfacing port A

motorB
Motor – Motor-object interfacing port B

motorC
Motor – Motor-object interfacing port C

motorD
Motor – Motor-object interfacing port D

sensor1
Sensor – Motor-object interfacing port 1

sensor2
Sensor – Motor-object interfacing port 2

sensor3
Sensor – Motor-object interfacing port 3

sensor4
Sensor – Motor-object interfacing port 4

debug
numeric in {0,1,2} – Debug mode. [WRITABLE]

•0: Debug turned off

•1: Debug turned on for EV3-object -> enables feedback in the console about what firmware-
commands have been called when using a method

•2: Low-level-Debug turned on -> each packet sent and received is printed to the console

3



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

batteryMode
string in {‘Percentage’, ‘Voltage’} – Mode for reading battery charge. [WRITABLE]

batteryValue
numeric – Current battery charge. Depending on batteryMode, the reading is either in percentage or
voltage. [READ-ONLY]

isConnected
bool – True if virtual brick-object is connected to physical one. [READ-ONLY]

Examples

b = EV3(); b.connect(‘usb’); ma = b.motorA; ma.setProperties(‘power’, 50, ‘limitValue’, 720); ma.start(); %
fun b.sensor1.value b.waitFor(); b.beep(); delete b;

beep(ev3)
Plays a ‘beep’-tone on brick.

Notes

•This equals playTone(10, 1000, 100) (Wraps the same opCode in comm-layer)

Example

b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); b.beep();

connect(ev3, varargin)
Connects EV3-object and its Motors and Sensors to physical brick.

Parameters

• connectionType (string in {’bt’, ’usb’}) – Connection type

• serPort (string in {’/dev/rfcomm1’, ’/dev/rfcomm2’, ...}) –
Path to serial port (if ‘bt’)

• beep (bool) – If true, EV3 beeps if connection has been established

Examples

% Setup bluetooth connection via com-port 0 b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); %
Setup usb connection, beep when connection has been established b = EV3(); b.connect(‘usb’, ‘beep’,
‘on’, );

Check connection

disconnect(ev3)
Disconnects EV3-object and its Motors and Sensors from physical brick.

Notes

•Gets called automatically when EV3-object is destroyed.

4 Chapter 1. EV3



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

Example

b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); % do stuff b.disconnect();

Reset motors and sensors before disconnecting

playTone(ev3, volume, frequency, duration)
Plays tone on brick.

Parameters

• volume (numeric in [0, 100]) – in percent

• frequency (numeric in [250, 10000]) – in Hertz

• duration (numeric >0) – in milliseconds

Example

b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); b.playTone(40, 5000, 1000); % Plays tone with
40% volume and 5000Hz for 1 second.

setProperties(ev3, varargin)
Set multiple EV3 properties at once using MATLAB’s inputParser.

Parameters

• debug (numeric in {0,1,2}) – see EV3.debug [OPTIONAL]

• batteryMode (string in {’Voltage’/’Percentage’}) – see
EV3.batteryMode [OPTIONAL]

Example

b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); b.setProperties(‘debug’, ‘on’, ‘batteryMode’, ‘Volt-
age’); % Instead of: b.debug = ‘on’; b.batteryMode = ‘Voltage’;

See also EV3.DEBUG, EV3.BATTERYMODE

stopAllMotors(ev3)
Sends a stop-command to all motor-ports

stopTone(ev3)
Stops tone currently played

Example

b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); b.playTone(10,100,100000000); % Accidentally
given wrong tone duration :) b.stopTone(); % Stops tone immediately.

tonePlayed(ev3)
Tests if tone is currently played.

Returns status – True if a tone is being played

Return type bool

Example b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); b.playTone(10, 100, 1000); pause(0.5);
b.tonePlayed() -> Outputs 1 to console.

5



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

6 Chapter 1. EV3



CHAPTER

TWO

MOTOR

class source.Motor(varargin)
High-level class to work with motors.

This class is supposed to ease the use of the brick’s motors. It is possible to set all kinds of parameters, request
the current status of the motor ports and of course send commands to the brick to be executed on the respective
port.

Notes

•You don’t need to create instances of this class. The EV3-class automatically creates instances for each
motor port, and you can work with them via the EV3-object.

•The Motor-class represents motor ports, not individual motors!

•If you start a motor with power=0, the internal state will still be set to ‘isRunning’

power
numeric in [-100, 100] – Power level of motor in percent. [WRITABLE]

speedRegulation
bool – Speed regulation turned on or off. When turned on, motor will try to ‘hold’ its speed at given power
level, whatever the load. In this mode, the highest possible speed depends on the load and mostly goes
up to around 70-80 (at this point, the Brick internally input 100% power). When turned off, motor will
constantly input the same power into the motor. The resulting speed will be somewhat lower, depending
on the load. [WRITABLE]

smoothStart
numeric s. t. smoothStart+smoothStop < limitValue – Degrees/Time indicating how far/long the motor
should smoothly start. Depending on limitMode, the input is interpreted either in degrees or milliseconds.
The first {smoothStart}-milliseconds/degrees of limitValue the motor will slowly accelerate until reaching
its defined speed. [WRITABLE]

smoothStop
numeric s. t. smoothStart+smoothStop < limitValue – Degrees/Time indicating how far/long the motor
should smoothly stop. Depending on limitMode, the input is interpreted either in degrees or milliseconds.
The last [smoothStop]-milliseconds/degrees of limitValue the motor will slowly slow down until it has
stopped. [WRITABLE]

limitValue
numeric>=0 – Degrees/Time indicating how far/long the motor should run. Depending on limitMode, the
input is interpreted either in degrees or milliseconds. [WRITABLE]

limitMode
‘Tacho’|’Time’ – Mode for motor limit. [WRITABLE]

7



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

brakeMode
‘Brake’|’Coast’ – Action done when stopping. If ‘Coast’, the motor will (at tacholimit, if ~=0) coast to a
stop. If ‘Brake’, the motor will stop immediately (at tacholimit, if ~=0) and hold the brake. [WRITABLE]

debug
bool – Debug turned on or off. In debug mode, everytime a command is passed to the sublayer (‘commu-
nication layer’), there is feedback in the console about what command has been called. [WRITABLE]

isRunning
bool – True if motor is running. [READ-ONLY]

tachoCount
numeric – Current tacho count. [READ-ONLY]

currentSpeed
numeric – Current speed of motor. If speedRegulation=on this should equal power, otherwise it will
probably be lower than that. [READ-ONLY]

type
DeviceType – Type of connected device if any. [READ-ONLY]

internalReset(motor)
Resets internal tacho count. Use this if motor behaves weird (i.e. not starting at all, or not correctly running
to limitValue)

The internal tacho count is used for positioning the motor. When the motor is running with a tacho limit,
internally it uses another counter than the one read by tachoCount. This internal tacho count needs to be
reset if you physically change the motor’s position or it coasted into a stop. If the motor’s brakemode is
‘Coast’, this function is called automatically.

Notes

•A better name would probably be resetPosition...

•Gets called automatically when starting the motor and the internal tacho

count is > 0

See also MOTOR.RESETTACHOCOUNT

resetTachoCount(motor)
Resets tachocount

setBrake(motor, brake)
Apply or release brake of motor

Parameters brake (bool) – If true, brake will be pulled

setProperties(motor, varargin)
Sets multiple Motor properties at once using MATLAB’s inputParser.

Parameters

• debug (bool) –

• smoothStart (numeric in [0, limitValue]) –

• smoothStop (numeric in [0, limitValue]) –

• speedRegulation (bool) –

• brakeMode (’Coast’|’Brake’) –

8 Chapter 2. Motor



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

• limitMode (’Time’|’Tacho’) –

• limitValue (numeric > 0) –

• power (numeric in [-100,100]) –

• batteryMode (’Voltage’|’Percentage’) –

Example

b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); b.motorA.setProperties(‘debug’, ‘on’, ‘power’, 50,
‘limitValue’, 720, ‘speedRegulation’, ‘on’); % Instead of: b.motorA.debug = ‘on’; % b.motorA.power =
50; % b.motorA.limitValue = 720; % b.motorA.speedRegulation = ‘on’;

start(motor)
Starts the motor

Notes

•Right now, alternatingly calling this function with and without tacho limit may lead to unexpected
behaviour. For example, if you run the motor without a tacholimit for some time using Coast, then
stop using Coast, and then try to run the with a tacholimit, it will stop sooner or later than expected,
or may not even start at all.

•(OLD)After calling one of the functions to control the motor with some kind of limit (which is done if
limit~=0), the physical brick’s power/speed value for starting without a limit (i.e. if limit==0) is reset
to zero. So if you want to control the motor without a limit after doing so with a limit, you would
have to set the power manually to the desired value again. (I don’t really know if this is deliberate or
a bug, and at this point, I’m too afraid to ask.) To avoid confusion, this is done automatically in this
special case. However, this does not even work all the time. If motor does not start, call stop() and
setPower() manually. :/

Check connection and if motor is already running

stop(motor)
Stops the motor

syncedStart(motor, syncMotor, varargin)
Starts this motor synchronized with another

This motor acts as a ‘master’, meaning that the synchronized control is done via this one. When synced-
Start is called, the master sets some of the slave’s (syncMotor) properties to keep it consistent with the
physical brick. So, for example, changing the power on the master motor will take effect on the slave as
soon as this method is called. The following parameters will be affected on the slave: power, brakeMode,
limitValue, speedRegulation

Parameters

• syncMotor (Motor) – the motor-object to sync with

• turnRatio (numeric in [-200,200]) – [OPTIONAL] (Excerpt of Firmware-
comments, in c_output.c): “Turn ratio is how tight you turn and to what direction you
turn.

– 0 value is moving straight forward

– Negative values turn to the left

– Positive values turn to the right

9



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

– Value -100 stops the left motor

– Value +100 stops the right motor

– Values less than -100 makes the left motor run the opposite direction of the right motor
(Spin)

– Values greater than +100 makes the right motor run the opposite direction of the left
motor (Spin)”

Notes

•This is right now a pretty ‘heavy’ function, as it tests if both motors are connected AND aren’t running,
wasting four packets, keep that in mind

•It is necessary to call syncedStop() and not stop() for stopping the motors (otherwise the sync-state
cannot be exited correctly)

Example

b = EV3(); b.connect(‘usb’); m = b.motorA; slave = b.motorB; m.power = 50; m.syncedStart(slave); % Do
stuff m.syncedStop();

syncedStop(motor)
Stops both motors previously started with syncedStart.

See also MOTOR.SYNCEDSTART

waitFor(motor)
Stops execution of program as long as motor is running

Notes

•(OLD)This one’s a bit tricky. The opCode OutputReady makes the brick stop sending responses until
the motor has stopped. For security reasons, in this toolbox there is an internal timeout for receiving
messages from the brick. It raises an error if a reply takes too long, which would happen in this case.
As a workaround, there is an infinite loop that catches errors from outputReady and continues then,
until outputReady will actually finish without an error.

•(OLD)OutputReady (like OutputTest in isRunning) sometimes doesn’t work. If outputReady returns
in less than a second, another while-loop iterates until the motor has stopped, this time using mo-
tor.isRunning() (this only works as long as not both OutputTest and OutputReady are buggy).

•(OLD)Workaround: Poll isRunning (which itself return (speed>0)) until it is false (No need to check
if motor is connected as speed correctly returns 0 if it’s not)

10 Chapter 2. Motor



CHAPTER

THREE

SENSOR

class source.Sensor(varargin)
High-level class to work with sensors.

The Sensor-class facilitates the communication with sensors. This mainly consists of reading the sensor’s type
and current value in a specified mode.

Notes

•You don’t need to create instances of this class. The EV3-class automatically creates instances for each
sensor port, and you can work with them via the EV3-object.

•The Sensor-class represents sensor ports, not individual sensors!

mode
DeviceMode.{Type} – Sensor mode in which the value will be read. By default, mode is set to Device-
Mode.Default.Undefined. Once a physical sensor is connected to the port and the physical Brick is con-
nected to the EV3-object, the allowed mode and the default mode for a Sensor-object are the following
(depending on the sensor type): [WRITABLE]

•Touch-Sensor:

– DeviceMode.Touch.Pushed [Default]

– DeviceMode.Touch.Bumps

•Ultrasonic-Sensor:

– DeviceMode.UltraSonic.DistCM [Default]

– DeviceMode.UltraSonic.DistIn

– DeviceMode.UltraSonic.Listen

•Color-Sensor:

– DeviceMode.Color.Reflect [Default]

– DeviceMode.Color.Ambient

– DeviceMode.Color.Col

•Gyro-Sensor:

– DeviceMode.Gyro.Angular [Default]

– DeviceMode.Gyro.Rate

•Infrared-Sensor:

11



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

– DeviceMode.InfraRed.Prox [Default]

– DeviceMode.InfraRed.Seek

– DeviceMode.InfraRed.Remote

•NXTColor-Sensor:

– DeviceMode.NXTColor.Reflect [Default]

– DeviceMode.NXTColor.Ambient

– DeviceMode.NXTColor.Color

– DeviceMode.NXTColor.Green

– DeviceMode.NXTColor.Blue

– DeviceMode.NXTColor.Raw

•NXTLight-Sensor:

– DeviceMode.NXTLight.Reflect [Default]

– DeviceMode.NXTLight.Ambient

•NXTSound-Sensor:

– DeviceMode.NXTSound.DB [Default]

– DeviceMode.NXTSound.DBA

•NXTTemperature-Sensor

– DeviceMode.NXTTemperature.C [Default]

– DeviceMode.NXTTemperature.F

•NXTTouch-Sensor:

– DeviceMode.NXTTouch.Pushed [Default]

– DeviceMode.NXTTouch.Bumps

•NXTUltraSonic-Sensor:

– DeviceMode.NXTUltraSonic.CM [Default]

– DeviceMode.NXTUltraSonic.IN

•HTAccelerometer-Sensor:

– DeviceMode.HTAccelerometer.Acceleration [Default]

– DeviceMode.HTAccelerometer.AccelerationAllAxes

•HTCompass-Sensor:

– DeviceMode.HTCompass.Degrees [Default]

•HTColor-Sensor:

– DeviceMode.HTColor.Col [Default]

– DeviceMode.HTColor.Red

– DeviceMode.HTColor.Green

– DeviceMode.HTColor.Blue

– DeviceMode.HTColor.White

12 Chapter 3. Sensor



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

– DeviceMode.HTColor.Raw

– DeviceMode.HTColor.Nr,

– DeviceMode.HTColor.All

debug
bool – Debug turned on or off. In debug mode, everytime a command is passed to the sublayer (‘commu-
nication layer’), there is feedback in the console about what command has been called. [WRITABLE]

value
numeric – Value read from hysical sensor. What the value represents depends on sensor.mode. [READ-
ONLY]

type
DeviceType – Type of physical sensor connected to the port. Possible types are: [READ-ONLY]

•DeviceType.NXTTouch

•DeviceType.NXTLight

•DeviceType.NXTSound

•DeviceType.NXTColor

•DeviceType.NXTUltraSonic

•DeviceType.NXTTemperature

•DeviceType.LargeMotor

•DeviceType.MediumMotor

•DeviceType.Touch

•DeviceType.Color

•DeviceType.UltraSonic

•DeviceType.Gyro

•DeviceType.InfraRed

•DeviceType.HTColor

•DeviceType.HTCompass

•DeviceType.HTAccelerometer

•DeviceType.Unknown

•DeviceType.None

•DeviceType.Error

reset(sensor)
Resets value on sensor

Notes

•This clears ALL the sensors right now, no other Op-Code available... :(

setProperties(sensor, varargin)
Sets multiple Sensor properties at once using MATLAB’s inputParser.

Parameters

13



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

• debug (bool) –

• mode (DeviceMode.{Type}) –

Example

b = EV3(); b.connect(‘bt’, ‘serPort’, ‘/dev/rfcomm0’); b.sensor1.setProperties(‘debug’, ‘on’, ‘mode’,
DeviceMode.Color.Ambient); % Instead of: b.sensor1.debug = ‘on’; % b.sensor1.mode = Device-
Mode.Color.Ambient;

14 Chapter 3. Sensor



CHAPTER

FOUR

INDICES AND TABLES

• genindex

• modindex

• search

15



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

16 Chapter 4. Indices and tables



MATLAB MODULE INDEX

s
source, 1

17



Mindstorms EV3 Toolbox Documentation, Release v0.4-rc.10

18 MATLAB Module Index



INDEX

B
batteryMode (source.EV3 attribute), 3
batteryValue (source.EV3 attribute), 4
beep() (source.EV3 method), 4
brakeMode (source.Motor attribute), 7

C
connect() (source.EV3 method), 4
currentSpeed (source.Motor attribute), 8

D
debug (source.EV3 attribute), 3
debug (source.Motor attribute), 8
debug (source.Sensor attribute), 13
disconnect() (source.EV3 method), 4

E
EV3 (class in source), 3

I
internalReset() (source.Motor method), 8
isConnected (source.EV3 attribute), 4
isRunning (source.Motor attribute), 8

L
limitMode (source.Motor attribute), 7
limitValue (source.Motor attribute), 7

M
mode (source.Sensor attribute), 11
Motor (class in source), 7
motorA (source.EV3 attribute), 3
motorB (source.EV3 attribute), 3
motorC (source.EV3 attribute), 3
motorD (source.EV3 attribute), 3

P
playTone() (source.EV3 method), 5
power (source.Motor attribute), 7

R
reset() (source.Sensor method), 13

resetTachoCount() (source.Motor method), 8

S
Sensor (class in source), 11
sensor1 (source.EV3 attribute), 3
sensor2 (source.EV3 attribute), 3
sensor3 (source.EV3 attribute), 3
sensor4 (source.EV3 attribute), 3
setBrake() (source.Motor method), 8
setProperties() (source.EV3 method), 5
setProperties() (source.Motor method), 8
setProperties() (source.Sensor method), 13
smoothStart (source.Motor attribute), 7
smoothStop (source.Motor attribute), 7
source (module), 1
speedRegulation (source.Motor attribute), 7
start() (source.Motor method), 9
stop() (source.Motor method), 9
stopAllMotors() (source.EV3 method), 5
stopTone() (source.EV3 method), 5
syncedStart() (source.Motor method), 9
syncedStop() (source.Motor method), 10

T
tachoCount (source.Motor attribute), 8
tonePlayed() (source.EV3 method), 5
type (source.Motor attribute), 8
type (source.Sensor attribute), 13

V
value (source.Sensor attribute), 13

W
waitFor() (source.Motor method), 10

19


	EV3
	Motor
	Sensor
	Indices and tables
	MATLAB Module Index
	Index

